
HAL Id: hal-01131561
https://hal.inria.fr/hal-01131561

Submitted on 14 Mar 2015

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Efficiently and Effectively Answering Why-Not
Questions based on Provenance Polynomials

Nicole Bidoit, Melanie Herschel, Katerina Tzompanaki

To cite this version:
Nicole Bidoit, Melanie Herschel, Katerina Tzompanaki. Efficiently and Effectively Answering Why-
Not Questions based on Provenance Polynomials. [Research Report] RR-8697, OAK team, Inria
Saclay; INRIA. 2015, pp.25. �hal-01131561�

https://hal.inria.fr/hal-01131561
https://hal.archives-ouvertes.fr

IS
S

N
02

49
-6

39
9

IS
R

N
IN

R
IA

/R
R

--
86

97
--

FR
+E

N
G

RESEARCH
REPORT
N° 8697
March 2015

Project-Teams OAK

Efficiently and Effectively
Answering Why-Not
Questions based on
Provenance Polynomials
Nicole Bidoit, Melanie Herschel, Katerina Tzompanaki

RESEARCH CENTRE
SACLAY – ÎLE-DE-FRANCE

1 rue Honoré d’Estienne d’Orves
Bâtiment Alan Turing
Campus de l’École Polytechnique
91120 Palaiseau

Efficiently and Effectively Answering Why-Not
Questions based on Provenance Polynomials

Nicole Bidoit, Melanie Herschel ∗, Katerina Tzompanaki

Project-Teams OAK

Research Report n° 8697 — March 2015 — 25 pages

Abstract: The problem of answering Why-Not questions consists in explaining why the result of a query
does not contain some expected data, i.e., missing answers. To solve this problem, we resort to identifying
where in the query, data relevant to the missing answer were lost. Existing algorithms producing such
query-based explanations rely on a query tree representation, potentially leading to different or partial
explanations. This significantly impairs on the effectiveness of computed explanations. Here we present an
effective, query-tree independent representation of query-based explanations, for a wide class of Why-Not
questions, based on provenance polynomials. We further describe an algorithm that efficiently computes the
complete set of these explanations. An experimental evaluation validates our statements.

Key-words: Why-Not questions, data provenance

∗ University of Stuttgart

Répondre efficacement et pertinement à des requêtes Why-Not par
des polynômes de provenance

Résumé : Une question de type "pourquoi pas" (Why Not) exprime une interrogation relative à l’absence
dans le résultat d’une requête de certaines réponses attendues par l’utilisateur. Donc répondre à des ques-
tions de type "pourquoi pas" consiste à fournir une explication relative à l’absence de réponses. La solu-
tion que nous proposons cherche à identifier les éléments de la requête responsables de la perte de données
ayant pu potentiellement contribuer à construction de ces réponses attendues mais manquantes. Les algo-
rithmes existants qui produisent ce type d’explication dite "explication par la requête" sont développés en
s’appuyant sur une représentation de la requête par un arbre. Cette approche a pour conséquence de pro-
duire des explications qui sont partielles d’une part et qui dépendent de l’arbre de requête choisi d’autre
part. Celle-ci nuit donc à la qualité de l’explication. Dans cet article, nous proposons une méthode qui
résoud, pour une classe de requêtes très grande, le défaut des travaux antérieurs en produisant des expli-
cations sous forme de polynômes de conditions inspirée par les polynômes de provenance. Un algorithme
efficace est développé qui permet de calculer ces explications. La méthode est validée par cet algorithme
et des expérimentations pertinentes.

Mots-clés : questions Why-Not, provenance de données

Efficiently and Effectively Answering Why-Not Questions based on Provenance Polynomials 3

SELECT island,
archipel

FROM Island I,
Archipelago A

WHERE I.AID = A.AID
AND pop <= 20M

Island
island pop AID
Maui 144K 1
Hawaii 3187K 1
Reunion 841K 2

Madagascar 22M NULL

Archipelago
AID archipel
1 Hawaii
2 Mascarene

Figure 1: Example query and data

Πisland,archipel

σpop≤20M•

1AID ◦ ? •

Island Archipelago

Πisland,archipel

1AID

σpop≤20M ◦ ? •

Island

Archipelago

Figure 2: Reordered query trees for the query of Fig. 1 and algorithm results (Why-Not ◦, NedExplain ?,
Conseil •)

1 Introduction
The increasing load of data produced nowadays is coupled with an increasing need for complex data
transformations that developers design to process these data in every-day tasks. These transformations,
commonly specified declaratively, may result in unexpected outcomes. For instance, given the query and
data of Fig. 1, a developer (or scientist) may wonder why the island of Madagascar is missing from the
result, even though she expected it to be part of it. Traditionally, she would repeatedly manually analyze
the query to identify a possible reason, fix it, and test it to check whether the missing answer is now
present or if other problems need to be fixed.

Answering such Why-Not questions, that is, understanding why some data are not part of the result, is
very valuable in a series of applications, such as query development, query debugging, query refinement,
or what-if analysis. To help developers explain missing answers, different algorithms have recently been
proposed for relational and SQL queries [5, 7, 14, 16, 17] as well as other types of queries (top-k [13],
reverse skyline queries [19]). In this paper, we focus on relational queries, for which existing algorithms
explain a missing answer either based on the data (instance-based explanations), the query (query-based
explanations), or both (hybrid explanations). Moreover, we focus on solutions producing query-based ex-
planations, as these are generally more efficient while providing sufficient information for query analysis
and debugging. Taking a closer look at existing methods, we notice that these return different explana-
tions for the same SQL query. This is due to the fact that these algorithms are designed over query trees
rather than over the query, and thus trace data relevant to the missing answer, i.e., compatible data in a
bottom-up manner through a specific query tree from which so-called picky operators are identified.

Example 1.1 Consider the SQL query q and data I of Fig. 1 and assume that a developer wants an
explanation for the absence of island Madagascar in the query result q(I). So here, the why-not question
is “Why is tuple (island:Madagascar, archipel:x) not in q(I)?”. Fig. 2 shows two possible query trees
for q. It also shows the picky operators that Why-Not [7] (◦) and NedExplain [5] (?) return as query-
based explanations as well as query operators returned as part of hybrid explanations by Conseil [14]
(•). Each algorithm returns a different result for each of the two query trees, and in most cases, it is only
a partial result as the true explanation of the missing answer is that both the selection is too strict for
the compatible tuple (Madagascar, 22M,NULL) from table Island and this tuple does not find any join
partner in table Archipelago.

The above example clearly shows that existing algorithms have limited effectiveness when it comes
to explaining missing answers. Indeed, the developer first has to understand and reason at the level of
query trees instead of reasoning at the level of the declarative SQL query she is familiar with. Second,

RR n° 8697

4 Nicole Bidoit, Melanie Herschel, Katerina Tzompanaki

she always has to wonder whether the explanation is complete. To provide a more informative Why-Not
answer we present in this paper the Why-Not answer in form of a polynomial. We then discuss both a
naive and an efficient algorithm to compute this answer. Thus, the overall contribution of this paper is
both an efficient and effective way to answer Why-Not questions for relational queries using provenance
polynomials. In detail, our contributions are1:
Why-Not answer polynomial. Our formal framework supports a larger class of Why-Not questions w.r.t.
previous works. The form of the Why-Not answer is unprecedented, as this paper is the first to formalize
provenance polynomials providing fine-grained query based explanations. Intuitively, each addend of a
polynomial represents one combination of the query conditions that simultaneously explain the missing
answers and the set of all addends covers all possible such combinations. Moreover, the Why-Not answer
is independent of the query tree representation of a query q. More precisely, all query trees which are
equivalent to a conjunctive query (possibly) containing inequalities and which are obtained from each
other by reordering of the operators have the same Why-Not answer polynomial up to isomorphism.
Naive Ted algorithm and efficient Ted++ algorithm. We present the Ted algorithm that correctly com-
putes the Why-Not answer polynomial for a given query and a given Why-Not question. However, we
show that its runtime complexity is impractical. Thus, we subsequently present an improved algorithm,
Ted++, that is capable of efficiently computing the same Why-Not answer polynomial.
Experimental validation. We validate both the efficiency and the effectiveness of the solutions proposed
in this paper through a series of experiments. These experiments include a comparative evaluation to
existing algorithms computing query-based explanations for SQL queries (or sub-languages thereof) as
well as a thorough study of Ted++ performance w.r.t. different parameters.

The remainder of this paper is structured as follows. Sec. 2 covers related work. Sec. 3 defines in
detail our problem setting and the novel Why-Not answer polynomials. We briefly cover the naive Ted
algorithm in Sec. 4 before we discuss in more detail the efficient Ted++ algorithm in Sec 5. We present
our experimental setup and evaluation in Sec. 6 before we conclude in Sec. 7.

2 Related Work

Recently, we observe the trend that growing volumes of data are processed by programs developed not
only by expert developers but also by less knowledgable users (creation of mashups, use of web services,
etc.). These trends have led to the necessity of providing algorithms and tools to better understand and
verify the behavior and semantics of developed data transformations, and various solutions have been
proposed so far, including data lineage [9] and more generally data provenance [8], (sub-query) result in-
spection and explanation [11, 25], query conditions relaxation [23], visualization [10], or transformation
specification simplification [20, 24]. The work presented in this paper falls in the category of data prove-
nance research, focusing on a specific sub-problem that aims at explaining missing answers from query
results. This sub-problem alone finds applications in various domains, e.g., information extraction [17],
query debugging [15], distributed systems debugging [27], or image retrieval [3].

Due to the lack of space, the subsequent discussion focuses on algorithms proposed for answering
Why-Not questions. Tab. 1 summarizes these approaches, first classifying them according to the type of
explanation they generate (instance-based, query-based, hybrid, or modification-based). The table further
shows whether an algorithm supports simple Why-Not questions, i.e., questions where each condition
impacts one relation only, or more complex ones. The last two columns summarize the form of a returned
explanation and the queries an algorithm supports, respectively.

1In a four-page workshop paper [4], we introduced the Why-Not answer polynomial as well as the naive Ted algorithm. Opposed
to the workshop paper, the definitions here are more concise and additional theorems have been added. We also briefly summarize
Ted here to clearly show that it is impractical, however, the focus of this paper clearly lies on the presentation of Ted++. Finally,
the workshop paper does not include any experiments.

Inria

Efficiently and Effectively Answering Why-Not Questions based on Provenance Polynomials 5

Table 1: Algorithms for answering Why-Not questions
Algorithm Why-NotExplanation Query

question format
Instance-based explanations

MA [17] simple source table edits SPJ
Artemis [16] complex source table edits SPJUA
Causality [22] simple causes (tuples) and

responsibility
conjunctive queries

DL-Lite [6] simple additions to ABox instance & conjunctive queries over
DL-Lite ontology

Query-based explanations
Why-Not [7] simple query operators SPJU
NedExplain [5]simple query operators SPJUA
Ted [4]/Ted++ complex polynomial conj. queries with inequalities

Hybrid explanations
Conseil [14] simple source table edits +

query operators
SPJAN

Modification-based explanations
ConQueR [26] complex rewritten query SPJA
Top-k [13] simple rewritten query top-k query
Skyline [19] simple rewritten query &

why-not question
Reverse skyline query

Instance-based explanations. Both Missing-Answers (MA) [17] and Artemis [16] compute instance-
based explanations in the form of source table edits (insertions or updates) that would be necessary to
obtain the missing answers in the query result. Whereas MA returns correct explanations for simple
Why-Not questions and SQL queries involving selection, projection, and join only (SPJ queries), Artemis
supports complex why-not questions on a larger fraction of SQL queries (including union or aggregation,
denoted SPJUA). Causality [22] theoretically studies the unification of instance-based explanations of
missing answers and of data present in a query result, leveraging the concepts of causality and responsi-
bility. The results apply to conjunctive queries. Finally, DL-Lite [6] leverages abductive reasoning and
theoretically examines the problem of computing instance-based explanations for a class of simple Why-
Not questions on data represented by a DL-Lite ontology. Here, the instance-based explanation consists
in additions to the ontology’s ABox (insertions to the instance data).
Query-based and hybrid explanations. Why-Not [7] takes as input a simple Why-Not question and
returns so called picky query operators as query-based explanation. To determine these, the algorithm
first identifies tuples in the source database that satisfy the conditions of the input Why-Not question
and that are not part of the lineage [9] of any tuple in the query result. These tuples, named compatible
tuples, are traced through the query operators of a query tree representation to identify which operators
include them in their input but not in their output. In [7] the algorithm is shown to work for queries
involving selection, projection, join, and union (SPJU query). NedExplain [5] is very similar to Why-Not
in the sense that it supports simple Why-Not questions and returns a set of picky operators as query-
based Why-Not answer as well. However, it supports a broader range of queries, i.e., queries involving
selection, projection, join, and aggregation (SPJA queries) and unions thereof and the computation of
picky operators is significantly different. First, it does not restrict compatible tuples to source tuples not
in the lineage of any result tuple. Second, based on a novel formal definition of query-based explanations,
NedExplain computes a generally wider and detailed set of explanations than Why-Not.

Conseil [14] produces hybrid explanations that include an instance-based component (source table
edits) and a query-based component. The latter consists in a set of picky query operators. However,
as Conseil considers both the data to be possibly incomplete and the query to be possibly faulty, the
set of picky query operators associated to a hybrid explanation depends on the set of source edits of
the same hybrid explanation. In general, this results in Conseil returning multiple hybrid explanations
where the sets of picky operators of each explanation are different from those determined by Why-Not or
NedExplain.

For comparison purposes, Tab. 1 also includes the naive Ted algorithm (previously introduced in a
short workshop paper [4]) and Ted++. We observe that it is the first algorithm that computes query-

RR n° 8697

6 Nicole Bidoit, Melanie Herschel, Katerina Tzompanaki

based explanations for complex Why-Not questions, along with the novel format of Why-Not answer
polynomial. Finally, Ted++ applies on a different query fragment than the two previous algorithms, i.e.,
conjunctive queries with inequalities.
Modification-based explanations. Given a set of missing answers, an SPJUA query, and a source
database, ConQueR [26] rewrites the query such that all missing answers become part of the output.
Beyond SQL queries, the Top-K algorithm [13] focuses on changing k or preference weights to make the
missing answer appear in the query result of a top-k query. Skyline [19] presents a solution for answering
Why-Not questions in reverse skyline queries that modifies not only the query, but also the Why-Not
question itself. Although these approaches are very interesting and valuable for the general purpose of
query refinement, they are out of the scope of this paper.

3 Why-Not answers as Polynomial
We assume the reader is familiar with the relational model [1]. We briefly revisit certain notions in our
context in Sec. 3.1. Why-Not questions are defined in Sec. 3.2. Sec. 3.3 extends the notion of compatible
data introduced in previous work. Finally, we define the answer of a Why-Not question in Sec. 3.4 and
discuss interesting properties in Sec. 3.5.

3.1 Preliminaries
We assume that a database schema S is a set of relation schemas. The set of attributes of a relation
R always includes a special attribute R_Id because we assume that each tuple in an instance of R is
referred to by an identifier Id. We denote by Att(R) the set of attributes of R, except R_Id. We assume
each attribute of R to be qualified, i.e., of the form R.A. For an instance I over S, we write I|R for the
component of I overR. We also assume available a set V ar of variables x, y, z, . . . A condition c is either
of the form xθy or xθa, where x, y∈V ar, a is a constant in a unique domain D and θ∈{=, 6=, <,≤}.
A v-tuple v over R is a tuple of pairwise distinct variables over Att(R). Note that a v-tuple does not
associate a variable with the attribute R_Id. Next, var(·) is used to retrieve the set of variables from a
structure, e.g., var((x1, . . . , xn)) returns {x1, . . . , xn}. The paper uses a notion of queries close to that
of tableaux [2] and of inequality queries [21].

Definition 3.1 (Query tableau) A query tableau (or simply query) q over schema Sq is a triple (sq, Tq, Cq)
where (i) the summary sq is a set of distinguished variables with sq⊆var(Tq), (ii) the query skeleton Tq is
a mapping associating one v-tuple v to each R∈Sq such that var(Tq(R))∩var(Tq(T)=∅ for any distinct
pair R, T∈Sq , and (iii) the query condition Cq is a set of conditions over var(Tq).

To denote the result of q over I, we use q(I). Note also that our query definition does not allow express-
ing conditions involving the special attribute R_Id. These attributes thus do not appear in the tableau
representation. Next, if a condition c in Cq refers via its variables to two distinct relations, we say that c
is a complex condition, otherwise c is a simple condition.

Example 3.1 Consider the database schema Sq={R,S, T}. Fig. 3 displays an instance I of Sq and the
tableau representing a query q. The distinguished variables for q are underlined and the query condition
is given in a special column. This query q corresponds to the following relational query:

πR.B,S.D,T.C(σR.A>3[R] 1B σT.C≥8[T] 1D σS.E≥3[S])

The condition x2=x6 is complex because the variables x2, resp. x6 refer to R, resp. T . The condition
x4=x8 is complex as well. All other conditions are simple ones.

Inria

Efficiently and Effectively Answering Why-Not Questions based on Provenance Polynomials 7

3.2 The Why-Not Question
Given a quey q, a Why-Not question is in general formulated as a predicate that is a disjunction of
conditional tuples (c-tuples) [18]. Next, w.l.o.g., we concentrate on predicates composed of a single
c-tuple. A full definition is available in [5]. The method presented here trivially extends to general
predicates, but we omit a discussion due to space limitation.

Definition 3.2 (Why-Not question) Let q=(sq, Tq, Cq) be a query over Sq . A (simple) Why-Not ques-
tion is specified by a c-tuple tc=(tv,

∧n
i=1 ci), where (i) tv is a tuple of variables such that var(tv)⊆var(sq),

and (ii) ci is a condition over the variables var(tv). Next, tc.cond denotes
∧n
i=1 ci. A Why-Not question

tc is complex if one of its condition is complex, ortherwise it is simple.

Example 3.2 Given the scenario of Ex. 3.1, we wonder why, in the answer q(I), there is no tuple s.t. the
value on R.B is smaller than the one on S.D and at the same time its value on T.C is smaller or equal
to 9. This Why-Not question is expressed by tc=((x2, x4, x7), (x2<x4 ∧ x7≤9)). In tc.cond, x7≤9 is a
simple condition whereas x2<x4 is a complex one. Consequently, tc is a complex c-tuple.

3.3 Compatible Data
Intuitively, compatible data designates any source tuples that potentially provide data to build the missing
answer specified by tc. The first step towards answering the Why-Not question consists in identifying, in
the input instance I, these tuples and more specifically combinations of them (called concatenated tuples)
that would produce the missing answer in the absence of the restrictions of q. In a second step, discussed
in the next section, we will identify the conditions in q that prune these concatenated tuples.

Example 3.3 One can note in tc.cond of Ex. 3.2, that a missing answer depends on those tuples tR∈I|R,
tS∈I|S and tT∈I|T that satisfy tR(R.B)<tS(S.D) and tT (T.C)≤9. Due to the complex condition, tR
and tS need to be chosen in correlation with one another, whereas it is not the case for tT . Thus, here the
compatible concatenated tuples correlated with (tR, tS) are (Id1Id5), (Id1Id6) and (Id2Id6), while for
tT , each tuple in S, i.e., Id8, . . . , Id11, is a compatible concatenated tuple.

Previous approaches [5, 7] generate compatible tuples independently from each other, e.g., both Id1

and Id2 are considered compatible for tR. However, Id2 should not be considered compatible when Id5

is chosen for tS , which is not addressed by previous work. Therefore, we introduce compatibility on con-
catenated tuples rather than on single tuples. According to our definition, each compatible concatenated
tuple (cc-tuple) would produce a missing answer tuple if it was not pruned by some condition(s) of the
query.
Mappings. For a concise presentation, we need the functions defined and illustrated in Tab. 2. Function
hAtt is extended to apply on the tableau and the c-tuple conditions respectively, whereas function full
naturally extends to cc-tuples, e.g., full(Id1Id5)=(R.A:1, R.B:3, S.C:1, S.D:4, S.E:8).

R
A B R_Id
1 3 Id1
2 4 Id2
4 5 Id3
8 9 Id4

S
C D E S_Id
1 4 8 Id5
3 5 3 Id6
3 3 9 Id7

T
B C D T_Id
3 4 5 Id8
3 8 1 Id9
5 3 3 Id10
5 9 4 Id11

(a) Sample database instance I

R.A R.B S.C S.D S.E T.B T.C T.D Cq
R x1 x2 x1>3 x2=x6

S x3 x4 x5 x4=x8 x5≥3
T x6 x7 x8 x7≥8

(b) A query tableau q

Figure 3: Sample instance (a) and query (b)

RR n° 8697

8 Nicole Bidoit, Melanie Herschel, Katerina Tzompanaki

Table 2: Mapping functions
Function Purpose Example
hAtt:Att(Sq)→ var(TSq) Maps attribute names to vari-

ables in Tq .
hAtt(R.A)=x1

h−1
Att(x1) = R.A

full : ID → I Maps an identifier to its ‘full’
tuple.

full(Id1)=
(R.A:1, R.B:4)

Table 3: Compatibility tableau Ttc
R.A R.B S.C S.D S.E T.B T.C T.D tc.cond

R x1 x2 x2 < x4

S x3 x4 x5

T x6 x7 x8 x7 ≤ 9

Part1

Part2

Compatible concatenated tuples (cc-tuples). We are now ready to define the cc-tuples for the Why-Not
question tc. To this end, we consider the compatibility query Ttc=(_, Tq, tc.cond). Here we do not really
care about the summary and thus omit it. Hence, in the following, Ttc is specified by (Tq, tc.cond). Tab. 3
shows the tableau representation of Ttc for our running example (ignore the grouping of rows for now).
Intuitivelly, Ttc captures the pattern that a cc-tuple should match and is formally defined as follows:

Definition 3.3 (cc-tuple w.r.t. tc) Let q be a query, tc a Why-Not question, and I be an instance over
Sq={R1, . . . , Rn}. The tuple τ=(Id1 . . . Idn), where Idi∈πR_Id(I|Ri),∀i∈[1, n] is a compatible con-
catenated tuple (cc-tuple) w.r.t. tc if full(τ)|=h−1

Att(cond). The set of cc-tuples w.r.t. tc given I is denoted
by CCT (tc, I).

Example 3.4 For τ=(Id1Id5Id8), it is immediate to check that full(τ)|=h−1
Att(cond). This entails that

τ is a cc-tuple w.r.t. tc. In total, for our running example, we find 12 cc-tuples .

3.4 The Why-Not Answer
Given the set CCT (tc, I) of cc-tuples, we define the Why-Not answer of tc again relying on the skeleton
Tq .

Definition 3.4 (cc-tuple tableau) With the same assumption as above, given a cc-tuple τ w.r.t. tc, the
tableau Tτ associated with τ is defined by (_, Tq, condτ∪Cq), where condτ is the set of conditions over
var(Tq) induced by full(τ).

Example 3.5 Tab. 4 shows the tableau associated with the cc-tuple τ1=(Id1Id5Id8). The condition
sets condτ and Cq are displayed in two different columns.

Let us now illustrate how Tτ is used to identify picky conditions in the query q (elements of Cq) that
are considered responsible for pruning the cc-tuple τ from the query result.

Example 3.6 First, we focus on τ1 and on the two columns condτ and Cq of Tab. 4. The condition x1=1
in condτ contradicts the condition x1>3 of Cq . This leads us to conclude that x1>3 is a picky condition.
The conditions involving x2 in condτ and Cq are simultaneously satisfied, as x2=3 ∧ x6=3 ∧ x2=x6 is
true.

Similarly, we identify the rest of the picky conditions in the column Cq and eventually obtain the set
of picky conditions w.r.t. τ1 that is {x1>3, x7≥8, x4=x8}. This set provides all the conditions that have
to be corrected so that the cc-tuple τ1 appears in the result of q. We also say that τ1 is a picked cc-tuple
w.r.t. the conditions {x1>3, x7≥8, x4=x8}.

Definition 3.5 (Picky conditions w.r.t. τ) With the same assumptions as before, the set of picky condi-
tions w.r.t. τ is defined by POτ={c|c∈Cq and condτ 6|= c}.

Inria

Efficiently and Effectively Answering Why-Not Questions based on Provenance Polynomials 9

Table 4: cc-tuple tableau Tτ1
R.A R.B S.C S.D S.E T.B T.C T.D condτ Cq

R x1 x2 x1=1 x2=3 x1>3, x2=x6

S x3 x4 x5 x3=1 x4=4, x5=8 x4=x8 x5 ≥ 3
T x6 x7 x8 x6=3 x7=4 x8=5 x7 ≥ 8

Notation 3.1 (Picked and passing cc-tuple τ w.r.t. op) A cc-tuple τ is picked w.r.t. a condition c iff
c∈POτ . Otherwise, τ is said to be a passing cc-tuple.

The Why-Not answer includes an explanation for each cc-tuple τ∈CCT (tc, I) and takes the form of
a polynomial over conditions occuring in the query.

Definition 3.6 (Why-Not answer) With the previous assumptions, the Why-Not answer is defined as

TWNA(q, tc, I) =
∑

τ∈CCT (tc,I)

∏
c∈POτ

c

Example 3.7 For the purpose of the presentation, we need to name each condition of Cq for our running
example as follows:

name op2 op3 op4 op5 op6

condition x1>3 x2=x6 x7≥8 x4=x8 x5≥3

In Ex. 3.6, we found that {op2, op4, op5} are the picky conditions for τ1, which leads to the term op2 ∗
op4 ∗ op5. Given the 12 cc-tuples of our example, we obtain the following polynomial: 2 ∗ op2 ∗ op5 +2 ∗
op2 ∗op4 ∗op5+4∗op2 ∗op3 ∗op5+2∗op2 ∗op3 ∗op4+2∗op2 ∗op3 ∗op4 ∗op5. In the polynomial, each
addend, composed by a coefficient and a condition combination, captures a way to obtain the missing
answers. For instance, the combination op2 ∗op3 ∗op5 indicates that if op2 and op3 and op5 are correctly
repaired, the missing answer will be produced by the query q. Then, the sum of its coefficient 4 and the
coefficient 2 of its sub-combination op2 ∗ op5 indicates that we will get at most 6 instances of the missing
answer by repairing this combination.

We justify modeling each POτ with a product by the fact that in order for τ to ‘survive’ up to the
query result, every single picky condition w.r.t. τ must be ‘repaired’. The sum of the products of each
τ∈CCT (tc, I) stems from the fact that, if any addend is ‘correctly repaired’, the associated τ will return
the missing answer.

The coefficients of the polynomial provide the means to estimate the cardinality of the instances of
the missing answers that will be obtained, when a combination x is repaired. More precisely, the sum of
the coefficients of all sub-combinations of x provides an upper bound on the number of missing answer
instances that could be recovered.

3.5 Why-Not Answer Properties
In this section, we compare the notion of Why-Not answer introduced in this paper (next called TED
Why-Not answer) with the NedExplain Why-Not answer [5]. First, we show that the TED Why-Not
answer is robust for a large class of trees. Then we show that for simple Why-Not question s, TED
subsumes NedExplain.
Robustness of TED Why-Not answer. NedExplain Why-Not answers are defined for query trees, so
we have to explain how TED Why-Not answers are defined for query trees. To this end, we associate a
tableau query to a query tree in the obvious manner. To simplify the discussion, we assume that query

RR n° 8697

10 Nicole Bidoit, Melanie Herschel, Katerina Tzompanaki

trees are built using (i) relation schemas as leaf nodes and (ii) cartesian product " and selection σc where
c is a condition as internal nodes. W.l.o.g., we do not consider projection here.

Intuitively, in order to build a query tableau q from a query tree T , one associates a row to each leaf
node and then rewrites the condition using the function hAtt. Then, the TED Why-Not answer for the
query tree T is defined as the TED Why-Not answer for q. Thus, of course, two query trees sharing the
same tableau representation have the same TED Why-Not answer.

Now, let us explore the other direction in order to characterize the set of query trees equivalent w.r.t.
the TED Why-Not answer. We start by associating a class of query trees to a query tableau q.

Definition 3.7 (Query trees w.r.t. q) Let q=(_, Tq, Cq) be a query tableau and assume that |Sq|=n. The
set opSet of tree operators associated with q is the set of selections {σh−1

Att(c)
|c∈Cq}.

A query tree T is associated with q iff (i) it has exactly n− 1 cross product nodes, (ii) it has exactly one
node for each selection in opSet, (iii) it has exactly one leaf node for each relation R in Sq , and finally,
(iv) it is equivalent to q.

Intuitively, the difference between two trees T1 and T2 associated to the same query q is the order of
the operators in the trees.

Theorem 3.1 Given a query q, TED Why-Not answer is unique up to isomorphism for all possible query
trees associated to q.

The above theorem states that two equivalent query trees obtained by some reordering of their op-
erators lead to the same Why-Not answer. Clearly, this behavior is more robust than the behavior of
NedExplain, where the Why-Not answer may differ for every equivalent query tree.

The question about other (equivalent) query trees sharing the same Why-Not answer property remains
open although we have investigated several directions. We have considered minimization of the tableau
leading to equivalent query trees. We also have considered saturating the query conditions, once again
leading to equivalent query trees. However, these query trees do not produce the same Why-Not answer
as counterexamples show.
Subsumption of NedExplain result by TED Why-Not answer. The next result shows that the TED
Why-Not answer subsumes the NedExplain Why-Not answer.

Theorem 3.2 Let q be query tableau over the shema Sq and I be an instance over Sq . Let tc be a simple
Why-Not question. Assume that T is a query tree representation of q. Let

NED={T ′|T ′ is a subtree in T }

be the NED Why-Not answer w.r.t. T , I and tc, and let

TED={x|x is a combination in TWNA(q, tc, I)}

be the TED Why-Not answer w.r.t. q, I and tc. Then, we have that

∀T ′∈NED ∃x∈TED s.t. c∈x

where c is the condition of the rooting operator of the subtree T ′.

4 Naive Ted Algorithm
This section summarizes the Ted algorithm that naively computes the Why-Not answer polynomial by
implementing in a straightforward manner what we discussed in Sec. 3. Further details are available in [4].

Inria

Efficiently and Effectively Answering Why-Not Questions based on Provenance Polynomials 11

Briefly, Ted firstly computes all the cc-tuples w.r.t. the Why-Not question and then for each cc-tuple, it
identifies the picky query conditions, constructing along the way the Why-Not answer polynomial. It
is easy to see that such a straightforward implementation is computationally prohibitive, as it implies
computing and enumerating the set of cc-tuples CCT (tc, I) (Def. 3.3).

In principle, CCT (tc, I) can be computed by executing an SQL statement with the conditions of tc
over I. This is however a costly query, as it requires in most cases performing cross products of subsets
of the input instance relations. To counter this problem, we introduce the valid partitioning of Ttc that
first computes sets of partial cc-tuples efficiently, which then need to be combined.

Definition 4.1 (Valid Partitioning of Ttc). The partitioning of Tq into k partitions Part1, . . . , Partk,
denoted Partitioning = {Parti, . . . , Partk}, is valid for Ttc if each Parti is minimal w.r.t. the follow-
ing property:
if R∈Parti and R′∈Sq s.t. ∃c∈Cq with hAtt(var(c))∩Att(R)6=∅ and hAtt(var(c))∩Att(R)6=∅ then
R′∈Parti.
A tuple τ∈CCT (tc|Parti , I|Parti) is called a partial cc-tuple.

Example 4.1 In our example, the valid partitioning (see Tab. 3) is Part1={R,S} (because of the con-
dition x2=x4, where x2, resp. x4 refers to R.B, resp. S.D) and Part2={T}. Examples of partial
cc-tuples include Id1Id5∈CCT (tc|Part1 , I) and Id8∈CCT (Ttc|Part2 , I).

It is easy to prove that the valid partitioning of Ttc is unique and the following lemma states how to
compute CCT (tc, I) based on partial cc-tuples.

Lemma 4.1 Let P={Part1, . . . , Partk} be the valid partitioning of Ttc and I database instance over
Sq . Then,
CCT (tc, I)= "

Parti∈P
CCT (tc|Parti , I|Parti).

Although this partitioning helps to reduce the computation and materialization of cross products,
Ted’s worst case time complexity remains O(n|Sq|), n=max({|IR| |R∈SQ). So, as validated also by
experiments in Sec. 6, Ted is not of practical interest.

5 Efficient Ted++ Algorithm
The main feature of Ted++ is to completely avoid cross product materialization, thus significantly re-
ducing both space and time consumption. To achieve this, Ted++ performs two main paradigm shifts.
First, instead of tracing picked cc-tuples, it focuses on tracing passing cc-tuples. Second, Ted++ starts
with a “polynomial template” that includes all possible condition combinations (addends) with variable
coefficients to then incrementally and mathematically compute the coefficients for these addends.

Alg. 1 presents the main steps of Ted++. Ted++’s input includes the query q=(Tq, Cq), the Why-Not
question tc and the input database instance I. The following subsections discuss the individual steps of
the algorithm in more detail.

5.1 Preprocessing
The first step of Ted++ (Alg. 1, line 1) is the computation of the “polynomial template” mentioned above,
which is simply obtained by computing the power set of the query condition setCq , from which the empty
set is discarded.

Example 5.1 For our example (Fig. 3), the search space is {op2, op3, . . . , op2op3, . . . , op2op3op4op5op6};
its size is 25 − 1.

RR n° 8697

12 Nicole Bidoit, Melanie Herschel, Katerina Tzompanaki

Algorithm 1: Ted++
Input: query q, instance I, Why-Not question tc
Output: WNAPoly, the Why-Not answer polynomial

1 Initialization of CombSet, and Ttc %preprocessing
2 Partition←findValidPartitioning(Ttc); (Def. 4.1)
3 for Part in Partition do
4 DB←Materialize VPart % based on Ttc|Part;

5 CombSet←PickyCombinations(CombSet,DB);
6 WNAPoly ←ExactAnswer(CombSet); %postprocessing
7 returnWNAPoly;

All along the algorithm, Ted++ maintains a data structure called CombSet. For each condition com-
bination x it registers a tuple combx=(opSet, partS, V,#Pick) where opSet contains the conditions in
x, partS is a set of partitions (defined later on), V is a view definition meant to store the passing partial
cc-tuples w.r.t. x. Finally, #Pick is the number of picked cc-tuples w.r.t. x and all its super combina-
tions (i.e., combinations containing x). To simplify the discussion, we refer to #Pickx as the number of
picked cc-tuples w.r.t. x. The ‘exact number’ of picked cc-tuples w.r.t. x is computed in a postprocessing
step (Alg. 1, line 6).

As in Ted, the second preprocessing step builds the conditional tableau Ttc as describe in Sec. 3.3.

5.2 Partial CC-Tuples Computation
To compute the partial cc-tuples, the tableau Ttc is first partitioned according to Def. 4.1 (Alg. 1, line 2).
Each partition Part is associated with a view VPart, called partition view. VPart is defined as the query
corresponding to the tableau Ttc|Part (see example below) and is materialized in the database (line 4).

Example 5.2 We are given Part1={R,S} and Part2={T} (see Ex. 4.1). The view definition VPart1
relies on the partial tableau Ttc|Part1 except for the outmost projection. The projected attributes are those
constrained by the query q, plus the relation Ids in Part1, that is {R.A,R.B, S.D, S.E,R_Id, S_Id}.
Similarly for Part2, the set of projected attributes is {T.C, T.D, T.T_Id}. This results in the query
definitions given below and the materializations shown at the bottom of Fig. 4.

VPart1 VPart2
SELECT R_Id, S_Id,
R.A,R.B,S.D,S.E
FROM R, S
WHERE R.B < S.D

SELECT T_Id,T.B,T.C,T.D
FROM T
WHERE T.C ≤ 9

5.3 Picky Condition Combinations
The next step (line 5) of Alg. 1 identifies picky condition combinations. The pseudo-code of the function
PickyCombinations is given in Alg. 2.

First, the set of condition combinations CombSet is traversed in ascending order of condition combi-
nation size (i.e., from size 1 to |Cq|, see Alg. 2, line 1). For each combination xwe compute the number of
picked cc-tuples #Pickx, using in each iteration results obtained in previous ones. To calculate #Pickx
we rely on the calculation of the number of picked partial cc-tuples |PPickx|. To do that, we rely on the
set of partitions partSx in combx.

Let x be an atomic combination, i.e., one condition op. When op is simple, it refers exactly to one
relationR, which belongs to one partition Part hence partSop={Part}. When op is complex, it refers to
two relations R and S and either both relations belong to the same partition Part and partSop={Part}
or they belong to different partitions Part1 and Part2 and partSop={Part1, Part2}. Recall that, each
partition Part is associated with a partition view VPart that stores the partial cc-tuples over Part. We

Inria

Efficiently and Effectively Answering Why-Not Questions based on Provenance Polynomials 13

Algorithm 2: PickyCombinations
Input: CombSet,DB
Output: CombSet

1 for k=1 to |Cq| do
2 for combx∈CombSet s.t. |opSetx|=k do
3 Compute partSx;
4 if k=1 then
5 DB←Materialize Vx; (Def. 5.1)
6 else
7 if Vx needs to be materialized then
8 (combx1 ,combx2)← SelectSubCombinations(Vx);
9 if Target schemas of Vx1 and Vx2 share common attributes Att then

10 Vx ← Vx1 1Att Vx2 ;
11 DB←Materialize Vx;

12 else
13 | Vx |←multiply sizes of sub-combination views in x;

14 |PPickx| ←Apply Equ. (G);
15 #Pickx ←Apply Equ. (A);

16 return CombSet;

associate with PartSop the set of partition views V={VPart|Part∈PartSop}. We now generalize to a
non atomic condition combination x where opSetx⊆Cq and define partSx= ∪op∈opSetx partSop.

Example 5.3 Consider the two atomic combinations op2 (x1>3) and op3 (x2=x6). Looking at Tab. 3,
we see that op2 refers only to Part1, whereas the variables of op3 span over Part1 and Part2. Hence,
partSop2={Part1} and partSop3={Part1, Part2}. Considering the condition combination x where
opSetx={op2op3}, we obtain Partx={Part1, Part2}. Fig. 4 associates to all atomic combinations
their respective sets Partop using edges between op and partition views.

Using partSx, the number of picked cc-tuples w.r.t. combination x, i.e., #Pickx is computed by
Equ. (A):

#Pickx = |PPickx| ×
∏

Part∈partSx

|VPart|, (A)

where partSx=Partitioning \ partSx. Note that when partSx is empty, we abusively consider that∏
∅=1. Intuitively, the above formula extends the partial cc-tuples to “full” cc-tuples over all partition

schemas.
The presentation now focuses on calculating #Pickx, by firstly calculating |PPickx|. Two cases

arise depending on the size of the condition combination.
Atomic condition combinations. We start with considering condition combinations x s.t. |opSetx|=1
(Algorithm 2, Line 5). To find the number PPickx of picked partial cc-tuples w.r.t. x we compute and
materialize the set of passing partial cc-tuples through the query provided below:
Definition 5.1 (Condition View.) Let op be a condition, partS its associated set of partitions and V its
associated set of partition views. Then, the condition view Vop for op is specified by:

Vop =


π{Rid|R∈Part}(σop[VPart]) if partS={Part}
π{Rid|R∈Part1∪Part2}([VPart1] 1op [VPart2])

if partS={Part1, Part2}

Example 5.4 Given PartSop3={Part1, Part2}, Vop3 is

πPart1.R_Id,Part1.S_Id,Part2.T _Id([VPart1]1R.B=T.B [VPart2])

RR n° 8697

14 Nicole Bidoit, Melanie Herschel, Katerina Tzompanaki

Fig. 4 shows the materialization of all operator views. Note that the materialization of view V2 is empty,
hence, no associated materialization is presented.

We can now compute the number of picked partial cc-tuples for an operator op by:

|PPickop| =
∏

Part∈partSop
|VPart| − |Vop| (B)

Example 5.5 For op3, we have |Vop3 |=4. So, |PPickop3 |=|VPart1|×|VPart2|−|V3|=3×4−4=8. Since
all partitions of Partitioning are in partSop3 , applying Equ. (A) results in #Pickop3=PPickop3=8.
Opposed to that, for op4, |PPickop4 |=|VPart2 |−Vop4=4−2=2, so #Pickop4=2 ∗ 3 = 6. The results of
Equ. (A) and (B) are shown in Fig. 4 for all remaining atomic combinations.

Non atomic condition combinations. After processing all atomic conditions, we proceed with non-
atomic ones (Alg. 2, lines 6-13).

Let opSetx={opi|i=1 . . . N} be the set of conditions of the combination x. Intuitively, to find the
picked partial cc-tuples w.r.t. x, we need to find the picked partial cc-tuples common to op1 and . . .
and opN . These common cc-tuples are in the intersection of the sets of picked partial cc-tuples of op1

. . . opN , stored in the materialization of Vop1 . . . VopN . As we will see, in order to compute the intersection
(or simply get its cardinality), we may have to use, in addition to the condition views Vopi , all views
associated with the sub-combinations of x, including x itself.

To describe this most complicated step of the algorithm, we start by developing a simplified case.
Assume that all condition views have the same target schema Attx={R_Id|R∈P and P∈partSx}.

The set of picked partial cc-tuples w.r.t. x is computed as the intersection of the complements of the
condition views storing the passing partial cc-tuples:

PPickx = Vop1 ∩ · · · ∩ VopN = Vop1 ∪ · · · ∪ VopN (C)

As our design decision was to only materialize passing partial cc-tuples of views Vi, we rewrite PPickx
as:

PPickx = πAttx ["
Part∈partSx

VPart] \
⋃

op∈opSetx
Vop (D)

Given the assumption that all condition views have the same schema, applying the set operators
(difference, union) is well defined, and so is the query PPickx. However, in the general case, this
assumption does not hold. Thus, to deal with the general case, the previous equations need to be rewritten
by “extending” condition views Vop to views V extop over a common schema with attributesAttx (as defined
above):

V extop = πAttx\Attop ["
Part∈partSx\partSop

VPart]× Vop (E)

This extended view substitutes Vop in Equ. (D) in the general case and we thus obtain the following query
to compute PPickx:

PPickx = πAttx ["
Part∈partSx

VPart] \
⋃

op∈opSetx
V extop (F)

As already said, the main feature of Ted++ is to avoid computing cross products, so clearly, we do
not want to compute the cross product introduced in Equ. (E) and (F). Fortunately, remember that we are

Inria

Efficiently and Effectively Answering Why-Not Questions based on Provenance Polynomials 15

not interested in the set of picked cc-tuples itself, we only require its cardinality, which we can compute
as follows.

| PPickx |=
∏

Part∈partSx
|VPart|− |

⋃
op∈opSetx

V extop | (G)

Equ. (G) generalizes Equ. (B) introduced for the atomic combinations. To calculate the size of the union,
we apply the Principle of Inclusion and Exclusion for counting [12]:

|
N⋃
i=1

V extopi |=
∑

∅6=Γ⊆[N]

(−1)|Γ|+1 |
⋂
γ∈Γ

V extopγ | (H)

op2 op3 op4 op5 op6

VPart1 VPart2

subsets of the input instance relations. For this reason, we have
introduced in [4] a first technique to avoid this problem; the valid
partitioning of Ttc . (Definition 4.1).

DEFINITION 4.1. (Valid Partitioning of Ttc). The partitioning
of TSQ into k partitions Part1, . . . , Partk is valid for Ttc if each
Parti is minimal w.r.t. the property:

8R2TSQ , if R2Parti and R02TSQ s.t.
var(R.cond)\var(R0.cond) 6=; then R02Parti.

Each Parti induces the tableau Ttc|Parti
.

EXAMPLE 4.1. In Tab. 3, notice that var(R.cond)\var(S.cond) =
{x2, x4} 6= ;, but var(R.cond)\var(T.cond) = var(S.cond)\
var(T.cond) = ;. So, rows R and S belong to the same partition
Part1 and T to the partition Part2, as displayed in Tab. 3.

It is easy to prove that the valid partitioning of Ttc is unique and
the following lemma states how to computeCCT (Ttc , I) from the
cc-tuples computed wrt the partitions.

LEMMA 4.1. Let Part={Part1, . . . , Partk} be the valid par-
titioning of Ttc and I be a well-typed database instance. Then,
CCT (Ttc , I)= "

Parti2Part
CCT (Ttc|Parti

, I|Parti
).

A tuple ⌧p2CCT (Ttc|Parti
, I|Parti

) is called a partial cc-tuple.

However, this optimization is not sufficient, as the complexity
remains exponential [Katerina SAYS: (??] in the size of the input
database. So, as demonstrated also by the experiments in Section 5,
Ted is not of practical interest.

4.2 Ted++
Intuitively, Ted++ avoids materializing cross product of sets of

cc-tuples and limits its computation to selections and joins. Then,
in order to recover polynomial coefficients, cross product compu-
tations are bypassed by standard mathematical calculation.

In the following paragraphs, the skeleton of Ted++ is described
by Algorithm 1. Ted++’s input consists of the user query Q, the
Why-Not question tc and the input database instance I.
Preprocessing steps. Following a different approach than Ted, the
first step of Ted++ (Algorithm 1, Line 1) is the enumeration of the
search space of answers. This amounts to computing the power
set of the query operator set OPQ, from which the empty set is
discarded.

EXAMPLE 4.2. For the running example (Figure 3), the search
space is {op2, op3, . . . , op2op3, . . . , op2op3op4op5op6} and its size
is 25 � 1.

[Nicole SAYS: (This should be said before : OPQ = {op2, op3, op4, op5, op6}.]

All along the algorithm, a data structure called CombSet is
maintained. For each operator combination x it registers a tuple
combx=(opSet, size, partS, V, #Pick) where opSet contains the
operators in x, size is the cardinality of opSet, partS is a set of
partitions (defined later on), V is a view definition meant to store
the passing partial cc-tuples w.r.t. x and finally, #Pick is the num-
ber of picked cc-tuples wrt x. For each combination x, the compo-
nent opSet and size are initialized.

As in Ted, the second step builds the tableau skeleton TSQ and
the conditional tableau Ttc (Lines 1 & 1) as describe in Subsec-
tion 3.4.

Now, we discuss one by one the main steps of Algorithm 1 .
Partial cc-tuples computation are computed by means of Algo-
rithm ??, Line ??). The tableau Ttc is partitioned (Algorithm ??,
Line 2) as in Definition 4.1.

Each partition Part is associated with a view VPart, called par-
tition view. VPart is defined as the query corresponding to the
tableau Ttc|Part (see example below). The partition views are ma-
teriliazed (Algorithm ??, Line5).

EXAMPLE 4.3. The valid partitioning of Ttc generates the par-
titions Part1={R, S} and Part2={T} (see Example 4.1). The
view definition VPart1 relies on the partial tableau Ttc|Part1 ex-
cept for the outmost projection. The projected attributes are those
constrained by the query Q, plus the relation Id in Part1, that is
{R.A, R.B, S.D, S.E, R_Id, S_Id}. Similarly for Part2, the set
of projected attributes is {T.C, T.D, T.T_Id}. The query defini-
tions for the views are:

VPart1 VPart2

SELECT R_Id, S_Id,
R.A,R.B,S.D,S.E
FROM R, S
WHERE R.B < S.D

SELECT T_Id,T.B,T.C,T.D
FROM T
WHERE T.C  9

The materialized instances of VPart1 and VPart2 are:
IVP art1

R_Id S_Id R_A R_B S_D S_E
Id1 Id5 1 3 4 8
Id1 Id6 1 3 5 3
Id2 Id6 2 4 5 3

IVP art2
T_Id T_B T_C T_D
Id8 3 4 5
Id9 3 8 1
Id10 5 3 3
Id11 5 9 4

Picky operator combinations The next step (Lines 7-8) of Al-
gorithm 1 is dedicated to identifiying picky operator combinations.
Assuming the search space (defined in Line 1) sorted by the size
of the combinations, it is explored in a bottom up way (from size
1 to size N) and the numbers of picked cc-tuples wrt to combina-
tions are calculated, each iteration using the results of the previous
one. Picked cc-tuples are obtained from partial passing cc-tuples
as explained later. The optimization made by Ted++ relies on an
analysis of which partial passing cc-tuple sets need to be material-
ized. The goal of each iteration is to calculate the number of picked
partial cc-tuples wrt the current combination. More accurately, this
number is the number of picked partial cc-tuples wrt this combina-
tion or wrt some super-combinations.

[Nicole SAYS: (I wonder if above we should say partial or
not ?]

This phase is split into two sub-procedures: Algorithm 2 is ded-
icated to atomic operator combinations (size 1) and Algorithm 3 to
the non atomic ones.

Atomic operator combinations (Algorithm 2) Each operator op
is either a selection or a join operator. Recall that the data structure
combop registers a set of partitions partS. In the case of a selec-
tion, op always refers to exactly one relation R which belongs to
one partition Part and thus partS={Part}. In the case of a join,
it refers to two relations R and S and either both relations belong to
the same partition Part and partS={Part} or they belong to dif-
ferent partitions Part1 and Part2 and partS={Part1, Part2}.

Recall that, each partition Part is associated with a partition
view VPart that store the partial cc-tuples over Part. Thus, we
can associate with PartS the set of partition views V = {VPart |
Part 2 PartS}.

Now, we want to find out which of the partial cc-tuples over
PartS are picked by op. As the number of picked cc-tuples is po-
tentially much higher than the number of passing partial cc-tuples,
we choose to materialize the latter through the query provided in
Definition 4.2.

DEFINITION 4.2. (Operator View)

7

subsets of the input instance relations. For this reason, we have
introduced in [4] a first technique to avoid this problem; the valid
partitioning of Ttc . (Definition 4.1).

DEFINITION 4.1. (Valid Partitioning of Ttc). The partitioning
of TSQ into k partitions Part1, . . . , Partk is valid for Ttc if each
Parti is minimal w.r.t. the property:

8R2TSQ , if R2Parti and R02TSQ s.t.
var(R.cond)\var(R0.cond) 6=; then R02Parti.

Each Parti induces the tableau Ttc|Parti
.

EXAMPLE 4.1. In Tab. 3, notice that var(R.cond)\var(S.cond) =
{x2, x4} 6= ;, but var(R.cond)\var(T.cond) = var(S.cond)\
var(T.cond) = ;. So, rows R and S belong to the same partition
Part1 and T to the partition Part2, as displayed in Tab. 3.

It is easy to prove that the valid partitioning of Ttc is unique and
the following lemma states how to computeCCT (Ttc , I) from the
cc-tuples computed wrt the partitions.

LEMMA 4.1. Let Part={Part1, . . . , Partk} be the valid par-
titioning of Ttc and I be a well-typed database instance. Then,
CCT (Ttc , I)= "

Parti2Part
CCT (Ttc|Parti

, I|Parti
).

A tuple ⌧p2CCT (Ttc|Parti
, I|Parti

) is called a partial cc-tuple.

However, this optimization is not sufficient, as the complexity
remains exponential [Katerina SAYS: (??] in the size of the input
database. So, as demonstrated also by the experiments in Section 5,
Ted is not of practical interest.

4.2 Ted++
Intuitively, Ted++ avoids materializing cross product of sets of

cc-tuples and limits its computation to selections and joins. Then,
in order to recover polynomial coefficients, cross product compu-
tations are bypassed by standard mathematical calculation.

In the following paragraphs, the skeleton of Ted++ is described
by Algorithm 1. Ted++’s input consists of the user query Q, the
Why-Not question tc and the input database instance I.
Preprocessing steps. Following a different approach than Ted, the
first step of Ted++ (Algorithm 1, Line 1) is the enumeration of the
search space of answers. This amounts to computing the power
set of the query operator set OPQ, from which the empty set is
discarded.

EXAMPLE 4.2. For the running example (Figure 3), the search
space is {op2, op3, . . . , op2op3, . . . , op2op3op4op5op6} and its size
is 25 � 1.

[Nicole SAYS: (This should be said before : OPQ = {op2, op3, op4, op5, op6}.]

All along the algorithm, a data structure called CombSet is
maintained. For each operator combination x it registers a tuple
combx=(opSet, size, partS, V, #Pick) where opSet contains the
operators in x, size is the cardinality of opSet, partS is a set of
partitions (defined later on), V is a view definition meant to store
the passing partial cc-tuples w.r.t. x and finally, #Pick is the num-
ber of picked cc-tuples wrt x. For each combination x, the compo-
nent opSet and size are initialized.

As in Ted, the second step builds the tableau skeleton TSQ and
the conditional tableau Ttc (Lines 1 & 1) as describe in Subsec-
tion 3.4.

Now, we discuss one by one the main steps of Algorithm 1 .
Partial cc-tuples computation are computed by means of Algo-
rithm ??, Line ??). The tableau Ttc is partitioned (Algorithm ??,
Line 2) as in Definition 4.1.

Each partition Part is associated with a view VPart, called par-
tition view. VPart is defined as the query corresponding to the
tableau Ttc|Part (see example below). The partition views are ma-
teriliazed (Algorithm ??, Line5).

EXAMPLE 4.3. The valid partitioning of Ttc generates the par-
titions Part1={R, S} and Part2={T} (see Example 4.1). The
view definition VPart1 relies on the partial tableau Ttc|Part1 ex-
cept for the outmost projection. The projected attributes are those
constrained by the query Q, plus the relation Id in Part1, that is
{R.A, R.B, S.D, S.E, R_Id, S_Id}. Similarly for Part2, the set
of projected attributes is {T.C, T.D, T.T_Id}. The query defini-
tions for the views are:

VPart1 VPart2

SELECT R_Id, S_Id,
R.A,R.B,S.D,S.E
FROM R, S
WHERE R.B < S.D

SELECT T_Id,T.B,T.C,T.D
FROM T
WHERE T.C  9

The materialized instances of VPart1 and VPart2 are:
IVP art1

R_Id S_Id R_A R_B S_D S_E
Id1 Id5 1 3 4 8
Id1 Id6 1 3 5 3
Id2 Id6 2 4 5 3

IVP art2
T_Id T_B T_C T_D
Id8 3 4 5
Id9 3 8 1
Id10 5 3 3
Id11 5 9 4

Picky operator combinations The next step (Lines 7-8) of Al-
gorithm 1 is dedicated to identifiying picky operator combinations.
Assuming the search space (defined in Line 1) sorted by the size
of the combinations, it is explored in a bottom up way (from size
1 to size N) and the numbers of picked cc-tuples wrt to combina-
tions are calculated, each iteration using the results of the previous
one. Picked cc-tuples are obtained from partial passing cc-tuples
as explained later. The optimization made by Ted++ relies on an
analysis of which partial passing cc-tuple sets need to be material-
ized. The goal of each iteration is to calculate the number of picked
partial cc-tuples wrt the current combination. More accurately, this
number is the number of picked partial cc-tuples wrt this combina-
tion or wrt some super-combinations.

[Nicole SAYS: (I wonder if above we should say partial or
not ?]

This phase is split into two sub-procedures: Algorithm 2 is ded-
icated to atomic operator combinations (size 1) and Algorithm 3 to
the non atomic ones.

Atomic operator combinations (Algorithm 2) Each operator op
is either a selection or a join operator. Recall that the data structure
combop registers a set of partitions partS. In the case of a selec-
tion, op always refers to exactly one relation R which belongs to
one partition Part and thus partS={Part}. In the case of a join,
it refers to two relations R and S and either both relations belong to
the same partition Part and partS={Part} or they belong to dif-
ferent partitions Part1 and Part2 and partS={Part1, Part2}.

Recall that, each partition Part is associated with a partition
view VPart that store the partial cc-tuples over Part. Thus, we
can associate with PartS the set of partition views V = {VPart |
Part 2 PartS}.

Now, we want to find out which of the partial cc-tuples over
PartS are picked by op. As the number of picked cc-tuples is po-
tentially much higher than the number of passing partial cc-tuples,
we choose to materialize the latter through the query provided in
Definition 4.2.

DEFINITION 4.2. (Operator View)

7

Partial passing cc-tuples
stored in partition views

(Example 5.2)

condition views (Def. 5.1)
with partial passing cc-tuples

Let op be an operator, PartS its associated set of partitions and
V its associated set of partition views. Then, the operator view V
for op is specified by:

- If PartS={Part}, then V = ⇡{Rid|R2Part}(op[VPart])

- If partS={Part1, Part2}, then
V = ⇡{Rid|R2Part1[Part2}([VPart1]op[VPart2])

Note that we indeed materialize (see Algorithm 2, Line ??) the
operator view V in order to use the passing partial cc-tuples for
processing combinations of larger size as will be discussed in Al-
gorithm 3.

EXAMPLE 4.4. Let us consider the operator op3 whose parti-
tion set is PartS3={Part1, Part2} as R2Part1 and T2Part2.
The view V3 associated with op3 is:

⇡Part1.R_Id,Part1.S_Id,Part2.T _Id([VPart1] ./B [VPart2]).
The materialization of V3 is deplayed below as well as the mate-

rialization of the views V4 and V6 for op4, resp. op6.
I3

R_Id S_Id T_Id
Id1 Id5 Id8

Id1 Id5 Id9

Id1 Id6 Id8

Id1 Id6 Id9

I4

T_Id
Id9

Id11

I6

R_Id S_Id
Id1 Id5

Id1 Id6

Id2 Id6

In this section, to simplify, we refer to #Pick as the number
of picked cc-tuples from CCT (Ttc , I) although it rather is the
number of picked cc-tuples from CCT (Ttc , I) and wrt op and all
its super combinations. The ‘exact number’ of picked cc-tuples is
computed in a following step (Algorithm 1, line 9).

In order to calculate #Pick (see Algorithm 2, Line ??), the car-
dinality |V | of the materialized operator view is used as follows:

#Pick = |CCT (Ttc , I)| � |V | ⇥
Y

Part2PartS

|VPart|

where PartS=Partitioning \ PartS

EXAMPLE 4.5. For the operator op3, we have |V3|=4. And
since Partitioning=PartS3, we conclude t that the number of
picked cc-tuples wrt op3 is #Pick3=|CCT |�|V3|=12�4=8.

Non atomic operator combinations are dealt with by Algorithm 3.
This algorithm proceeds to a search space exploration in a bottom
up manner wrt combination sizes, in order to exploit the previ-
ous iterations. Consider a combination x with OpSetx={opi |
i = 1 . . . N}. The PartSx component ofCombx is defined by:
PartSx= [op2OpSetx PartSop.

Intuitively, to find the picked cc-tuples wrt combination x, we
should find the picked cc-tuples common to op1 and . . . and opN .
These common cc-tuples are in the intersection of the sets of picked
cc-tuples wrt op1 . . . opN .

As will be shown, in order to compute the intersection (or simply
get its cardinality), we may have to use, in addition to the atomic
combination views Vop1 , . . . , VopN , all views associated with the
sub-combinations of x including x itself.

This step of the algorithm is not obvious and thus we start by de-
veloping a simplified case. Assume that all operator views have the
same target schema Attx={R_Id | R2P where P2PartSx}.

The set of partial picked cc-tuples wrt x is computed as the inter-
section of the complements of the atomic combination views stor-
ing the passing partial cc-tuples:

PPx = Vop1 \ · · · \ VopN = Vop1 [· · · [VopN (A)

Note that our algorithm provides us with the partial passing cc-
tuples only, through the mmaterialization of the views Vopi . Thus,
PPx needs to be rewritten:

PPx = ⇡Attx ["
Part2PartSx

VPart] \ [op2OpSetxVop (B)

With the assumption that all operator views have the same schema,
taking the union of these views is well defined, and thus the query
PPx as well. However, in the general case, this schema property
does not hold and thus the union is not well-defined. Indeed, in
order to deal with the general case, we need to add cross-products
in the query PPx and replace Vop by V ext

op defined below:

V ext
op = ⇡Attx\Attop ["

Part2PartSx\PartSop

VPart] ⇥ Vop (C)

EXAMPLE 4.6. Consider the combination op3op4. The passing
partial cc-tuples w.r.t. op3 and op4 are displayed in Example 4.4.
They do not share the same schema, so in order to take the ‘union’
of these sets, it would be required to intermediately compute the
cross product of V4 and VP art1.

As already said, the main feature of Ted++ is to avoid computing
cross products in order to keep down space and time consumption.
Once again, the reader should remember that we are not interested
in the picked cc-tuples by themselves but in their cardinality. Thus,
cross product elimination is solved through counting:

| PPx |= ⇥Part2PartSx |Part|� | [op2OpSetxV ext
op | (D)

To calculate the size of the union, we apply the ‘Principle of
Inclusion and Exclusion for counting’4:

|
N[

i=1

V ext
opi

|=
X

;6=�✓[N]

(�1)|�|+1 |
\

�2�

V ext
op�

| (E)

EXAMPLE 4.7. For the combination op3op4, the Equation E is:
|V ext

3 [V ext
4 |=|V ext

3 | + |V ext
4 | � |V ext

3 \ V ext
4 |. The schema of

Part34={Part1, Part2} is Att34={R_Id, S_Id, T_Id}. The
view V3 has already the ‘good’ schema, thus |V ext

3 |=|V3|=4. Be-
cause the V4 schema is Att4={T_Id}, it needs to be supplemented
using VPart1 (Formula C), and thus |V ext

4 |=|V4| ⇥ |VPart1 |=2⇥
3=6. Still, |V34|=|V ext

3 \ V ext
4 | remains to be calculated. Here,

because V3 and V4 target schemas have T_Id as common attribute,
we have V34=V3 ./T _Id V4. The view V34 needs to be materialized
(see below).

I34

R_Id S_Id T_Id
Id1 Id5 Id9

Id1 Id6 Id9

So, finally |V ext
3 [V ext

4 |=4+6�2 = 8. From Equation D
we obtain the number of partial picked cc-tuples w.r.t. op3op4:
|PP34|=12 � 8=4.

Consider now the combination op4op6. The schemas of V4 and
V6 are disjoint, and thus V46=V4"V6. Thus, in that case V46 is not
materialized but we rather directly calculate |V46| as |V4|⇥ |V6| =

4http://math.mit.edu/ fox/MAT307-lecture04.pdf

8

Let op be an operator, PartS its associated set of partitions and
V its associated set of partition views. Then, the operator view V
for op is specified by:

- If PartS={Part}, then V = ⇡{Rid|R2Part}(op[VPart])

- If partS={Part1, Part2}, then
V = ⇡{Rid|R2Part1[Part2}([VPart1]op[VPart2])

Note that we indeed materialize (see Algorithm 2, Line ??) the
operator view V in order to use the passing partial cc-tuples for
processing combinations of larger size as will be discussed in Al-
gorithm 3.

EXAMPLE 4.4. Let us consider the operator op3 whose parti-
tion set is PartS3={Part1, Part2} as R2Part1 and T2Part2.
The view V3 associated with op3 is:

⇡Part1.R_Id,Part1.S_Id,Part2.T _Id([VPart1] ./B [VPart2]).
The materialization of V3 is deplayed below as well as the mate-

rialization of the views V4 and V6 for op4, resp. op6.
I3

R_Id S_Id T_Id
Id1 Id5 Id8

Id1 Id5 Id9

Id1 Id6 Id8

Id1 Id6 Id9

I4

T_Id
Id9

Id11

I6

R_Id S_Id
Id1 Id5

Id1 Id6

Id2 Id6

In this section, to simplify, we refer to #Pick as the number
of picked cc-tuples from CCT (Ttc , I) although it rather is the
number of picked cc-tuples from CCT (Ttc , I) and wrt op and all
its super combinations. The ‘exact number’ of picked cc-tuples is
computed in a following step (Algorithm 1, line 9).

In order to calculate #Pick (see Algorithm 2, Line ??), the car-
dinality |V | of the materialized operator view is used as follows:

#Pick = |CCT (Ttc , I)| � |V | ⇥
Y

Part2PartS

|VPart|

where PartS=Partitioning \ PartS

EXAMPLE 4.5. For the operator op3, we have |V3|=4. And
since Partitioning=PartS3, we conclude t that the number of
picked cc-tuples wrt op3 is #Pick3=|CCT |�|V3|=12�4=8.

Non atomic operator combinations are dealt with by Algorithm 3.
This algorithm proceeds to a search space exploration in a bottom
up manner wrt combination sizes, in order to exploit the previ-
ous iterations. Consider a combination x with OpSetx={opi |
i = 1 . . . N}. The PartSx component ofCombx is defined by:
PartSx= [op2OpSetx PartSop.

Intuitively, to find the picked cc-tuples wrt combination x, we
should find the picked cc-tuples common to op1 and . . . and opN .
These common cc-tuples are in the intersection of the sets of picked
cc-tuples wrt op1 . . . opN .

As will be shown, in order to compute the intersection (or simply
get its cardinality), we may have to use, in addition to the atomic
combination views Vop1 , . . . , VopN , all views associated with the
sub-combinations of x including x itself.

This step of the algorithm is not obvious and thus we start by de-
veloping a simplified case. Assume that all operator views have the
same target schema Attx={R_Id | R2P where P2PartSx}.

The set of partial picked cc-tuples wrt x is computed as the inter-
section of the complements of the atomic combination views stor-
ing the passing partial cc-tuples:

PPx = Vop1 \ · · · \ VopN = Vop1 [· · · [VopN (A)

Note that our algorithm provides us with the partial passing cc-
tuples only, through the mmaterialization of the views Vopi . Thus,
PPx needs to be rewritten:

PPx = ⇡Attx ["
Part2PartSx

VPart] \ [op2OpSetxVop (B)

With the assumption that all operator views have the same schema,
taking the union of these views is well defined, and thus the query
PPx as well. However, in the general case, this schema property
does not hold and thus the union is not well-defined. Indeed, in
order to deal with the general case, we need to add cross-products
in the query PPx and replace Vop by V ext

op defined below:

V ext
op = ⇡Attx\Attop ["

Part2PartSx\PartSop

VPart] ⇥ Vop (C)

EXAMPLE 4.6. Consider the combination op3op4. The passing
partial cc-tuples w.r.t. op3 and op4 are displayed in Example 4.4.
They do not share the same schema, so in order to take the ‘union’
of these sets, it would be required to intermediately compute the
cross product of V4 and VP art1.

As already said, the main feature of Ted++ is to avoid computing
cross products in order to keep down space and time consumption.
Once again, the reader should remember that we are not interested
in the picked cc-tuples by themselves but in their cardinality. Thus,
cross product elimination is solved through counting:

| PPx |= ⇥Part2PartSx |Part|� | [op2OpSetxV ext
op | (D)

To calculate the size of the union, we apply the ‘Principle of
Inclusion and Exclusion for counting’4:

|
N[

i=1

V ext
opi

|=
X

;6=�✓[N]

(�1)|�|+1 |
\

�2�

V ext
op�

| (E)

EXAMPLE 4.7. For the combination op3op4, the Equation E is:
|V ext

3 [V ext
4 |=|V ext

3 | + |V ext
4 | � |V ext

3 \ V ext
4 |. The schema of

Part34={Part1, Part2} is Att34={R_Id, S_Id, T_Id}. The
view V3 has already the ‘good’ schema, thus |V ext

3 |=|V3|=4. Be-
cause the V4 schema is Att4={T_Id}, it needs to be supplemented
using VPart1 (Formula C), and thus |V ext

4 |=|V4| ⇥ |VPart1 |=2⇥
3=6. Still, |V34|=|V ext

3 \ V ext
4 | remains to be calculated. Here,

because V3 and V4 target schemas have T_Id as common attribute,
we have V34=V3 ./T _Id V4. The view V34 needs to be materialized
(see below).

I34

R_Id S_Id T_Id
Id1 Id5 Id9

Id1 Id6 Id9

So, finally |V ext
3 [V ext

4 |=4+6�2 = 8. From Equation D
we obtain the number of partial picked cc-tuples w.r.t. op3op4:
|PP34|=12 � 8=4.

Consider now the combination op4op6. The schemas of V4 and
V6 are disjoint, and thus V46=V4"V6. Thus, in that case V46 is not
materialized but we rather directly calculate |V46| as |V4|⇥ |V6| =

4http://math.mit.edu/ fox/MAT307-lecture04.pdf

8

Let op be an operator, PartS its associated set of partitions and
V its associated set of partition views. Then, the operator view V
for op is specified by:

- If PartS={Part}, then V = ⇡{Rid|R2Part}(op[VPart])

- If partS={Part1, Part2}, then
V = ⇡{Rid|R2Part1[Part2}([VPart1]op[VPart2])

Note that we indeed materialize (see Algorithm 2, Line ??) the
operator view V in order to use the passing partial cc-tuples for
processing combinations of larger size as will be discussed in Al-
gorithm 3.

EXAMPLE 4.4. Let us consider the operator op3 whose parti-
tion set is PartS3={Part1, Part2} as R2Part1 and T2Part2.
The view V3 associated with op3 is:

⇡Part1.R_Id,Part1.S_Id,Part2.T _Id([VPart1] ./B [VPart2]).
The materialization of V3 is deplayed below as well as the mate-

rialization of the views V4 and V6 for op4, resp. op6.
I3

R_Id S_Id T_Id
Id1 Id5 Id8

Id1 Id5 Id9

Id1 Id6 Id8

Id1 Id6 Id9

I4

T_Id
Id9

Id11

I6

R_Id S_Id
Id1 Id5

Id1 Id6

Id2 Id6

In this section, to simplify, we refer to #Pick as the number
of picked cc-tuples from CCT (Ttc , I) although it rather is the
number of picked cc-tuples from CCT (Ttc , I) and wrt op and all
its super combinations. The ‘exact number’ of picked cc-tuples is
computed in a following step (Algorithm 1, line 9).

In order to calculate #Pick (see Algorithm 2, Line ??), the car-
dinality |V | of the materialized operator view is used as follows:

#Pick = |CCT (Ttc , I)| � |V | ⇥
Y

Part2PartS

|VPart|

where PartS=Partitioning \ PartS

EXAMPLE 4.5. For the operator op3, we have |V3|=4. And
since Partitioning=PartS3, we conclude t that the number of
picked cc-tuples wrt op3 is #Pick3=|CCT |�|V3|=12�4=8.

Non atomic operator combinations are dealt with by Algorithm 3.
This algorithm proceeds to a search space exploration in a bottom
up manner wrt combination sizes, in order to exploit the previ-
ous iterations. Consider a combination x with OpSetx={opi |
i = 1 . . . N}. The PartSx component ofCombx is defined by:
PartSx= [op2OpSetx PartSop.

Intuitively, to find the picked cc-tuples wrt combination x, we
should find the picked cc-tuples common to op1 and . . . and opN .
These common cc-tuples are in the intersection of the sets of picked
cc-tuples wrt op1 . . . opN .

As will be shown, in order to compute the intersection (or simply
get its cardinality), we may have to use, in addition to the atomic
combination views Vop1 , . . . , VopN , all views associated with the
sub-combinations of x including x itself.

This step of the algorithm is not obvious and thus we start by de-
veloping a simplified case. Assume that all operator views have the
same target schema Attx={R_Id | R2P where P2PartSx}.

The set of partial picked cc-tuples wrt x is computed as the inter-
section of the complements of the atomic combination views stor-
ing the passing partial cc-tuples:

PPx = Vop1 \ · · · \ VopN = Vop1 [· · · [VopN (A)

Note that our algorithm provides us with the partial passing cc-
tuples only, through the mmaterialization of the views Vopi . Thus,
PPx needs to be rewritten:

PPx = ⇡Attx ["
Part2PartSx

VPart] \ [op2OpSetxVop (B)

With the assumption that all operator views have the same schema,
taking the union of these views is well defined, and thus the query
PPx as well. However, in the general case, this schema property
does not hold and thus the union is not well-defined. Indeed, in
order to deal with the general case, we need to add cross-products
in the query PPx and replace Vop by V ext

op defined below:

V ext
op = ⇡Attx\Attop ["

Part2PartSx\PartSop

VPart] ⇥ Vop (C)

EXAMPLE 4.6. Consider the combination op3op4. The passing
partial cc-tuples w.r.t. op3 and op4 are displayed in Example 4.4.
They do not share the same schema, so in order to take the ‘union’
of these sets, it would be required to intermediately compute the
cross product of V4 and VP art1.

As already said, the main feature of Ted++ is to avoid computing
cross products in order to keep down space and time consumption.
Once again, the reader should remember that we are not interested
in the picked cc-tuples by themselves but in their cardinality. Thus,
cross product elimination is solved through counting:

| PPx |= ⇥Part2PartSx |Part|� | [op2OpSetxV ext
op | (D)

To calculate the size of the union, we apply the ‘Principle of
Inclusion and Exclusion for counting’4:

|
N[

i=1

V ext
opi

|=
X

;6=�✓[N]

(�1)|�|+1 |
\

�2�

V ext
op�

| (E)

EXAMPLE 4.7. For the combination op3op4, the Equation E is:
|V ext

3 [V ext
4 |=|V ext

3 | + |V ext
4 | � |V ext

3 \ V ext
4 |. The schema of

Part34={Part1, Part2} is Att34={R_Id, S_Id, T_Id}. The
view V3 has already the ‘good’ schema, thus |V ext

3 |=|V3|=4. Be-
cause the V4 schema is Att4={T_Id}, it needs to be supplemented
using VPart1 (Formula C), and thus |V ext

4 |=|V4| ⇥ |VPart1 |=2⇥
3=6. Still, |V34|=|V ext

3 \ V ext
4 | remains to be calculated. Here,

because V3 and V4 target schemas have T_Id as common attribute,
we have V34=V3 ./T _Id V4. The view V34 needs to be materialized
(see below).

I34

R_Id S_Id T_Id
Id1 Id5 Id9

Id1 Id6 Id9

So, finally |V ext
3 [V ext

4 |=4+6�2 = 8. From Equation D
we obtain the number of partial picked cc-tuples w.r.t. op3op4:
|PP34|=12 � 8=4.

Consider now the combination op4op6. The schemas of V4 and
V6 are disjoint, and thus V46=V4"V6. Thus, in that case V46 is not
materialized but we rather directly calculate |V46| as |V4|⇥ |V6| =

4http://math.mit.edu/ fox/MAT307-lecture04.pdf

8

Let op be an operator, PartS its associated set of partitions and
V its associated set of partition views. Then, the operator view V
for op is specified by:

- If PartS={Part}, then V = ⇡{Rid|R2Part}(op[VPart])

- If partS={Part1, Part2}, then
V = ⇡{Rid|R2Part1[Part2}([VPart1]op[VPart2])

Note that we indeed materialize (see Algorithm 2, Line ??) the
operator view V in order to use the passing partial cc-tuples for
processing combinations of larger size as will be discussed in Al-
gorithm 3.

EXAMPLE 4.4. Let us consider the operator op3 whose parti-
tion set is PartS3={Part1, Part2} as R2Part1 and T2Part2.
The view V3 associated with op3 is:

⇡Part1.R_Id,Part1.S_Id,Part2.T _Id([VPart1] ./B [VPart2]).
The materialization of V3 is deplayed below as well as the mate-

rialization of the views V4 and V6 for op4, resp. op6.
I3

R_Id S_Id T_Id
Id1 Id5 Id8

Id1 Id5 Id9

Id1 Id6 Id8

Id1 Id6 Id9

I4

T_Id
Id9

Id11

I6

R_Id S_Id
Id1 Id5

Id1 Id6

Id2 Id6

I2

R_Id S_Id

I5

R_Id S_Id T_Id
Id1 Id5 Id11

Id1 Id6 Id8

Id2 Id6 Id8

In this section, to simplify, we refer to #Pick as the number
of picked cc-tuples from CCT (Ttc , I) although it rather is the
number of picked cc-tuples from CCT (Ttc , I) and wrt op and all
its super combinations. The ‘exact number’ of picked cc-tuples is
computed in a following step (Algorithm 1, line 9).

In order to calculate #Pick (see Algorithm 2, Line ??), the car-
dinality |V | of the materialized operator view is used as follows:

#Pick = |CCT (Ttc , I)| � |V | ⇥
Y

Part2PartS

|VPart|

where PartS=Partitioning \ PartS

EXAMPLE 4.5. For the operator op3, we have |V3|=4. And
since Partitioning=PartS3, we conclude t that the number of
picked cc-tuples wrt op3 is #Pick3=|CCT |�|V3|=12�4=8.

Non atomic operator combinations are dealt with by Algorithm 3.
This algorithm proceeds to a search space exploration in a bottom
up manner wrt combination sizes, in order to exploit the previ-
ous iterations. Consider a combination x with OpSetx={opi |
i = 1 . . . N}. The PartSx component ofCombx is defined by:
PartSx= [op2OpSetx PartSop.

Intuitively, to find the picked cc-tuples wrt combination x, we
should find the picked cc-tuples common to op1 and . . . and opN .
These common cc-tuples are in the intersection of the sets of picked
cc-tuples wrt op1 . . . opN .

As will be shown, in order to compute the intersection (or simply
get its cardinality), we may have to use, in addition to the atomic
combination views Vop1 , . . . , VopN , all views associated with the
sub-combinations of x including x itself.

This step of the algorithm is not obvious and thus we start by de-
veloping a simplified case. Assume that all operator views have the
same target schema Attx={R_Id | R2P where P2PartSx}.

The set of partial picked cc-tuples wrt x is computed as the inter-
section of the complements of the atomic combination views stor-
ing the passing partial cc-tuples:

PPx = Vop1 \ · · · \ VopN = Vop1 [· · · [VopN (A)

Note that our algorithm provides us with the partial passing cc-
tuples only, through the mmaterialization of the views Vopi . Thus,
PPx needs to be rewritten:

PPx = ⇡Attx ["
Part2PartSx

VPart] \ [op2OpSetxVop (B)

With the assumption that all operator views have the same schema,
taking the union of these views is well defined, and thus the query
PPx as well. However, in the general case, this schema property
does not hold and thus the union is not well-defined. Indeed, in
order to deal with the general case, we need to add cross-products
in the query PPx and replace Vop by V ext

op defined below:

V ext
op = ⇡Attx\Attop ["

Part2PartSx\PartSop

VPart] ⇥ Vop (C)

EXAMPLE 4.6. Consider the combination op3op4. The passing
partial cc-tuples w.r.t. op3 and op4 are displayed in Example 4.4.
They do not share the same schema, so in order to take the ‘union’
of these sets, it would be required to intermediately compute the
cross product of V4 and VP art1.

As already said, the main feature of Ted++ is to avoid computing
cross products in order to keep down space and time consumption.
Once again, the reader should remember that we are not interested
in the picked cc-tuples by themselves but in their cardinality. Thus,
cross product elimination is solved through counting:

| PPx |= ⇥Part2PartSx |Part|� | [op2OpSetxV ext
op | (D)

To calculate the size of the union, we apply the ‘Principle of
Inclusion and Exclusion for counting’4:

|
N[

i=1

V ext
opi

|=
X

;6=�✓[N]

(�1)|�|+1 |
\

�2�

V ext
op�

| (E)

EXAMPLE 4.7. For the combination op3op4, the Equation E is:
|V ext

3 [V ext
4 |=|V ext

3 | + |V ext
4 | � |V ext

3 \ V ext
4 |. The schema of

Part34={Part1, Part2} is Att34={R_Id, S_Id, T_Id}. The
view V3 has already the ‘good’ schema, thus |V ext

3 |=|V3|=4. Be-
cause the V4 schema is Att4={T_Id}, it needs to be supplemented
using VPart1 (Formula C), and thus |V ext

4 |=|V4| ⇥ |VPart1 |=2⇥
3=6. Still, |V34|=|V ext

3 \ V ext
4 | remains to be calculated. Here,

because V3 and V4 target schemas have T_Id as common attribute,
we have V34=V3 ./T _Id V4. The view V34 needs to be materialized
(see below).

I34

R_Id S_Id T_Id
Id1 Id5 Id9

Id1 Id6 Id9

So, finally |V ext
3 [V ext

4 |=4+6�2 = 8. From Equation D
we obtain the number of partial picked cc-tuples w.r.t. op3op4:
|PP34|=12 � 8=4.

Consider now the combination op4op6. The schemas of V4 and
V6 are disjoint, and thus V46=V4"V6. Thus, in that case V46 is not
materialized but we rather directly calculate |V46| as |V4|⇥ |V6| =

4http://math.mit.edu/ fox/MAT307-lecture04.pdf

8

atomic combinations

|PPickop| (Equ. (B))
#Pickop (Equ. (A))

3 - 0 = 3
4 * 3 = 12

3 * 4 - 4 = 8
1 * 8 = 8

4 - 2 = 2
3 * 2 = 6

3 * 4 - 3 = 9
1 * 9 = 9

3 - 3 = 0
4 * 0 = 0

combinations of size 2op2op4 op3op4 op3op5 op4op6

|PPickx| (Equ. (G))
#Pickx (Equ. (A))

3 * 4 - (0 + 6 - 0) = 6
1 * 6 = 6

3 * 4 - (4 + 6 - | V34|) = 4
1 * 4 = 4

3 * 4 - (4 + 3 - |V35|) = 6
1 * 6 = 6

0
1 * 0 = 0

Let op be an operator, PartS its associated set of partitions and
V its associated set of partition views. Then, the operator view V
for op is specified by:

- If PartS={Part}, then V = ⇡{Rid|R2Part}(op[VPart])

- If partS={Part1, Part2}, then
V = ⇡{Rid|R2Part1[Part2}([VPart1]op[VPart2])

Note that we indeed materialize (see Algorithm 2, Line ??) the
operator view V in order to use the passing partial cc-tuples for
processing combinations of larger size as will be discussed in Al-
gorithm 3.

EXAMPLE 4.4. Let us consider the operator op3 whose parti-
tion set is PartS3={Part1, Part2} as R2Part1 and T2Part2.
The view V3 associated with op3 is:

⇡Part1.R_Id,Part1.S_Id,Part2.T _Id([VPart1] ./B [VPart2]).
The materialization of V3 is deplayed below as well as the mate-

rialization of the views V4 and V6 for op4, resp. op6.
I3

R_Id S_Id T_Id
Id1 Id5 Id8

Id1 Id5 Id9

Id1 Id6 Id8

Id1 Id6 Id9

I4

T_Id
Id9

Id11

I6

R_Id S_Id
Id1 Id5

Id1 Id6

Id2 Id6

I2

R_Id S_Id

I5

R_Id S_Id T_Id
Id1 Id5 Id11

Id1 Id6 Id8

Id2 Id6 Id8

In this section, to simplify, we refer to #Pick as the number
of picked cc-tuples from CCT (Ttc , I) although it rather is the
number of picked cc-tuples from CCT (Ttc , I) and wrt op and all
its super combinations. The ‘exact number’ of picked cc-tuples is
computed in a following step (Algorithm 1, line 9).

In order to calculate #Pick (see Algorithm 2, Line ??), the car-
dinality |V | of the materialized operator view is used as follows:

#Pick = |CCT (Ttc , I)| � |V | ⇥
Y

Part2PartS

|VPart|

where PartS=Partitioning \ PartS

EXAMPLE 4.5. For the operator op3, we have |V3|=4. And
since Partitioning=PartS3, we conclude t that the number of
picked cc-tuples wrt op3 is #Pick3=|CCT |�|V3|=12�4=8.

Non atomic operator combinations are dealt with by Algorithm 3.
This algorithm proceeds to a search space exploration in a bottom
up manner wrt combination sizes, in order to exploit the previ-
ous iterations. Consider a combination x with OpSetx={opi |
i = 1 . . . N}. The PartSx component ofCombx is defined by:
PartSx= [op2OpSetx PartSop.

Intuitively, to find the picked cc-tuples wrt combination x, we
should find the picked cc-tuples common to op1 and . . . and opN .
These common cc-tuples are in the intersection of the sets of picked
cc-tuples wrt op1 . . . opN .

As will be shown, in order to compute the intersection (or simply
get its cardinality), we may have to use, in addition to the atomic
combination views Vop1 , . . . , VopN , all views associated with the
sub-combinations of x including x itself.

This step of the algorithm is not obvious and thus we start by de-
veloping a simplified case. Assume that all operator views have the
same target schema Attx={R_Id | R2P where P2PartSx}.

The set of partial picked cc-tuples wrt x is computed as the inter-
section of the complements of the atomic combination views stor-
ing the passing partial cc-tuples:

PPx = Vop1 \ · · · \ VopN = Vop1 [· · · [VopN (A)

Note that our algorithm provides us with the partial passing cc-
tuples only, through the mmaterialization of the views Vopi . Thus,
PPx needs to be rewritten:

PPx = ⇡Attx ["
Part2PartSx

VPart] \ [op2OpSetxVop (B)

With the assumption that all operator views have the same schema,
taking the union of these views is well defined, and thus the query
PPx as well. However, in the general case, this schema property
does not hold and thus the union is not well-defined. Indeed, in
order to deal with the general case, we need to add cross-products
in the query PPx and replace Vop by V ext

op defined below:

V ext
op = ⇡Attx\Attop ["

Part2PartSx\PartSop

VPart] ⇥ Vop (C)

EXAMPLE 4.6. Consider the combination op3op4. The passing
partial cc-tuples w.r.t. op3 and op4 are displayed in Example 4.4.
They do not share the same schema, so in order to take the ‘union’
of these sets, it would be required to intermediately compute the
cross product of V4 and VP art1.

As already said, the main feature of Ted++ is to avoid computing
cross products in order to keep down space and time consumption.
Once again, the reader should remember that we are not interested
in the picked cc-tuples by themselves but in their cardinality. Thus,
cross product elimination is solved through counting:

| PPx |= ⇥Part2PartSx |Part|� | [op2OpSetxV ext
op | (D)

To calculate the size of the union, we apply the ‘Principle of
Inclusion and Exclusion for counting’4:

|
N[

i=1

V ext
opi

|=
X

;6=�✓[N]

(�1)|�|+1 |
\

�2�

V ext
op�

| (E)

EXAMPLE 4.7. For the combination op3op4, the Equation E is:
|V ext

3 [V ext
4 |=|V ext

3 | + |V ext
4 | � |V ext

3 \ V ext
4 |. The schema of

Part34={Part1, Part2} is Att34={R_Id, S_Id, T_Id}. The
view V3 has already the ‘good’ schema, thus |V ext

3 |=|V3|=4. Be-
cause the V4 schema is Att4={T_Id}, it needs to be supplemented
using VPart1 (Formula C), and thus |V ext

4 |=|V4| ⇥ |VPart1 |=2⇥
3=6. Still, |V34|=|V ext

3 \ V ext
4 | remains to be calculated. Here,

because V3 and V4 target schemas have T_Id as common attribute,
we have V34=V3 ./T _Id V4. The view V34 needs to be materialized
(see below).

I34

R_Id S_Id T_Id
Id1 Id5 Id9

Id1 Id6 Id9

So, finally |V ext
3 [V ext

4 |=4+6�2 = 8. From Equation D
we obtain the number of partial picked cc-tuples w.r.t. op3op4:
|PP34|=12 � 8=4.

Consider now the combination op4op6. The schemas of V4 and
V6 are disjoint, and thus V46=V4"V6. Thus, in that case V46 is not
materialized but we rather directly calculate |V46| as |V4|⇥ |V6| =

4http://math.mit.edu/ fox/MAT307-lecture04.pdf

8

materialized join results

Let op be an operator, PartS its associated set of partitions and
V its associated set of partition views. Then, the operator view V
for op is specified by:

- If PartS={Part}, then V = ⇡{Rid|R2Part}(op[VPart])

- If partS={Part1, Part2}, then
V = ⇡{Rid|R2Part1[Part2}([VPart1]op[VPart2])

Note that we indeed materialize (see Algorithm 2, Line ??) the
operator view V in order to use the passing partial cc-tuples for
processing combinations of larger size as will be discussed in Al-
gorithm 3.

EXAMPLE 4.4. Let us consider the operator op3 whose parti-
tion set is PartS3={Part1, Part2} as R2Part1 and T2Part2.
The view V3 associated with op3 is:

⇡Part1.R_Id,Part1.S_Id,Part2.T _Id([VPart1] ./B [VPart2]).
The materialization of V3 is deplayed below as well as the mate-

rialization of the views V4 and V6 for op4, resp. op6.
I3

R_Id S_Id T_Id
Id1 Id5 Id8

Id1 Id5 Id9

Id1 Id6 Id8

Id1 Id6 Id9

I4

T_Id
Id9

Id11

I6

R_Id S_Id
Id1 Id5

Id1 Id6

Id2 Id6

I2

R_Id S_Id

I35

R_Id S_Id T_Id
Id1 Id6 Id8

In this section, to simplify, we refer to #Pick as the number
of picked cc-tuples from CCT (Ttc , I) although it rather is the
number of picked cc-tuples from CCT (Ttc , I) and wrt op and all
its super combinations. The ‘exact number’ of picked cc-tuples is
computed in a following step (Algorithm 1, line 9).

In order to calculate #Pick (see Algorithm 2, Line ??), the car-
dinality |V | of the materialized operator view is used as follows:

#Pick = |CCT (Ttc , I)| � |V | ⇥
Y

Part2PartS

|VPart|

where PartS=Partitioning \ PartS

EXAMPLE 4.5. For the operator op3, we have |V3|=4. And
since Partitioning=PartS3, we conclude t that the number of
picked cc-tuples wrt op3 is #Pick3=|CCT |�|V3|=12�4=8.

Non atomic operator combinations are dealt with by Algorithm 3.
This algorithm proceeds to a search space exploration in a bottom
up manner wrt combination sizes, in order to exploit the previ-
ous iterations. Consider a combination x with OpSetx={opi |
i = 1 . . . N}. The PartSx component ofCombx is defined by:
PartSx= [op2OpSetx PartSop.

Intuitively, to find the picked cc-tuples wrt combination x, we
should find the picked cc-tuples common to op1 and . . . and opN .
These common cc-tuples are in the intersection of the sets of picked
cc-tuples wrt op1 . . . opN .

As will be shown, in order to compute the intersection (or simply
get its cardinality), we may have to use, in addition to the atomic
combination views Vop1 , . . . , VopN , all views associated with the
sub-combinations of x including x itself.

This step of the algorithm is not obvious and thus we start by de-
veloping a simplified case. Assume that all operator views have the
same target schema Attx={R_Id | R2P where P2PartSx}.

The set of partial picked cc-tuples wrt x is computed as the inter-
section of the complements of the atomic combination views stor-
ing the passing partial cc-tuples:

PPx = Vop1 \ · · · \ VopN = Vop1 [· · · [VopN (A)

Note that our algorithm provides us with the partial passing cc-
tuples only, through the mmaterialization of the views Vopi . Thus,
PPx needs to be rewritten:

PPx = ⇡Attx ["
Part2PartSx

VPart] \ [op2OpSetxVop (B)

With the assumption that all operator views have the same schema,
taking the union of these views is well defined, and thus the query
PPx as well. However, in the general case, this schema property
does not hold and thus the union is not well-defined. Indeed, in
order to deal with the general case, we need to add cross-products
in the query PPx and replace Vop by V ext

op defined below:

V ext
op = ⇡Attx\Attop ["

Part2PartSx\PartSop

VPart] ⇥ Vop (C)

EXAMPLE 4.6. Consider the combination op3op4. The passing
partial cc-tuples w.r.t. op3 and op4 are displayed in Example 4.4.
They do not share the same schema, so in order to take the ‘union’
of these sets, it would be required to intermediately compute the
cross product of V4 and VP art1.

As already said, the main feature of Ted++ is to avoid computing
cross products in order to keep down space and time consumption.
Once again, the reader should remember that we are not interested
in the picked cc-tuples by themselves but in their cardinality. Thus,
cross product elimination is solved through counting:

| PPx |= ⇥Part2PartSx |Part|� | [op2OpSetxV ext
op | (D)

To calculate the size of the union, we apply the ‘Principle of
Inclusion and Exclusion for counting’4:

|
N[

i=1

V ext
opi

|=
X

;6=�✓[N]

(�1)|�|+1 |
\

�2�

V ext
op�

| (E)

EXAMPLE 4.7. For the combination op3op4, the Equation E is:
|V ext

3 [V ext
4 |=|V ext

3 | + |V ext
4 | � |V ext

3 \ V ext
4 |. The schema of

Part34={Part1, Part2} is Att34={R_Id, S_Id, T_Id}. The
view V3 has already the ‘good’ schema, thus |V ext

3 |=|V3|=4. Be-
cause the V4 schema is Att4={T_Id}, it needs to be supplemented
using VPart1 (Formula C), and thus |V ext

4 |=|V4| ⇥ |VPart1 |=2⇥
3=6. Still, |V34|=|V ext

3 \ V ext
4 | remains to be calculated. Here,

because V3 and V4 target schemas have T_Id as common attribute,
we have V34=V3 ./T _Id V4. The view V34 needs to be materialized
(see below).

I34

R_Id S_Id T_Id
Id1 Id5 Id9

Id1 Id6 Id9

So, finally |V ext
3 [V ext

4 |=4+6�2 = 8. From Equation D
we obtain the number of partial picked cc-tuples w.r.t. op3op4:
|PP34|=12 � 8=4.

Consider now the combination op4op6. The schemas of V4 and
V6 are disjoint, and thus V46=V4"V6. Thus, in that case V46 is not
materialized but we rather directly calculate |V46| as |V4|⇥ |V6| =

4http://math.mit.edu/ fox/MAT307-lecture04.pdf

8

combinations of size 3op2op3op4 op3op4op5 op3op4op6

4 + 6 + 12 - (2 + 4 + 2 * 3)
+ | V346 | = 12

1 * (12 - 12) = 0

size of union (Equ. (H))
#Pickx (Equ. (A))

0 + 4 + 2 - (0 + 0 + 2)
+ | V234 | = 4

1 * (12 - 4) = 8

4 + 6 + 3 - (2 + 1 + 1)
+ | V345 | = 9

1 * (12 - 9) = 3

materialized join results

...

...

... ...

V3 V4 V5 V6

V35V34

...

... ...

... ...

Figure 4: Running example illustrating the different steps of Ted++ defined in Alg. 1 and Alg. 2

Example 5.6 To illustrate the concepts introduced above, please follow on Fig. 4 the following discus-
sion.

For the combination op3op4, Equ. (H) gives: |V ext3 ∪ V ext4 |=|V ext3 | + |V ext4 | − |V ext3 ∩ V ext4 |2.
The schema of Part34={Part1, Part2} is Att34={R_Id, S_Id, T_Id}. The view V3 has already a
matching schema, thus |V ext3 |=|V3|=4. For V4, Att4={T_Id}, we thus apply Eqn. (E) and obtain
|V ext4 |=|VPart1 |× |V4|=3 × 2=6. Still, |V34|=|V ext3 ∩ V ext4 | remains to be calculated. Intuitively, be-
cause V3 and V4 target schemas share attribute T_Id, V34=V31T _IdV4. The view V34 is materialized
and contains 2 tuples (as shown in Fig. 4). So, finally, for Equ. (H) we obtain |V ext3 ∪ V ext4 |=4+6−2=8,
yielding for Equ. (G) |PPick34|=12− 8=4, and eventually #Pick34 = 4 (Equ. (A)).

We now focus on combination op4op6. The schemas of V4 and V6 are disjoint and intu-
itively V46=V4"V6. Here, V46 is not materialized, we simply calculate |V46|=|V4|×|V6|=6. Then,

2For brevity, we use subscript i instead of opi in the following.

RR n° 8697

16 Nicole Bidoit, Melanie Herschel, Katerina Tzompanaki

|PPick46|=12−(12+6−6)=0, which is expected as op6 has no picked cc-tuples (see Ex. 5.5), so neither
do any of its super-combinations.

Finally, consider the combination op3op4op6 of size 3. Equ. (H) is then: |V ext3 ∪ V ext4 ∪
V ext6 |=|V ext3 | + |V ext4 | + |V ext6 | − |V ext3 ∩ V ext4 | − |V ext3 ∩ V ext6 | − |V ext4 ∩ V ext6 | + |V ext3 ∩ V ext4 ∩
V ext6 |. All terms of the right side of the equation are available from previous iterations, except for
|V ext3 ∩ V ext4 ∩ V ext6 |. As before, we check the common attributes of the atomic condition views and
obtain V346=V61R_Id,S_IdV31T _IdV4. The view is materialized and displayed in Fig. 4. We obtain
|V ext3 ∪V ext4 ∪V ext6 |=4+6+12−(2+4+6)+2=12 and, as expected, |PPick346|=0. This calculation
can be further simplified to |V ext3 ∪ V ext4 ∪ V ext6 | = |V ext3 ∪ V ext4 |+ |V ext6 | − |V ext3 ∩ V ext6 | − |V ext4 ∩
V ext6 |+ |V ext3 ∩ V ext4 ∩ V ext6 |.

Ex. 5.6 demonstrates that for a combination x, |
N⋃
i=1

V extopi | can be computed incrementally from

|
N−1⋃
i=1

V extopi |. Formally, for N>1

|
N⋃
i=1

V extopi | = |
N−1⋃
i=1

V extopi | + | V
ext
opN |

+
∑

∅6=Γ⊆[N−1]

(−1)|Γ| |
⋂
γ∈Γ

V extopγ ∩ V
ext
opN |

(I)

Using this final equation, we can now generally compute #Pickx by first applying (G) and then Equ. (A).
View Materialization: when and how. Ex. 5.6 suggests that the view Vx may or may not be materialized.
To decide on materialization (Alg. 2, line 7), we partition the set Vx of the views associated with the
conditions in opSetx. Consider the relation ∼ defined over these views by Vi ∼ Vj if the target schemas
of Vi and Vj have at least one common attribute. Consider the transitive closure ∼∗ of ∼ and the induced
partitioning of Vx through ∼∗.

When this partitioning is a singleton, Vx needs to be materialized. The materialization of Vx is
specified by joining the views associated with the sub-conditions, which may be done in more than one
way, as usual. For example, for the combination op3op4op5, V345 can either be computed through V341V5

or V351V4 or V451V3 V31V41V5. . . because all these views are known from previous iterations. The
choice of the query used to materialize Vx is done based on a cost function. This function gives priority
to materializing Vx by means of one join, which is always possible: because Vx needs to be materialized,
we know that at least one view associated with a sub-combination of size N−1 has been materialized.
In other words, priority is given to using at least one materialized view associated with one of the largest
sub-combinations. For our example, it means that either V341V5 or V351V4 or V451V3 is considered.
In order to choose among the one-join queries computing Vx, we favor a one-join query Vi1Vj minimal
w.r.t. |Vi|+|Vj |. For the example, and considering also Fig. 4 we find that |V3|+|V45|=
|V5|+|V34|=5 and |V4|+|V35|=3. So, the query used for the materialization is V41V35 (its result being
empty in our example).

If the partitioning is not a singleton, Vx is not materialized (line 13). For example, the partitioning for
op4op6 is not a singleton and so the size |V46|=|V4|×|V6|=6.

Finally, we can avoid materialization even if the partitioning is a singleton, when for some sub-
combination y of x it was found that #Picky=0. In that case, we know a priori that #Picky=0 (e.g., in
Ex. 5.6, #Pick6=0 implies #Pick36=0, #Pick346=0 etc.).

5.4 Postprocessing
The result of Alg. 2 returns for each picky condition combinations y an associated coefficient #Picky .
However, recall that the calculation of this coefficient so far counts any cc-tuple picked by a combination

Inria

Efficiently and Effectively Answering Why-Not Questions based on Provenance Polynomials 17

y to be also picked by any of its sub-combinations (see Ex. 5.7). Thus, the last step of Ted++ is to
compute, for each combination, the exact coefficient (see Alg. 1, line 6).

The exact coefficient for a combination x is obtained by subtracting the coefficients of its super-
combinations from #Pickx:

coefx=#Pickx−(
∑

opSetx⊆opSety
coefy) (J)

Example 5.7 Consider known coef2345=2 and coef234=2. We have found in Ex. 5.6 that #Pick34=4.
With Equ. (J), coef34=4−2−2=0. In the same way coef3=4−0−2−2=0. The algorithm leads to the
expected Why-Not answer polynomial already provided in Ex. 3.7.

5.5 Theoretical Discussion of Ted++
Theorem 5.1 states that Ted++ (Alg. 1) is sound and complete w.r.t. Def. 3.6.

Theorem 5.1 Given a query q, a Why-Not question tc and an input instance I, Ted++ computes exactly
TWNA(q, tc, I).

Complexity analysis. In the pseudo-code for Ted++ provided in Alg. 1, we can see that Ted++ di-
vides into the phases of (i) partitioning Ttc , (ii) materializing a view for each partition, (iii) computing
picky combinations, and (iv) computing the exact coefficients. When computing picky combinations,
according to Alg. 2, Ted++ iterates through 2|Cq| condition combinations and for each, it decides upon
view materialization (again through partitioning) before materializing it, or simply calculates |Vx| be-
fore applying equations to compute #Pick. Overall, we consider that all mathematical computations
are negligible so, the worst case complexities of steps (i) through (iv) are O(|Sq|+|tc.cond|)+O(|Sq|) +
O(2|Cq|(|Sq| + |Cq|))+O(2|Cq|). For large enough queries, we can assume that |Sq|+|Cq|<<2|Cq|, in
which case the complexity simplifies to O(2|Cq|).

Obviously, the complexity analysis above does not take into account the cost of actually materializing
views; in its simplified form, it only considers how many views need to be materialized in the worst case.
Assume that n=max({|IR||R∈Sq}). The materialization of any view is bound by the cost of materi-
alizing a cross product over the relations involved in the view - in the worst case O(n|Sq|). This yields
a combined complexity of O(2|Cq|n|Sq|). However, Ted++ in the general case (more than one induced
partitions), has a tighter upper bound: O(nkx1 +nkx2 + · · ·+nkxN), where kx=|{Part|Part∈partSx}|,
for all combinations x and N = 2|Cq| . It is easy to see that nkx1+nkx2+ . . .+nkxN < 2|Cq|n|Sq|, when
there is more than one partition.

6 Experimental Evaluation
This section presents an experimental evaluation of Ted++. In Sec. 6.1, we compare Ted++ with the
existing algorithms returning query-based explanations, i.e., with NedExplain [5] and Why-Not [7]. The
comparison shows that the runtime of Ted++ is competitive with the runtime of these algorithms, while
computing a more informative answer. Sec. 6.2 studies the runtime of Ted++ with respect to various
parameters that we vary in a controlled manner. Overall, Ted++ scales well with respect to the studied
parameters, demonstrating Ted++’s practicality.

We have implemented Ted, Ted++, NedExplain, and Why-Not in Java. The original Why-Not imple-
mentation, as well as ours, relies on the lineage tracing provided by Trio (http://infolab.stanford.edu/trio/).
We ran the experiments on a Mac Book Air, running MAC OS X 10.9.5 with 1.8 GHz Intel Core i5, 4GB
memory, and 120GB SSD. We used PostegreSQL 9.3 as database system.

RR n° 8697

18 Nicole Bidoit, Melanie Herschel, Katerina Tzompanaki

Table 5: Queries for the scenarios in Tab. 6
QueryExpression

Q1 C 1sector W 1witnessName S 1hair,clothes P
Q2 σC.sector>99[C] 1sector W 1witnessName S 1hair,clothes P
Q3 W 1sector2 C2 1sector1 σC.type=Aiding[C]
Q4 P2 1!name,hair σP1.name<B [P1]
Q5 L1movieIdσM.year>2009[M]1nameσR.rating≥8[R]
Q6 σAA.party=Republican[AA] 1id σCo.Byear>1970[Co]
Q7 E1eIdσES.sub=Sen. Com.[ES]1idσSPO.party=Rep.[SPO]

Qs3 σtype=Aiding [Q2]
Qs4 σwitnessname>S [Qs3]
Qj C 1sector σname>S [W]
Qj2 Qj 1witnessname S
Qj3 Qj2 1clothes P
Qj4 Qj3 1hair P
Qc L11lidL2 1M2.mid=L2.mid M2 1year,!mid σyear=1980[M1]

QtpchC1ckeyσodate<1998−07−21[O]1okeyσsdate>1998−07−21[L]

6.1 Comparative Evaluation
We begin the evaluation of Ted++ with the comparative evaluation to algorithms Why-Not and NedEx-
plain. This evaluation considers both efficiency (runtime) and effectiveness (Why-Not answer quality)
of the different algorithms. When considering efficiency, we also include Ted in the comparison (Ted
producing the same Why-Not answer as Ted++).
Experimental Setup. For the experiments in this section, we have used data from three databases named
crime, imdb, and gov. The crime database corresponds to the sample crime database of Trio and was
previously used to evaluate Why-Not and NedExplain. The data describes crimes and involved persons
(suspects and witnesses). The imdb database is built on real-world movie data extracted from IMDB
(http://www.imdb.com). Finally, the gov database contains information about US congressmen and finan-
cial activities3. The table sizes in the datasets range from 89 to 9341 records.

For each dataset, we have created a series of scenarios (crime1-gov5 in Tab. 6). Each scenario consists
of a query further defined in Tab. 5 (Q1-Q7) and a simple Why-Not question, as all algorithms but Ted++
support only this type of Why-Not question. The queries have been designed to include queries with a
small set of conditions (Q6) or a larger one (Q1,Q3,Q5,Q7), containing self-joins (Q3,Q4), having empty
intermediate results (Q2), as well as containing inequalities (Q2,Q4,Q5,Q6).

6.1.1 Why-Not Answer Evaluation

In our discussion of related work (summarized in Tab. 1), we have seen that Why-Not and NedExplain
return query operators, whereas Ted++ returns a polynomial where each addend includes a condition
combination. For comparison purposes, we trivially map Ted++’s Why-Not answer to a set of operator
sets, e.g., 3op3 ∗ op4 + 2op3 ∗ op6 maps to {{op3, op4}, {op3, op6}}. For conciseness, we abbreviate
operator sets, e.g., to op34, op36.

Tab. 7 summarizes the Why-Not answers of the three algorithms. The following discussion focuses on
comparing Ted++to Why-Not and NedExplain, as a detailed comparison between these two has already
been provided in [5].

For all the tested scenarios, we observe that all operators identified by NedExplain or Why-Not also
exist in the answer of Ted++, either as atomic combinations or as part of a combination. For instance,
in crime5, Why-Not returns op5 (σsector>99[C]) whereas NedExplain returns op1 (C1sectorW). These
Why-Not answers are subsumed by the Why-Not answer Ted++ returns, i.e., the polynomial includes
both the atomic combination op5 as well as a combinations including op1, e.g., op15. If a picky operator
matches an atomic condition, e.g., op5, this means that fixing this operator will be sufficient to produce

3Collected at http://bioguide.congress.gov, http://usaspending.gov, and http://earmarks.omb.gov

Inria

Efficiently and Effectively Answering Why-Not Questions based on Provenance Polynomials 19

Table 6: Scenarios
Scenario Query Why-Not question
crime1 Q1 (P.Name:Hank,C.Type:Car theft)
crime2 Q1 (P.Name:Roger,C.Type:Car theft)

crime3 Q2 (P.Name:Roger,C.Type:Car theft)
crime4 Q2 (P.Name:Hank,C.Type:Car theft)
crime5 Q2 (P.Name:Hank)

crime6 Q3 (C2.Type:kidnapping)
crime7 Q3 (W.Name:Susan,C2.Type:kidnapping)

crime8 Q4 (P2.Name:Audrey)

imdb1 Q5 (name:Avatar)
imdb2 Q5 (name:Christmas Story,L.locationId:USANew York)

gov1 Q6 (Co.firstname:Christopher)
gov2 Q6 (Co.firstname:Christopher,Co.lastname:MURPHY)
gov3 Q6 (Co.firstname:Christopher,Co.lastname:GIBSON)

gov4 Q7 (sponsorId:467)
gov5 Q7 ((SPO.sponsorln:Lugar,E.camount:x),x>=1000)

crimes− Q1,Q2, (P.Name:Hank,C.Type:Car theft)crimes4 Qs3,Qs4
crimej−crimej4Qj−Qj4,(W.name=Jane, C.type=Car theft)

imdbc Qc4
(L2.locationid=L1.locationid, M1.mid=L2.mid,
L1.year>L2.year,M1.name=Duck Soup)

imdbc2 Qc4
(L2.locationid=L1.locationid, M1.mid=L2.mid,
L1.year>L2.year)

crime5c2 Q2 (P.Name:Hank, C.type=Car theft)
crime5c3 Q2 (P.Name:Hank, C.type=Car theft, S.witness=Aphrodite)

crime5c4 Q2 (P.Name:Hank ,C.type=Car theft, S.witness=Aphrodite,
W.sector =34)

crime5c5 Q2 (P.Name:Hank ,C.type=Car theft, S.witness=Aphrodite,
W.sector =34,S.hair=green)

imdbcc Qc (M.year>M2.year)
tpchs Qtpch (L.extprice>50000,O.odate<1996-01-01)
tpchc Qtpch (L.extprice>100000, O.odate=L.cdate, C.nkey=4)

the specified missing answer. On the contrary, if a picky operator only appears as part of a condition
combination, e.g., op1, Ted++ provides us with the full explanation that requires fixing that operator in
combination with others (fixing it alone will not make the missing answer appear).

Two special cases where the subsumption does not directly hold are crime2 and crime3. The reported
answer of Why-Not and NedExplain contains the operator op′34, which stands for S1hair,clothesP . While
NedExplain and Why-Not consider this as one operator, Ted++, as a consequence of Def. 3.7, has two
complex conditions for this, i.e., op3 (S.hair=P.hair) and op4 (S.clothes=P.clothes). In this case,
op′34 maps either to op3, op4, or op34 without being more precise. Again, Ted++ is more informative here
as it clearly indicates which of these combinations are indeed culprit, for example op3 (S.hair=P.hair)
alone is picky for crime2 but not for crime3.

Considering gov2, recall that Why-Not and NedExplain rely on a query tree. For this scenario, the
trees chosen by Why-Not and NedExplain actually differ. Why-Not identifies op1, whereas NedExplain
identifies op3 as the picky operator. Ted++ contains both operators as atomic picky combinations in its
result, showing also experimentally its independence from the query tree representation.

Another interesting case is crime8. NedExplain indicates that op2 (S1hairP) is picky, but Ted++ also
computes the picky atomic combination op3 (σname<‘B′ [P]). From a developer’s perspective, selections
are typically easier or more reasonable to change, so she would typically start fixing these. But here,
NedExplain does not even give her the information that trying to fix the selection may be successful.
Thus, it is not only a matter of whether NedExplain or Why-Not produce a correct answer, but also which
correct answer. With Ted++ the developer gets all necessary information to decide what fixes to test first.

In gov3, NedExplain and Why-Not both return op2. However, let us now assume the developer is
not willing to change this operator. So, remembering that the algorithms’ answers may change when
changing the query tree, she may start trying different options to possibly obtain a different Why-Not

RR n° 8697

20 Nicole Bidoit, Melanie Herschel, Katerina Tzompanaki

Table 7: Ted++, Why-Not, NedExplain answers per scenario
Scenario Ted++ Why-Not NedExplain
crime1 op1234, . . . , op12, op3, op2, op1 op1
crime2 op1234, op34, op13, . . . , op3 op′34 op′34, op1

crime3 op12345, . . . , op145, op345, op35 op′34,op5 op5, op
′
34

crime4 op12345, . . . , op25, op15 op5 op1, op5
crime5 op12345, . . . , op15, op5 op5 op1

crime6 op123, op31, op23, op12, op3, op2, op1 op3 op2
crime7 op123, op13, op12, op1 op3 op2, op1

crime8 op23, op3, op2, op1 op2

imdb1 op123, op13, op23, op3 op3 op3,op2
imdb2 op13 op1, op3

gov1 op123, op13, op23, op12, op3, op2, op1 op3 op2, op3
gov2 op13, op3, op1 op1 op3
gov3 op123, op23, op2 op2 op2

gov4 op123, op23, op2 op3 op3, op2
gov5 op124, op14, op24, op12, op4, op2, op1 op1 op1

answer. Looking at the answer of Ted++ would prevent her from spending any effort on this, as it shows
that each condition combination includes op2.

So far, our discussion focused on the value of providing all condition combinations, but valuable
information is obtained also by the coefficients. For an example, for crime8, the complete Why-Not
answer polynomial is 2384 ∗ op23 + 20 ∗ op3 + 4 ∗ op1 + 8 ∗ op2. Assume that the developer has no
preference on which condition to change, but she wants to minimize changes while maximizing chances
of getting the missing answer in the query result. Looking at the polynomial, it is easy to see that minimal
changes means changing one of op1,op2, and op3 while the highest coefficient of these three atomic
combinations indicates the maximized chances of getting the missing answer in the result. Thus, she
would choose op3. Clearly, the results of NedExplain or Why-Not do not provide sufficient information
to make such an informed decision.

6.1.2 Runtime Evaluation

We now compare the runtime of Ted++ with other algorithms.
Ted++ vs. NedExplain and Why-Not. For this comparative evaluation, we again consider scenarios
crime1 through gov5 of Tab. 6 as their use of simple Why-not questions ensures that they are supported
by all three algorithms. Fig. 5 summarizes the runtimes in logarithmic scale for each algorithm and each
scenario. We observe that the runtime of Ted++ is always comparable to the runtime of NedExplain and
that in some cases, it is significantly faster than Why-Not. We explain this behavior as follows.

Why-Not traces compatible tuples based on tuples’ lineage stored in the Trio system. As already stated
in [7] and [5], this design choice slows down Why-Not performance. Opposed to that, both NedExplain
and Ted++compute the compatible data more efficiently by issuing a few simple select SQL statements

1"

10"

100"

1000"

10000"

100000"

crim
e1"
crim

e2"
crim

e3"
crim

e4"
crim

e5"
crim

e6"
crim

e7"
crim

e8" gov
1"

gov
2"

gov
3"

gov
4"

gov
5"
imd

b1"
imd

b2"

!m
e$
(lo

gm
s)
$

scenarios$with$simple$Why6Not$ques!ons$

Ted++" Ted" NedExplain" WhyANot"

Figure 5: Runtimes for Ted++, Ted, NedExplain and Why-Not

Inria

Efficiently and Effectively Answering Why-Not Questions based on Provenance Polynomials 21

24,4$ 226,6$ 41,2$ 264$ 24$ 1401,8$ 467,6$3633,4$ 464,6$3607,8$ 477,4$15504$

0$

200$

400$

600$

800$

imdb2$8$ crime8$2,4K$ crime7$5,7K$ gov2$37,3K$ gov3$37,3K$ gov1$150K$

!m
e$
(m

s)
$

scenarios$/$cc/tuples$$

Ted++/Ted$
postprocessing$ pickyness$ par>alCompa>bles$ preprocessing$

Figure 6: Ted++ and Ted runtime distribution

to the database and further using the unique identifiers of the source tuples. We claim that a better
implementation choice for tuple tracing in Why-Not would yield a runtime comparable to NedExplain, a
claim backed up by their comparable runtime complexities. Another definition and implementation issue
of both Why-Not and NedExplain, which explains the sometimes faster runtime of Ted++ is the fact
that their input is potentially much larger as it includes the full database instance instead of limiting to
compatible data in the instance. Clearly, this slows the tracing of compatible data through the query tree.

Let us see what happens when Ted++ is slower than - but still comparable to - NedExplain, for
example in scenarios gov1–gov3. In these scenarios, all compatible tuples are picked by operators very
close to the leaf level of the operator tree, so the bottom-up traversal of the tree can stop very early.
Ted++ will always “check” all conditions so cannot benefit from such an early termination. However,
this runtime improvement opportunity in NedExplain often comes at the price of reduced information
conveyed by the Why-Not answer (e.g., a partial Why-Not answer in gov1).
Ted++ vs. Ted. Fig. 5 also reports runtimes for Ted on 6 out of 15 scenarios (all others did not run).
To experimentally demonstrate where Ted’s problem lies, we compare the time distribution of different
algorithm phases in Ted and Ted++ for these scenarios.

Fig. 6 divides the runtime into four common phases of the algorithms. Among these, the pickyness
phase is the one that is inherently different in both algorithms. Ted iterates over the whole cc-tuple set
and computes the picky condition combinations for each cc-tuple. Ted++ explores the search space, and
calculates the number of picked cc-tuples per condition combination. Thus, this is the phase in which
we expect to have an important runtime difference between Ted and Ted++. In reporting the phase-wise
runtime, Fig. 6 cuts the bar for Ted in the scenarios crime7, gov1, gov2 and gov3 as the execution time is
much higher compared to the other scenarios and to the runtime of Ted++(the runtime of the pickyness
phase is provided as label on the respective bars).

As said before, Ted’s main issue w.r.t. efficiency is its strong dependence on the number of cc-tuples.
This is experimentally observed in Fig. 6: with the growth of the set of cc-tuples in the scenarios, the time
dedicated to pickyness also grows (the scenarios are reported in an ascending order). Ted++ depends on
the number of cc-tuples as well, but not as strongly as Ted. This can be seen in crime8 and crime7, or
gov3 and gov1; while the number of cc-tuples grows, Ted++’s pickyness phase remains roughly steady.

6.2 Ted++ Investigation
We now study Ted++’s behavior when varying the following parameters: (i) the type (simple or complex)
of the input query q and the number of its conditions, (ii) the type of the Why-Not question (simple or
complex) and the number and selectivity of conditions it entails, and (iii) the size of the input database
I. Note that (ii) and (iii) are tightly connected with the number of computed cc-tuples, which is one
of the main parameters influencing the performance. In addition to the number of cc-tuples, (i) deter-
mines the pickyness phase performance depending also on the selectivity of the query conditions over the
compatible data.

RR n° 8697

22 Nicole Bidoit, Melanie Herschel, Katerina Tzompanaki

0	

400	

800	

1200	

1600	

crim
e_s	

crim
e_s2

	

crim

e_s3
	

crim

e_s4
	

!m
e	

(m

s)
	

scenario	

increasing	
 simple	
 condi7ons	

0	

300	

600	

900	

1200	

crim
e_j	

crim
e_2

j	

crim
e_3

j	

crim
e_4

j	

!m
e	

(m

s)
	

scenario	

increasing	
 complex	
 condi9ons	

(a) simple conditions (b) complex conditions

Figure 7: Ted++ runtime w.r.t. number of conditions in q

Experimental Setup. For the parameter variations (i) and (ii), we again use the crime, imdb, and gov
databases. To adjust the database instance size for case (iii), we use data produced by theTPC-H4 bench-
mark data generator. More specifically, we generate instances of 1GB and 10GB and further produce
smaller data sets of 10MB and 100MB to obtain a series of datasets whose size differs by a factor of 10.
In this paper, we report results for the original query Q3 of the TPC-H set of queries. It includes two
complex and three simple conditions, two of which are inequality conditions. Since the original TPC-H
query Q3 is an aggregation query, we have changed the projection operator.

The queries used in this section are summarized in Tab. 5 (Qs-Qtpch) and the scenarios in Tab. 6
(crimes-tpchc).
Adjusting the query q. Given a fixed database instance and Why-Not question, we start from query Q1
and gradually add simple conditions, yielding the series of queries Q1, Q2, Qs3, Qs4. The evolution of
runtime when applying Ted++ on this series of queries is shown in Fig. 7 (a). Similarly, starting from
query Qj , we introduce step by step complex conditions, yielding Qj-Qj4. Corresponding runtime results
are reported in Fig. 7 (b).

As expected, in both cases, increasing the number of query conditions (either complex or simple)
results in increasing runtime. The incline of the curve line depends on the selectivity of the introduced
operator; the more selective the operator the steeper the line becomes. This is easy to explain, as in the
pickyness phase, the operator view contains more tuples (=passing partial cc-tuples) when the operator is
more selective. This results in more computations in the super-combinations iterations.

Note that the curve line in Fig. 7 (a) starts at point much higher than in Fig. 7 (b). This is because the
query Q1 (crimes) initially includes four complex conditions, in contrast to Qj (crime10) that includes
one complex and one simple condition.
Adjusting the Why-Not question. Next, we vary the type and the number of conditions in the Why-Not
question defined by tc. Fig. 8 shows the cases when we start (a) with a simple tc and progressively add
more simple conditions and (b) start with a complex tc and progressively add more complex conditions.

The scenarios considered for Fig. 8 (a) have as starting point the simple scenario crime5 (see Tab. 6).
Then, keeping the same input instance and query, we add attibute-constant comparisons to tc, a procedure
resulting in fewer cc-tuples in each step. As expected, the more conditions (the less cc-tuples) the faster
the Why-Not answer is returned, until we reach a certain fixpoint (here from crime5c3 on). From this point
on, the runtime is dominated by the time dedicated to communicate with the database that is constant over
all scenarios.

As we introduce complex conditions to tc, the number of generated partitions (potentially) drops as
more relations are included in a same partition. To study the impact of the induced number of partitions
in isolation, we keep the number of the cc-tuples constant in our series of complex scenarios (imdbcc-
imdbcc3). The number of partitions entailed by imdbcc, imdbcc2, and imdbcc3 are 3, 2, and 1, respectively.
The results of Fig. 8(b) confirm our theoretical complexity discussion, i.e., as the number of partitions
decreases, the time needed to produce the Why-Not answer increases.
Increasing size of input instance. The last parameter we study is the input database size. To this end,
we have created two scenarios, one with a simple and one with a complex Why-Not question tc, and both
using the same query Qtpch. We run both scenarios for database sizes 10MB, 100MB, 1GB, and 10GB.

4http://www.tpc.org/tpch/

Inria

Efficiently and Effectively Answering Why-Not Questions based on Provenance Polynomials 23

0	

200	

400	

600	

800	

1000	

crim
e5	

crim
e5_

c2	

crim
e5_

c3	

crim
e5_

c4	

crim
e5_

c5	

!m

e	

(m

s)
	

scenario	

increasing	
 simple	
 condi8ons	

1000	

1100	

1200	

1300	

imdb_cc3	
 imdb_cc2	
 imdb_cc	

!m
e	

(m

s)
	

scenario	
 	

increasing	
 #par44ons/decreasing	
 complex	

(a) simple conditions (b) complex conditions

Figure 8: Ted++ runtime w.r.t. number of conditions in tc

300	

3000	

30000	

300000	

3000000	

10	
 100	
 1000	
 10000	

!m
e	

(lo

gm
s)
	

TPC-­‐H	
 dataset	
 size	
 (MB)	

complex	
 simple	

100000	

1E+09	

1E+13	

1E+17	

1E+21	

10	
 100	
 1000	
 10000	

cc
-­‐t
up

le
s	
 (
lo
g)
	

TPC-­‐H	
 dataset	
 size	
 (MB)	

complex	
 simple	

(a) runtime (b) number of cc-tuples

Figure 9: Ted++ (a) runtime, and (b) number of cc-tuples for increasing database size, with complex and
simple tc

The simple tc includes two inequality conditions, in order to be able to compute a satisfying number of cc-
tuples. The complex tc contains one complex condition, one inequality simple condition and one equality
simple condition. It thus represents an average complex Why-Not question, creating two partitions over
three relations.

Fig. 9 (a) shows the runtimes for both scenarios. This behavior is tightly coupled to the fact that the
number of computed cc-tuples is augmenting proportionally to the increase of the database size, as shown
in Fig. 9 (b). We observe that for small datasets <500MB in the complex scenario Ted++’s performance
decreases with a low rate, whereas the rate is higher for larger datasets. For the simple scenario, runtime
deteriorates in a steady pace. This behavior is aligned with the theoretical study; when the number of
partitions is decreasing the complexity rises. Thus, the complex scenario loses its performance faster
than the simple one in the big datasets.

In summary, our experiments have shown that Ted++ generates a more informative, useful and com-
plete Why-Not answer than the state of the art. Moreover, Ted++ is either more efficient or comparable
in terms of runtime. The dedicated experimental evaluation on Ted++ verifies that it can be used in a
large variety of scenarios with different parameters and that the obtained runtimes match the theoretical
expectations. Finally, the fact that the experiments were conducted on a common laptop, with no special
capabilities in memory or disk space, supports Ted++’s feasibility.

7 Conclusion and Outlook
This paper first introduced a novel representation of query-based explanations to Why-Not questions
that ask why some data is not part of a result of a conjunctive query with inequalities. Our Why-Not
answer takes the form of a polynomial that encodes all condition combinations of the query that are
simultaneously responsible for pruning the missing answers from the result. These polynomials are shown
to be more informative than Why-Not answers returned by previous algorithms. In addition, opposed to
previous algorithms that may return a different result for any two equivalent query tree representations of
the input query, we guarantee that the Why-Not answer polynomial is the same for a large set of equivalent
query trees. To compute such polynomials, we first introduced the naive Ted algorithm that however is too
inefficient to be of any practical use. Therefore, we presented a second, more efficient algorithm, namely
Ted++. Our experimental evaluation showed that Ted++ is as efficient or more efficient than existing
algorithms while providing more useful insights in its Why-Not answer to a developer. Also, we saw that

RR n° 8697

24 Nicole Bidoit, Melanie Herschel, Katerina Tzompanaki

Ted++ scales well with various parameters, making it a practical solution as opposed to the naive Ted.
In the future, we plan to use the Why-Not answer polynomial to efficiently rewrite the input query in

order to include the missing answers in its result set. As there are many rewriting possibilities, we plan to
select the most promising ones based on a cost function, built with the polynomial. For instance, we may
rank higher rewritings with minimum condition changes (i.e., small combinations), minimum side-effects
(i.e., small coefficients), etc.

References
[1] S. Abiteboul, R. Hull, and V. Vianu. Foundations of Databases. Addison-Wesley, 1995.

[2] A. V. Aho, Y. Sagiv, and J. D. Ullman. Equivalences among relational expressions. SIAM Journal
on Computing, 8(2):218–246, 1979.

[3] S. S. Bhowmick, A. Sun, and B. Q. Truong. Why not, WINE? In International World Wide Web
Conference (WWW), pages 83–86, 2014.

[4] N. Bidoit, M. Herschel, and K. Tzompanaki. Immutably answering why-not questions for equivalent
conjunctive queries. In Workshop on Theory and Practice of Provenance (TAPP), 2014.

[5] N. Bidoit, M. Herschel, and K. Tzompanaki. Query-based why-not provenance with Nedexplain.
In International Conference on Extending Database Technology (EDBT), 2014.

[6] D. Calvanese, M. Ortiz, M. Simkus, and G. Stefanoni. Reasoning about explanations for negative
query answers in dl-lite. Journal on Artificial Intelligence Research (JAIR), 48:635–669, 2013.

[7] A. Chapman and H. V. Jagadish. Why not? In International Conference on the Management of
Data (SIGMOD), 2009.

[8] J. Cheney, L. Chiticariu, and W. C. Tan. Provenance in databases: Why, how, and where. Founda-
tions and Trends in Databases, 1(4), 2009.

[9] Y. Cui, J. Widom, and J. L. Wiener. Tracing the lineage of view data in a warehousing environment.
ACM Transactions on Database Systems (TODS), 25(2), 2000.

[10] J. Danaparamita and W. Gatterbauer. QueryViz: helping users understand SQL queries and their
patterns. In International Conference on Extending Database Technology (EDBT), 2011.

[11] T. Grust and J. Rittinger. Observing sql queries in their natural habitat (preprint). ACM Transactions
on Database Systems, 0(0), 2012.

[12] M. Hall. Combinatorial theory, volume 71. John Wiley & Sons, 1998.

[13] Z. He and E. Lo. Answering why-not questions on top-k queries. In International Conference on
Data Engineering (ICDE), 2012.

[14] M. Herschel. Wondering why data are missing from query results? ask conseil why-not. In Inter-
national Conference on Information and Knowledge Management (CIKM), 2013.

[15] M. Herschel and H. Eichelberger. The Nautilus Analyzer: understanding and debugging data trans-
formations. In International Conference on Information and Knowledge Management (CIKM),
2012.

Inria

Efficiently and Effectively Answering Why-Not Questions based on Provenance Polynomials 25

[16] M. Herschel and M. A. Hernández. Explaining missing answers to SPJUA queries. Proceedings of
the VLDB Endowment (PVLDB), 3(1), 2010.

[17] J. Huang, T. Chen, A. Doan, and J. F. Naughton. On the provenance of non-answers to queries over
extracted data. Proceedings of the VLDB Endowment (PVLDB), 1(1), 2008.

[18] T. Imieliński and J. Witold Lipski. Incomplete information in relational databases. Journal of the
ACM, 31(4), 1984.

[19] M. S. Islam, R. Zhou, and C. Liu. On answering why-not questions in reverse skyline queries. In
International Conference on Data Engineering (ICDE), 2013.

[20] N. Khoussainova, Y. Kwon, M. Balazinska, and D. Suciu. SnipSuggest: Context-aware autocom-
pletion for SQL. Proceedings of the VLDB Endowment (PVLDB), 4(1), 2010.

[21] A. Klug. On conjunctive queries containing inequalities. Journal of the ACM, 35(1):146–160, Jan.
1988.

[22] A. Meliou, W. Gatterbauer, K. F. Moore, and D. Suciu. The complexity of causality and responsi-
bility for query answers and non-answers. PVLDB, 2011.

[23] D. Mottin, A. Marascu, S. B. Roy, G. Das, T. Palpanas, and Y. Velegrakis. A probabilistic opti-
mization framework for the empty-answer problem. Proceedings of the VLDB Endowment, 6(14),
2013.

[24] A. Nandi and H. V. Jagadish. Guided interaction: Rethinking the query-result paradigm. Proceed-
ings of the VLDB (PVLDB), 4(12), 2011.

[25] S. Roy and D. Suciu. A formal approach to finding explanations for database queries. In SIGMOD
Conference, 2014.

[26] Q. T. Tran and C.-Y. Chan. How to ConQueR why-not questions. In International Conference on
the Management of Data (SIGMOD), 2010.

[27] Y. Wu, M. Zhao, A. Haeberlen, W. Zhou, and B. T. Loo. Diagnosing missing events in distributed
systems with negative provenance. In ACM SIGCOMM 2014 Conference, pages 383–394, 2014.

RR n° 8697

RESEARCH CENTRE
SACLAY – ÎLE-DE-FRANCE

1 rue Honoré d’Estienne d’Orves
Bâtiment Alan Turing
Campus de l’École Polytechnique
91120 Palaiseau

Publisher
Inria
Domaine de Voluceau - Rocquencourt
BP 105 - 78153 Le Chesnay Cedex
inria.fr

ISSN 0249-6399

	Introduction
	Related Work
	Why-Not answers as Polynomial
	Preliminaries
	The Why-Not Question
	Compatible Data
	The Why-Not Answer
	Why-Not Answer Properties

	Naive Ted Algorithm
	Efficient Ted++ Algorithm
	Preprocessing
	Partial CC-Tuples Computation
	Picky Condition Combinations
	Postprocessing
	Theoretical Discussion of Ted++

	Experimental Evaluation
	Comparative Evaluation
	Why-Not Answer Evaluation
	Runtime Evaluation

	Ted++ Investigation

	Conclusion and Outlook

