
HAL Id: hal-01057580
https://hal.inria.fr/hal-01057580v2

Submitted on 16 Mar 2015

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Copyright

Task-based programming for Seismic Imaging:
Preliminary Results

Lionel Boillot, George Bosilca, Emmanuel Agullo, Henri Calandra

To cite this version:
Lionel Boillot, George Bosilca, Emmanuel Agullo, Henri Calandra. Task-based programming for Seis-
mic Imaging: Preliminary Results. IEEE 16th International Conference on High Performance Comput-
ing and Communications (HPCC), Aug 2014, Paris, France. pp.1259-1266, �10.1109/HPCC.2014.205�.
�hal-01057580v2�

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by INRIA a CCSD electronic archive server

https://core.ac.uk/display/49540962?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://hal.inria.fr/hal-01057580v2
https://hal.archives-ouvertes.fr

Task-based programming for Seismic Imaging:
Preliminary Results

Lionel Boillot∗, George Bosilca†, Emmanuel Agullo‡ and Henri Calandra§
∗INRIA Bordeaux Sud-Ouest, Magique-3D project team

Avenue de l’Université, BP 1155, 64013 Pau cedex, France
†ICL, University of Tennessee, EECS department
1122 Volunteer Blvd, Knoxville TN 37996, USA
‡INRIA Bordeaux Sud-Ouest, HiePACS project team

200 avenue de la Vieille Tour, 33405 Talence cedex, France
§TOTAL EP, Depth Imaging and High Performance Computing

1201 Louisiana street, suite 1800, Houston TX 77057, USA

Abstract—The level of hardware complexity of current super-
computers is forcing the High Performance Computing (HPC)
community to reconsider parallel programming paradigms and
standards. The high-level of hardware abstraction provided by
task-based paradigms make them excellent candidates for writing
portable codes that can consistently deliver high performance
across a wide range of platforms. While this paradigm has
proved efficient for achieving such goals for dense and sparse
linear solvers, it is yet to be demonstrated that industrial parallel
codes—relying on the classical Message Passing Interface (MPI)
standard and that accumulate dozens of years of expertise (and
countless lines of code)—may be revisited to turn them into
efficient task-based programs. In this paper, we study the applica-
bility of task-based programming in the case of a Reverse Time
Migration (RTM) application for Seismic Imaging. The initial
MPI-based application is turned into a task-based code executed
on top of the PaRSEC runtime system. Preliminary results show
that the approach is competitive with (and even potentially
superior to) the original MPI code on a homogeneous multicore
node, and can more efficiently exploit complex hardware such as
a cache coherent Non Uniform Memory Access (ccNUMA) node
or an Intel Xeon Phi accelerator.

I. INTRODUCTION

As of today, most HPC applications are coded with pro-
gramming paradigms designed specifically to be relatively
close to the underneath hardware architecture. Undoubtedly
relevant for achieving high performance, this prominent ap-
proach also allowed codes to remain compact while a single
level of parallelism was at stake. As a result, HPC applica-
tions targeting shared memory machines have mainly been
written with Posix threads (pthread), or, more recently, with
OpenMP [1], whereas codes targeting distributed memory
computers have relied on MPI. However, now that the level
of hardware complexity is steadily increasing, staying at this
low programming level requires reliance on multiple, some-
times conflicting, programming paradigms. In the past decade,
many research groups and companies made the effort to port
their MPI codes to MPI+thread in order to better fit the
multicore paradigm and associated supercomputers. With the
emergence of GPGPUs, or, more recently, co-processors in
the TOP500 list [2], the same applications have further been
extended to handle accelerators. Maintaining these codes while
achieving high performance across platforms can then become

an extremely complex, error and performance prone, time-
consuming task.

Newer programming paradigms, especially task-based ap-
proaches, allow for a higher level of hardware abstraction. At
the core of many numerical simulations, dense linear algebra
kernels have been redesigned in terms of task-based algorithms
for multicore [3], [4], accelerator-based [5]–[8] and distributed
memory [9] machines. This research resulted in new produc-
tion solvers such as PLASMA and MAGMA [10], FLAME [11],
and, more recently, DPLASMA [12]. This paradigm has also
been assessed in the context of more irregular algorithms such
as sparse direct methods [13], [14], sparse iterative Krylov
methods [15] or fast algorithms [16]–[19]. However, it is
yet to be demonstrated that large industrial parallel codes
accumulating dozens of years of expertise may be turned into
efficient task-based programs. In this paper, we consider a
highly optimized MPI-based Reverse Time Migration (RTM)
industrial code for Seismic Imaging developed at Total, that
we convert into a task-based program.

There exist different methods—and Application Program-
ming Interfaces (APIs)—for programming task-based systems.
The most prominent ones are sequential and parametrized
task-based programming, respectively. Sequential task-based
programs automatically infer dependencies from the sequence
of tasks and data hazards [20], whereas parametrized task-
based programming [21] requires the dependencies to be
provided explicitly without the sequential order of the tasks.
An exhaustive presentation of the runtime systems supporting
task-based programming is out of the scope of this paper.
Here, we only mention some of the most prominent projects
onto which the above mentioned solvers have been designed;
Quark [22], SMPSs [23], StarPU [24], and SuperMatrix [25]
mainly (but not only) support sequential task-based program-
ming, while PaRSEC [26] and CnC [27] mainly support
parametrized task-based programming. The numerical scheme
studied in this manuscript is a wave propagation discretized
with a Discontinuous Galerkin (DG) method and a Leap-Frog
time scheme [28] (see Section II). As a result, contrary to
Finite Element Methods (FEM), there is no main matrix to
invert, but only local subproblems to explicitly solve. It is
thus natural to rely on a parametrized expression by expressing
both tasks (how to compute a subdomain) and dependencies

Fig. 1: Mesh partitioning of a surface into triangle elements.
In the MPI reference code, over three processes, the whole
domain is split into three subdomains (green, blue, and red
from left to right). The dot lines represent the boundary data
which have to be exchanged between the subdomains.

(how to exchange with subdomains at its interface) using a
symbolic expression as further explained in Section IV. In
addition to evaluating the complexity of porting the target
application toward a task-based runtime, our goal was to study
the behavior of the resulting task-based version in different
scenarios. We are particularly interested in two types of execu-
tion environments, a ccNUMA node (Section V-C) and an Intel
Xeon Phi co-processor (Section V-D). We rely on the PaRSEC
runtime system, a distributed runtime specifically designed for
complex hierarchical architectures (see Section III). Note that
the comparison with other runtime systems, although certainly
interesting, is not the objective of the paper. Instead, we com-
pare the obtained preliminary results against the performance
of the highly optimized MPI-based original code.

Starting from the original MPI-based wave propagation
code (Section II) and the PaRSEC runtime system (Sec-
tion III), our contribution consists of designing a task-based
version of this wave propagation algorithm (Section IV) and
assessing the benefits of using such an approach on top of
PaRSEC on modern processors (Section V). The rest of the
paper is organized as follows. Section II depicts the wave
propagation scheme and discretization we use for performing
the RTM. Section III explains how to program parametrized
task-based applications with the PaRSEC runtime system with
a special emphasis on how to efficiently exploit the architec-
tures discussed in this study. Section IV then shows how to
turn the wave propagation scheme into a parametrized task-
based code. A preliminary performance study and comparison
of the resulting task-based code with the original MPI code is
presented in Section V before concluding in Section VI.

II. WAVE PROPAGATION IN A NUTSHELL

Modern seismic imaging is frequently performed with
RTM techniques. Its core computational kernel is the solution
of a wave propagation problem. In this study, we consider
a velocity-stress formulation of an elastic wave problem [29]
which we compute on an open bounded domain Ω of R3 during
a period of time T . If we note x = (x, y, z) ∈ Ω and t ∈ [0, T]
as the space and time variables, the velocity-stress formulation

1: //– In sequential on the whole domain
2: Initialization(mesh,matrix, vh, σh)
3: DomainDecomposition(mesh)
4: //– In parallel on each subdomain
5: for n = 1 to n timesteps T do
6: ExchangeBoundaryStress(σn+1/2

h)
7: vn+1

h ← ComputeVelocity(vnh , σ
n+1/2
h ,∆t)

8: ExchangeBoundaryVelocity(vn+1
h)

9: σ
n+3/2
h ← ComputeStress(σn+1/2

h , vn+1
h ,∆t)

10: end for
Fig. 2: Parallel computation of the elastic wave propagation
problem discretized in space and time with DG and Leap-Frog
methods, respectively.

of the elastic wave equation can be written as:{
ρ(x)∂tv(x, t) = ∇.σ(x, t)
∂tσ(x, t) = C(x) : ε(v(x, t))

(1)

with ρ > 0 the density, v ∈ H1(Ω×[0, T]) the unknown veloc-
ity field, σ ∈ H

div
(Ω× [0, T]) the stress tensor, C the stiffness

tensor (elasticity coefficients), ε(v) = 1
2 (∇v + (∇v)T) the

strain tensor, ∇, and ∇ being the divergence and gradient
operators, respectively.

We discretize this continuous problem in space and time
as follows. A mesh generator partitions the domain Ω into
a polygonal mesh Ωh composed of tetrahedra K. As we
rely on DG (and contrary to FEM), the functions v and σ
are approximated with discontinuous functions vh and σ

h
that only satisfy {vh, σh} ∈ L2(Ωh × [0, T]) on the global
space, maintaining {vh|K , σh|K} ∈ Pl only locally on each
polyhedron K. Pq is the set of polynomials of a degree less
than or equal to q. This order q can vary on every tetrahedron.
The time discretization is performed with an implicit time
scheme using a Leap-Frog method. The time domain [0, T]
is divided into time steps ∆t. If vnh is the approximation of
the velocity vh(t) at the discrete time t = n∆t, and σn+1/2

h is
the approximation of the stress tensor σ

h
(t) at the discrete time

t = (n+ 1
2)∆t, the discrete scheme of system (1) becomes:
Mv

vn+1
h − vnh

∆t
+Rσσ

n+1/2
h

= 0 (2a)

Mσ

σ
n+3/2
h − σn+1/2

h

∆t
+Rvv

n+1
h = 0 (2b)

Because DG leads to block-diagonal Mv and Mσ matrices,
their inversion may be performed locally. As a result, the
method can be viewed as quasi-explicit, parallelism being
extracted with a pattern similar to stencil computation. At
each time step, the velocity and the stress tensor can be
computed within a tetrahedron knowing the corresponding
values at its interfaces (surface common with its neighbors)
with equations (2a) and (2b), respectively. In a parallel com-
putation, once the mesh has been computed (Initialization
step at line 2 in Figure 2), the domain Ωh of the whole
mesh is split into multiple subdomains (DomainDecomposition
step at line 3). Figure 1 shows the mesh partitioning of a
surface into triangle elements and the decomposition into three

1: ComputeStress(it, d)

2: it = 1 .. nb timesteps
3: d = 1 .. nb subdomains

4: READ V ← V Unpack V(it, d, 1 .. nb neigh(d))
5: → (it != N) ? V Compute V(it+1, d)

6: RW S ← S Compute V(it, d)
7: → (it != N) ? S Pack S(it+1, d, 1 .. nb neigh(d))

Fig. 3: JDF expression of a (simplified) ComputeStress task

subdomains. At each discrete time step n, processes exchange
the stress tensor values at the boundaries of their subdomain
with their neighbors (ExchangeBoundaryStress at line 6) and
update the local value of the velocity (ComputeVelocity at line
7), based on Equation (2a). Processes then exchange these
values (ExchangeBoundaryVelocity at line 8) and the time
step is completed with a local update of the stress tensor
(ComputeStress at line 8) based on Equation (2b).

This algorithm was implemented on top of MPI and
optimized for integration in Total’s seismic imaging code.
The extremely parallel nature of the scheme allows for a
high parallel efficiency. However, depending on the physical
problem, the order of discretization of the elements can vary,
modifying the number of degrees of freedom inside each
polyhedron, and, hence, the computation time. This defines a
weight for each domain, but due to heterogeneity of memory
costs, computational capabilities (e.g., vectorization) and so
on, estimating the computation time for a domain, on every
kind of hardware architecture, is not a straightforward process.
Because a process is associated with a single domain, load
imbalance may occur. We assess the limit of this approach
both on a homogeneous multicore architecture in Section V-B
and on more complex architectures in sections V-C and V-D.

III. PaRSEC RUNTIME SYSTEM

Task-based runtime systems have properties that make
them more versatile than legacy execution models. For ex-
ample, as it manages the execution, a runtime can perform
dynamic, opportunistic scheduling decisions. It can also or-
chestrate an adaptive response to ongoing conditions of the
managed resources by detecting stress conditions (e.g., idling
accelerators, load imbalance, network congestions, etc.), and
adapting the way it maps and schedules computations onto
resources. At the same time, a runtime can minimize inter-
node data transfers across the network or intra-node data
transfers between different memory banks. However, in order
to efficiently maneuver these concepts, the runtime should have
access to a large degree of parallelism, directly exposed by the
algorithms. In this context, we investigated a framework which
alleviates some of the challenges imposed by the changes
at the hardware level described above, namely the PaRSEC
runtime, a generic framework for architecture-aware schedul-
ing and management of micro-tasks on distributed many-core
heterogeneous architectures. We emphasize the fact that such
an approach provides a portable way to adapt algorithms to
future hardware trends.

A dynamic runtime is only one side of the necessary
abstraction. Without access to the internals of the algorithms to

Fig. 4: One iteration of the task-based elastic wave propaga-
tion, using the domain decomposition in Figure 1.

expose the maximal parallelism, a runtime is bound to a limited
view of the possible execution space. Thus, an efficient runtime
must be supported by an algorithmic description capable of
exposing the maximum concurrency available at the applica-
tion level, allowing the runtime to keep all the computing
units as busy as possible. This calls for an expression of
the parallelism that is practical to end-users, expressive, and
avoids cumbersome restrictions that prevent flexible scheduling
of operations on heterogeneous hardware. For that, PaRSEC
proposes a high-level dataflow expression and also permits
the use of virtual processes in order to make the most of
hierarchical architectures. We now present these two features.

Dataflow expression: A Parameterized Task Graph
(PTG) [21] is a compact and convenient expression for rep-
resenting a Directed Acyclic Graph (DAG) of tasks. The
Job Data Flow (JDF) language is an extension of the PTG
expression specifically designed for implementing task-based
algorithms on top of the PaRSEC runtime system. It consists
of a symbolic representation of the execution space, and of
the data dependencies between tasks, allowing for a dynamic
discovery, and generation, of the applications tasks. The JDF
expresses the relationships between tasks in terms of annotated
data flowing from one task to another. Without delving into
the details, the language has a simple interface describing
the prerequisite input flows for each task, and the resulting
flows to be propagated upon the task completion. Another
possible view is that the language allows us to mathematically
describe (using a symbolic representation) the predecessors
and successors of every possible task in the algorithm. An
example of a JDF representation for one of the tasks of
our target application (the ComputeStress task) is provided
in Figure 3, and will be further described in the Section IV.
Simply note that the runtime system parses this expression to
ensure that the tasks are generated, and only marks them as
ready to be executed once all their predecessors are completed.

Virtual processes: Another interesting capability of
PaRSEC, especially critical on ccNUMA machines, is the
deep integration with the underlying hardware configuration.
Indeed, PaRSEC adapts the number and placement of the
execution streams based on the architecture, allowing for a

simple, yet hierarchical, view of the target system. As a result,
computational entities sharing certain levels of memory are
aggregated together in a single, larger computational entity
called a virtual process. Inside a virtual process, all the
scheduling decisions and execution management infrastructure
are shared, alleviating the cost of management, and decreasing
the number of thread synchronization primitives required for a
consistent and deterministic execution. The runtime integrates
the memory hierarchy into the scheduling process, improving
the locality of memory accesses and their reuses. We show
how to exploit virtual processes in the context of our wave
propagation scheme below. Note that work-stealing between
virtual processes may still be performed in order to dynami-
cally correct load imbalance, while maintaining locality.

IV. TASK-BASED FORMULATION OF THE ELASTIC WAVE
PROPAGATION

Starting from the MPI-like formulation of the elastic wave
propagation described in the algorithm provided in Figure 2,
we now show how to turn it into a parametrized task-based
algorithm and express it with a JDF expression. In order to
more finely exploit hierarchical architectures, we also explain
how to tune the granularity and match it with virtual processes.

Task-based algorithm: We assume that the Initializa-
tion and DomainDecomposition steps have been performed
following lines 2 and 3 in Figure 2, respectively. The idea
followed here is that the tasks will be applied on the sub-
domains, and then the frontiers will be exchanged between
neighboring subdomains. The ExchangeBoundaryStress step
(line 6 in Figure 2) is performed for each pair of neighboring
subdomains. For instance, for the mesh and decomposition in
the three subdomains depicted in Figure 1, the central (blue)
subdomain packs the current value of the stress tensor on its
interface, and exchanges it with both its left (green) and right
(red) neighbors. Symmetrically, it unpacks the values obtained
from the neighbors. Once it has unpacked the values at the
interfaces with all neighbors (two in this case), the value
of the velocity (ComputeVelocity) can be computed within
the domain. This computation will then be followed by a
second exchange, where the newly computed border values
are exchanged following a similar scheme as depicted above.
Using these newly acquired border conditions, the stress tensor
can finally be evaluated within each domain (ComputeStress
tasks). One iteration of the corresponding DAG is provided in
Figure 4, with only triggered arrows. Overall, this execution
scheme (computation + communication) is not inherently
different compared with more traditional approaches, but the
use of dataflow programming and, especially, the PaRSEC
runtime system, allows for a completely dynamic execution,
with no explicit synchronizations. Moreover, we emphasize
that the dataflow of the application remains strictly the same
for a fixed problem, and is completely independent of the
number and type of available computing resources. Thus, from
the application developer point of view, the code remains
portable on any execution environment.

JDF expression: As discussed in Section III, the JDF
expression consists of the expression of the respective tasks
and dependencies. In order to describe this DAG in the JDF
format, each task has to describe the dependencies with respect
to other tasks. Figure 3 shows an example of a JDF description

Fig. 5: Multi-leveled mesh partitioning of a surface into
triangle elements as described in Section IV

for a (simplified version of) ComputeStress task, according to
the DAG in Figure 4. The task is parametrized with indices
it and d representing the iteration and domain numbers,
respectively. The task works on two data: the velocity field V
on the border, which is accessed in read mode (input data), and
the stress tensor S within the subdomain, which is accessed in
read/write mode (input/output data). The representation of the
fact that the velocity field V on the border is obtained from
the Unpack V task(s) is represented by line 4: READ V ← V
Unpack V(it, d, 1 .. nb neigh(d)). The next task which needs
the V data is Compute V at the next timestep (if any); this
is represented by line 5: → (it != N) ? V Compute V(it+1,
d). The second data of the ComputeStress task is S. It comes
from the Compute V task of the current timestep, and will
be overwritten. This is explained by line 6: RW S ← S
Compute V(it, d). This S data is then needed by the Pack S
task(s) of the next timestep (if any), as depicted in line 7:
→ (it != N) ? S Pack S(it+1, d, 1 .. nb neigh(d)). Altogether,
these dependences (lines 4 to 7) allow for representing the data
flow for the ComputeStress task. The other tasks are similar,
establishing the dataflow of the application, which corresponds
to the arrows in the DAG of Figure 4.

Granularity: In order to cope with hierarchical ar-
chitectures, we actually depart from the MPI style of mesh
partition, to a more refined two-level partitioning, with smaller
regions. Figure 5 depicts such a possible hierarchical partition-
ing. Each color represents the original partitioning, as used
by the MPI version of the code. We then divide these coarse
subdomains (delimited by the plain black lines, for a total of
3 in this illustration) into finer subdomains (delimited by the
dotted black lines, for a total of 12 in this illustration). Each
coarse subdomain may then be mapped to a virtual process
(see Section III). Ideally, we would possess more regions than
the number of computing units, allowing more parallelism and
finer grain dependencies between neighborhood regions. We
will illustrate the impact of this hierarchical scheme on the
behavior and performance of our wave propagation application
in the next section.

V. EXPERIMENTAL STUDY

We now assess the scalability of the task-based paralleliza-
tion proposed in Section IV. For reference, we also present the
scalability of the MPI code presented in Section II. Note that
their sequential performance is (almost) equal; subsequently a
better speed-up also corresponds to a shorter execution time.

TABLE I. CCNUMA MEMORY DISTANCES TO BANK ZERO

bank 0 1 2 3 4 5

distance (to 0) 10 13 40 40 40 40

Fig. 6: Test case: 10× 10× 10 km3 3D cube.

A. Experimental setup

Hardware setup: We consider three hardware platforms:

• An Intel Xeon E7-8837 processor composed of 8 CPU
cores running at 2.67 GHz. It has 24 MB of L3 cache,
each CPU core has its own L1 and L2 caches of size
64 KB and 256 KB, respectively. We will refer to this
machine as the 8-core Xeon chip.

• A ccNUMA node composed of six Intel Xeon E7-
8837 CPUs (with the same specifications as the above
Xeon platform), supported by six memory banks with
an increasing distance cost, as depicted Table I. We
will refer to this machine as the ccNUMA Xeon node.

• An Intel Xeon Phi 7120P co-processor composed of
61 cores running at 1.238 GHz with four hardware
threads each (244 hardware threads total). There is
no L3 cache. L1 and L2 caches are exclusive to the
CPU core and are of size 256 KB and 512 KB,
respectively. We will refer to this machine as the
Xeon Phi co-processor. Note that the code was ported
natively and that results on this platform only involve
the accelerator, but not the host processor.

Numerical setup: As represented in Figure 6, we consider a
numerical case consisting of a 3D cube with an edge of 10
km and composed of multiple layers of physical materials. The
goal of the elastic wave propagation is to compute the velocity
and stress tensor evolutions (in time) within this volume. Note
that these values do not have to be constant within a physical
layer but the type of physical layer will drive the choice for the
order of discretization of the elements (which may vary from
1 to 3 in our test case). We consider a test case composed of
800.000 tetrahedra.

B. Performance on the 8-core Xeon chip

The first experiment aims to demonstrate that the bene-
fits of the task-based approach can also be observed on a
simple homogeneous test-case. Figure 7 represents the speed-
up (timeMPI/timePaRSEC) obtained with our task-based
algorithm running on top of PaRSEC over the original, yet
highly optimized, reference MPI-based code. Overall, we
observe that even using the same domain decomposition as
the MPI version, the PaRSEC version delivers slightly faster

 1

 1.05

 1.1

 1.15

 1.2

1 2 4 8

s
p

e
e

d
u

p

number of cores

coarse granularity
fine granularity /w work-stealing
fine granularity w/ work-stealing

Fig. 7: 8-core Xeon speedup, granularity/work-stealing effects

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1.1

16 24 32 40 48

e
ff

ic
ie

n
c
y

number of cores

Perfect scaling
PaRSEC (best granularity) version

MPI-based (reference) version

Fig. 8: ccNUMA Xeon efficiency (strong scalability)

results. Decreasing the granularity of the domains, and thus
increasing the number of domains, led to a small increase in
the speedup. The main reason for this is the bigger opportunity
to overlap computations, thanks to a finer granularity for the
domains, resulting in better memory locality. Coupling finer
grain domains with a work-stealing policy allows for improved
speedup and gains.

C. Performance on the ccNUMA 48-core Xeon node

The second experiment measures the scalability of the
implementation on a ccNUMA (cache coherent Non-Uniform
Memory Access) node, with six memory banks and a total of
48 cores. In this configuration, PaRSEC integrates the NUMA
hierarchy and creates separated groups of cores by enforcing
the data locality. This capability, called virtual process, was
mentioned earlier in Section III. By default, the work-stealing
strategies are scoped to the local cores, i.e., to one memory
bank, to minimize the bank transfers.

Figure 8 represents the strong scaling efficiency per com-
puting unit obtained by the PaRSEC runtime and by the
reference MPI-based code, from 16 to 48 cores, which means
from 2 to 6 memory banks. The memory bank distances are
listed in Table I. Each virtual process is associated with a
memory bank to limit the work-stealing only on the local
data. In addition, the PaRSEC results are obtained with a
finer granularity than in the MPI-based code. We use the
efficiency formula time1core/(#cores∗time#cores) (the time

 1

 1.05

 1.1

 1.15

 1.2

 1.25

 1.3

 1.35

16 24 32 40 48

s
p

e
e

d
u

p

number of cores

granularity x2
granularity x4
granularity x6
granularity x8

(a) One virtual process per memory bank (multi-VP)

 0.2

 0.4

 0.6

 0.8

 1

 1.2

16 24 32 40 48

s
p

e
e

d
u

p

number of cores

granularity x2
granularity x4
granularity x6
granularity x8

(b) One single virtual process

Fig. 9: Impact of the memory hierarchy on the strong scaling

(a) MPI-based, t = 2.517s (b) PaRSEC version (multi-VP, granularity x6), t = 2.060s

Fig. 10: Execution traces, on 32 cores for 10 timesteps, represented with the same scale. Each line represents a core activity,
colors (red and orange) refer to computational tasks, gray sections mix idle time and communication (non-blocking). Dark gray
on the right highlights the gain of PaRSEC over the reference MPI version.

on one core being slightly different between the MPI-version
and the PaRSEC version when granularity is finer). The
MPI version’s efficiency is decreasing while increasing the
number of computational resources, despite the smart mesh
partitioning. Additional tests have highlighted the lack of load-
balance between the MPI processes as one of the major causes
of this loss of efficiency. On the other side, PaRSEC almost
follows the perfect scaling thanks to the increased number of
subdomains, exposing more intrinsic parallelism.

The previous experiments demand a more clear relationship
of the impact of the domain decomposition on the overall
performance. Figure 9 depicts the speedup of the PaRSEC
version (higher is better) when the granularity of the domain
decomposition is altered. The multiplier indicates the num-
ber of subdomains each original domain generates. Thus, a
granularity of “8x” indicates that each original domain is sub-
divided into 8 subdomains. On the left, in Figure 9a, PaRSEC
uses the virtual process’s capability by allowing the work-
stealing only on the local memory bank. The performance is
constant according to the strong scalability. Moving away from
the case “1 domain per computing unit” allows for a significant
increase in performance, as the load balance of the algorithm
is improved. On the right, in Figure 9b, the work-stealing is
allowed everywhere on the memory banks. Due to distance

costs, see Table I, this configuration is negative and implies
no acceleration, and is even longer.

Figure 10 illustrates the dynamic scheduling of PaRSEC.
The execution traces represent the core activity during the
given time. This highlights the idle time and so the potential
gain of an application. On the left, Figure 10a depicts the MPI-
based version. The non-blocking communications correspond
to waiting time and fast copies. This is represented in gray.
It is recognizable that the application is load imbalanced, as
some processes present longer computational tasks. On the
right, Figure 10b shows a PaRSEC configuration with fine
granularity and work-stealing through virtual processes bound
on memory banks. The dark gray part, on the right, represents
the gain over the MPI-based version.

D. Performance on the Xeon Phi co-processor

The following experiment focuses on new hardware—the
Xeon Phi co-processor. On our particular model, one core is
dedicated to card administration, see [32]. Thus, we limited our
experiments to 60 cores, which corresponds to 240 hardware
threads in hyper-threading mode. Unlike contemporary accel-
erators and GPUs, the Xeon Phi is composed of x86 cores
and is capable of executing managed x86 code. Therefore,

 0.2

 0.4

 0.6

 0.8

 1

1 2 4 8 16 32 60 120 240

e
ff

ic
ie

n
c
y

number of threads

Perfect scaling
PaRSEC (best granularity) version

MPI-based (reference) version

Fig. 11: Xeon Phi efficiency

TABLE II. XEON PHI HYPERTHREADING-RELATIVE EFFICIENCY

Number of threads MPI PaRSEC
120 0.71 0.91
240 0.80 0.84

our code is executing on this platform without any additional
development cost. This fact is true for both versions of the
code—the original MPI version and the PaRSEC version.

Figure 11 represents the efficiency (higher is better) ob-
tained while using the PaRSEC runtime system compared with
the reference MPI-based code, with from 1 to 240 hardware
threads. From 1 to 60 cores, with one hardware thread per core,
neither the runtime nor the tasks themselves take advantage of
the hyper-threading capability of the hardware. The PaRSEC
results are obtained with a finer granularity than in the MPI-
based code, with work-stealing. The memory is distributed
over different locations on the card and automatically trans-
ferred to the processing units.

The MPI-based reference code suffers from declining load-
balancing, but scales reasonably well up to 60 cores (with
one hardware thread per core). As soon as the hyper-threading
is activated, the efficiency drastically declines. On the other
hand, the PaRSEC version follows the perfect scaling up to
the 60 core limit, and then becomes similar to the MPI version,
dropping pretty quickly with the use of hyper-threading. Ta-
ble II presents the hyperthreading-relative efficiency, measured
according to the time on one core, with the use of two or four
hardware threads, respectively.

The impact of domain decomposition follows a similar
trend as the ccNUMA platform, as indicated in Figure 12. A
finer domain decomposition is indeed beneficial for improving
the load balancing and decreasing the size of the computation
domain (improving the cache usage). However, after a certain
point, the overhead for data management and copies becomes
a limiting factor for the granularity of the decomposition.

Based on these results, it becomes clear that the hyper-
threads, at least on the Xeon Phi, should be used differently.
Instead of promoting them to full compute resources, they
should be used either by the tasks themselves to improve the
memory bandwidth (by issuing more pending load/stores) for
the algorithm, or by the runtime system to hide the scheduling
overheads or the data movements. We expect that in both usage

 1

 1.1

 1.2

 1.3

 1.4

 1.5

 1.6

 1.7

 1.8

 1.9

2 4 8 16 32 60 120 240

s
p

e
e

d
u

p

number of threads

granularity x1
granularity x2
granularity x4
granularity x6

Fig. 12: Xeon Phi speedup with varying granularities

scenarios mentioned here, the usage of the extra units will be
more beneficial than in the current study.

VI. CONCLUSION

While new programming paradigms have emerged for writ-
ing HPC applications at a higher level of hardware abstraction
than MPI, pthread, or OpenMP, these paradigms have mostly
been assessed in contexts where the codes could be, for the
most part, rewritten from scratch. In this manuscript, we have
studied the case of a production-quality MPI industrial code
where the parallel scheme got translated into a parametrized
task-based expression. We have shown that, by using a task-
based programming paradigm, it is possible to achieve high-
performance on three different architectures: an 8-core homo-
geneous Intel Xeon E7-8837 processor, a 48-core ccNUMA
node composed of Intel Xeon E7-8837 CPUs, and an Intel
Xeon Phi 7120P accelerator. Indeed, while the parallelization
of the application is written at a high-level of abstraction, the
resulting task graph is processed by a modern runtime system
capable of efficiently exploiting the low-level details of the
underneath hardware architecture.

The key to achieving high performance was to design a
task-based algorithm with a tunable granularity. Compared to
the initial MPI code, it becomes clear early on that there was
a need to rely on an increased number of domains, enabling
a better pipelining of the task, and providing the runtime
with a more balanced application. We have indeed shown
that the optimum trade-off corresponds to a case where the
number of domains is larger than the number of available
computational units. Furthermore, the work-stealing capability
of the PaRSEC runtime system allowed us to achieve a better
load balancing than the original MPI code, on which this
capability is not present and cannot be implemented due to
the code complexity.

Although very promising, our current results are still pre-
liminary, and much work remains to be done to improve the
performance portability. In the near term, we plan to address
two shortcomings of the current study: dive deeper into the
hyper-threading internals of the Xeon Phi, in order to continue
our understanding of the benefits and limitations of the Xeon
Phi hyper-threading support; and concurrently exploit the Xeon
processor and the Xeon Phi co-processor. In this context,
the runtime system will automatically transfer data between

host and device memories based on the most urgent data
dependences. Additionally, we plan to continue our current
push toward distributed architectures, and tackle distributed
memory machines, and especially clusters of hybrid multicore
nodes. Moreover, we hope that this study will encourage other
groups to take the opportunity of turning their applications (or
at least their computational-intensive sections) into task-based
codes, toward a shift to more efficient and portable codes.

ACKNOWLEDGMENT

The authors acknowledge the support by the INRIA-
TOTAL strategic action DIP (http://dip.inria.fr). This research
used software resources supported by the Office of Science
of the U.S. Department of Energy under Contract No. DE-
SC0010682.

REFERENCES

[1] OpenMP Architecture Review Board. OpenMP application program
interface version 3.1, 2011.

[2] http://www.top500.org. Top 500 Supercomputer Sites, 2014.
[3] Alfredo Buttari, Julien Langou, Jakub Kurzak, and Jack Dongarra.

Parallel tiled QR factorization for multicore architectures. Concurrency
and Computation: Practice and Experience, 20(13):1573–1590, 2008.

[4] G. Quintana-Ortı́, E. S. Quintana-Ortı́, E. Chan, F. G. Van Zee, and
R. A. van de Geijn. Scheduling of QR factorization algorithms on
SMP and multi-core architectures. In Proceedings of PDP’08, 2008.

[5] Emmanuel Agullo, Cédric Augonnet, Jack Dongarra, Hatem Ltaief,
Raymond Namyst, Samuel Thibault, and Stanimire Tomov. Faster,
Cheaper, Better – a Hybridization Methodology to Develop Linear
Algebra Software for GPUs. In Wen mei W. Hwu, editor, GPU
Computing Gems, volume 2. Morgan Kaufmann, September 2010.

[6] Emmanuel Agullo, Cédric Augonnet, Jack Dongarra, Mathieu Faverge,
Julien Langou, Hatem Ltaief, and Stanimire Tomov. LU factorization
for accelerator-based systems. In Howard Jay Siegel and Amr El-
Kadi, editors, The 9th IEEE/ACS International Conference on Computer
Systems and Applications, AICCSA, pages 217–224. IEEE, 2011.

[7] Emmanuel Agullo, Cédric Augonnet, Jack Dongarra, Mathieu Faverge,
Hatem Ltaief, Samuel Thibault, and Stanimire Tomov. QR Factorization
on a Multicore Node Enhanced with Multiple GPU Accelerators. In
IPDPS, pages 932–943. IEEE, 2011.

[8] Gregorio Quintana-Ortı́, Francisco D. Igual, Enrique S. Quintana-
Ortı́, and Robert A. van de Geijn. Solving dense linear systems on
platforms with multiple hardware accelerators. ACM SIGPLAN Notices,
44(4):121–130, April 2009.

[9] George Bosilca, Aurelien Bouteiller, Anthony Danalis, Mathieu
Faverge, Azzam Haidar, Thomas Hérault, Jakub Kurzak, Julien Lan-
gou, Pierre Lemarinier, Hatem Ltaief, Piotr Luszczek, Asim YarKhan,
and Jack Dongarra. Flexible Development of Dense Linear Algebra
Algorithms on Massively Parallel Architectures with DPLASMA. In
IPDPS Workshops, pages 1432–1441. IEEE, 2011.

[10] Numerical linear algebra on emerging architectures: The PLASMA and
MAGMA projects. Journal of Physics: Conference Series, 180:012037,
July 2009.

[11] Field G. Van Zee, Ernie Chan, Robert A. van de Geijn, Enrique S.
Quintana-Orti, and Gregorio Quintana-Orti. The libflame Library for
Dense Matrix Computations. Computing in Science and Engineering,
11(6):56–63, November/December 2009.

[12] George Bosilca, Aurelien Bouteiller, Anthony Danalis, Mathieu
Faverge, Azzam Haidar, Thomas Herault, Jakub Kurzak, Julien Langou,
Pierre Lemarinier, Hatem Ltaief, Piotr Luszczek, Asim YarKhan, and
Jack Dongarra. Flexible development of dense linear algebra algorithms
on massively parallel architectures with DPLASMA. In 12th IEEE
International Workshop on Parallel and Distributed Scientific and
Engineering Computing (PDSEC’11), 2011.

[13] Xavier Lacoste, Mathieu Faverge, Pierre Ramet, Samuel Thibault, and
George Bosilca. Taking advantage of hybrid systems for sparse direct
solvers via task-based runtimes. In Proceedings of the IEEE Interna-
tional Symposium on Parallel & Distributed Processing Workshops and
Phd Forum (IPDPSW’14), HCW 2014, Phoenix, United-States, 2014.

[14] Emmanuel Agullo, Alfredo Buttari, Abdou Guermouche, and Florent
Lopez. Multifrontal QR factorization for multicore architectures over
runtime systems. In Felix Wolf, Bernd Mohr, and Dieter Mey, editors,
Euro-Par 2013 Parallel Processing, volume 8097 of Lecture Notes in
Computer Science, pages 521–532. Springer Berlin Heidelberg, 2013.

[15] Emmanuel Agullo, Luc Giraud, Abdou Guermouche, Stojce Nakov, and
Jean Roman. Task-based Conjugate-Gradient for multi-GPUs platforms.
Rapport de recherche RR-8192, INRIA, 2012.

[16] Hatem Ltaief and Rio Yokota. Data-driven execution of fast multipole
methods. CoRR, arXiv:1203.0889, 2012. http://arxiv.org/abs/1203.0889.

[17] Emmanuel Agullo, Bérenger Bramas, Olivier Coulaud, Eric Darve,
Matthias Messner, and Toru Takahashi. Task-Based FMM for Multicore
Architectures. SIAM Journal Scientific Computing, 36(1):66–93, 2014.

[18] B. Lize, G. Sylvand, E. Agullo, and S. Thibault. A task-based H-
matrix solver for acoustic and electromagnetic problems on multicore
architectures. In SciCADE, the International Conference on Scientific
Computation and Differential Equations, Valladolid, Spain, 2013.

[19] R. Kriemann. H -LU Factorization on Many-Core Systems. Preprint 5,
Max-Planck-Institut für Mathematik in den Naturwissenschaften
Leipzig, 2014.

[20] R. Allen and K. Kennedy. Optimizing Compilers for Modern Architec-
tures: A Dependence-based Approach. Morgan Kaufmann, 2001.

[21] Michel Cosnard, Emmanuel Jeannot, Tao Yang. Symbolic Partitionning
and Scheduling of Parameterized Task Graphs. IEEE International
Conference on Parallel And Distributed Systems (ICPADS’98), 1998.

[22] A. YarKhan, J. Kurzak, and J. Dongarra. QUARK users’ guide: QUeue-
ing And Runtime for Kernels. Technical Report ICL-UT-11-02, Innova-
tive Computing Laboratory, University of Tennessee, April 2011. http:
//icl.cs.utk.edu/projectsfiles/plasma/pubs/56-quark users guide.pdf.

[23] A. Duran, J. M. Perez, R. M. Ayguadé, E. amd Badia, and J. Labarta.
Extending the OpenMP tasking model to allow dependent tasks. In
OpenMP in a New Era of Parallelism, 4th International Workshop,
IWOMP 2008, West Lafayette, IN, May 12-14 2008. Lecture Notes in
Computer Science 5004:111-122.

[24] Cédric Augonnet, Samuel Thibault, Raymond Namyst, and Pierre-
André Wacrenier. StarPU: A Unified Platform for Task Scheduling
on Heterogeneous Multicore Architectures. Concurrency and Compu-
tation: Practice and Experience, Special Issue: Euro-Par 2009, 23:187–
198, February 2011.

[25] E. Chan, E. S. Quintana-Orti, G. Gregorio Quintana-Orti, and R. van
de Geijn. Supermatrix Out-of-Order Scheduling of Matrix Operations
for SMP and Multi-Core Architectures. In Nineteenth Annual ACM
Symposium on Parallel Algorithms and Architectures SPAA’07, pages
116–125, June 2007.

[26] G. Bosilca, A. Bouteiller, A. Danalis, M. Faverge, T. Herault, and J.J.
Dongarra. PaRSEC: Exploiting Heterogeneity to Enhance Scalability.
Computing in Science Engineering, 15(6):36–45, Nov 2013.

[27] Zoran Budimlić, Michael Burke, Vincent Cavé, Kathleen Knobe, Geoff
Lowney, Ryan Newton, Jens Palsberg, David Peixotto, Vivek Sarkar,
Frank Schlimbach, and Sağnak Taşirlar. Concurrent collections. Sci.
Program., 18(3-4):203–217, August 2010.

[28] Delcourte, S.; Fezoui, L. & Glinsky-Olivier, N. A high-order discon-
tinuous Galerkin method for the seismic wave propagation. ESAIM:
Proceedings, 27:70-89, 2009

[29] J. Virieux. P-SV wave propagation in heterogeneous media: velocity-
stress finite-difference method. Geophysics, 51:889–901, 1986.

[30] Bernacki, M. and Lanteri, S. and Piperno, S. Time-domain parallel
simulation of heterogeneous wave propagation on unstructured grids
using explicit, nondiffusive, discontinuous Galerkin methods. J. Com-
put. Acoust., 14(1):57–81, 2006.

[31] C. Baldassari. Modélisation et simulation numérique pour la migration
terrestre par équation d’ondes. PhD thesis, Universit de Pau et des Pays
de l’Adour, 2009.

[32] J. Jeffers, J. Reinders. Intel Xeon Phi Coprocessor High-Performance
Programming Elsevier, 2013.

