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Abstract

Numerical simulations of the cardiac electrophysiology in the atria are
often based on the standard bidomain or monodomain equations stated on
a two-dimensional manifold. These simulations take advantage of the thin-
ness of the atrial tissue, and their computational cost is reduced, as compared
to three-dimensional simulations. However, these models do not take into
account the heterogeneities located in the thickness of the tissue, like dis-
continuities of the fibre direction, although they can be a substrate for atrial
arrhythmia [Hocini et al., 2002, Ho et al., 2002, Nattel, 2002]. We investigate
a two-dimensional model with two coupled, superimposed layers that allows
to introduce three-dimensional heterogeneities, but retains a reasonable com-
putational cost. We introduce the mathematical derivation of this model and
error estimates with respect to the three-dimensional model. We give some
numerical illustrations of its interest: we numerically show its convergence
for vanishing thickness, introduce an optimization process of the coupling co-
efficient and assess its validity on physiologically relevant geometries. Our
model would be an efficient tool to test the influence of three-dimensional
fibre direction heterogeneities in reentries or atrial arrhythmia without using
three-dimensional models. Keywords: Cardiac modeling, Atrial model, Sur-
face model, Asymptotic analysis. Subclass: MSC 92C30, MSC 92C50 and
35Q92.
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1 Introduction

Modeling the electrophysiology of cardiac tissues is considered an investigation
tool for clinical and fundamental research. Theoretical studies and numerical simu-
lations have been recognized an efficient way to improve our knowledge of arrhyth-
mia genesis [Zemlin et al., 2009, Haissaguerre et al., 2007], perpetuation [Cain,
2007], and ablation efficiency [ROTTER et al., 2007, Nagaiah et al., 2013] in atria.

In three-dimensional tissues, the propagation of the action potential is mod-
eled by the monodomain or bidomain systems of equations. These are reaction-
diffusion equations, where the reaction represents the ionic flow through the mem-
brane of the cardiac cells that compose the tissue and the diffusion accounts for the
diffusion of electrical charges.

Models of the propagation of the action potential through the atria are often
formulated as monodomain or bidomain systems of equations on bi-dimensional
manifolds [Haissaguerre et al., 2007, ROTTER et al., 2007, Dang et al., 2005].
Such surface models take advantage of the thinness of the atria with respect to
the length scale of the heart, and drastically reduce the numerical cost of their
resolution, hence allowing thorough in-silico investigations of atrial arrhythmias.
These surface models approximate the first term of the asymptotic expansion (with
respect to the thickness) of the three-dimensional equations, as presented in sec-
tion 4. The thickness itself is not part of the final model, since it is assumed to
vanish.

On the other hand, there exist structural and functional heterogeneities within
the atria, such as fibre direction discontinuities through the wall. For instance,
several superimposed layers with different fibre directions were described in the
atrial wall or in the ostium zones of the pulmonary veins [Ho et al., 2001, 1999,
Hocini et al., 2002, Saito et al., 2000]. In these anatomical regions, the transition
of fibres directions between layers can be very abrupt : consecutive fibre layers can
have orthogonal directions.

These abrupt transitions can trigger complex propagation patterns [Vetter et al.,
2005] (and also Figure (3)), with several directions of anisotropy, and are suspected
to be a substrate for re-entries or arrhythmia [Hocini et al., 2002, Ho et al., 2002,
Nattel, 2002].

Functional transmural heterogeneities have also been demonstrated, in partic-
ular during atrial arrhythmia [Eckstein et al., 2011]. Electrical dissociations have
been observed in vivo during simultaneous endo and epicardial recording on dog
heart [Derakhchan et al., 2001]. Differences in effective refractory period have also
been measured on porcine [Michowitz et al., 2011] and goat [Eckstein et al., 2011]
atrial fibrillation models.

The usual surface models do not account for such heterogeneities. The model
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proposed in [Chapelle et al., 2013] is a surface bidomain system of equations with
anisotropic conductivity derived from fibre direction varying smoothly through the
atrial wall. This derivation is based on a rigorous mathematical study, including
curvature effects. Although it seems to be an improvement over the usual models,
it still does not account for the complex propagation pattern mentioned above.

In order to overcome this difficulty, models with several surface layers have
been proposed [dos Santos and Dickstein, 2003, Jacquemet, 2004, Gharaviri et al.,
2012]. The main idea is to include the structural heterogeneities of leading impor-
tance while keeping the convenience of a surface model. However, the mathemati-
cal foundations of these models have not been studied in depth, and the physiolog-
ical assumptions on which they rely are still unclear.

In this paper, we show that a special attention must be paid to the physiological
scaling of the equations. We notably show that the balance between the reaction
terms and transverse diffusion (conductivity through the wall) entirely determines
the regime of the solutions. If transverse diffusion dominates, then the usual sur-
face models are sufficient to represent the average behavior of the action potential.
But if reaction cannot be neglected compared to transverse diffusion, then complex
patterns (Figures (2)-(3)) are observed, and the transmural effects must not be ne-
glected. This is typically the case during electrical depolarization for human atria,
as discussed in section 3.2. Although remaining in the framework of vanishing
thickness, we try to account for this regime by introducing the second order term
in the asymptotic expansion of the solutions, instead of simply the first one. But
this would not yield a model that clearly differentiates between different layers.
Hence we propose a model that represents the evolution of the transverse aver-
ages of the transmembrane voltage in each of the tissue’s layers. Consequently,
we design a surface model with two layers having distinct conductivity tensor and
electrophysiology source function. With this new vision, we can see how the thick-
ness appears in the equations, and we account for the main structural and functional
observations described above.

For a slab of tissue with two distinct layers, the model is formally derived from
the three-dimensional monodomain equations in two steps: the second order term
of the expansion of the 3D model with respect to the thickness is first computed.
Then the averages of this second order model are shown to solve a set of two cou-
pled surface monodomain equations, associated to the two layers of the tissue. The
error between this two-surfaces model and the transverse averages of the three-
dimensional model is of order ε3, where ε is the aspect ratio of the atria. This
result is demonstrated in an other paper [Coudière et al., 2014]. This theoretical
approach for vanishing thickness is supplemented by a numerical procedure that
improves the two layer model for physiological thickness of tissue. The conver-
gence of the two layer model is numerically illustrated and its validity is assessed
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on physiologically relevant geometries.
The paper is organized as follows. Section 2 briefly recalls the monodomain

equations. Section 3 introduces the geometrical framework of our paper, defines
the small parameter ε , explains the scaling of the equations and discusses the dif-
ferent regimes observed. It justifies the fact that the thickness cannot be neglected
during the depolarization process in the atria. Section 4 presents a derivation of
the second order surface model similar (but one order more accurate) to the usual
surface models, and introduces convergence results in 6. Section 5 proposes a
derivation of our two layers model with two systems of monodomain equations
formulated on a surface, and introduces convergence results. Section 7 is devoted
to the numerical illustrations: it numerically shows the convergence of the surface
models, formalizes an optimization method of the coupling coefficient and address
the robustness of this model for geometries with physiological characteristics. The
conclusions are discussed in section 8.

2 The monodomain equations

The bidomain equations, first introduced in [Clerc, 1976, Tung, 1978], are a de-
generate system of two anisotropic reaction-diffusion equations coupled to a set
of ordinary differential equations. They describe the evolution of the intra- and
extra-cellular potential at the tissue scale [Krassowska and Neu, 1993], and they
can mimic complex phenomena such as virtual electrodes [Sepulveda et al., 1989].
Under the equal anisotropy ratio assumption, the system can be reduced to the sin-
gle monodomain reaction-diffusion equation. In the vast majority of applications,
the solution to this monodomain equation is very close to the solution to the bido-
main equation [Potse et al., 2006]. The models proposed and discussed in this
paper are based on the monodomain approximation although it is straightforward
to derive a bidomain version of them.

We set the monodomain equations on an open subset Ω of R3 and we denote
by (u,w) its solution. The system reads

A(C∂tu+ f (u,w)) = div(σ∇u) in (0,+∞)×Ω, (1)

∂tw+g(u,w) = 0 in (0,+∞)×Ω, (2)

where A, C and σ are physiological parameters that refer to, respectively, the ratio
of surface of membrane to total volume (in cm−1), the membrane capacitance (in
µFcm−2) and the conductivity (in mScm−1). The unknowns u(t,x) ∈ R (in mV)
describes the transmembrane potential and the m variables w(t,x) ∈ Rm model the
electrophysiological membrane dynamics. The functions g : R×Rm → Rm and
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f : R×Rm → R define the dynamics of the conductance of the ionic channels
through the membrane and of the ionic currents flowing through that channels.

The myocardial domain is represented by the domain Ω. In this domain, the
cardiac tissue is composed of fibres, that in turn are structured into laminae. The
tissue is modeled as a homogenized continuum with heterogeneous and anisotropic
electrical conductivity σ :

∀x ∈Ω, σ(x) =
3

∑
i=1

σiνi(x)νT
i (x),

where (ν1,ν2,ν3) is the orthonormal basis in R3 aligned on the fibre and laminae
directions and 0 < σ := σ3 ≤ σ2 ≤ σ1 := σ are constant parameters. The diffusion
operator is then bounded and uniformly elliptic:

∀x ∈ Ω̄, σ |ξ |2 ≤ ξ
T

σ(x)ξ =
3

∑
i=1

σi|ξi|2 ≤ σ |ξ |2.

Equations (1) and (2) are supplemented with the Neumann boundary conditions

σ∇u ·n = 0 in (0,+∞)×∂Ω (3)

that models a complete electrical insulation of the heart. We add the initial condi-
tions

u(0,x) = u0(x), w(0,x) = w0(x) a.e. x ∈Ω. (4)

We assume that the monodomain problem (1) and (2) with the boundary and
initial conditions (3) and (4) is well-posed. We then suppose that there is unique
solutions u and w defined for a.e. x ∈Ω and for all t > 0. Furthermore, we assume
that this solution is regular.

3 Fibre distribution and dimensional analysis

3.1 A two-layers slab of myocardium

An ideal slab of cardiac tissue Ω is considered. It is composed by two superim-
posed layers with the same thickness h > 0 but different fibre directions. We set
Ω = ω × (−h,h) ⊂ R3, where ω is an open bounded subset of R2, and the two
layers Ω(1) = ω× (0,h) and Ω(2) = ω× (−h,0). We decompose the boundary of
each layer into the external boundary and the interface between the layers, namely
Γ(k) = ∂Ω(k)∩∂Ω for k = 1,2 and Σ = ω×{0}. We express the coordinates of a
point x ∈ Ω as x = (x′,z) with x′ ∈ ω and −h < z < h. We assume that the fibre
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distribution is homogeneous through each layer. For k = 1,2, let θ (k) be the angle
of the fibres with the first coordinate axis. In each layer we build an orthonormal
basis ν

(k)
i for i = 1,2,3 respectively along the fibre direction, orthogonal to the

fibres in the lamina plane and orthogonal to the lamina by

ν
(k)
1 =

cos(θ (k))

sin(θ (k))
0

 , ν
(k)
2 =

−sin(θ (k))

cos(θ (k))
0

 , ν
(k)
3 =

0
0
1

 , (5)

where θ (1) and θ (2) are fixed angles. Then, the conductivity tensors in the layers
read

σ
(k) =

2

∑
j=1

σ
(k)
j ν

(k)
j ν

(k)
j

T

︸ ︷︷ ︸
=σ ′(k)

+σ
(k)
3 ν

(k)
3 ν

(k)
3

T
for k = 1,2. (6)

where σ ′(k) is the two dimensional conductivity tensor of the layer number k.
The conductivity tensor σ in Ω is then defined by σ(x)=σ (1)(x) if x∈Ω(1) and

σ(x) = σ (2)(x) if x ∈Ω(2). Hence, for initial data u0 and w0 in Ω, the monodomain
equations (1) and (2) in Ω with the piecewise constant conductivity σ , the boundary
condition (3) on ∂Ω, and the initial condition (4) uniquely define the spread of the
action potential in Ω. We introduce (u(k,0),w(k,0)) as the restriction of the initial
data (u0,w0) to the layer Ω(k), and (u(k),w(k)) as the restriction of the solution
(u,w) to Ω(k). Each of these restrictions is solution of the monodomain equations
set in the subdomain Ω(k) (k = 1,2):

A
(

C∂tu(k)+ f (u(k),w(k))
)
= divx′

(
σ
′(k)

∇x′u(k)
)
+σ

(k)
3 ∂zzu(k), (7)

∂tw(k)+g(u(k),w(k)) = 0 (8)

for t > 0 and x ∈Ω(k) with the boundary and transmission conditions

σ
(k)

∇u(k) ·n = 0 on Γ
(k), k = 1,2, (9)

σ
(1)

∇u(1) ·nΣ = σ
(2)

∇u(2) ·nΣ, u(1) = u(2) on Σ, (10)

where n is the unit normal to ∂Ω outward of Ω and nΣ is the unit normal to Σ

pointing from Ω(2) to Ω(1), and the initial conditions

u(k)(0,x) = u(k,0)(x), w(k)(0,x) = w(k,0)(x) a.e. x ∈Ω
(k), k = 1,2. (11)
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3.2 Dimensionless monodomain problem

A dimensionless version of the monodomain equations is derived in order to study
the balance between the different terms of the equation. We follow the method
previously introduced in [Colli Franzone et al., 1990, Keener, 1991, Rioux, 2012].

We first set time and space characteristic lengths t0 and x0, and we use the
thickness h > 0 of the two layers to define the dimensionless variables

x̄ =
x′

x0
, t̄ =

t
t0

and z̄ =
z
h
.

For instance, to observe the whole action potential, we will set the length scale
to x0 = 1cm and the time scale to t0 = 400ms, because they are the typical extent
of atrial structures such as pulmonary veins and the duration of an action potential.
The two-layers domain Ω = ω × (−h,h) is mapped to ω̄ × (−1,1) where ω̄ =
1
x0

ω ⊂ R2.
Using the typical amplitude of an action potential δu, the resting potential

ur, the maximum value of the sodium current f0 (specifically the maximum value
reached by the function f ) and the characteristic conductivity scale σ0, we recast
the physical quantities, which reads:

ū(k)(t̄, x̄, z̄) =
u(k)(t,x′,z)−ur

δu
,

σ̄
(k) =

1
σ0

σ
′(k), σ̄

(k)
3 =

σ
(k)
3

σ0
,

f̄ (ū(k), w̄(k)) =
1
f0

f (u(k),w(k)), and ḡ(ū(k), w̄(k)) = t0g(u(k),w(k)).

The monodomain equations for the two-layers domain finally read

AC
x2

0
σ0t0

(
∂t̄ ū(k)+

f0t0
Cδu

f̄ (ū(k),w(k))

)
= divx̄

(
σ̄
(k)

∇x̄ū(k)
)
+

x2
0

h2 σ̄
(k)
3 ∂z̄z̄ū(k),

∂t̄w̄(k)+ ḡ(ū(k),w(k)) = 0,

for t > 0 and (x̄, z̄) in the domains Ω̄(1) := ω̄× (0,1) and Ω̄(2) := ω̄× (−1,0). The
boundary and transmission conditions (9) and (10) remain unchanged but are now
stated on Γ̄(k) = ∂ Ω̄(k)∩∂ Ω̄ and Σ̄ = ω̄×{0}.

As a consequence, the dimensionless numbers

α = AC
x2

0
σ0t0

, β =
f0t0

Cδu
and ε =

h
x0

7



Article 1 2 3 4

Intracellular
σ1 3.0 3.0 1.741 1.7 2.4 2.0 3.0
σ2 = σ3 0.3 0.3 0.475 0.19 0.24 0.4167 0.315

Extracellular
σ1 3.0 3.0 3.906 6.2 4.8 2.5 2.0
σ2 = σ3 1.2 1.2 1.97 2.4 2.2 1.25 1.35

Monodomain
σ1 1.5 1.5 1.204 1.33 1.6 1.11 1.2
σ2 = σ3 0.24 0.24 0.383 0.18 0.22 0.31 0.25

Table 1: Electrical conductivities taken from the literature (mScm−1 – mon-
odomain conductivities are the half of the harmonic averages of bidomain ones).
Article 1: [Boulakia et al., 2010], article 2: [Potse et al., 2006], article 3: [Clements
et al., 2004] (review), and article 4: [Colli Franzone et al., 1990].

characterize the solutions. The order of magnitude of each of the physical quanti-
ties is set according to usual values for cardiac electrophysiology (see Table 3.2 for
some values of the conductivities):

A = 1000cm−1, C = 1µFcm−2, δu = 100mV,

f0 = 100µAcm−2, σ0 = 1.5mScm−1.

The orders of magnitude of the observation scales (t0 and x0) are then set to x0 =
1cm, t0 = 400ms, and consequently, the dimensionless parameters α and β are
α = 1.67, and β = 400.

Since we are focusing on layers of cardiac tissue, the important quantity is
the aspect ratio ε = h/x0, assumed to be small. The dimensionless monodomain
equations in each layer finally read:

α

(
∂t̄ ū(k)+β f̄ (ū(k),w(k))

)
= divx̄

(
σ̄
(k)

∇x̄ū(k)
)
+

σ̄
(k)
3
ε2 ∂z̄z̄ū(k), (12)

∂t̄w̄(k)+ ḡ(ū(k),w(k)) = 0, (13)

and every parameter is fixed and of order 1 except ε and β . According to our
analysis, the transverse diffusion ∂z̄z̄ū(k) dominates the reaction terms whenever
βε2� 1. In the next section, we will derive an asymptotic model for ε → 0 while
β is kept fixed, consequently in the dominant transverse diffusion regime.

Remark 1. The documented thickness of human atrial tissues is small, but it re-
mains of order h = 0.1cm. Hence, the reaction and diffusion terms actually bal-
ance during the depolarization phase (βε2 ' 1) and the behavior of the asymptotic
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model may be different from the observation in atrial tissues. For this reason, we
develop a higher order asymptotic model in section 5. During the plateau and re-
polarization phases, the ionic currents are far less intense, so that the asymptotic
regime applies quite well for human atria (β decreases, so that βε2 ≤ 1).

Remark 2. Note that the case of tissues with different thickness of the endo and
epicardial layers can be dealt with. If we have Ω(1) = ω×]0,λ (1)h[ and Ω(2) =
ω×]− λ (2)h,0[, for a given λ (k) > 0, we can define z̄ = z

λ (K)h
in Ω(k). We then

obtain the equation (12), but the transverse diffusion coefficient is now σ̄
(k)
3

(λ (k)ε)2 and

the current continuity condition through the interface σ
(1)
3

λ (1)ε
∂zū(1) =

σ
(2)
3

λ (2)ε
∂zū(2).

4 Asymptotic one layer model

In this section, we propose a formal asymptotic expansion of the solution of (12).
The usual surface model of the atria, classical for numerical atrial simulations (see
e.g. [Haissaguerre et al., 2007, ROTTER et al., 2007]), is then recovered. Drop-
ping the ¯ above the dimensionless quantities, the three-dimensional dimensionless
problem reads

α

(
∂tu

(k)
ε +β f

(
u(k)ε ,w(k)

ε

))
= divx

(
σ
(k)

∇xu(k)ε

)
+

σ
(k)
3
ε2 ∂zzu

(k)
ε , (14)

∂tw
(k)
ε +g

(
u(k)ε ,w(k)

ε

)
= 0, (15)

for k = 1,2, t > 0 and (x,z)∈Ω(k). The depence on ε of the solution is emphasized
by the subscript.

The boundary and transmission conditions read

σ
(1)

∇xu(1)ε ·n = 0 in ∂ω× (0,1) and σ
(1)
3 ∂zu

(1)
ε = 0 in ω×{1}, (16)

σ
(2)

∇xu(2)ε ·n = 0 in ∂ω× (−1,0) and σ
(2)
3 ∂zu

(2)
ε = 0 in ω×{−1}, (17)

σ
(1)
3 ∂zu

(1)
ε = σ

(2)
3 ∂zu

(2)
ε , u(1)ε = u(2)ε in ω×{0}, (18)

and we assume, for the sake of simplicity, that the initial data are homogeneous in
the z direction for each k ∈ {1,2}, specifically:

u(k)ε (0,x,z) = u0(x), w(k)
ε (0,x,z) = w0(x) in Ω

(k), k = 1,2, (19)

where the functions u0(x) and w0(x) are defined in ω .
We then have the following theorem :
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Theorem 1 (Coefficients of the asymptotic expansion). If an asymptotic expansion
of u(k)ε and w(k)

ε respectively to ε2 can be exhibited, i.e., if we can write

u(k)ε = u(k)0 + ε
2u(k)1 + ε

4u(k)2 +o(ε4), w(k)
ε = w(k)

0 + ε
2w(k)

1 +o(ε2), (20)

then, the asymptotic coefficients (u(k)0 ,w(k)
0 ) and (u(k)1 ,w(k)

1 ) can be computed ex-
plicitly in the following way.

For all t ≥ 0, a.e. x ∈ ω and z ∈]− 1,1[, we have u(1)0 (t,x,z) = u(2)0 (t,x,z) :=
u0(t,x) and w(1)

0 (t,x,z) = w(2)
0 (t,x,z) := w0(t,x), where (u0,w0) is solution of the

surface monodomain problem

α(∂tu0 +β f (u0,w0)) = divx (σ
m

∇xu0) , (21)

∂tw0 +g(u0,w0) = 0, (22)

with the boundary condition σm∇xu0 ·n = 0 on ∂ω and for t > 0 and initial condi-
tion u0(0,x) = u0(x) and w0(0,x) = w0(x) in ω where σm = σ (1)+σ (2)

2 is the arith-
metic average of the conductivity matrices in both layers.

The function u(k)1 is explicitly given by

u(k)1 =
b

σ
(k)
3

z
(

1− |z|
2

)
+ c, (23)

with b = divx
(
σd∇xu0

)
and c = ū1− 1

6 b σ
(2)
3 −σ

(1)
3

σ
(1)
3 σ

(2)
3

where σd = σ (1)−σ (2)

2 and ū1 is solution to the problem

α (∂t ū1 +β∇ f (u0,w0) · (ū1, w̄1)) = divx (σ
m

∇xū1)+divx

(
1

3σh
3

σ
d
∇xb

)
, (24)

∂tw̄1 +∇g(u0,w0) · (ū1, w̄1) = 0, (25)

with the boundary condition σm∇xū1 ·n+ 1
2σh

3
σd∇xb ·n = 0 on ∂ω and for t > 0,

and the initial conditions ū1(0,x) = 0 and w̄1(0,x) = 0 for a.e. x ∈ ω , with σh
3 =

2 σ
(1)
3 σ

(2)
3

σ
(1)
3 +σ

(2)
3

the harmonic average of the transverse conductivities.

The function w(k)
1 reads:

w(k)
1 (t,x,z) =−

∫ t

0
∂1g(u0(s,x),w0(s,x))u(k)1 (s,x,z)

exp
(
−
∫ t

s
∂2g(u0(τ,x),w0(τ,x))dτ

)
ds. (26)
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Remark 3. The equations (21) and (22) are the usual surface monodomaim model
for the atria. They are defined on the surface ω and are independent of ε . We note
that the surface diffusion tensor is derived by averaging the 3D diffusion tensor
in the thickness of the tissue. That surface model has been rigorously derived for
instance in [Chapelle et al., 2013] or in [Coudière et al., 2014].

Remark 4. We will designate the asymptotic approximation

ũ(k)ε := u0 + ε
2u(k)1 , w̃(k)

ε := w0 + ε
2w(k)

1 , (27)

as the enhanced monodomain surface model. This denomination highlights the fact
that (ũ(k)ε , w̃(k)

ε ) is a correction of the usual monodomain surface solution (u0,w0)
that improves the accuracy of the approximation, as stated in Theorem 2 below.

Proof. We inject the expansions (20) in the system of eqs. (14) and (15) and we
identify the coefficients with the same order, respectively to ε2.

First looking at the highest order coefficient, i.e. 1/ε2, we obtain the equation
∂zzu

(k)
0 = 0 for k = 1,2 together with the boundary and transmission conditions,

∂zu
(1)
0 (t,x,1) = ∂zu

(2)
0 (t,x,−1) = 0,

σ
(1)
3 ∂zu

(1)
0 (t,x,0) = σ

(2)
3 ∂zu

(2)
0 (t,x,0), u(1)0 (t,x,0) = u(2)0 (t,x,0).

We can easily show that u(1)0 = u(2)0 are constant functions in the z direction. For
all z ∈]−1,1[, we then have u(1)0 (t,x,z) = u(2)0 (t,x,z) := u0(t,x), for t ≥ 0 and a.e.
x ∈ ω .

Using a Taylor expansion of f and g around (u0,w0), we get:

f
(

u(k)ε ,w(k)
ε

)
= f

(
u0,w

(k)
0

)
+ ε

2
∇ f
(

u0,w
(k)
0

)
·
(

u(k)1 ,w(k)
1

)
+o
(
ε

2) ,
g
(

u(k)ε ,w(k)
ε

)
= g

(
u0,w

(k)
0

)
+ ε

2
∇g
(

u0,w
(k)
0

)
·
(

u(k)1 ,w(k)
1

)
+o
(
ε

2) .
The identification of the terms of order ε0 then leads to the following equation on
u(k)1 , for k = 1,2.

σ
(k)
3 ∂zzu

(k)
1 = α

(
∂tu0 +β f

(
u0,w

(k)
0

))
−divx

(
σ
(k)

∇xu0

)
, (28)

∂tw
(k)
0 +g

(
u0,w

(k)
0

)
= 0, (29)

together with the boundary and interface conditions (16) to (18) on u(k)1 . The func-
tion (t,x,z) 7→ g(u0(t,x), .), which is independent of z, completely defines the dy-
namics of w(k)

0 . Since, for k = 1,2, the initial condition w(k)
ε (0,x,z) = w0(x) is

11



constant in the z direction through the tissue, the functions w(k)
0 are independent

of z for all time t > 0 and have the same value in both layer. We then have
w0(t,x) := w(1)

0 (t,x,z) = w(2)
0 (t,x,z) for all t ≥ 0 and a.e. x ∈ ω , which is solu-

tion to equation (29). Afterwards, using the boundary conditions (16) and (17), the
integration of equation (28) on u(k)1 along z leads to

−σ
(1)
3 ∂zu

(1)
1 (.,0) = α (∂tu0 +β f (u0,w0))−divx

(
σ
(1)

∇xu0

)
, (30)

σ
(2)
3 ∂zu

(2)
1 (.,0) = α (∂tu0 +β f (u0,w0))−divx

(
σ
(2)

∇xu0

)
. (31)

Adding these two equations with the transmission condition (18) gives the system
of equations (21)-(22) on (u0,w0), which proves the first part of the theorem.

We then observe that the right-hand side of equations (28) is independent of z.
Then, the functions z 7→ u(k)1 (t,x,z) are second degree polynomials. There exists
a(k),b(k) and c(k) such that

u(k)1 (t,x,z) = a(k)(t,x)z2 +b(k)(t,x)z+ c(k)(t,x).

Introducing Equation (21) in (28), the right-hand side reads divx (σ
m∇xu0)−

divx
(
σ (k)∇xu0

)
which is both equal to ±divx

(
σd∇xu0

)
and to the right-hand side

of equations (30) and (31).
Furthermore, the left-hand side of equations (28), (30), and (31) are, respec-

tively, 2a(k)σ (k)
3 , −σ

(1)
3 b(1) and σ

(2)
3 b(2). Consequently, we can define

b := divx

(
σ

d
∇xu0

)
=−2a(1)σ (1)

3 = σ
(1)
3 b(1) = 2a(2)σ (2)

3 = σ
(2)
3 b(2).

The potential continuity condition on the interface indicates that we can identify
c(1) and c(2) := c. We then have

u(k)1 =
b

σ
(k)
3

z
(

1− |z|
2

)
+ c where b = divx

(
σ

d
∇xu0

)
, (32)

and c= c(t,x) is an unknown function. Noting the averaging operator through each
layer with ·, we have

ū(1)1 :=
∫ 1

0
u(1)1 (·,z)dz = c+

1
3

b

σ
(1)
3

and ū(2)1 :=
∫ 0

−1
u(2)1 (·,z)dz = c− 1

3
b

σ
(2)
3

.

As a consequence, we have the relations

ū1 :=
ū(1)1 + ū(2)1

2
= c+

1
6

b
σ
(2)
3 −σ

(1)
3

σ
(2)
3 σ

(1)
3

,
ū(1)1 − ū(2)1

2
=

1
6

b
σ
(2)
3 +σ

(1)
3

σ
(2)
3 σ

(1)
3

:=
1
3

b
σh

3
,

12



where ū1 denotes the average of u(k)1 through the whole thickness of the tissue and

σh
3 = 2 σ

(1)
3 σ

(2)
3

σ
(1)
3 +σ

(2)
3

is the harmonic average of the transverse conductivities. Hence,

knowing ū1 uniquely defines c. In the same way, we define w̄1 as the average of
w(k)

1 through the whole thickness of the tissue:

w̄1 =
1
2

(∫ 1

0
w(1)

1 (·,z)dz+
∫ 0

−1
w(2)

1 (·,z)dz
)
.

Now, in order to close the system on (u(k)1 ,w(k)
1 ), we want to exhibit a system of

equations providing the functions (ū1, w̄1).
We then identify the coefficients of order ε2 in the expansion of (u(k),w(k)). We

then obtain the equations

σ
(k)
3 ∂zzu

(k)
2 = α

(
∂tu

(k)
1 +β∇ f (u0,w0) ·

(
u(k)1 ,w(k)

1

))
−divx

(
σ
(k)

∇xu(k)1

)
, (33)

∂tw
(k)
1 +∇g(u0,w0) ·

(
u(k)1 ,w(k)

1

)
= 0, (34)

with the boundary and transmission conditions (16) to (18) on u(k)2 .
We again integrate equation (33) for z∈ (0,1) and z∈ (−1,0), add the resulting

equations, use the transmission conditions (16) and (17) on u(k)2 . We then get

1
2

divx

(
σ
(1)

∇xū(1)1 +σ
(2)

∇xū(2)1

)
= divx

(
σ

m
∇xū1 +σ

d
∇x

ū(1)1 − ū(2)1
2

)
.

We remark that ū(1)1 −ū(2)1
2 = 1

3
b

σh
3

, and we finally obtain the equations (24) and (25)

for (ū1, w̄1). That gives an explicit computation of u(k)1 and demonstrates the second
part of the theorem.

To end the proof, we observe that the function w(k)
1 is uniquely determined for

k = 1,2 by equation (34) as the solution to a first order linear Cauchy problem of
the form w′(t) + a(t)w(t) = −b(t) with a(t) = ∂2g(u0(t,x),w0(t,x)) and b(t) =
∂1g(u0(t,x),w0(t,x))u(k)1 (t,x,z) and with w(0) = 0 because w(k)

1 (0,x,z) = 0. Its
solution is computed explicitly: w(t) = −∫ t

0 b(s)exp
(
−∫ t

s a(τ)dτ
)

ds, which is

exactly the expression of w(k)
1 given in the Theorem.
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5 Asymptotic two layers model

5.1 Averaged equations through the thickness of each layer

In this section, we focus on equations verified by the averages in z ∈ (0,1) and
z ∈ (−1,0) of the 3D solutions (u(k)ε ,w(k)

ε ) for each of the two layers.
Integrating equations (33) and (34) for z ∈ (0,1) and z ∈ (−1,0) we get

α

(
∂t ū

(k)
ε +β f

(
ū(k)ε , w̄(k)

ε

))
= divx

(
σ
(k)

∇xū(k)ε

)
+(−1)k

(
3
2

σ
h
3

ū(1)ε − ū(2)ε

ε2

)
+Eε(u), (35)

and
∂tw̄

(k)
ε +g

(
ū(k)ε , w̄(k)

ε

)
= Ē(k)

ε (g), (36)

where Eε(u) and Ē(k)
ε (g) are remainder terms. In a separate paper [Coudière et al.,

2014] they are shown to be of order ε3. The definition of our bilayer model directly
results from that observation.

5.2 Definition of the two layers model

For given initial conditions û(k)0 (x) and ŵ(k)
0 (x) on ω , we define the two layers

model as the following coupled systems of monodomain equations, for k = 1,2:

α

(
∂t û

(k)
ε +β f

(
û(k)ε , ŵ(k)

ε

))
= divx

(
σ
(k)

∇xû(k)ε

)
+(−1)k 3

2
σ

h
3

û(1)ε − û(2)ε

ε2 , (37)

∂tŵ
(k)
ε +g

(
û(k)ε , ŵ(k)

ε

)
= 0, (38)

with boundary conditions σ (k)∇xû(k) ·n = 0 on ∂ω for t > 0 and initial conditions
û(k)(0,x) = û(k)0 (x) and ŵ(k)(0,x) = ŵ(k)

0 (x).
It can be seen as a perturbation of the averaged problems (35)-(36) that ne-

glects the remainder terms Eε(u) and Ē(k)
ε (g). We will see in the next section that

this perturbation is small enough to correctly approximate the averaged solutions
(ū(k)ε , w̄(k)

ε ) with the bilayer solution (û(k)ε , ŵ(k)
ε ).

Remark 5. We emphasize that, unlike in the enhanced monolayer model, the
source function is evaluated in each layer, thus playing a driving role in trans-
mural electrical discrepancies : the bilayer model intrinsically allows inter-layers
electrical disconnection and the electrical dynamics can differ from one layer to
the other. This is a source of complex propagation patterns.
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6 Error estimate for the surface models

For the completeness of the present article, we introduce two convergence results
for both the enhanced monodomain surface model and the bilayer model that we
do not demonstrate in that study, but that are fully addressed in a separate paper
[Coudière et al., 2014].

6.1 Error estimate on the enhanced monolayer model

We first state that the solutions of the enhanced monodomain surface model (27)
approximate the 3D solutions with an accuracy of order ε3.

We suppose that the initial conditions are constant in the thickness of the tissue.
Namely, we assume that u(k)ε (0,x,z) = u0(x) and w(k)

ε (0,x,z) = w0(x) for (x,z) ∈
Ω(k), k = 1,2.

Theorem 2 (Error estimates for the enhanced monolayer model). Supposing that
the functions f and g are C2(R×Rm) functions and that the asymptotic solu-
tions (u0,w0), (u

(k)
1 ,w(k)

1 ) (resp. 3D solutions (u(k)ε ,w(k)
ε )ε>0) have a uniform upper

bound M respectively to time (resp. to ε and time), we then have, for all 0 < ε ≤ 1,
for all T > 0, for 0≤ t ≤ T and k = 1,2, the following estimates∥∥∥u(k)ε (t)− ũ(k)ε (t)

∥∥∥
L2(Ω(k))

≤ ε
3 k0, (39)∥∥∥w(k)

ε (t)− w̃(k)
ε (t)

∥∥∥
(L2(Ω(k)))

m ≤ ε
3k0, (40)∥∥∥∇x

(
u(k)ε − ũ(k)

)∥∥∥
L2(0,t;L2(Ω(k)))

≤ ε
3k1, (41)∥∥∥∂z

(
u(k)ε − ũ(k)

)∥∥∥
L2(0,t;L2(Ω(k)))

≤
√

2ε
4 k1, (42)

where k0 and k1 are independent of ε and only depend on α , σ , Λ0, Λ1, M, |ω| and
T .

Remark 6. We note that Theorem 2 can be seen as the reciprocal of Theorem
1: if we note (u0,w0) the solution of the problem (21)-(22), (ū1, w̄1) the solution
of (24)-(25) and (u(k)1 ,w(k)

1 ) the function defined by (23), (26), Theorem 2 shows
that (ũ(k)ε , w̃(k)

ε ) are then a third order approximation of the 3D solutions u(k)ε and
w(k)

ε , i.e. that the asymptotic expansion (20) holds, with the norm therein.
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6.2 Error estimate on the two-layers model

We also state that the two-layers solution (û(k)ε , ŵ(k)
ε ) of (37) and (38) approximates

the averages on each layer (ū(k)ε , w̄(k)
ε ) of the 3D solutions (14) and (15) with an

order ε3 accuracy.
We suppose that, for k = 1,2, we have û(k)0 (x) = u0(x), and ŵ(k)

0 (x) = w0(x).

Theorem 3 (Error estimates: two-layers model). Assuming that for T > 0 there ex-
ists a bound M such that

∣∣∣(û(k)ε (t,x), ŵ(k)
ε (t,x)

)∣∣∣≤M , and under the assumptions
of Theorem 2, we have the following estimates: for all 0 < ε ≤ 1, for 0 ≤ t ≤ T ,
for k = 1,2,

‖ū(k)ε (t)− û(k)ε (t)‖L2(ω) ≤ ε
3 k4, (43)

‖w̄(k)
ε (t)− ŵ(k)

ε (t)‖[L2(ω)]m ≤ ε
3 k4, (44)

‖∇x(ū
(k)
ε − û(k)ε )‖L2(0,T ;L2(ω)) ≤ ε

3 k5, (45)

with k4 and k5 not depending on ε but only on α , σ , Λ0, Λ1, M, |ω| and T .

Remark 7. This theorem guarantees that the average by layer in the thickness
of the three-dimensional potential converges toward the solution of the two-layers
model. Furthermore, the accuracy of the two-layers model is limited by the preci-
sion of the approximation of the transverse diffusion which depends in our formu-
lation on the precision of the asymptotic expansion of u(k)ε .

Let us give a version of the problem (37) in physical variables :

A(C∂tu(k)+ f (u(k),w(k))) = divx(σ
′(k)

∇xu(k))+(−1)k
γth(u(1)−u(2)), (46)

∂tw(k)+g(u(k),w(k)) = 0, (47)

where γth = 3
h2

σ
(1)
3 σ

(2)
3

σ
(1)
3 +σ

(2)
3

is called the coupling coefficient and A, C, σ ′(k),σ (k)
3 are

the same parameters as in problem (1), (2).

Remark 8. The model also has a purely electric interpretation, as in [Jacquemet,
2004]: the two layers are coupled pointwise by a conductance. The coupling coef-
ficient from our model, γth, is expressed in mS cm−3, which is consistent. Conse-
quently, the term γth(u(1)−u(2)) is a density of current expressed in µA cm−3.

Remark 9. We recall that this approximation is expected to be correct if the thick-
ness of the atrial tissue is of order 0.01cm, which is not a realistic range for human
hearts. Indeed, surface atrial models usually takes into account only the first order
two-dimensional monodomain approximation (u0,w0), and cannot capture com-
plex propagations patterns like observed in figure (3) below.
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Remark 10. Following Remark 2, we can perform the same computation to de-
rive the asymptotic coupling coefficient when Ω(1) and Ω(2) have respectively a
thickness λ (1)h and λ (2)h, with λ (h) > 0 and of order 1. Equations (46) hold with

γ
(k)
th = 3

2
σh

λ

λ (k)h2 , where σh
λ
= 2

(
λ (1)

σ
(1)
3

+ λ (2)

σ
(2)
3

)−1

. We note that σh
λ

is the harmonic

mean of the transverse diffusion coefficient weighted by the thickness coefficient
and that the coupling coefficient γ

(k)
th differs on each layer due to the factor λ (k).

7 Numerical illustrations

In order to complete the previous theoretical foundations, we focus on the poten-
tatiality of the two-layers models in reproducing some actual complex 3D phe-
nomena in a physiological context. This is a threefold objective: analysis of the
asymptotic regime of the surface models with respect to the physiological thick-
ness of atrial tissues; introduction of an optimization heuristic so as to correct the
behaviour of the model for physiological thicknesses; study of the robustness of
the model for physiologically relevant 3D geometries.

7.1 Numerical method

7.1.1 Test cases: general protocol

The general protocol is as follows. First we compute the solution (u(k)3D,w
(k)
3D) of

the 3D problem (4) in a domain Ω = Ω(1) ∪Ω(2) with a diffusion tensor σ dis-
continuous across the interface Σ. Namely, the diffusion tensor σ is defined as
in equations (6) and (5), and we choose the fibres to be perpendicular one with
another: θ (2)−θ (1) = π

2 . This solution serves as a reference.
Then, we compute the solutions to the three following surface models:

1×2D: the solution (u0,w0) of the classical monolayer surface model (21) - (22)
with diffusion tensor σm = σ (1)+σ (2)

2 . In this case, the solution (u0,w0) is
isotropic;

2×2D-th: the solution (û(k)γth , ŵ
(k)
γth ) of the two-layers model (46) - (47) with the

theoretical coupling coefficient γth given in the text;

2×2D-opt: the solution (û(k)γopt , ŵ
(k)
γopt ) of the two-layers model (46) - (47), but with

a coupling coefficient γopt defined in a physiologically optimal manner, see
section 7.1.5.
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Indeed, we will observe that the 1×2D and 2×2D-th models are no longer accurate
for physiological thicknesses of atrial tissues. Hence we introduce the third, opti-
mized model, so as to improve the accuracy of the 2×2D-th for thicknesses within
the physiological range (that is, outside of the asymptotic regime).

7.1.2 The reference geometry

We use a reference perpendicular geometry, as defined in the previous theoretical
study, in order to investigate the convergence and accuracy of the two-layers model.
More general geometries will be described in section 7.1.6.

Figure 1: Left: 2D mesh. Middle : 3D mesh related to the 2D one. Right : slice of
the discretization of a voxel. A voxel is composed of 24 tetrahedra.

Slab of tissue. The 3D slab is the domain Ω = ω × (−h,h) with ω = (0,Lx)×
(0,Lx), of length Lx = 1cm, and half-thickness h varying between 0.005 cm and
0.2 cm. The total thickness, 2h, compares to physiological scales varying from
the length of one cardiomyocyte (100µm) to the average thickness of human atria
(about 0.4 cm). The fibres directions are set to ν

(1)
1 = (1,0,0) and ν

(2)
1 = (0,1,0)

(see equation (5)).
We consider a cartesian grid on Ω (resp. on ω) with discretization steps ∆x×

∆y×∆z (resp. ∆x×∆y). The 3D and 2D grids are decomposed in simplicial meshes
(i.e. with respectively tetrahedral and triangular elements). Each voxel of the 3D
grid is decomposed in 24 tetrahedra whereas the voxels of the 2D grid are decom-
posed in 4 triangles, as presented in figure 7.1.2. We take ∆x = ∆y = 5.10−3cm,
which is small to guarantee the numerical convergence of the discrete solution. To
check the convergence of the 2×2D model when h vanishes, we vary h and ∆z fol-
lowing two constraints. We impose that each mesh contains at least 10 voxels in the
thickness, in order to capture any transversal activity, even for small thicknesses.
For large thicknesses, we keep the number of degrees of freedom in a tractable
level while preserving the mesh element shapes, by taking ∆z ≤ 4∆x. The final
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value of ∆z for each value of h are presented in Table 3. We denote by DOF3D
(resp. DOF2D) the number of degrees of freedom in Ω (resp. ω).

7.1.3 Electrophysiological background

We chose the Beeler-Reuter ventricular model [Beeler and Reuter, 1977], which
is computationally simple but reproduces correctly the depolarization dynamics of
cardiomyocytes. All the other parameter values are given in Table 7.1.3.

A stimulation was applied by fixing the potential to Vm,init = 20mV for 0≤ t ≤
2ms, in the square S = 1

2(Lx,Lx)+ (−2∆x,+2∆x)× (−2∆x,+2∆x) for the 2D test
cases, and 1

2(Lx,Lx,0)+(−2∆x,+2∆x)× (−2∆x,+2∆x)× (−h,+h) in the 3D test
cases.

7.1.4 Resolution

All the models are discretized by the standard P1-Lagrange finite element method
with mass lumping and the Rush-Larsen time-stepping scheme [Rush and Larsen,
1978]. We used a fixed time-step ∆t = 0.05ms. The diffusion terms are discretized
implicitely, and the resulting linear system is solved with a Jacobi preconditionned
conjugate gradient algorithm with a fixed tolerance equal to 10−10.

7.1.5 Optimizing the coupling coefficient

According to Theorem 3, the difference between the two-layers and the 3D models
decreases in O(ε3) when the coupling coefficient is γth =

3
2

σh
3

ε2 . Anyway, for most
physiological thicknesses, we will observe that this difference remains qualitatively
too high. Hence, for such a thickness (fixed), we modify the coupling coefficient
in order to minimize this difference, resulting in the 2×2D-opt model.

To this aim, we don’t use the functional norms from Theorem 3, but the more
relevant activation maps. Activation maps are the spatial disctributions of the time-
of-arrival of the activation wavefront, which are a major indicator in clinical and bi-
ological practice. For a given threshold θ ∈R, and a solution u∈C0([0,T ],L2(ω)),
the activation map Tθ (u)∈L2(ω) is defined by Tθ (u)(x)= inf{t ∈ (0,T ), s.t. u(t,x)> θ}.
Note that the activation maps are defined on the surface ω . In practice, we define
one activation map for each layer, defined for θ =−40mV.

For given 3D solutions u(k)ε , k = 1,2, we define the cost function to minimize
by

J(γ) :=

∥∥∥Tθ

(
ū(1)3d

)
−Tθ

(
û(1)γ

)∥∥∥
L2(ω)∥∥∥Tθ

(
ū(1)3d

)∥∥∥
L2(ω)

+

∥∥∥Tθ

(
ū(2)3d

)
−Tθ

(
û(2)γ

)∥∥∥
L2(ω)∥∥∥Tθ

(
ū(2)3d

)∥∥∥
L2(ω)

,

19



thickness (2h) characteristics 3D 2D bilayer 2D monolayer

0.4
∆z 0.02 - -

# DOF 3 296 421 160 802 80 401
CPU time ratio 1 0.0171 0.0069

0.3
∆z 0.015 - -

# DOF 3 296 421 160 802 80 401
CPU time ratio 1 0.0162 0.0066

0.2
∆z 0.01 - -

# DOF 3 296 421 160 802 80 401
CPU time ratio 1 0.0146 0.0059

0.1
∆z 0.01 - -

# DOF 1 688 411 160 802 80 401
CPU time ratio 1 0.0310 0.0127

0.09
∆z 0.009 - -

# DOF 1 688 411 160 802 80 401
CPU time ratio 1 0.0265 0.0118

0.08
∆z 0.008 - -

# DOF 1 688 411 160 802 80 401
CPU time ratio 1 0.0271 0.0119

0.07
∆z 0.007 - -

# DOF 1 688 411 160 802 80 401
CPU time ratio 1 0.0321 0.0142

0.06
∆z 0.006 - -

# DOF 1 688 411 160 802 80 401
CPU time ratio 1 0.0324 0.0142

0.05
∆z 0.005 - -

# DOF 1 688 411 160 802 80 401
CPU time ratio 1 0.0347 0.0145

0.04
∆z 0.004 - -

# DOF 1 688 411 160 802 80 401
CPU time ratio 1 0.0365 0.0152

0.03
∆z 0.003 - -

# DOF 1 688 411 160 802 80 401
CPU time ratio 1 0.0373 0.0155

0.02
∆z 0.002 - -

# DOF 1 688 411 160 802 80 401
CPU time ratio 1 0.0313 0.0130

0.01
∆z 0.001 - -

# DOF 1 688 411 160 802 80 401
CPU time ratio 1 0.0216 0.0094

Table 3: Presentation for each thickness 2h of the characteristics of the discrete do-
mains : length, width, thickness, space steps in each direction (All that dimensions
are expressed in cm), number of degrees of freedom and the ratio of the computa-
tional time over the three-dimensional one : CPU time / CPU time 3D.
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A C σ
(k)
1 σ

(k)
2 σ

(k)
3 σiso

cm−1 µF cm−2 mS cm−1 mS cm−1

500 1 1.5 0.2 0.2 0.85

Table 4: Physiological parameters used for the different simulations

where û(k)γ , k = 1,2 are the solutions of the bilayer problem (46) - (47) computed

with the coupling coefficient γ , and ū(k)3d is the 3D solution averaged in the thickness
of the layer k.

We finally look for a value of γ in the neighbourhood of the theoretical one,
γth, that achieves a local minimum of J. Therefore, we use the Brent’s method
implemented in the scipy library [Oliphant, 2007], that is interfaced with our solver.

Remark 11 (Gold standard). We note that the design of the 3D gold standard is a
key issue of the optimization process. In order to construct a physiological 2×2D
model of the atria, the 3D gold standard should: 1) be simple to compute, and 2)
should contain all the relevant transmural heterogeneities that we want to capture.
The 3D slab previously defined is a good candidate for such a gold standard. How-
ever, there is a priori no reason why the optimized coupling coefficient obtained
with this simplified 3D reference should give satisfactory results on the more com-
plex geometries that are observed in the atria. We then check the robustness of that
optimization strategy on physiologically relevant additional geometries: a curved
geometry, and a geometry with a non homogeneous thickness. We also verify if the
optimization method is improved when the 3D gold standard is computed directly
on the complex 3D geometry, instead of the simplified slab of tissue.

7.1.6 Additional geometries

These geometries will be used to challenge the two-layers model in more relevant
situations.

Curved geometry. It is the domain Ω = Ω(1) ∪Ω(2), where Ω(k) are defined in
cylindrical coordinates by, Ω(1) = {(r,ψ,z), R−h < r < R, 0≤ψ ≤ 2π, 0 < z <
1}, and Ω(2) = {(r,ψ,z), R < r < R+ h, 0 ≤ ψ ≤ 2π, 0 < z < 1}. Hence, the
interface is now the surface ω = {(R,ψ,z), 0 ≤ ψ ≤ 2π, 0 < z < 1}. The fibre
directions are choosen to be longitudinal in the layer 1 (ν(1)

1 = νz) and circumfer-
encial in the layer 2 (ν(2)

1 = νψ ).
We take R = 1

2π
+ hcm and h = 0.05cm, so that the domain Ω has the typical

dimensions of a human pulmonary vein with basal ring of thickness 0.1cm and
minimal perimeter of 1cm, and realistic fibre orientations.
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Variable thickness. This domain is a prism with a trapezoid basis It can be de-
fined by Ω = (0,1)× T in cartesian coordinates, where T = {(y,z), 0 ≤ z ≤
(0.05+ 0.10y), 0 ≤ y ≤ 1}. In this case, the interface is the surface ω = (0,1)×
{(y,z = 0.5(0.05+0.10y)), 0≤ y≤ 1}, and the fibre direction is in the x-direction
in Ω(1) (ν(1)

1 = (1,0,0)) and along the thickness variation gradient in Ω(1) (ν(1)
1 =

(0,1,0.10z)).

Discretization. Both geometries Ω, and both interfaces ω are discretized by a
cartesian grid in the parametric space, of size 200× 200× 10, which is in turn
decomposed with a simplicial mesh. The spatial resolution of these meshes is then
5.10−3cm.

7.2 results

We first focus on the qualitative behaviour of the different models. We assess the
propagation pattern in the 3D model for different regimes of tissue thickness and
observe the corresponding results given by the surface models. We then compare
the accuracy of the surface models, and finally study the optimal coupling coeffi-
cient in significant physiological situations.

7.2.1 Qualitative behaviour

The 3D model. We first aim at illustrating the 3D propagation pattern in three
regimes of tissue thickness: 1) 2h = 0.01cm, which represents a non-physiological
thickness of tissue – two myocytes in the thickness of the tissue – but lays in the
convergence regime of both surface models – cf section 3.2 –, 2) 2h= 0.1cm, which
is the characteristic thickness of thin cardiac tissues like pulmonary veins [Ho et al.,
2001] and 3) 2h= 0.4cm which is in the range of the documented thickness of atrial
tissues [Cabrera et al., 2008].

As expected from Theorem 2, we observe in Figure 2 a uniform potential dis-
tribution through the thickness of the geometry for the thin tissue 2h = 0.01cm. On
the contrary, for thicker tissues, the propagation follows a very different behaviour.
For 2h= 0.4cm, the tissue seems to be thick enough, and the current strong enough,
for the wave propagation to be mainly directed towards the fibre direction in each
layer. A boundary layer located at the interface of the fibre layers connects that two
unidirectional anisotropic waves without significantly perturbing their propagation
near the upper and lower boundaries of the slab. For 2h = 0.1cm, the propagation
pattern is intermediate: the thickness of the boundary layer connecting the waves
of both tissue layers is in the range of the thickness of the slab. It then strongly
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Figure 2: Snapshot for t = 11ms of the potential map of the 3D model for different
thicknesses 2h. In each view, we clipped the subdomain [0;0.5]2× [0;2h].

23



influences their propagation. The upper and lower waves have then two directions
of anisotropy and are diamond-shaped.

Following the theoretical results for ε going to zero, the difference between the
averaged potentials in each layer should be of order ε2 at any position x′ ∈ω . From
the 3D simulations it appears that this is not the case eveywhere. In fact due to the
very strong depolarisation current included in the electrophysiological model, very
sharp activation fronts appear and are leaning to propagate in a different manner in
each layer although the coupling between layers decreases their difference of po-
tential. Around the activation front we observe different but slow varying values of
the potential in the thickness of each layer. But near the surface z = 0 these values
are joined by a fast varying boundary layer. This discrepancy with the theoretical
asymptotic analysis is due to the strong activation current which implies (cf 1) that
the assumptions for this analysis are not verified close to the front.

The 2×2D-th and 1×2D models. We now investigate the qualitative behaviour
of the 1×2D and the 2×2D-th models for the same three thicknesses. Figure 3
displays a snapshot of each model at the same time t = 11ms for these three thick-
nesses, with layer 1 on the top row and layer 2 on the bottom one. The 3D solution
is averaged in the thickness of each layer before being displayed, while the 1×2D
model has only one layer. The isoline Vm =−40mV of each model at t = 11ms is
also plotted.

For the thin tissue, 2h = 0.01cm, the three models have a very similar quasi-
isotropic behavior, as expected after Theorems 2 and 3.

For the moderately thick tissue 2h = 0.1cm, the 2×2D-th model reproduces
qualitatively well the diamond-shape of the depolarisation front from the 3D model.
Though, there remain some important discrepancies, notably in the direction per-
pendicular to the fibres. The isotropic propagation of the 1×2D model is qualita-
tively far from the 3D solution.

In the thick tissue, 2h = 0.4cm, the same comments hold: discrepancy in the
direction transverse to the fibre for the 2×2D-th model, and irrelevance of the
1×2D model.

As a conclusion, for physiological thicknesses, the theoretical coupling coeffi-
cient provides insufficient coupling between the layers: the 2×2D-th model does
not reproduce the transmural perturbations of the propagation due to the boundary
layers, and therefore the fronts in each layer tend to propagate independently one
from another.

Remark 12 (Intermediate potential zones). The averages used to compare the 3D
model with the surface models keep track of the boundary layer at the interface.
for instance, in Figure 3 for 2h = 0.4cm, the potential rises up to an intermediate
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(a) 2×2D-th (b) 3D (c) 1×2D (d) Isolines

Figure 3: Snapshot at t = 11ms for different thicknesses of the transpotential maps
for the 2×2D-th, 3D and 1×2D models. Columns (a)-(b): 2×2D-th and 3D mod-
els. Top: layer 1. Bottom: layer 2. Column (c): 1×2D model. Column (d): isoline
Vm = −40mV for the 2×2D-th (blue), 3D (black) and 1×2D model (purple). We
recall that the 3D model is averaged through the tickness of each layer, i.e. for
z ∈]0,h[ or z ∈]−h,0[.
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value below the usual plateau in the direction perpendicular to the fibres, in each
layer. It results from the averages, for z ∈]0,h[ or z ∈]− h,0[, in the depolarized
regions located inside the boundary layer.

The 2×2D-opt model: an improvement of the 2×2D-th model. Figure 4 dis-
plays snapshots of the 2×2D-opt and 3D models at time t = 11ms, together with
the isolines Vm =−40mV, for a series of thicknesses ranging from 2h = 0.01cm to
2h = 0.4cm.

2h = 0.01 cm 2h = 0.04 cm

2h = 0.07 cm 2h = 0.1 cm

2h = 0.2 cm 2h = 0.3 cm

(a) 2×2D-opt (b) 3D (c) Isovalues

2h = 0.4 cm

Figure 4: Comparison of the 3D and 2×2D-opt models for different thicknesses
2h in the layer 1. Columns (a) and (b): 2×2D-opt and 3D models. Snapshot of the
potential on the first layer after 11ms. The 3D solution is averaged in the thickness
of each layer. Column (c): isolines Vm =−40mV for each model at t = 11ms.

The 2×2D-opt does not provide noticeable additional information in the 2h =
0.01cm case, as compared to the 2×2D-th model. For thicker tissues, the 2×2D-th
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model is improved, mainly in the transverse direction: the comparison between
Figures 3 and 4 shows that the 2×2D-opt localizes more accurately the front than
the 2×2D-th model, even for large thicknesses. It also better reproduces the elec-
trical state of the boundary layer of the 3D model.

7.2.2 Convergence of the surface models
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Figure 5: Convergence of the relative L2 error on activation maps. The relative
error measured in L2 norm on the activation map for the 2×2D-opt (blue), 2×2D-
th (green) and 1×2D (red) models vs the thickness of the tissue, in log-log scale.

Figure 5 displays the L2(ω) relative error on the activation maps, namely the
cost function J for the 2×2D-opt, 2×2D-th and 1×2D models.It shows that the
three surface models actually converge towards the 3D solution when h decreases.
For the smallest thickness, 2h = 0.01cm, a slight discrepancy persists between the
1×2D and 2×2D-th models: the former has a relative error around 2%, whereas
the latter has an error less than 0.8%. Although the difference was not noticeable
on Figures 3 and 4, the 2×2D-th model is more accurate even for very thin tissues,
in accordance with Theorems 2 and 3.

For 2h ≤ 0.02cm, the relative error of the 2×2D-th increases. This is most
probably a numerical issue, related to the anisotropy introduced in the 3D meshes
for thin layers. The optimization then unduly compensates the numerical errors.
But there is no contradiction with Theorem 3, which is stated with L2(ω) norm on
potential maps, and not on activation maps.
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We recall that the 2×2D-th model has a better theoretical order of convergence
than the 1×2D model (Theorems 2 and 3). This is confirmed in Figure 5. The slow
convergence of the 1×2D model can be furthermore explained: whereas a quasi-
isotropic propagation is observed in the 3D model for 2h ≤ 0.06, which should
promote the convergence of the 1×2D model, the different transient regimes, that
immediately follow the stimulation, yields a delay of a few milliseconds between
the activation fronts (time-asymptotics).

For 2h ≥ 0.1cm, that is within the physiological range, the relative errors of
the 1×2D and the 2×2D-th models are comparable and both superior to 10%.
The large error of the 2×2D-th model mainly comes from the bad approximation
of the transverse electrical current. The 2×2D-opt model better accounts for the
transverse electrical activity, and its error remains under 4.5%. This illustrates the
relevance of the optimization procedure proposed in section 7.1.5.

Table 3 finally shows that the computational cost is reduced by a factor in the
range 25 to 70 for the 2×2D models, and 70 to 170 for the 1×2D model, with
respect to the 3D model.

7.2.3 Study of the locally optimal coupling coefficient

In order to investigate the capabilities of the 2×2D-opt model, we first want to
investigate the discrepancies of coupling coefficient between the 2×2D-th and
2×2D-opt models for a given geometry. We next want to check how accurate
is the optimal coupling coefficient computed on a slab of tissue in different physi-
ologically relevant geometrical situations.

2h (cm) 0.4 0.3 0.2 0.1 0.09 0.08 0.07
γth (mS cm−3) 7.5 13.3 30 120 148.1 187.5 244.9
γopt (mS cm−3) 68.2 84.4 113.5 185.4 202.3 225.4 261.6

0.06 0.05 0.04 0.03 0.02 0.01
333.3 480 750 1333.3 3000 12000
326.0 440.5 818.9 1329.9 2479.4 7487.3

Table 5: Optimized coupling coefficient for a tissue panel. 2h (cm) : total thickness.
γth (mS cm−3): theoretical coupling coefficient computed with the formula defined
in Equation (46). γopt (mS cm−3) : optimized coupling coefficient.

Optimal coupling coefficient in a slab of tissue. As observed on Figure 6, for
2h≤ 0.07cm, the optimal and theoretical coupling coefficients are almost the same.

28



10−2 10−1

2h (cm)

101

102

103

104

C
ou

pl
in

g
co

ef
fic

ie
nt

(m
S.

cm
−

2
)

γth

γopt

prisme
cylinder

Figure 6: Optimized γopt (green) and theoretical γth (blue) coupling coefficients
versus the thickness 2h. The blue and pink bullets represent the optimal coefficient
γopt for the trapezoı̈dal and cylindrical geometries for a thickness 2h = 0.1cm.

The slight divergence for 2h < 0.03cm may be due to discretization issues as dis-
cussed below. For physiological tissue thickness, 2h > 0.1cm, the theoretical co-
efficient γth obviously underestimates the coupling between layers, as explained in
§7.2.1. Specifically, the theoretical two-layers model underestimates the transverse
component of the current in the boundary layers near the interface. This current
is exactly the coupling term in the model. Hence the transverse, coupling current,
increases linearly with the coupling coefficient. This explains the success of the
optimization procedure proposed above.

Robustness in a cylindrical domain. On the cylindrical domain, of thickness
2h = 0.1cm, we can either use the optimal coupling coefficient γopt found on the
parallelepipedic slab of tissue, or compute the optimal coupling coefficient γopt−cyl
suited to this geometry. But at the expense of a new optimization procedure. As
observed on Figure 6 (pink bullet), the two coefficient are finally close one to an-
other: γopt−cyl = 198.9mS cm−3 while γopt = 185.4mS cm−3. This justifies that we
can use the optimized coefficient from the simpler parallelepipedic slab on a more
general geometry.

Snapshots taken after 11ms in the 3D and 2×2D situations are shown in Fig-
ure 7. The columns (a), (b), and (c) refer, respectively, to the two-layers models
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Figure 7: Snapshot of a depolarization sequence in the 3D and two-layers cylin-
drical models. Potential maps taken 11ms after stimulation. (a)-(b) : two-layers
model with an optimized coupling respectively computed in the slab (γopt =
185.4mS cm−3) and in the cylindrical geometry(γopt−cyl = 198.9mS cm−3). (c) :
3D model.
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Frontal view Lateral view

(a) Layer 1 (b) Layer 2 (a) Layer 1 (b) Layer 2

Figure 8: Isolines Vm =−40mV for the 3D (black), 2×2D-opt in the slab (red) and
cylindrical (green) geometries.

with, the optimized coefficient γopt , the optimized coefficient γopt−cyl , and to the
3D model. The corresponding isolines are shown on Figure 8. Both figures prove a
very good accordance between the three models. In details, the 2×2D model with
γopt−cyl concentrates the error in the axial direction of the cylinder, while the 2×2D
model with γopt model has its error in the circumferential direction. The relative
error on activation maps respectively to the 3D model are precisely: 2.4% for the
γopt−cyl model, and 2.5% for the simpler γopt model. As a comparison, the relative
error found for the γopt model on the 0.1 cm thick parallelepipedic slab of tissue is
equal to 3.3%.

Robustness for variable thickness. Again, we can compute the optimal cou-
pling coefficient γopt−trap suited to the variable thickness geometry (blue bullet on
Figure 6). We find that γopt−trap = 187.6mS cm−3, while γopt = 185.4mS cm−3 has
not changed. Note that 2h = 0.1cm is only the mean thickness of the trapezoid
geometry. Hence a third model is possible, by assigning a new coupling coefficient
γopt−nh(x,y) depending on the thickness of the tissue at location (x,y). This coeffi-
cient can be read on the green line on Figure 6, and is actually computed by linear
interpolation from the results of Table 5. Figures 9 and 10 display the snapshots
and isolines at t = 11ms for this test case. The homogeneous models, coefficients
γopt = 185.4mS cm−3 (red isoline) and γopt−trap = 187.6mS cm−3 (green isoline),
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(a) 2×2D-opt, slab (b) 2×2D-opt, prism (c) 2×2D-opt,
variable

(d) 3D

Figure 9: Snapshot of a depolarization sequence in the 3D and two-layers models.
Potential maps taken 11ms after stimulation. (a)-(b) : two-layers model with an
optimized coupling respectively in the slab (γopt = 185.4mS cm−3) and in the prism
geometry(γopt−trap = 187.6mS cm−3). (c): 2×2D model with a non homogeneous
coupling coefficient: in each point, the coupling coefficient is an approximation of
the optimal coupling coefficient for the thickness of the tissue in that point. (d):
3D model.
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(a) layer 1 (b) layer 2

Figure 10: Isolines Vm = −40mV for the 3D (black), 2×2D-opt model with a
computation of the coupling coefficient in the slab (red) and trapezoidal (green)
geometries and the non homogeneous 2×2D model (blue). The green and the red
curves are superimposed and can not be distinguished.

are indistinguishable. The associated relative error on the activation map is exactly
5.7% for both models. The model with variable coefficient γopt−nh(x,y) slightly
improves the results: it notably reproduces the dissymetry of the propagation, and
always improves the localizaton of the front except in the lower part of layer 2. The
relative error on the activation maps is equal to 5.1%. Again, the optimized coeffi-
cient from the simpler perpendicular slab can be used with reasonable accuracy.

7.3 Discussion

The idea of a multi-layer model applied to atrial electrophysiology modelling is
not new in itself: a similar two-layers model was proposed in [Jacquemet, 2004,
Gharaviri et al., 2012]. But its rigorous mathematical derivation, including dimen-
sionless formulation, asymptotic derivation and convergence properties, together
with the numerical exploration of its properties are original. The proofs of the con-
vergence theorem can be found in a more theoretical paper [Coudière et al., 2014]
or in [?].

7.3.1 Advantages of the 2×2D models

Mathematical foundations. Both convergence rate and asymptotic behaviour of
the 2×2D model are specified. That ensures the consistency of the model and gives
us a solid foundation for linking the physical properties of the atrial tissue to the
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parameter values of the 2×2D models. It also better characterizes the modelling
assumption, specially the transmural heterogeneities, then giving a better control
on the simplification introduced in the model.

2×2D vs 1×2D models. The 2×2D model supplies several improvements to the
usual 1×2D surface models. It gives a better approximation order than the mono-
layer model, both theoretically — cf Theorems 2 and 3— and numerically — cf
Figure 5. It then improves the approximation of the 3D model for small thick-
ness. But overall, the optimization process provides acceptable approximations for
physiological thickness of tissue, outside the range of convergence of the surface
models.

The key improvement of the bilayer model over the usual surface model lies
in the distinction of individual reaction and diffusion terms in the layers. This is
important to trigger transmural gradients and dissociation of the electrical activity,
together with complex anisotropic propagation patterns as observed in [Vetter et al.,
2005]. The usual surface model, even enhanced by addition of the second order
term ε2u(k)1 would not easily account for these phenomena.

2×2D vs 3D models. The main advantage of the 2×2D models is the weak com-
putational load, comparatively to the 3D model. With the numerical protocol ap-
plied in this paper, the speed-up is 50 on average.

This amount may be overestimated comparatively to other discretizations, due
to the choice of simplicial elements in the finite element method. That leads to
matrices with larger bandwith than given by other elements, such as quadrangles.
Nevertheless, modelling the three dimensional features with a 3D model requires
to include a sufficient number of three dimensional elements in the thickness of the
tissue, weighting the computational load.

Existing 3D physiological models of the atria are implemented with 3D hex-
ahedral elements [Tobón et al., 2013]. Despite the presence of several layers
of 3D elements, this kind of model may fail to capture transmural electrical be-
haviours, due to the small number of transmural freedom degrees. Two alternative
approaches can be developed. 1) A sufficient number of freedom degrees can be
added through the thickness of the tissue, deteriorating computing speed. 2) The
transmural conduction coefficient can be tuned ad hoc. A too small number of
transmural elements leads to homogenize the endo-epi distribution of potential.
In order to model transmural effects, this homogenisation process can be counter-
balanced by an heuristic method similar to the process presented in §7.1.5. The
transmural conduction coefficient of the 3D elements could be optimized to fit a
3D propagation computed with a finer transmural space step.
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7.3.2 Physiological relevance

Understanding the underlying physics. The dimensional analysis from sec-
tion 3.1 gives a good understanding of how the trade-off between reaction and dif-
fusion could trigger complex three-dimensional propagation patterns. If the trans-
verse diffusion is predominant, the overall propagation front is isotropic. On the
contrary, the propagation front will be diamond shaped when the transverse dif-
fusion and the transmembrane current have a balanced magnitude. As the source
function intensity varies through the action potential, the relative strength of the
source and diffusion terms also varies. That lead to different front shapes at de-
polarisation and repolarisation time. The 2×2D models correctly model this phe-
nomenon.

Coupling coefficient. The coupling coefficient gathers several physiological in-
formations such as the transmural conductivity or the thickness of the tissue. The
definition of its value is then a key point. This paper gives a theoretical value for
vanishing thickness, and a heuristic method, based on an optimization procedure,
that enhances the value for physiological thickness —see §7.2.3.

We point out that the choice of the threshold value θ — cf §7.1.5 — that deter-
mines the location of both fronts in the optimization process is important. Tuning
θ allows us to approximate the pulling effect of the boundary layer which, by con-
necting the propagation front of both layers, increases the velocity of the propaga-
tion orthogonally to the fibre direction in each layer— cf Figure 11 for illustrations.

Physiological models. Endo-epi electrophysiological heterogeneities can easily
be included in a 2×2D model.

First, transmural variations of the structure of the tissue such as fibre direction,
conduction properties, pathological heterogeneities — fibrosis, ...— are modelled
by the layer-dependent conductivity tensor σ (k). But functional heterogeneities can
also be considered through layer-dependent source functions f (k) and g(k). Like-
wise, it is possible to deal with atrial tissue where the distinct layers have different
thicknesses.

Those transmural heterogeneities can be easily dealt with in the theoretical
study of the 2×2D model. Remark 2 and 10 show that a simple rescaling can
be included in the expression of the theoretical coupling coefficient to take into
account endo-epi thickness difference in the asymptotic regime. But they can also
be included in the heuristic optimization of the coupling coefficients. The 3D gold
standard must contain the structural or functional properties that we want to model.
The 2×2D-opt model is then designed to best fit the 3D propagation.
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Figure 11: Significance of the choice of θ . Snapshot of the 3D solution averaged
in the thickness of the layer 1 at t = 11ms for 2h = 0.4cm and isolines Vm = 0mV
(white), −40mV (green) and −70mV (black). As emphasized in Remark 12, the
averaging of the 3D potential maps through the thickness of the tissue leads to
intermediate potential zones, which reflects the boundary layer potential variation.
If θ is too high, e.g. θ = 0mV, the isoline Vm = θ does not cross the intermediate
potential zone. That would mean that the propagation front that we want to fit does
not involve the boundary layer potential. If θ is too low, e.g. θ = −70mV, all
the intermediate potential zone is considered as a depolarized tissue, which is not
physiological. For θ = −40mV, the isolines include a part of that boundary layer
trace and the 2×2D-opt model can take it into account.
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The 2×2D model can also deal with full endo-epi electrical disconnections.
That situation is observed e.g. in the pectinate muscle zone of the right atrium:
those muscles are attached to the epicardial layer in their extremities but can be
free of connections in their middle. The coupling coefficient has just to be set to
zero in that region.

The experiments presented in §7.2.3 show that the optimal coupling coeffi-
cient γopt computed with a slab of tissue as gold standard leads to a 2×2D-opt
model that can correctly approximate the depolarization spread in a curved or in
a thickness-varying geometry. Computing the optimal coupling coefficient with a
curved or a thickness-varying 3D gold standard gives very similar results. More-
over, a non homogeneous distribution of the coupling coefficient in the 2×2D-opt
model enhances the approximation of the propagation in a trapezoidal geometry.
Then, choosing a slab of tissue as the optimization gold standard presents several
advantages. First, this method is obviously more tractable than constructing an
accurate 3D model of the atria as gold standard. Secondly, this 2×2D-opt model
is robust respectively to the main geometrical deformations observed in the atria:
curvature and thickness variations.

7.3.3 Limitations

The accuracy of the two-layers model may be enhanced. We could e.g. perform a
better approximation of the flow of current through the interface by adding other
layers or including the next terms of the asymptotic expansion of the one-layer
model.

We chose to work with the monodomain model all along this paper. This choice
has been guided by the sake of clarity of the presentation and notations. The two-
layers bidomain model can be derived by using the same process, once having
defined the flux transmission condition through the interface of both layers, for the
intra and extra cellular media.

The transmural heterogeneities that are well rendered by the two-layers model
are mainly located in small parts of the atria (pulmonary veins, left atrium posterior
and anterior walls, pectinate muscles, and Crista terminalis). Hence, coupling the
two-layers model in that zones to the usual surface model in the remaining tissue
might improve the computational efficiency without degrading the accuracy of the
overall method.

Complicated fibre structures observed in the pulmonary veins, such as blend-
ing or crossing layers or tongues of tissue may fail to be described by a two-layers
representation. A specific description should be designed to deal with those struc-
tures. Furthermore, several transatrial structures such as the Bachmann’s bundle
may lead to a non manifold geometry in a surface representation. An asymptotic
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analysis could be performed on a 3D description of the insertion of that bundle in
the fibre distribution of the atrial chamber to derive the asymptotic transmission
conditions that should be imposed at the interface between the 2D representations
of the bundle and the chambers.

8 Conclusion

We studied the mathematical derivation of a two-layers model of atrial electrophys-
iology, and we explored numerically its convergence for vanishing thickness. The
two-layer model is improved by an optimal tuning of its coupling coefficient. The
robustness of this optimal two-layers model to geometrical variations — curvature,
non homogeneous thickness— is finally assessed. We then obtain solid mathemat-
ical basis to promote the use of such a model in physiological and pathological
situations.

This 2×2D model is interesting to construct anatomically and structurally ac-
curate models of the human atria. Such a model should be based on clinical im-
ages that give the two-dimensional surfaces, that are complemented by histological
descriptions. An optimal coupling coefficient distribution should be constructed,
relying on an a priori knowledge of the structure and the function of the atrial
tissue.

The 2×2D model gives us a set of tools able to model pathological patterns
such as epi-endo electrical dissociation, propagation blocks in one layer or the
alteration of the propagation velocity given by endo-epi heterogeneities, which are
expected to play a major role in the initiation and the perpetuation of arrhythmias.
A first model for that purpose was presented in [Labarthe et al., 2014]. We believe
that it can be an appropriate tool to study the structure-to-function relations in the
atria, from a medical point of view.
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Brouillette, Pierre L. Pagé, and Stanley Nattel. Method for simultaneous epi-
cardial and endocardial mapping of in vivo canine heart: Application to atrial
conduction properties and arrhythmia mechanisms. Journal of Cardiovascular
Electrophysiology, 12(5):548–555, 2001.

Weber dos Santos and F. Dickstein. On the influence of a volume conductor on the
orientation of currents in a thin cardiac issue. In Isabelle Magnin, Johan Mon-
tagnat, Patrick Clarysse, Jukka Nenonen, and Toivo Katila, editors, Functional
Imaging and Modeling of the Heart, volume 2674 of Lecture Notes in Computer
Science, pages 1009–1009. Springer Berlin / Heidelberg, 2003.

Jens Eckstein, Bart Maesen, Dominik Linz, Stef Zeemering, Arne van Hunnik,
Sander Verheule, Maurits Allessie, and Ulrich Schotten. Time course and mech-
anisms of endo-epicardial electrical dissociation during atrial fibrillation in the
goat. Cardiovascular Research, 89(4):816–824, 2011.

Ali Gharaviri, Sander Verheule, Jens Eckstein, Mark Potse, Nico H.L. Kuijpers,
and Ulrich Schotten. A computer model of endo-epicardial electrical dissocia-
tion and transmural conduction during atrial fibrillation. Europace, 14(suppl 5):
v10–v16, 2012.

Michel Haissaguerre, Kang-Teng Lim, Vincent Jacquemet, Martin Rotter, Lam
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of varying ablation patterns in a simulation model of persistent atrial fibrillation.
Pacing and Clinical Electrophysiology, 30(3):314–321, 2007.

41



Stanley Rush and Hugh Larsen. A practical algorithm for solving dynamic mem-
brane equations. Biomedical Engineering, IEEE Transactions on, BME-25(4):
389–392, 1978.

Tsukasa Saito, Kenji Waki, and Anton E. Becker. Left atrial myocardial exten-
sion onto pulmonary veins in humans: anatomic observations relevant for atrial
arrhythmias. Journal of cardiovascular electrophysiology, 11:888–894, 2000.

N.G. Sepulveda, B.J. Roth, and J.P. Wikswo Jr. Current injection into a two-
dimensional anisotropic bidomain. Biophysical Journal, 55(5):987 – 999, 1989.

Catalina Tobón, Carlos A. Ruiz-Villa, Elvio Heidenreich, Lucia Romero, Fernando
Hornero, and Javier Saiz. A three-dimensional human atrial model with fiber
orientation. electrograms and arrhythmic activation patterns relationship. PLoS
ONE, 8(2):e50883, 02 2013.

Leslie Tung. A Bi-Domain Model for describing Ischemic Myocardial D-C Poten-
tials. PhD thesis, MIT, 1978.

Frederick J. Vetter, Stephen B. Simons, Sergey Mironov, Christopher J. Hyatt, and
Arkady M. Pertsov. Epicardial fiber organization in swine right ventricle and its
impact on propagation. Circulation Research, 96(2):244–251, 2005.

Christian W. Zemlin, Bogdan G. Mitrea, and Arkady M. Pertsov. Spontaneous
onset of atrial fibrillation. Physica D: Nonlinear Phenomena, 238(11-12):969 –
975, 2009.

42


	Introduction
	The monodomain equations
	Fibre distribution and dimensional analysis
	A two-layers slab of myocardium
	Dimensionless monodomain problem

	Asymptotic one layer model
	Asymptotic two layers model
	Averaged equations through the thickness of each layer
	Definition of the two layers model

	Error estimate for the surface models 
	Error estimate on the enhanced monolayer model
	Error estimate on the two-layers model

	Numerical illustrations
	Numerical method
	Test cases: general protocol
	The reference geometry
	Electrophysiological background
	Resolution
	Optimizing the coupling coefficient
	Additional geometries

	results
	Qualitative behaviour
	Convergence of the surface models 
	Study of the locally optimal coupling coefficient 

	Discussion
	Advantages of the 22D models
	Physiological relevance
	Limitations


	Conclusion

