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Abstract. We apply the Gradient Schemes framework to the approximation of
the incompressible steady Navier-Stokes problem. We show that some classical
schemes (Crouzeix-Raviart, conforming Taylor-Hood and MAC) enter into this
framework.

1 Introduction

The gradient scheme framework has been shown to apply to linear and non-
linear elliptic and parabolic problems in [8, 4, 5, 7]. This framework has the
benefit of providing common convergence and error estimates results which
hold for a wide variety of numerical methods (finite element methods, non-
conforming and mixed finite element methods, hybrid and mixed mimetic fi-



2 R. EYMARD, P. FERON AND C. GUICHARD

nite difference methods. . . ). Checking a minimal set of properties for a given
numerical method suffices to prove that it belongs to the gradient schemes
framework, and therefore that it is convergent on the aforementioned problem.
The aim of this paper is to propose one extension of this framework to the
incompressible steady Navier-Stokes problem:

ηu− ν∆u+ (u · ∇)u+∇p = f − div(G) in Ω
div u = 0 in Ω

u = 0 on ∂Ω
(1)

where η ≥ 0, ν > 0 is the coefficient of kinematic viscosity, u represents the
velocity field, p is the pressure and

Ω is an open bounded Lipschitz domain of Rd (1 ≤ d ≤ 3),
f ∈ L2(Ω) and G ∈ L2(Ω)d.

(2)

In the following, if F is a vector space we denote by F the space F d. Thus,
L2(Ω) = L2(Ω)d and H1

0(Ω) = H1
0 (Ω)d, and we define the spaces

E(Ω) = {v ∈H1
0(Ω), divv = 0},

and
L2

0(Ω) = {v ∈ L2(Ω),

∫
Ω
v(x)dx = 0},

Definition 1.1 (Weak solution to the incompressible steady Navier-Stokes problem)
Under Hypotheses (2), (u, p) is a weak solution to (1) if

u ∈H1
0(Ω), p ∈ L2

0(Ω),

η

∫
Ω
u · v̄ dx+ ν

∫
Ω
∇u : ∇v̄ dx+ b(u, u, v̄)

−
∫

Ω
p divv dx =

∫
Ω

(f · v̄ +G : ∇v̄) dx, ∀v̄ ∈H1
0(Ω),∫

Ω
q divu dx = 0, ∀q ∈ L2

0(Ω),

(3)

where “·” is the dot product on Rd, if τ = (τ (i,j))i,j=1,...,d ∈ Rd×d and σ =

(σ(i,j))i,j=1,...,d ∈ Rd×d, τ : σ =
d∑

i,j=1

τ (i,j)σ(i,j) is the doubly contracted

product on Rd×d and b(u, v, w) =
d∑

i,j=1

∫
Ω
ui(∂ivj)wj dx.
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Lemma 1.2 (Properties of b) Under Hypotheses (2), b is a trilinear continu-
ous form on H1

0(Ω)3 and

b(u, v, v) = 0, ∀u ∈ E(Ω), v ∈H1
0(Ω), (4)

b(u, v, w) = −b(u,w, v), ∀u ∈ E(Ω), (v, w) ∈H1
0(Ω). (5)

as it is mentioned in [14, Ch.II, Lemma 1.2 and 1.3]

Remark 1.3 Under Hypothese (2), the existence of a weak solution (u, p) to
Problem (1) in the sense of Definition 1.1 follows from [14, Ch.II, Theorem
1.2]. Moreover, [14, Ch.II, Theorem 1.2] gives us the uniqueness of the weak
solution (u, p) dealing with a condition on ν, f and G.

2 Gradient Discretisation for the incompressible steady Navier-
Stokes problem

Definition 2.1 A gradient discretisation D for the incompressible steady Navier-
Stokes problem, with homogeneous Dirichlet’s boundary conditions, is defined
by D = (XD ,0,ΠD ,∇D , YD , χD , divD), where the discrete spaces and oper-
ators are assumed to verify the following properties.

1. XD ,0 is a finite-dimensional vector space on R.

2. YD is a finite-dimensional vector space on R.

3. The linear mapping ΠD : XD ,0 → L2(Ω) is the reconstruction of the
approximate velocity field.

4. The linear mapping χD : YD → L2(Ω) is the reconstruction of the
approximate pressure, and must be chosen such that ‖χD · ‖L2(Ω) is a
norm on YD . We then set YD ,0 = {q ∈ YD ,

∫
Ω χDq dx = 0}.

5. The linear mapping ∇D : XD ,0 → L2(Ω)d is the discrete gradient
operator. It must be chosen such that ‖ · ‖D := ‖∇D · ‖L2(Ω)d is a norm
on XD ,0.

6. The linear mapping divD : XD ,0 → L2(Ω) is the discrete divergence
operator.

The coercivity of a sequence of gradient discretisations ensures that a dis-
crete Sobolev inequality, a control of the discrete divergence and a discrete
Ladyzenskaja-Babuka-Brezzi (LBB) condition can be established, all uniform



4 R. EYMARD, P. FERON AND C. GUICHARD

along the sequence of discretisations. Note that the following definition is dif-
ferent from the one which is given in [3], due to the presence of the nonlinear
term.

Definition 2.2 (Coercivity) Let D be a discretisation in the sense of Defini-
tion 2.1. Let q ∈ N and let CD and βD be defined by

CD = max
v∈XD,0,‖v‖D=1

‖ΠDv‖Lq(Ω) + max
v∈XD,0,‖v‖D=1

‖divDv‖L2(Ω), (6)

where 2 ≤ q ≤ ∞ if d = 2 and 2 ≤ q ≤ 6 if d = 3.

βD = min{ max
v∈XD,0,‖v‖D=1

∫
Ω
χDq divDv dx : q ∈ YD ,0

such that ‖χDq‖L2(Ω) = 1}.
(7)

A sequence (Dm)m∈N of gradient discretisations is said to be coercive if there
exist CS ≥ 0 and β > 0 such that CDm ≤ CS and βDm ≥ β, for all m ∈ N.

The following definition is not needed in [3], since, thanks to the linearity
of the Stokes problem, only weak convergence results are needed, and strong
convergence is resulting from the problem (by convergence of norms).

Definition 2.3 (Compactness) Let D be a gradient discretisation in the sense
of Definition 2.1. A sequence (Dm)m∈N of gradient discretisations is said to be
compact if, for all sequence (um)m∈N ∈ XDm,0 such that ‖um‖Dm is bounded,
the sequence (ΠDmum)m∈N is relatively compact in L2(Ω).

The consistency of a sequence of gradient discretisations states that the
discrete space and operators “fill in” the continuous space as the discretisation
is refined.

Definition 2.4 (Consistency) Let D be a gradient discretisation in the sense
of Definition 2.1, and let SD : H1

0(Ω) → [0,+∞), and S̃D : L2
0(Ω) →

[0,+∞) be defined by

∀ϕ ∈H1
0(Ω) , SD(ϕ) = min

v∈XD,0

(
‖ΠDv − ϕ‖L2(Ω) + ‖∇Dv −∇ϕ‖L2(Ω)d

+‖divDv − divϕ‖L2(Ω)

)
and

∀ψ ∈ L2
0(Ω) , S̃D(ψ) = min

z∈YD,0

‖χDz − ψ‖L2(Ω).



GRADIENT SCHEMES FOR NAVIER-STOKES PROBLEM 5

A sequence (Dm)m∈N of gradient discretisation is said to be consistent if, for
all ϕ ∈ H1

0(Ω), SDm(ϕ) tends to 0 as m → ∞ and, for all ψ ∈ L2
0(Ω),

S̃Dm(ψ) tends to 0 as m→∞.

Definition 2.5 (Limit-conformity) Let D be a gradient discretisation in the
sense of Definition 2.1 and let WD : Z(Ω) 7→ [0,+∞), with

Z(Ω) = {(ϕ,ψ) ∈ L2(Ω)d × L2(Ω), divϕ−∇ψ ∈ L2(Ω)},

be defined by

∀(ϕ,ψ) ∈ Z(Ω) ,

WD(ϕ,ψ) = max
v∈XD,0
‖v‖D=1

(∫
Ω

[∇Dv : ϕ+ ΠDv · (divϕ−∇ψ)− ψdivDv] dx
)
.

A sequence (Dm)m∈N of gradient discretisations is said to be limit-conforming
if, for all (ϕ,ψ) ∈ Z(Ω), WDm (ϕ,ψ) tends to 0 as m→∞.

3 Gradient Scheme

Definition 3.1 (Discretisation of the trilinear form) Let D be a gradient dis-
cretisation in the sense of Definition 2.1, we define BD : X3

D ,0 7→ L2(Ω) such
that

BD(u, v, w) =
d∑

i,j=1

∫
Ω

Π
(i)
D u∇(i,j)

D vΠ
(j)
D w dx.

We define our discrete bilinear form bD following the same idea as the Finite
Elements method:

bD(u, v) =
1

2
(BD(u, u, v)−BD(u, v, u)) .

Remark 3.2 (Property of the discrete bilinear form) With the previous def-
inition of bD , we can remark that we get the same property as the continuous
trilinear form which is that for all u ∈ XD ,0, we get that bD(u, u) = 0.

The gradient scheme for the incompressible steady Navier-Stokes problem
is based on a discretisation of the weak formulation (3), in which the continu-
ous spaces and operators are replaced with discrete ones (in (3), we wrote the
property “divu = 0” using test functions to make clearer this parallel between
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the weak formulation and the gradient scheme). If D is a gradient discreti-
sation in the sense of Definition 2.1 and bD is defined by Definition 3.1, the
scheme is given by:

u ∈ XD ,0 , p ∈ YD ,0,

η

∫
Ω

ΠDu ·ΠDv + ν

∫
Ω
∇Du : ∇Dv dx+ bD(u, v)

−
∫

Ω
χDp divDv dx =

∫
Ω

(f ·ΠDv +G : ∇Dv) dx, ∀v ∈ XD ,0,∫
Ω
χDq divDudx = 0, ∀q ∈ YD ,0.

(8)
Our main result for the incompressible steady Navier-Stokes problem is the
following theorem.

Theorem 3.3 (Convergence of the scheme) Under Hypotheses (2), let (Dm)m∈N
be a sequence of gradient discretisations in the sense of Definition 2.1, which
is consistent, limit-conforming, coercive and compact in the sense of Defini-
tion 2.4, 2.5, 2.2 and 2.3. Then for any m there exists at least a solution
(uDm , pDm) to (8) with D = Dm and bD defined by Definition 3.1. Moreover,
as m→∞, there exists a subsequence of (Dm)m∈N again denoted (Dm)m∈N
and there exists (u, p), weak solution of the incompressible steady Navier-
Stokes problem (1) in the sense of Definition 1.1, such that

• ΠDmuDm converges to u in L2(Ω),

• ∇DmuDm converges to∇u in L2(Ω)d,

• χDmpDm converges to p in L2(Ω).

4 Examples of gradient discretisations

In this section, we assume that the boundary of Ω ⊂ Rd is polygonal.

4.1 The MAC scheme on rectangular parallelepipedic meshes

The Marker-And-Cell (MAC) scheme [11, 12, 15] can be easily defined
on domains whose boundary is the union of subparts parallel to the axes.
We assume that it is possible to grid Ω using a finite number of rectangu-
lar parallelepipedic gridblocks. We then define the gradient discretization
D = (XD ,0, YD ,ΠD , χD ,∇D , divD) (the detailed notations are given in [3]
in a 2D case) by:
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1. XD ,0 is the set of families of real values at the center of all internal faces
of the mesh, discretizing the velocity in the normal direction to the face,

2. YD is the set of all families of real values at the center of the gridblocks,
discretizing the pressure,

3. ΠD is the piecewise constant reconstruction of the velocity in the d stag-
gered rectangular parallelepipedic grids, whose centers of the gridblocks
are the centers of the faces normal to each of the d basis vectors of Rd,

4. χD is the reconstruction of the pressure, piecewise constant in all the
gridblocks,

5. ∇Du = (∇(i,j)
D u)i,j=1,...,d is a piecewise constant approximation of the

j-th derivative of the i-th component of the velocity, defined by a stan-
dard finite difference formula,

6. divDu = Tr(∇Du) =
∑d

i=1∇
(i,i)
D u.

We then have the following result.

Proposition 4.1 (Gradient Scheme properties of the MAC scheme)
Let Dm = (XDm,0, YDm ,ΠDm , χDm ,∇Dm , divDm) be defined as in the begin-
ning of this section, with hDm tending to 0 as m→∞. Then Dm is a gradient
discretisation in the sense of Definition 2.1 and the family (Dm)m∈N is con-
sistent, limit-conforming, coercive and compact in the sense of Definitions 2.4,
2.5, 2.2 and 2.3.

Proof
The proof of the consistency and limit-conformity as well as the proof of

the lower bound on βD can be found in [3].
Since the definition of ∇D is corresponding to the discrete gradient of a

finite volume scheme on a mesh satisfying the usual orthogonality property,
the bound on CD is a consequence of the discrete Sobolev inequality obtained
in [1] or [6, Lemma 9.5 p. 790] (the control of divD by∇D is then trivial from
its definition).

The compactness property is resulting from [6, Lemma 9.3 p. 770]. �

4.2 The Crouzeix-Raviart scheme

We consider a simplicial mesh T . The Crouzeix-Raviart scheme [2] can be
seen as a gradient scheme with the gradient discretisation defined by:



8 R. EYMARD, P. FERON AND C. GUICHARD

1. XD ,0 is the vector space containing the families of elements of Rd de-
fined at the center of all internal faces of the mesh,

2. YD is the vector space containing the families of real values defined at
the center of all simplices,

3. The linear mapping ΠD is the nonconforming piecewise affine recon-
struction of each component of the velocity,

4. The linear mapping χD is the piecewise constant reconstruction in the
simplices,

5. The linear mapping ∇D is the so-called “broken gradient” of the veloc-
ity, defined as the piecewise constant field of the velocity’s gradients in
each simplex,

6. The linear mapping divD is the discrete divergence operator, with piece-
wise constant values in the cells equal to the balance of the normal ve-
locities over the cell’s faces.

Proposition 4.2 (Gradient Scheme properties of the Crouzeix-Raviart scheme)

Let (Tm)m∈N be a sequence of triangulations of Ω satisfying a regularity
condition. We define Dm = (XDm,0, YDm ,ΠDm , χDm ,∇Dm ,divDm) as above
for T = Tm, and we assume that hTm → 0 as m → ∞. Then Dm is a gra-
dient discretisation in the sense of Definition 2.1 and the family (Dm)m∈N is
consistent, limit-conforming, coercive and compact in the sense of Definitions
2.4, 2.5, 2.2 and 2.3.

Proof The coercivity is a consequence of the results given in [10]. The
consistency and limit-conformity are proved in [3]. The compactness property
is proved in [9, Theorem 3.3]. �

4.3 Conforming Taylor–Hood scheme

The Taylor–Hood scheme [13] on a simplicial mesh T (triangles in 2D or
tetrahedra in 3D) can be seen as the gradient scheme corresponding to the
gradient discretisation D = (XD ,0, YD ,ΠD , χD ,∇D , divD) defined by:

1. XD ,0 is the vector space of the degrees of freedom of the P2 finite el-
ement for the d components of the velocity vanishing at the boundary,
and YD is the vector space of the degrees of freedom of the P1 finite
element for the pressure,
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2. ΠD and χD are respectively the conforming reconstructions of the ve-
locity and the pressure obtained through the P2 and P1 finite element
basis functions,

3. ∇D and divD are the conforming operators∇D = ∇◦ΠD and divD =
div ◦ΠD .

Proposition 4.3 (Gradient Scheme properties of the Taylor-Hood scheme)
Let (Tm)m∈N be a sequence of triangulations of Ω satisfying a regularity con-
dition. We assume that every mesh element has at least d edges in Ω and that
hTm → 0 as m → ∞. Let Dm = (XDm,0, YDm ,ΠDm , χDm ,∇Dm ,divDm)
corresponding to the conforming Taylor–Hood scheme for Tm. Then Dm is a
gradient discretisation in the sense of Definition 2.1 and the family (Dm)m∈N
is consistent, limit-conforming, coercive and compact in the sense of Defini-
tions 2.4, 2.5, 2.2 and 2.3.

Proof Since the scheme is conforming, the coercivity and the compactness
properties are a consequence of the continuous Sobolev inequalities and Rel-
lich theorem. The consistency and limit-conformity are proved in [3]. �
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