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Tunneling in a uniform one-dimensional superfluid: Emergence of a complex instanton
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In a uniform ring-shaped one-dimensional superfluid, quantum fluctuations that unwind the order parameter
need to transfer momentum to quasiparticifphonon$. We present a detailed calculation of the leading
exponential factor governing the rate of such phonon-assisted tunneling in a weakly coupled Bose gas at a low
temperaturd’. We also estimate the preexponent. We find that for small superfluid velocitigdsddyeendence
of the rate is given mainly by expc,P/2T), whereP is the momentum transfer amg is the phonon speed.

At low T, this represents a strong suppression of the rate compared to the nonuniform case. As a part of our
calculation, we identify a complex instanton whose analytical continuation to suitable real-time segments is
real and describes formation and decay of coherent quasiparticle states with nonzero total momenta.

DOI: 10.1103/PhysRevA.71.013602 PACS nuntber03.75.Kk, 03.75.Lm

[. INTRODUCTION we go around the ring. Phonon-assisted transitions to this
state will destroy superfluidity. Our aim will be to calculate
Many one-dimensiona(1D) systems share a universal the rate of such transitions at low temperatures.
low-energy description based on a complex order parameter Except for a brief summary in Sec. Ill of results for QPS'’s
[1]. Probably the most familiar example is a superfluid con-induced by a localized perturbation, we consider here only
fined to a narrow channel, but—due to the well-known “du-uniform 1D superfluids. In the ring geometry, momentum in
ality” between bosons and fermions in one dimension—ahe longitudinal(x) direction is conservedMore precisely,
similar description exists also for fermionic fluids. we should be talking about angular momentum, but this dis-
In accordance with the Bogoliubov-Hohenberg theoremtinction will not be important for our purposesOur goal
no long-range order is possible in these 1D systems, but th@as to see how momentum conservation influences the QPS
precise nature of fluctuations that prevent ordering deservesrate. Some results of this work have been presented in Ref.
further discussion. At zero temperatufB=0), perturbative [4]. Here we describe a different, more systematic method,
fluctuations of the phase of the order paramébdionons in  which confirms the results ¢#], but also allows us to obtain
a superfluid cause a power-law decay of spatial correlations.new results.
At T+#0, the decay becomes exponential. However, a de- At T=0, the 1D gas can be mapped on a two-dimensional
tailed study{ 1] of the T=0 case reveals additional contribu- (2D) model by introducing the imaginauclidean time 7.
tions to the correlation functions of the form of a power law QPS’s are vortices—or instantons—of this 2D model. Al-
multiplied by an oscillating factor. though this model is similar to the usudl model, the to-
While for weakly coupled Fermi systems these oscillatingpological term drives it into a different universality class.
terms can be seen as a 1D version of Friedel oscillations, foFhe XY model, as the coupling is increased, undergoes a
weakly interacting bosons their interpretation is not immedi-Berezinsky-Kosterlitz-Thoules¢BKT) transition. In con-
ately obvious. It is possible, however, to interpret them as drast, in the Bose gas, the correlation functigt$ evolve
consequence of nonperturbative fluctuations: instantons arontinuously. We show in Sec. Il that, for a weakly coupled
guantum phase slig®QPS’9. The oscillatory dependence on uniform Bose gas at zero temperature, instantons and antiin-
the spatial coordinate can be traced to the fesadily veri-  stantons are bound in pairs by a linear, rather than logarith-
fied; see belowthat each QPS changes the linear momentunmic, potential. An extrapolation of this result to strong cou-
of the superfluid component. pling implies that the breaking of instanton pairs,
The momentum production by QPS’s results from un-characteristic of a BKT transition, is not possible, a conclu-
winding the order parameter and the corresponding changson consistent with the expected Galilean invariance of the
in the supercurrent. More formally, it can be viewed as aT=0 state.
consequence of a special type of topological term present in Instanton—anti-instanton pairs can unbind if there is an
the action of a 1D weakly coupled Bose gas. We discuss thiadditional source of energy, besides the energy resulting
term in detail in the next section. from unwinding the supercurrent. This possibility may be of
A complementary picture is obtained by looking at theinterest for analog models of gravif$,6]. It has been sug-
Lieb-Liniger spectruni2] (for a gas with as-function repul-  gested that one can use cold Bose gases to model cosmologi-
sion). Their results apply for periodic boundary conditions— cally interesting spacetimég,8]. If one models an expand-
i.e., ring geometry—which is the only case we consider hereing spacetime by varying(decreasing the coupling g
In the limit L—o, whereL is the length of the ring, the between the atoms, as proposed in IR&F. then some of the
spectral branch associated with solitd8$ touches zero at energy supplied by this variation may become available for
momentumP=27n, wheren is the gas density. This state enhancement of QPS’s. We note also that a decreasgge in
corresponds precisely to the order parameter winding once aswuses the principal length scale of the gas—the “healing”
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length é&—to grow. Since the cross-sectional radR®f the NO)
channel is fixed, the 1D regim&> R can be reached.
Another possibility, which is the main subject of this pa-

per, is when the additional source of energy is a low but T2r @
nonzero temperature. We discuss this case in detail in Sec.
IV. Thermally activated phase sliggAPS’s) in the ring ge- S e -

ometry have been considered, in the framework of the nucle-
ation theory of Refs[9-11], in Ref.[12]. In the present -2+ @
paper, we concentrate on lower temperatures where, as we
will see, the main mechanism for phase slips is thermally
asslsted quantum tunneling, rather than_ the overbarrler aCtJ:'ircles) and anti-instantongshaded circlgsare shifted relative to
vation. One should note, ho_wever, that in the case mhla.t . _each other in space hyx. At a finite temperaturd, the period of
form Bose gas, even at higher temperatures, the ongmaﬁ1e configuration i7= B=1/T
Langer-Ambegaokar-McCumber-HalperiCtAMH ) theory '
[10,11) probably needs to be modified, in order to accountijons. Although in the case of 1D superconductors the rel-
for momentum conservation. We discuss this point further inevance of this channel is somewhat obscured by scattering of
the conclusion. quasiparticles on the boundaries and disorder, it may still be
If the gas is uniform(or nearly uniform—the confining of interest for interpretation of experimerftss,17] on super-
potential is smooth on the scalg and its variations are conducting nanowires.
smal), QPS’s have a rather distinctive experimental signa- A much studied example of inelastic tunneling in field
ture. Indeed, as we will see, the unwinding momentBm theory is instanton-induced scattering in gauge theories and
from the supercurrent in such a uniform system is accompatheir low-dimensional analod48]. Indeed, the complex in-
nied by transferring a compensating momentum to the phostanton that we will find in this paper is a generalization of
non “bath.” This is equivalent to creating a flow of excited the (rea) periodic instanton$19] to the case when there is
atoms, which can in principle be detected experimentallynontrivial momentum transfer from the background to qua-
For example, we can start with a state with no supercurrergiparticles.
and let a QPS create a unit of supercurrent and a compensat- In Ref. [4], we have identified periodic Euclidean con-
ing normal flow in the opposite directidicounterflow. The  figurations(of period B=1/T, whereT is the temperatupe
counterflow can be detected by the standard momentumwhich consist of chains of instantons and anti-instantons
imaging—i.e., opening the trap in one place. Note that ncshifted relative to each other by amoygf2 in the imaginary
counterflow is expected for QPS’s induced by a highly local-time and by soméx in space; see Fig. 1. The tunneling rate
ized perturbation, which breaks both momentum conservahas been obtained by integrating ov&x. Unlike the case
tion and the Galilean invariangealculation of the rate for without momentum transfef19], this integration is non-
this case has been done in Rlf3]). In that case, the final trivial. Nevertheless, the leading exponential factor obtained
state of phonons has zero total momentum. in this way has a simple physical interpretation. It can be
However, perhaps the most immediate experimental coninterpreted as the rate of tunneling between quasipatrticle
sequence of the momentum balance during QPS’s in a uniphonon states with momentaP/2 and P/2, so that the
form system is that it leads to a strong suppression of the ratehange in the momentum of phonons precisely compensates
compared to the case of a localized perturbafiéh The  the momentum produced by unwinding the supercurrent.
reason is that the momentum released by unwinding the su- In the present paper, we derive this leading result for the
percurrent can only be absorbed by relatively high-energyunneling exponent and the first correction to it, in what we
phonons states, which are scarcely populated at a low tenmegard as a more systematic way. First, using a method de-
perature. veloped in Ref[19], we obtain the tunneling exponent for a
From the theoretical perspective, one would like to undermicrocanonical statéfixed energyE). Then, we integrate the
stand in general how to compute the rates of instanton pramicrocanonical rate ovelE with the Boltzmann factor
cesses that transfer momentum between the background aagp(-E/T) to obtain the canonicalfixed T) rate. This
excitations. The question is not limited to QPS’s in narrowmethod allows us to find directly the energies corresponding
superfluid channels but arises also in other contexts. For exe the dominant phase-slip paths. In particular, we can show
ample, one can view the momentum transfer by QPS'’s as that at sufficiently lowT thermally assisted tunnelin¢as
1D analog of the Magnus force in higher dimensions. Thisopposed to overbarrier activatipiis indeed the dominant
force acts on vortices moving in a superfluid and is known tgphase-slip mechanism.
suppress vortex tunnelingl4]. It is natural to ask if the We also discuss in detall the instanton solution that satu-
suppression can be circumvented by an inelastic procesates the rate at nonzero momentum tran&fefhis instan-
similar to the one we consider here. Furthermore, additionaon corresponds to a complex saddle pointAarand is itself
interesting physic$4] emerges in cases when the order pa-complex. Unlike the periodic instanton of RgL9)], it has no
rameter is coupled to fermions, as in the case of BCS supeturning points. Nevertheless, it is possible to identify the
conductors. The coupling to fermions opens a new channéhitial and final states connected by this complex instanton
of momentum production, due to the fermion zero modes aénd to reconstruct their real-time evolution. On the real-time
the instanton core. This channel is a 1D analog of “momensegments, the solution is real and can be interpreted as for-
togenesis{15] by vortices in 2D arrays of Josephson junc- mation and decay of coherent phonon states corresponding to

FIG. 1. A periodic configuration, in which instantoriepen

013602-2



TUNNELING IN A UNIFORM ONE-DIMENSIONAL... PHYSICAL REVIEW A 71, 013602(2005

the tunneling end points. A direct computation confirms that From Eq.(4), we can read off the speed of Bogoliubov's
the total momenta of these states af®/2 andP/2. phonons. We use units in which this speed is equal to 1:

o= (gm*2=1. (5)
Il. TOPOLOGICAL TERM In these units, Eq(3) takes the form

A weakly coupled 1D Bose gas can be described by the £=(2gn)L. (6)

Gross-Pitaevsky(GP) Lagrangian, which in the Euclidean ) ) )
signature reads If it were not for the first term, the Lagrangidd) would

be that of the usuaKY model. In that theory, individual
_ 1 2.9 14 2 QPS’s can occur a=0 in any current-carrying state, due to
Le= o4+ ;n|<9x¢| + §|$| - ulyt®. @D the energy released by unwinding the supercurrent. This ap-
o ) ) _ plies regardless of the strength of the couplindvioreover,
Here =it is the Euclidean timem is the mass of the par- gt 3 sufficiently strong couplingvhich is outside the domain
ticles, g>0 is the coupling constant, and s the chemical = ¢ our semiclassical methpdnstanton—anti-instantofiA )
potential. We assume that the system is subject to perlodlﬁairs unbind even in vacuum, resulting in a BKT phase tran-

boundary conditions in the direction: y(x+L) = (). sition.

Instantons are vortices of this theory in the 7) plane, However, the first term in Eq4) drastically modifies the
corresponding to nontrivial winding of the phase of the orderproperties of the theory. We refer to this termtagological
parameten). It is of the same nature as the topological contribufi®t] to

The number density of the gasfis- 4"y and can be writ-  the Magnus force acting on vortices in higher dimensionali-
ten as a sum of the average densitand a fluctuation:  ties (2D and 3D. As we will now see, in 1D, for Euclidean
n(x,t)=n+an(x,t). We consider the uniform case when paths that contain instantons, the topological term gives a
(the averaggis independent ok, but will comment briefly  nonzero contribution to the Euclidean action. Being purely
on the effect of nonunifornm, such as resulting from a con- imaginary, that contribution can be interpreted as the inter-
fining potential. ference phase between QPS'’s at different locations.

At large wavelengths, fluctuations of the density are The simplest case when the the topological term can be
small, soy has well-defined modulus and phase. We writeseen to play a role is a single 1A pair, with the instanton

=(n+8n)"2exp(if) and, expanding in smaiin, obtain located atd=(xo, 79 and the anti-instanton a’ =(x}, 75).
N Away from the cores, the density is approximate)yand the
Le=i(n+n)d,0+ %((wy + g(bh)z_ (2) phase, in the absence of supercurrent, is

. - . Opaid X, 7) = ardx = Xo +i(7=70)] = (x§ <= x5").  (7)
Note that we impose no restrictions on the size of fluctua-
tions of 6, in accordance with the absence of long-rangeFor periodic boundary conditions, this is an approximation,
order. Note also that in Eq2) we have omitted a term con- Which applies when all of the distances involvext—xg],
taining gradients obn. This is correct in the leading long- [X“~X6'|, and[xg—x5’|, are much smaller than the length
wavelength approximation, but at shorter wavelengths tha@f the system.
term will convert the purely acoustic dispersion law into the ~ The time derivative of the configuratidi) is

full dispersion of Bogoliubov’s quasiparticl¢20]. X = Xo

The approximation2) applies away from the instanton 9 0pair= 7 T (2 = (X5 —x5"). (8)
core, but not at the core itself. This is because the size of the (X=Xo)™+ (7= 7o)
core is determined by the healing length Integrating overr andx, we obtain the topological action

5: (4gmn)_l/2= (3) Aspair: - 27Tin(X0 - X(I)) (9)

while the long-wavelength approximation corresponds taSince the variable conjugate to the position is momentum,
wave numberk< ¢! and so does not resolve the core. we can interpret the actiof®) as resulting from production

In this approximation, the density fluctuations are Gaussef momentum,
i [ in th h i [. Thi
ian and can be integrated out in the path integra is P =2mn, (10)

amounts to using the equation of motion f@r and substi-

tuting the result,on=—-(i/g)d.6, back into Eq.(2). In this by the antiinstanton and its absorption by the instanton.

way, we obtain a phase-only theory with the Euclidean La- The above interpretation is of course nothing new and is
grangian readily confirmed by a direct calculation. Noether's momen-
n tum following from the real-time version of Eql) is

Zm(é’xﬁ)z- (4)

Lg~ing. 0+ l(1970)2 +
29 P=-j J dxif o, (12)

Instantons are singular solutions of this theory. The presence

of such singular solutions means that, even though the LaFhe difference between the initial and final momenta can be

grangian (4) is quadratic in g, the theory remains non- written as an integral over a large closed contour in(¢he)

Gaussian. plane:
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ticle physicg 18]. Another way to look at it is to think about
Pfin = Pini = = i§ d-y'vy, (12 the IA pair as abounce[23], describing the decay of a meta-
¢ stable current-carrying state. Then, E#j7) is the usual ex-
where C runs clockwise. If the contour encloses a singlePression for the decay raf@4], adapted to take into account
instanton, without any phonon excitations, then away fromthe presence of the “soft” collective coordinates and Ax

the core the density is, and Eq(12) equals precisely —2n.  corresponding to the IA separation.
As it is written, Eq.(17) does not include the preexponent

and can be used to calculate only the leading exponential
Ill. QPS RATE AT T=0 factor in the rate(We will describe how to estimate the
preexponent laterAssigning the main role to the exponen-
In general, the metastable states connected by the instafia| factor implies the use of a semiclassical approximation
ton are current carrying, which implies that the phase and requires that the couplimgshould be small. However,
winds an integer numbeN times over the length of the  we will see that the main result—the absence of QPS’s in a

system. A suitable generalization of H@) is then uniform system aff=0—can be plausibly extrapolated to
o larger couplings.
(X, 7) = OpaidX, 7) + TNX. (13) The integral oveAx is standard 25]:
o v J/_
The second, winding, term corresponds to the superfluid ve- J :OS(PX)(IKIZ = ( P ) A —K,(P|AT]),
locity o (C+AP) 2|A7) T(v+3)
27N (18
V=—-. (14 .
mL where for our case i2+1=2x7/g. Equation(18) has to be

integrated further oveA r with exp(—EA 7). We see that this

integral is convergent fde < P and divergent foE > P. This

general case can be considered by similar methdes V mear’ls that o <P the IA pair h"?‘s a finite separation; Fha_t IS,
QPS’s are always bound in pairs and cannot occur individu-

<1, the field of the IA par 1S only weakly affected by the ally. Note that the potential binding QPSE& P is linear in
superflow, and we can continue to use expressipnHow- d A

ever, the presence superflow leads to an additional contrib
tion to the action. To logarithmic accuracy, we obtain

In what follows, we will always assume that is much
smaller than the speed of sourg=1 (although the more

Interpretation of the threshold &=P is simple. Since
instantons produce momentum, in a uniform system an iso-
. 27 d 1 lated instanton has to be accompanied by production of qua-

Spair= —IPAX+EA7+ _|ng + O(‘>, (159  siparticles(Bogoliubov's phononsthat carry that momen-
g g tum away, so that momentum conservation is satisfied. But

where Ax=xy—%}, Ar=7y—7), d=(Ax*+A7)Y2 is the producing phonons with total momentuf requires, in a

instanton-antiinstanton separati@ris the healing lengti3), = weakly coupled gas, energy of at le&stP. Note that the

and condition of weak coupling is essential here. The coherent
5 state of phonons that forms as a result of tunneling decays
E=Ey= (2m)"Nn =pPV. (16) into individual quasiparticles, and in the weakly coupled case

mL we know their dispersion law—it is given by Bogoliubov’s

. , . formula[20]. So we can explicitly verify that the energy of
Note thatEy is precisely the energy released by a single ch a final state always exceeds its momentimes c.).

instanton, as it unwinds the order parameter and reduces the . " . : . : .
is in general will not be true in a strongly interacting

supercurrent. - system(e.q., liquid heliury.
The use of logarithmic accuracy means that we assum Now, if E is given by Eq.(16—i.e., the only source of

the separatiord to be much larger than the instanton COre iy is indi fth —th it
size:d> &. This condition has to be verifiea posteriorifor gy 1S unwinding of theé supercurrent—the conditton -
; . ) >P can never be satisfied in the superfluid state. This is
typical configurations. . . . . . . :
To compute the rate of QPS at zero temperature, we nee%PY'ous in the limitv<1, in W.h'Ch we have derived the pair
to integrate over all values afx andA~: action (15), but the expr_essm_)mlG) in fac'F holds al_so at
largerV. We see thaE > P impliesV>1, while according to
Landau’s criterion the superfluid state must havel.
R~ |mJ dA7dAX exp(— Syain - (17)  Thus, in the absence of additional sources of energy, the
superfluid state is always in the regirke<P, and atT=0
The rate computed in this way will be the inclusive rate; i.e. individual QPS’s cannot occur.
it will take into account the possibility of quasiparticle pro-  Although we have obtained this result within the weak-
duction in the final state. In other words, Ed.7) can be coupling limit, the simple energetics underlying it allows us
viewed as an optical theorem for inelastic tunneling. Thisto speculate that it extends to arbitrary valuegofn other
relation between the imaginary part of the partition sum ofwords, unlike thexXY model, the uniform 1D Bose gas has no
the IA pairs and the rate of inelastic tunnelif&®] is familiar ~ BKT phase transition. This conclusion matches the observa-
from the theory of instanton-induced cross sections in partion that the correlation function of the Bose gas, found in
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ImAz
At Rioec ~ exp{ %Tln(Tg)} (23)

*

and applies affé<1. In the context of cold Bose gases,
perturbed by an external potential at a length scale shorter
_ , _ thang, this result was obtained by a different method in Ref.
FIG. 2. Integration contour passing through the saddle p0|nt13], where in addition the preexponent was estimated.
21). Because sharply localized perturbations that lead to these
relatively large rates are unlikely to occur naturally in
Ref. [1], evolves continuously withy. It is also consistent trapped atomic gases, it makes sense to inquire about gentler
with the expected Galilean invariance of the 0 state. sources of momentum nonconservation, such as a smooth
The requirement for vortex unbindindgz>P, can be variation of the trap potential. Since this question is some-
avoided in a nonuniform system, where momentum consefyhat outside the main subject of this paper, we will only
vation need not be exact, for example, as a result of a shorzddress it qualitatively. Namely, we return to the actid8),
scale perturbation. For a weak perturbation with length scalgut now we do not assume thatandP in it are given by the
of order of or shorter tharg, the exponential factor in the Specific expressionS]_G) and (10) This describes qua"ta-
rate, to the same logarithmic accuracy, can be found by intively a situation when some of the momentum is absorbed
serting a delta function ohx under the integral in Eq17), by the potential. Note that for a smooth potential typical
so that values ofP will be close, even though not exactly equal, to
om Ar the _value(lO). Nevertheless, the reginte>P can now be
Rioe ~ Imf dArexp(— EAT- —In—). (19  realized.
g ¢ The same setup can be used to model the presence of an

Equation(19) coincides with the instanton rate that has additional source of energy: we simply incre@seelative to

been computed, for a microcanonical initial state of energyFd- (16)- One possible such source is the time dependence of

E, in Ref.[19]. That computation has been done in the Con_the parameters, which, as discussed in the Introduction, is of

text of the Abelian Higgs model in the limit when it effec-
tively reduces to th&XY model. The salient point of the cal-
culation is that the integrall9) is divergent(which, as we

have seen, corresponds to unbinding of the 1A)paid has . . . .
to be defined by analytical continuation. The analytical con—lr.eaS(l)ln to t?'nkblth"?‘t tpg expresb3|(315) with Eh> P Wul b? i
tinuation produces a finite imaginary pafor a similar dis-  't€rally applicable inthis case, but one may hope that it wi

cussion in the context of dissipative quantum mechanics of &t I'Easg Timic f}o”_‘e of thle m:in f_eactjurfgs gf tt)he sitt:at_ionl.
single degree of freedom, see REZ6]) s before, the integral oveAr is defined by analytica

Thus, we formally continue Eq19) to real-time separa- continuation to real\t=-iA7, so that Eq(17) becomes

ReAt

interest for analog models of gravity. For example, decreas-
ing the couplingg reduces the interaction energy, and one

could imagine that some of the released energy becomes
available for enhancement of QPS’s. Of course, there is no

tion At=—-iAr, . Ax? - At?
A R~ f dAtdAxePAx-iEt exp(—glnT>. (24)
- At
Rioe ~ f dAt exp(— iEAt-—In— ) (20) _ _
g ¢ For E> P, the integrand has a saddle point at
and then observe that the integrand has a saddle point at 27 (E,P
J P (ALAX) = (At Ax,) = i 22 P) (25)
2 g E°-P
At=At.=i—. (21 . . .
gE Deforming the integration contours so that they pass through

) ) ) ) the saddle poinfcf. Fig. 2, we obtain the exponential factor
Deforming the integration contour so that it passes throughy, the rate as

the saddle point, as shown in Fig. 2, and replacing the expo-
nent with the saddle-point value produces the following ex- R~ exp{ gln[(Ez— Pz)gzgz]},

ponential factof19]: (26)
27 where the exponent again has logarithmic accuracy.
Rioc ~ €X EI”(QEQ : (22) We reiterate that, just as all the other rates computed in

this section, Eq(26) is an inelastic rate—it corresponds to
The exponent here has logarithmic accuracy, meaning thairoduction of phonons with total momentumin the final
Eq. (22) applies only as long agEé< 1. state. It can be viewed as a generalization of §) to the

Although this section is devoted primarily to thle=0  case when there is a nonzero transfer of momentum to qua-

case, we also list here for future reference the counterpart afiparticles. Equatior{26) has the expected threshold &t
Eq. (22) for T#0. This can be obtained from the action of =P, reflecting the requirement that the production of
the periodic instanton of Ref19] by replacing the period phonons with momenturR takes at leasE=P of energy(in
with B=1/T or by integrating Eq(22) over E with the Bolt-  units where the speed of phonons in equal oAt E<P,
zmann factor ex@-BE). The result reads the integral in Eq(17) is convergent, has no imaginary part,
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and the rate is zero. Note that the threshold is exponential: if
the additional sources of energy and momentum are weak,

the differenceE-P is small, and the rate is strongly sup- N5 Ror
pressed. TIa

T

T4

IV. QPS RATE AT T#0 FIG. 3. Complex time contour for calculation of tamatrix in

the one-instanton sector. The circle denotes the instanton position.
A. Summary

We now turn to.the mai.n subject of this paper: calculgt_ion Now, the main difference from tunneling &0 is that at
of the QPS rate in a uniform system at a low, but finite, 1. o there are preexisting quasiparticles in the initial state,
temperaturd’. The boundary problem, satisfied by Bena-  5nq the tunneling path can make use of those. Indeed, we
trix in the one-instanton sector at#0, is quite involved, i show explicitly that tunneling now occurs between co-
and so we begin with a brief summary of the main points of,grent quasiparticle states with total momenta/2 and

the calculation. P/2, so that the full momentur® is transferred but only
We consider only the case of low temperatures: energyE~P/2 is required. This is in contrast to the=0
1 case, where quasiparticles with total momentRrhad to be
T<gn= > (27)  produced, requiring energy of at le&st P. Accordingly, the
§ leading exponential in the rate &t~ 0 is

It would be interesting to extend the calculation to higfier .
In the case of a shar%ly localized perturbation, we egxpect a R~ exi = PI2T+ (corrections], (28)
crossover to thermal activation &t-gn—i.e., when the pe-  where the corrections are controlled by the small parameter
riod B=1/T of the periodic instanton becomes comparable tor/gn. Using the improved dispersion law for quasiparticles
the core sizet; cf. Ref.[19]. In the Abelian Higgs model, will allow us to obtain the first of these corrections.
such a crossover was indeed found numericp2y]. In a
uniform Bose gas, where momentum transfer is necessary, it
is not clear how such a crossover will occur and, in fact, even
if it exists at all. In this case, the regioh~gn can presum- The starting point point of our calculation is the expres-
ably be also addressed numerically, but in the present papé&on[19] for the microcanonical density matrix of phonons,
we will limit ourselves to a few comments on it in the con- N
clusion. Pe~ dH-E), (29
An intuitive approach to the problem at temperatua in the coherent-state representation
would be to place the system on a cylinder of circumference
B=1/T—i.e., consider configurations that are periodic in the . ) .
Euclidean timer with period equal tg3. We have taken this Pe(b,a) =Nf dn ex%— |E7I+f dkaake'wk”>- (30
approach in Refl4]. However, to make this approach rigor-
ous, one has to prove that the configurations found in RefThe constant normalization factdf is chosen so tha®: has
[4] are indeed the dominant pathways for phase slips. A morthe property of a projector:
systematic approach, which we take in this paper, is to first « «
consider tunneling from a microcanonical state of a given Pé(b ) =Pe(b,a). (31
energy E and then integrate oveE with the Boltzmann — This makes it a projector on the subspace of a given energy
weight exg—BE). This second method allows us to find di- g
rectly the energies corresponding to the dominant paths and, The density matrix30) will be our initial condition on a
in particular, to show that in the regim@7) thermally as-  complex time contour shown in Fig. 3; cf. Rdfl9]. The
sisted tunneling is the dominant phase-slip mechanism, morgrecise form of the contour will only become important later.
important than overbarrier activatidif any). For now, all that matters is that there is some initial Euclid-
In addition, and curiously so, it turns out that to properly ean timer, and some finak;, both of which can be complex
explore the initial and final states connected by tunnelinthyt can be associated with the distant past and distant future,
and, also, to compute the first correction to the semiclassicq[aspectivew_ As typical in problems where the evolution

exponent requires using a more precise dispersion law fotarts in the distant past, the interaction is adiabatically

quasiparticles than the simple ‘?COUS“C. one. The method W&yitched off in the initial state, so that the Hamiltonidrin
use below allows us to take this modification into accoun !

without having to explicitly find the instanton solution cor- tEq' (29) is simply the Hamiltonian of free phonons. Accord-

responding to the more precise dispersion law. This methodg\%ﬁt;}:}ﬁg’;ﬂgsgg:]t'r;t;gi_(30) 's a resuit of the free
developed in Ref[19], is a sort of perturbation theory in :

energy—hence the limitation to the lowrange(27), where e"q 7a,) = a7 (32)

the characteristic energies are not too large. In the present '

paper, we adapt this method to the case when instantongherew, is the frequency of the phonon mode with momen-
transfer momentum to quasiparticles. tum k. The coherent states are normalized by the condition

B. Boundary problem and the modified instanton
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(blay=expb"a). Combining this condition with Eq(32), The approximate instanton solution, obtained from the
one can in fact quickly derive Eq30). long-wavelength Lagrangiaf@), is

Note that we fix by hand the initial energy, but not the )
initial momentum. The most probable momentum of the ini- 0(X = X0, 7= 7o) =ArGX — X +i (7= 70)]. (39

tial state will be determined dynamically: it is the total mo-
mentum of the statf,|a,) corresponding to the most advan-

tageous tunne_h_ng path._ . _ indeed large, much larger than the healing lengtlso the
The probability of an individual QPS is long-wavelength limit Eq.(4) is applicable. Nevertheless,
— 1 — J there are corrections to results obtained in this limit. In par-
Prob=TESPeS] = TrlSeSel, 33 ticular, for an accurate study of the saddle point that deter-
where S is the S matrix and Sc=SPg; we have used the mines the QPS rate, the instant(89) will have to be cor-
projector property(31). The tracing in Eq(33) is over all  rected(“modified”) to take into account a deviation of the
states that differ by unit of winding number from the super-quasiparticle dispersion law from the purely acoustic one.
current state on which the density matfi@0) is built. In Using Eq.(4) for Lg in Eq. (34), we find that the integra-
other words, Eq(33) is an inclusive probability. tion overv(x, 7) is Gaussian and gives rise to the free equa-
In the coherent-state representati8p,acquires a conve- tion of motion:
nient form[19]

We will see that at temperatures in the rarg®), the typical
wavelengths of quasiparticles participating in the process are

V2y=0. (40)
SE(b*,a):f dé,désDedn exp{—iEn+ Bi(a 7, 6,) The integrals over the boundary values wfresult in the
boundary condition$BC’s)
Tt . —_— .
+Bi(by, ) = f LEdT}. (34) oF (=K = 3(-K) = V2w,ex g, (41)
Note that besides the usual path integral over the intermedi- o (K) +?f(k) _ vyz—m(ewkrfb;. (42)

ate values of the field and the integral ovem, inherited
from the projector30), we have here also integrals over the Overdots denote derivatives with respect to the Euclidean
initial and final values of the field. These are needed to contime 7. Thus, the coherent-state parametarandb” deter-
vert & to the coherent-state representation: Bxpand  mine, through the BC'$41) and(42), the non-Feynman parts
expB; are the wave functions for the coherent stdggs“<”)  of the fluctuationv—the negative frequency part atand the
and(b|: positive frequency part at.
The Fourier transform of the instanton figl@9) itself is

B.(a,“", 6) = J dk{— }aka_kezwk(-fﬁn,) _ lwkz’i(k)héi(— K) computed at regﬂ-o, such that Re;<n<Re, and realx

2 2 and then analytically continued to arbitrary complex values.

. A We find
+ V2w 6 (K)e ) ¢ (35 1 1
“=0(k 1) = ——eK 0 oR g, (43)
1 1 v vE
B¢(by, 6) = f dk{— Eb’;bike?wkff - Ew@f(k)”af(— k)
1~ 1 .
=0(=k, 1) = == KRR k), (44)
[~ oot Vg V2w
+ \'Zwkbkﬁf(— K)e“™ (36)
where
where tildes denote spatidin our case, one-dimensional . 12
Fourier transforms—for example, R(K) = l(M) (45)
. :
B0 =k = | 2o, e 7
6,(k) = ok, 1) = \f,ze(x,ri)e : (37 Because the instanton field satisfies Feynman BC'’s in both

directions, it does not directly participate in the BG4l)

The restriction that the winding number changes by land(42). However, as seen from Eq85) and(36), it acts as

means that in Eq.34) we consider paths of the form a source for the coherent-state paramegeasidb’.
) In the expressior45),
!/_ _7T
0%, 7) = (X = X0, 7= 7o) + NGU(X, 7) + - ~NX, (38) o =K, (46)

where g, is the one-instanton solution andis a fluctuation in accordance with the fact that the solutit88) was ob-
that has zero total windingout may still include 1A pairs  tained from the long-wavelength limi#), in which the pho-
As before, we consider only relatively small, when the non dispersion is a simple acoustic one. As it turns out, im-
superfluid velocity(14) satisfies the conditiolV<1. portant phonon momenta in our case are of the order
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K ~ (527)—1/3 |n1/3z
fl

where 7> ¢ is the period of the configuratiotsee below
Since this momentum is much smaller thém, the acoustic

(47)

PHYSICAL REVIEW A 71, 013602(2005

they appear idys are fixed by the BC’s. The main idea of the
perturbative method developed in REE9] is that when the
typical momentak of excitations involved in tunneling are
small, the delocalized modes can be approximated by the
plane-wave solution given by E49) with v’ =0. We stress

approximation(46) is adequate for use in the coefficients that this “perturbative” method is not an expansion in small
R(k). However, as will be shown below, in the exponentialscouplingg. Instead, corrections to the plane wave, which are
exp(zwy,7) we need to use a more precise approximation tadue to scattering of the plane wave on the instanton core, are

Bogoliubov’s full dispersion law?20]

= (KR + KA Y2 = || + %|k|3§2. (48)

This means that the instanton that we will be using is in factfor

modified relative to the simple expressi@0). This modi-

fied instanton could in principle be obtained from the Fourie
transforms(43) and (44), in which we substitute the more

r

controlled by the parametées. According to the estimate
(47), this parameter is small. Thus, to the leading order, we
can simply neglect’ and use in Eq(34) the field(38) with

v given by the plane wave only.

Next, we observe that the tracing in the expresgi®s)

the probability can be done in the coherent-state repre-
sentation by integrating overandb with exp(-a’a-b’b) as

the measure, and this integration is Gaussian. After some
algebra, we obtain

accurate dispersion law48) in the exponents. One of the
advantages of the present approach, however, is that it will P A ALIE LW
allow us to obtain many interesting physical quantities with- ~ Prob~ f dxodtaaxgdtyd7d 7 €250 PAXTIENAIECW,
out ever needing the explicit form of the modified instanton. 52
52

C. Microcanonical rate

The solution to the boundary proble@0)—(42) is

where

W= | dKR[Z2 (k) o[ KAX 4 giAX-lad 2] (53
V(X, 7-) = J 5 /dk_(akewk(—ﬁin)ﬂkx + blewkr—ikx) + V,(X, T), J k| | ( ) [ ] ( )
VK We have introduced the following notatiod=»- 7', AX

=Xo— X4, At=tg—ty, KAX=wAt-kAX, and
where v/ is a solution to Eq(40) with Feynman BC's. A S(K) = (1 -t (54)
nontrivial v’ is only possible because the region of applica-
bility of Eq. (40) has a “hole” at the instanton core. To find R is given by Eq.(45). As in Eq.(24), we have regularized
v, we need, in principle, to consider the equation for thethe divergent integrals ovey and 7 by continuation to real
entire fluctuation of the order parameter, including both thefime.
modulus and phase. In other words, instead of B8) we The doubling of the number of integrations in E§2)
would write has to do with the presence of two path integrals in(B8):

one in S and the other irSL. If S is associated with an

(49)

U= (g + Sp)exp2miNXI/L), (50)

where ¢, is the instanton solution andy is a fluctuation.
Instead of the long-wavelength limi4), we would have to

instanton, therS, can be associated with an antiinstanton.
The first three terms in the exponent of E§2) are the sum
of the actions of a single instanton and a single antiinstanton.

consider the full Lagrangiafi). The integration ovesywill N particular, to logarithmic accuracy,
no longer be automatically Gaussian, but it will become such

in the leading semiclassical approximation. The correspond- S=—In—, (55)
ing equation for the fluctuation is 9 ¢
D25y =0 (51) where the size of the systelmis used as an infrared cutoff.

Comparing Eq(55) to the action(15) of an instanton—anti-
whereD? is the second-order differential operator in the in-instanton pair, we see thatnow appears in place of the 1A
stanton background. Fortunately, in what follows we will not separatiord. This is because we are now computing not the
need the explicit form of E¢(51), but only the general prop- action of a pair, but the sum of the individual actions, each of

erties of its solutions.
There are two types of solutions to E¢p1). Solutions

which is infrared divergent. As we will see, the dependence
on L will be removed by theW term (53), whose presence

satisfying the Feynman BC'’s are the zero modes of the opreflects the nonvacuum nature of the initial and final states of

eratorD?, associated with the collective coordinatgsand

phonons. This is similar to how the IA interaction Bt0

7o Of the instanton(39). The coefficients with which these reflects a nonvacuum final state, a correspondence well

zero modes occur by are arbitrary and need to be inte- known from the studies of instanton-induced cross sections

grated over. These integrations can be converted in the usu@l particle theory[18,19,22.

way into integration over the collective coordinates. Nontrivial integrals in Eq(52) are those over the relative
The other type of solutions are delocalized modes. ThespositionsZ, At, andAx. The remaining integrals, those over

contain non-Feynman parts, so the coefficients with whichthe “center-of-mass” positions, simply produce powers of

013602-8



TUNNELING IN A UNIFORM ONE-DIMENSIONAL... PHYSICAL REVIEW A 71, 013602(2005

space and time volumes, which are either absorbed in the i

normalization of the projectoPg or factored out when we At= 2 = 57'- (63
compute the probability per unit length and unit time—i.e.,

the rate. These are the same saddle-point relations as those found in

We begin by integrating ovef and At. These integrals Ref. [19], but obtained here for a somewhat more general

can be done by steepest descent, and the correspondigguation—when an instanton causes a nonzero momentum
saddle-point conditions have simple physical meanit®).  transfer.

In our case, the saddle-point conditions are The energy conditior(56) can now be rewritten in the
form
E=2 f dkok|R[%€“¢(cosKAX - 1)3.2, (56) 1" dkeR?
=—| —5 —=[cosiwZ/2)coskAx—1]. (64
2J_x sint(w772) oS exT2)coskax—1]. (64)
Ev= | dkeRIZ(EKAX = diord-iKaxys 57 This implicitly determinesZ in terms of energyE.
N f odRIA ) S The exponentV at the saddle point equals
These can be rewritten as * coskAx -1 2
W= | dKR? + . (65
Lc KR {sinh(wkm) e 72 + 1} €9
E:f dkarayay, (58) The integral of the second term is infrared divergent. Using

the longitudinal sizd. as an infrared cutoff, we find that to
logarithmic accuracy the integral i2#/g)In(L/7). In the
- ¥ exponent of Eq(52) for the probability W is combined with
Ex fdkwk(bkbk A, (59) twice the instanton actiofb5). As a result, the dependence
on L disappears.
wherea, a’, b, andb" are the saddle-point values corre- By a direct calculation, one can verify that the saddle-
sponding to the Gaussian integration that led to &8).  point expression$64) and (65) are related:
These values characterize the most probable initial and final

states and will be discussed in detail in the next subsection. IW E (66)
For now, we will only need the corresponding quasiparticle 9T Ax_ '
densities

This relation is convenient if we want to restdné (up to a

2sinz[katIZ -kAx/2] constant from an already calculatefl.

aa =R Sit(w,l12) ' (60) For realAx, the first integral in Eq(65) rapidly converges
in the ultraviolet. If we use the simple acoustic dispersion
_ law (46), this integral can be computed explicitly, and we
oSl = AY/2 +kAX/2] obtain, to logarithmic accuracy,
b.b=|R| : : (61)
Sin(wl/2)
Woo= - Zin cosh™= + 2t 67
where the upper sign correspondsatand the lower one to xT g neoshr g " €7

b. Notice that Eq(58) is a natural expression for the energy
of the initial state, while Eq(59) expresses energy conser- This is the same expression as obtained in Refby com-
vation: the change in energy of the phonon subsystem equajgiting the action of a certain periodic field. For an individual
the energy produced by unwinding the current. real Ax, Eq.(67) is indeed an adequate approximatior/\ip

It is of interest to consider both the case whenis real  but we still need to integrate ovéix. This will be done by
(which is its original domaipand the case whehix is purely ~ steepest descent, and we will see that on the corresponding
imaginary (which is where the saddle point for it will be (complex saddle point the integral does not converge as rap-
found). In either of these cases, the saddle pointgfandAt  idly. As a result, the saddle point cannot be thoroughly ex-

are purely imaginary—in particular, plored in the acoustic approximation: we will need the more
accurate dispersion law8).
(=iT, (62 Using Eg. (65), we obtain the following saddle-point

equation forAx:
with 7>0. As we will see, 7T is the period of the configura- . )
tion_ . 2 Sin kAX
. . - iP= dkKR|*———, (68)
In this paper, we consider only the limit when the energy - sinh(w,772)
Ey released by unwinding the current is much smaller than
the typical thermal energl (although the more general case which shows that the saddle poidtx lies on the upper
can be considered similajlyThen, the left-hand side of Eq. imaginary axis. Equatiof68) can be cast into a form similar
(57) can be set to zero, and we find that to Egs.(58) and (59):
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P ~ o . ~ o . E _ E E 2/3 2/32’
5= f dkkdla = L dkkBby. (69) E (37) In?. 77

The integrals here are the total momenta of quasiparticles ifihus, the energy of the optimal initial state is closePi®,
the initial and final states. Thus, on the one hand, 8§  but there is a correction, given by the right-hand side of Eq.
expresses momentum conservation and, on the other, shoWw&d).

that tunneling occurs between states with momenRi 2. Note that in the above calculation it was sufficient to use
We are interested in the range of energies, for which thé(k) obtained in the limit,=|k|: any corrections t&(k) due
periods satisfy to the modified dispersion law multiply the already small
w—k in Eg. (75 and do not affect the leading correction
T 1 =2¢ (70) computed in Eq(76). The same applies to any changes in
gn the relation betweem, b, andR that are due to scattering

(the second relation applies due to our choice of units Withcorrectlons.
c.=1). In this case, the saddle poiAk is of the form We can now use Ed66) to restore the exponekv gov-
s ' P erning the QPS rate. In doing so, we need to take into ac-
i count the fact that in Eq66) the derivative is at fixed\x,
Ax= §(T+ d), (7)) while Eq.(76) was obtained using the saddle paint, which
itself is a function of7. This difficulty can be circumvented
with 0< §< 7. Using the corrected dispersion 1d48) in the in the following way. We first rewrite EQ(66) as
exponents and the acoustig=|k| in the coefficientR, we

bring Eq.(68) to the form %_(W+ iPAX)|y=—E (78)
d

P «(” 1 1
57 P f dkexp(— Zk3§27'+ Ekﬁ)- (72)  and then observe that the partial derivative here can be re-
0 placed by the total, since the part due to the dependence of

We see that without the cubic term in the exponent the inteAX on 7 vanishes at the saddle point. Thus, integrating Eg.

grand would not have the correct largdsehavior. (76) over 7 we obtain not justV but the sumW+iPAx.
The integrand in Eq(72) has a maximum at=k.: For the full exponent
2z 20 73 W= - 25, +iPAX—iEL+ W, (79)
3T

which according to Eq(52) governs the exponential factor
Assuming that the maximum is sufficiently shatpis can be  in the rate(in the limit Ey—0), we find

confirmeda posterior) and approximating the integrand near R p 7 (37\13 T

it with a Gaussian, we obtain W= (E— —)T— —<_7) [1+0(In"Y3)]In?3=, (80)
2 29\ 2¢ £

2 T T N
K= —Z{In— +O<In In—)}. (74 where In=In(77¢). In the same approximation, we can use
T € § Eq. (77) to express the perio@ through energy:
Here we have use®=2wn=m/gé. The sharpness of the ¢ p 312 p
maximum and therefore the accuracy of this calculation is T= §< E_ P/2> InE_ B2 (81)

controlled by the large Y7 ¢).
Now, comparing the expressiolis8) for the energy and  Substituting this into Eq(80), we obtain our final expression

(69) for the momentum, we see that the main difference befor the exponent:

tween the two is due to the deviation ef from the strict

acoustic form. IndeedassumingEy— 0) we can write A _1( P )uzln P 82)
= o 4g\E-P/2 E-P/2’
E-5= f_ dk(wy =~ k)b by. (79 which applies at energies such that
E-P/2<P. (83

Using Eq.(61) with the saddle-point values @f At, andAx,
we see that fok<<0 the integral is rapidly converging, and The microcanonical rate is
the contribution from this region is small: most of the total

comes fromk>0, where the integral converges much more R~ exp(\i\/). (84)
slowly. using the same Gaussian approximation as abov?t corresponds to the optimal choice of the tunneling end
we obtain ) . . .
point among all states of a given eneifgylt is exponentially
P 1., _1/27’ larger that the estimaté26), which corresponds to sonmee
E--=-8kP)1+0|In"" |, (76)  priori, non optimal, way of injecting the energy. In particu-
2 4 3 I .
lar, the threshold for quasiparticle production has moved
or, substitutingk« from Eq. (74), from E=P in Eq. (26) to E=P/2 in Eq.(84).
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D. Initial and final states interpretation of periodic instantons in R¢19].

We have referred several timesTaas the period, but we Indeed, if we substituté=i7 and restrict our attention to
have not yet exhibited the periodicity of the field configura-the interval(0,772), we see that the fiel@89) can be inter-
tion. The field can be obtained by substituting the saddlePreted as the sum of fields from two periodic chains: one of
point values ofa and b’ into Eq. (49). In addition to deter- instantons, at locations=X,, 7=n7, and the other of anti-
mining the field, these parameters also determine the mo#tstantons, at locatione=xy, 7=(n+1/27, n=0, +1,... .
probable initial and final states. We now turn to a detailed If we keepx, andx, real, we have a family of periodic

discussion ofa andb”. configurations, such as the one shown in Fig. 1. These are the
The requisite saddle-point values are same configurations as found in Rg4] by imposing from
Arik the start the requirement of periodicity in the Euclidean time
1 — e@kAT AX R . X
_ _ R’ gm0 ikxgrioyy’ (85) 7. Here we have reconstructed them without any sagmi-
11— ori requirement, following instead the perturbative method
of Ref.[19]. We have seen, however, that the integral over
. g — gaATikax : Ax in the probability(52) is not determined by a real saddle
b, = —————————Re o'k, (86) P y(52) y

point. So, unlike the case considered[i®], none of these

X realx, configurations is an approximate classical solution.

The values fom' andb are obtained by reverting all signs in The approximate solution that determines the rate corre-

all exponentials and replacirig with R". Substituting these sponds to the complex saddle poitl) and is itself com-

expressions into Eq49) and settingy’ =0, we obtain the pjex.

fluctuationw. For realx, andxg, the integral in Eq(89) converges in the
The saddle-point solutiori63) fixes the difference be- ultraviolet, for anyr in the interval (0,772), even in the

tween 7, and 7;, but not the “center-of-mass” positiory  acoustic approximatiom,=|k|. Using the acoustic dispersion

+15)/2. The latter will in general have both real and imagi- js equivalent to approximating each instanton in the chain by

nary parts. The real part is fixed by the position of the timeg,(x—x,, 7—7,), where 6, is the unperturbed solutiofB89).

contour, on which theS matrix is defined. If we use the The sum oven can then be done explicitly, resulting [i4]
contour shown in Fig. 3, then the real part ffis zero, so

1-gaé

we can writery=itg, wheretg is real—it is the momentin 1 , )

real time at which the QPS tales place. Since the collective OadX, 7) = E[In(l —€'7X0) — In(1 - €70)

mode associated witty is not important for the present ar-

gument, we setg=0, so that —In(1 +€T%) + In(1 +€7X0)],  (92)
To= O, (87)

where all distances and times are measured in unifs 2fr.
= 1T2. (89) _This configuration_is explicitly periodic with _peripdﬁ and
its Euclidean action per period to logarithmic accuracy
This places the instanton at the origin, as indicated in Fig. 3equals W, .—~iPAx+2S,, whereW,. is the approximate ex-
With the help of Eqs(85) and (86), the fluctuationv is pression(67).

obtained as an integral ovég see Eq.(49). To similarly Now, consider the case when
represent the full fieldd=6,+\gv, we need also the Fourier
transform of the(modified instanton fieldd,. Note that this Xo=Xg+ AX/2, (93

has different forms in the regions>0 and 7<<0; cf. Egs.
(43) and(44). For definiteness, we consider- 0, where we
can use Eq(44) with 7 replaced byr. As a result, the field Xo=Xr— AX/2, (94)
can be written as
wherexg is real andAx is the saddle-point valu€/1). Note

i_a(x,r) :J /(&(eiwkg_ e ATKAX £ (5 Y3 (K), that thesex, andx; are complex conjugate to each other. In
Vg 2\ Ty this case, the integral in E¢89) is not convergent in the

(89) acoustic approximation, and we need to use the more precise
dispersion law(48).
where The sections of Euclidean time at+7/4, which are
B ()T 4. 1 e 77 HKOK) halfway between the instantons and anti-instantons, are ex-
f(x,7) = Re™ o HRemT o (90 pected to have a special significance. Since the complete
and3.(K) is defined in Eq(54). Note that> can be rewritten  Periodic solution determines the ratee., the amplitude
as squared, we should be able to cut it in half, a=+774, to
. obtain the tunneling path and then attach this tunneling path
_ iy to real-time evolution. A direct calculation shows that when
2(k) = 2 e (91) Xo andx; are complex conjugate, as in E¢83) and(94), the
=0 Euclidean velocityd.f at =714 is purely imaginary, while
This allows us to interpret Eq89) as a sum over instantons the field itself there is purely real. The same is truerat
and anti-instantons at various locations, in parallel with the-77/4. Therefore, the solution becomes purely real at
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7= + T4 +it’, (95)  assisted tunneling among all levels in the rari§8). This

_ ) _ ) has to compete with transitionsunneling or overbarrigr

with real t'—i.e., on the horizontal, real-time, segments of from |evels outside the rang@3)—i.e., those for whictE
the contour of Fig. 3. -P/2=0(P). However, the transition rate for such levels is

An immediate consequence of this result is that the rea'?suppressed at least by the Boltzmann factor (€EpT)
time segments do not contribute to the imaginary part of the—-exq—cP/T) wherec>1/2. On the other hand. as we will
action, so the tunneling exponent is determined by the Eu ’ ’

; ) Soon see, tunneling fronE~E. is suppressed, aB> &,
clidean segment alone. Another consequence is that the re fainly by exg—P/2T), so at these temperatures it is more
time evolution can be interpreted as formation and decay 0 portant '
the coherent fields corresponding to the tunneling end points. All that. remains, then, is to substitufe= 8= 1/T into Eq
For example, at=77/4+it’ the real-time solution, as a func- (80). We obtain ' ’ '
tion of t’ andx, can be read off the expressi80), in which '
we substitute Eq993) and (94) and the saddle-point values BP w38\ Ly 2B
of all the parameters. Note that due to the deviation of the Rt~ €X 2 [1+0(In"Y3]in? 3E ;
dispersion law from the purely acoustic one, the wave pack-
ets of quasiparticles do disperse, sd’at> £ the coherent (100
states become collections of free quasiparticles. This meanghich is our final result. Here In={B/ &); the preexponent is
that the expression&8) for the total energy ants9) for the  oqtimated in the next subsection.
total momentum should apply quite generally—i.e., even Reacall thatP=2mn, wheren is the average density. So,
with the scattering corrections included—despite the fact thagnqer the conditiorf27), the first term in the exponent of Eq.
these corrections will modify the S|mp’Ie relatio85) and (100 is much larger than the second. This term was obtained
(86) _betweerra andb’ and the instanton’s Fourier tra_nsform. in Ref. [4] from the approximate expressidf?7), which is

Finally, we note that, as clear from the expressi®®  pased upon using the acoustic dispersion law throughout.
and (61) for the quasiparticle densities, the initial stdf  opiaining the second, correction, term requires, as we have
t'—-o) contains mostly phonons with positive momenta, seen the use of the more precise dispersion (48y. The
while the final statdatt’ — =) mostly with negative. second term becomes of the same order as the figt-ag,
where the present approximation breaks down.

2 2g

E. Canonical rate

The leading exponential factor in the QPS rate at a tem- F. Estimate of the preexponent
peratureT=1/8 is obtained by integrating the microcanoni- ) ) . ) .
cal rate over energg with the Boltzmann weight: A naive d|menS|ona2I estlmate.for the preexponent in the
QPS rate would b& /&, wherel is the total length of the
_ system. In actuality, of course, there is a multiplicative cor-
~ PETR? . . . .
Rr dee R deéNB' (96) rection to this estimate. Note, however, that the estimate of
accuracy in Eq(100) implies that we have already omitted a
where variety of subleading terms, such as, for instance,
W, =W- BE. 97 2r L 2
s A ©7) o5+ 2t < 2B (101)
g B g ¢

Since all variational parameters in the expressit®) for W
are already at their saddle-point values, the total derivative ofwhich is the leading contribution in the case of a sharply

W with respect toE coincides with the partial—i.e., localized perturbation, but is only subleading in the uniform
. system. At small g, this term, omitted in thexponenbf the
dw rate, is more important than any correction to the naive pre-
dE =T (98) exponent that we may obtain. Nevertheless, we now present

an estimate of the preexponent, given the traditional interest
Thus, the exponential in Eq96) quite generically has an in values of the “attempt frequencyivhich is what the pre-
extremum at the energg. corresponding td/=4. This is  exponent represents
consistent with the standard argument, according to which at The preexponent comes from the ratio of two determi-
a finite temperature we should be looking for solutions thahants: one for small fluctuations near the periodic instanton
are periodic inT with period 8. However, in general, the and the other for small fluctuations in vacuum—similarly to
extremum can be either a maximum or a minimum. In thethe case of a bound@4]; for a review, see Ref28]. Near
present case, under the low-temperature condjfiené, the  the periodic instanton, fluctuations can be expanded into nor-
energyE. falls into the rangd83), where we can apply Eq. mal modes, which satisfy the eigenvalue equation

(82). We find that 5
DP'r//n = )\nl/’nv (102)

P P[22\ .8
E. = 2% 38 In P (99 where D2 is a small-fluctuation operator in the periodic-
instanton background. The modggsshould be periodic with
is a maximum and the only one in this range. Thus, levelshe same periog3. We can use a classification of modes
with energies nedE. give the main contribution to thermally similar to that used after E¢51): there are modes that are
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localized in regions of a spatial size of ordgraround the ent states of quasiparticles. These initial and final states have
individual instantons and antiinstantons and modes that arepposite total momenta P/2, allowing for a transfer of
not. Delocalized modes with,<1/£ (i.e., with typical mo- ~momentumP.
menta much smaller than §), as well as modes with,, A possibility of experimental detection of QPS’s in nar-
=1/&, both delocalized and localize@ any), contribute  row superfluid channels via momentum imaging has been
only a numerical factor of order unity to the ratio of the mentioned in the Introduction. Looking at our final result
determinantgcf. Ref.[28]), and we will not be interested in (100), which to the leading order we can rewrite as
this factor in what follows.

Large factors can .only come from Iocali;ed modgs with Ry~ exp(— W_CS@)’ (106)
\,<<1/&, corresponding to the “soft” collective coordinates. T

The periodic instanton has two strictly zero modrs=0), N .
P y d&5=0) and comparing it to its counterpaf23) for the case of a

rr ndin ranslations of the entir nfiguration in . .
corresponding to_translations of the entire configuratio ie1arply localized perturbation, we see that the temperature

space and time. These are the translations described by t@ . X :
ependence of the rate is much steeper in the uniform case: a
parametersg andtg of Sec. IV D. Each of these zero modes Iog%rithm of gn/T in the exponent iz now replaced by a

contributes a normalization factor of ordergl@, up to a X . .
power of IB/§), times the total volume associated with the POWET. As the calculation makes clear, this add_ltlonal Sup-
corresponding collective coordinate. The temporal volum irgeks‘sl:?]r;rrge;éﬁscfg)/rg t.lr.]ﬁ en‘%?% ;%;é;?,, Ztl?;isre\ggig;e?;xely
- P/2. ,
\(/:viri]lzeltieoitp;\{ir;?nvg\lljm%? I;%i;hse g;ﬁggg'?n ttohethge:gfe'trolle(_j by the quantum over_lap between the optima_ll initial
mode factor ' and f.|nal states, is in the uniform case only sublegdmg.
It is of interest to extend the present results in several
L directions. First, it would be interesting to extend them to
Q ~ @ (103 higher temperature§; ~gn. A striking property of the rate

9 (106 is that, at anyT<<gn, it is exponentiallysmallerthan
In addition, there are two quasizero modes, corresponding tthe rate of thermal activation that one would obtain within
changes in theelative position of the instanton and anti- the LAMH theory[10,11]. Indeed, when the enerdsy re-
instanton chains. These modes are described by the saddleased by unwinding the current is negligiblee same limit,
point parameterd\x and At. They have approximately the in which Eq.(106) was obtainef] the LAMH rate is
same normalization factors as the strictly zero modes, but
their volumes are determined by the saddle-point R _ exp(— 4Cs”> (107)
integrations—i.e., by the second derivatives of the exponent LAMH ar /)
W, Eq.(53), with respect ta\x andAt. These volumes are of
order (k-P)~Y2 each(while the mixed second derivative van-
ishes, so the quasizero modes contribute the factor

On the other hand, we have shown in Sec. IV E thaT at
<gnour instanton is the dominant path for phase slips, more
important than any thermal activation. The discrepancy can
Q, ~ (g&%kP)™t ~ (&k)7L, (109 be traced to the fact that the original LAMH theory makes no
account of momentum conservation. Recall that the LAMH
saddle point, whose energy determines the fat), has
order parameter that is nonvanishing everywHeseept for

wherek. is given by Eq(74) with 7= 8. Multiplying (2, and
),, we obtain an estimate for the preexponent:

L (B\¥ the special case of exactly zero curpertsually, one as-
O~ —2<—> : (109  sumes that this saddle point is close to some time-dependent
9&"\ & fluctuation, for which the order parameter vanishes at some
which is accurate up to a power of(J8v £). point, allowing for a phase slip. Our results imply that in a

uniform system, where there are no external “sinks” of mo-
mentum(such as impurities, etg.this is not a good assump-
tion; i.e., in this case the LAMH saddle point does not nucle-
In a uniform system, instantons that generate momenturate any phase-slip process. We have preliminary numerical
by unwinding a persistent current need to transfer a comperdata supporting this conclusion. Accordingly, it is by no
sating momentum to quasiparticles. We have seen that theseeans clear if, in a uniform system, there is a crossover to a
instantons have many interesting properties that are absent ihermally activated mechanism for phase slipaay T.
cases when no such momentum transfer is necessary. We Another direction in which one may be able to extend the
have considered in detail the case of a weakly coupled 1resent results is systems of higher dimensiondy and
superfluid at temperaturds<gn~ c/ ¢, wherec; is the pho-  3D). There, the role of the topological term is taken over by
non speed and is the healing length(In this section, we the Magnus force, which suppresses tunneling in a rather
restorecs, which was set to 1 earlier in the paper. similar way[14]. In either case, the suppression can be seen
On the theoretical side, perhaps the most curious featuress a result of destructive interference between tunneling at
of this case are that the instanton is complex, has no turnindifferent values of the spatial coordinate. It is natural to ask
points, and yet its analytical continuation to the appropriatef in 2D and 3D this suppression can be circumvented by an
real-time segments is real. On the real-time segments, theelastic mechanisniproduction of phononssimilar to the
solution can be interpreted as formation and decay of cohewene considered here.

V. CONCLUSION
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One last case of interest we mention is that of BCS-paireguperfluid(or in the presence of an incommensurate periodic
superfluids and superconductors. In that case, an additionpbtentia) and with their statement that the uniform system is
channel of momentum productigé] becomes available. It “trivially” superfluid. Indeed, their conclusion apparently ne-
is associated with zero modes of fermionic quasiparticles aglects the possibility of momentum transfer to phonons,
the instanton core. For superconductors, the problem is comyhich can destroy superfluidity in these cases. One manifes-
plicated by the scattering of quasiparticles on disof@ed,  tation of this mechanism is the nonzero rate for thermally

in 1D and 2D, on the boundaries of the sampiehich alters  assisted QPS’s in a uniform superfluid, computed in the
the momentum balance. Nevertheless, this channel of inela fesent paper.

tic tunneling deserves a further study, especially in view o
its possible relevance to experimeiifiss,17] on supercon-
ducting nanowires.
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