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Tunneling in a uniform one-dimensional superfluid: Emergence of a complex instanton

S. Khlebnikov
Department of Physics, Purdue University, West Lafayette, Indiana 47907, USA

sReceived 25 August 2004; published 14 January 2005d

In a uniform ring-shaped one-dimensional superfluid, quantum fluctuations that unwind the order parameter
need to transfer momentum to quasiparticlessphononsd. We present a detailed calculation of the leading
exponential factor governing the rate of such phonon-assisted tunneling in a weakly coupled Bose gas at a low
temperatureT. We also estimate the preexponent. We find that for small superfluid velocities theT dependence
of the rate is given mainly by exps−csP/2Td, whereP is the momentum transfer andcs is the phonon speed.
At low T, this represents a strong suppression of the rate compared to the nonuniform case. As a part of our
calculation, we identify a complex instanton whose analytical continuation to suitable real-time segments is
real and describes formation and decay of coherent quasiparticle states with nonzero total momenta.

DOI: 10.1103/PhysRevA.71.013602 PACS numberssd: 03.75.Kk, 03.75.Lm

I. INTRODUCTION

Many one-dimensionals1Dd systems share a universal
low-energy description based on a complex order parameter
f1g. Probably the most familiar example is a superfluid con-
fined to a narrow channel, but—due to the well-known “du-
ality” between bosons and fermions in one dimension—a
similar description exists also for fermionic fluids.

In accordance with the Bogoliubov-Hohenberg theorem,
no long-range order is possible in these 1D systems, but the
precise nature of fluctuations that prevent ordering deserves a
further discussion. At zero temperaturesT=0d, perturbative
fluctuations of the phase of the order parametersphonons in
a superfluidd cause a power-law decay of spatial correlations.
At TÞ0, the decay becomes exponential. However, a de-
tailed studyf1g of the T=0 case reveals additional contribu-
tions to the correlation functions of the form of a power law
multiplied by an oscillating factor.

While for weakly coupled Fermi systems these oscillating
terms can be seen as a 1D version of Friedel oscillations, for
weakly interacting bosons their interpretation is not immedi-
ately obvious. It is possible, however, to interpret them as a
consequence of nonperturbative fluctuations: instantons or
quantum phase slipssQPS’sd. The oscillatory dependence on
the spatial coordinate can be traced to the factsreadily veri-
fied; see belowd that each QPS changes the linear momentum
of the superfluid component.

The momentum production by QPS’s results from un-
winding the order parameter and the corresponding change
in the supercurrent. More formally, it can be viewed as a
consequence of a special type of topological term present in
the action of a 1D weakly coupled Bose gas. We discuss this
term in detail in the next section.

A complementary picture is obtained by looking at the
Lieb-Liniger spectrumf2g sfor a gas with ad-function repul-
siond. Their results apply for periodic boundary conditions—
i.e., ring geometry—which is the only case we consider here.
In the limit L→`, where L is the length of the ring, the
spectral branch associated with solitonsf3g touches zero at
momentumP=2pn, wheren is the gas density. This state
corresponds precisely to the order parameter winding once as

we go around the ring. Phonon-assisted transitions to this
state will destroy superfluidity. Our aim will be to calculate
the rate of such transitions at low temperatures.

Except for a brief summary in Sec. III of results for QPS’s
induced by a localized perturbation, we consider here only
uniform 1D superfluids. In the ring geometry, momentum in
the longitudinalsxd direction is conserved.sMore precisely,
we should be talking about angular momentum, but this dis-
tinction will not be important for our purposes.d Our goal
was to see how momentum conservation influences the QPS
rate. Some results of this work have been presented in Ref.
f4g. Here we describe a different, more systematic method,
which confirms the results off4g, but also allows us to obtain
new results.

At T=0, the 1D gas can be mapped on a two-dimensional
s2Dd model by introducing the imaginarysEuclideand time t.
QPS’s are vortices—or instantons—of this 2D model. Al-
though this model is similar to the usualXY model, the to-
pological term drives it into a different universality class.
The XY model, as the coupling is increased, undergoes a
Berezinsky-Kosterlitz-ThoulesssBKTd transition. In con-
trast, in the Bose gas, the correlation functionsf1g evolve
continuously. We show in Sec. III that, for a weakly coupled
uniform Bose gas at zero temperature, instantons and antiin-
stantons are bound in pairs by a linear, rather than logarith-
mic, potential. An extrapolation of this result to strong cou-
pling implies that the breaking of instanton pairs,
characteristic of a BKT transition, is not possible, a conclu-
sion consistent with the expected Galilean invariance of the
T=0 state.

Instanton—anti-instanton pairs can unbind if there is an
additional source of energy, besides the energy resulting
from unwinding the supercurrent. This possibility may be of
interest for analog models of gravityf5,6g. It has been sug-
gested that one can use cold Bose gases to model cosmologi-
cally interesting spacetimesf7,8g. If one models an expand-
ing spacetime by varyingsdecreasingd the coupling g
between the atoms, as proposed in Ref.f8g, then some of the
energy supplied by this variation may become available for
enhancement of QPS’s. We note also that a decrease ing
causes the principal length scale of the gas—the “healing”
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lengthj—to grow. Since the cross-sectional radiusR of the
channel is fixed, the 1D regimej.R can be reached.

Another possibility, which is the main subject of this pa-
per, is when the additional source of energy is a low but
nonzero temperature. We discuss this case in detail in Sec.
IV. Thermally activated phase slipssTAPS’sd in the ring ge-
ometry have been considered, in the framework of the nucle-
ation theory of Refs.f9–11g, in Ref. f12g. In the present
paper, we concentrate on lower temperatures where, as we
will see, the main mechanism for phase slips is thermally
assisted quantum tunneling, rather than the overbarrier acti-
vation. One should note, however, that in the case of auni-
form Bose gas, even at higher temperatures, the original
Langer-Ambegaokar-McCumber-HalperinsLAMH d theory
f10,11g probably needs to be modified, in order to account
for momentum conservation. We discuss this point further in
the conclusion.

If the gas is uniformsor nearly uniform—the confining
potential is smooth on the scalej, and its variations are
smalld, QPS’s have a rather distinctive experimental signa-
ture. Indeed, as we will see, the unwinding momentumP
from the supercurrent in such a uniform system is accompa-
nied by transferring a compensating momentum to the pho-
non “bath.” This is equivalent to creating a flow of excited
atoms, which can in principle be detected experimentally.
For example, we can start with a state with no supercurrent
and let a QPS create a unit of supercurrent and a compensat-
ing normal flow in the opposite directionscounterflowd. The
counterflow can be detected by the standard momentum
imaging—i.e., opening the trap in one place. Note that no
counterflow is expected for QPS’s induced by a highly local-
ized perturbation, which breaks both momentum conserva-
tion and the Galilean invariancescalculation of the rate for
this case has been done in Ref.f13gd. In that case, the final
state of phonons has zero total momentum.

However, perhaps the most immediate experimental con-
sequence of the momentum balance during QPS’s in a uni-
form system is that it leads to a strong suppression of the rate
compared to the case of a localized perturbationf4g. The
reason is that the momentum released by unwinding the su-
percurrent can only be absorbed by relatively high-energy
phonons states, which are scarcely populated at a low tem-
perature.

From the theoretical perspective, one would like to under-
stand in general how to compute the rates of instanton pro-
cesses that transfer momentum between the background and
excitations. The question is not limited to QPS’s in narrow
superfluid channels but arises also in other contexts. For ex-
ample, one can view the momentum transfer by QPS’s as a
1D analog of the Magnus force in higher dimensions. This
force acts on vortices moving in a superfluid and is known to
suppress vortex tunnelingf14g. It is natural to ask if the
suppression can be circumvented by an inelastic process
similar to the one we consider here. Furthermore, additional
interesting physicsf4g emerges in cases when the order pa-
rameter is coupled to fermions, as in the case of BCS super-
conductors. The coupling to fermions opens a new channel
of momentum production, due to the fermion zero modes at
the instanton core. This channel is a 1D analog of “momen-
togenesis”f15g by vortices in 2D arrays of Josephson junc-

tions. Although in the case of 1D superconductors the rel-
evance of this channel is somewhat obscured by scattering of
quasiparticles on the boundaries and disorder, it may still be
of interest for interpretation of experimentsf16,17g on super-
conducting nanowires.

A much studied example of inelastic tunneling in field
theory is instanton-induced scattering in gauge theories and
their low-dimensional analogsf18g. Indeed, the complex in-
stanton that we will find in this paper is a generalization of
the sreald periodic instantonsf19g to the case when there is
nontrivial momentum transfer from the background to qua-
siparticles.

In Ref. f4g, we have identified periodic Euclidean con-
figurationssof period b=1/T, whereT is the temperatured,
which consist of chains of instantons and anti-instantons
shifted relative to each other by amountb /2 in the imaginary
time and by someDx in space; see Fig. 1. The tunneling rate
has been obtained by integrating overDx. Unlike the case
without momentum transferf19g, this integration is non-
trivial. Nevertheless, the leading exponential factor obtained
in this way has a simple physical interpretation. It can be
interpreted as the rate of tunneling between quasiparticle
sphonond states with momenta −P/2 and P/2, so that the
change in the momentum of phonons precisely compensates
the momentum produced by unwinding the supercurrent.

In the present paper, we derive this leading result for the
tunneling exponent and the first correction to it, in what we
regard as a more systematic way. First, using a method de-
veloped in Ref.f19g, we obtain the tunneling exponent for a
microcanonical statesfixed energyEd. Then, we integrate the
microcanonical rate overE with the Boltzmann factor
exps−E/Td to obtain the canonicalsfixed Td rate. This
method allows us to find directly the energies corresponding
to the dominant phase-slip paths. In particular, we can show
that at sufficiently lowT thermally assisted tunnelingsas
opposed to overbarrier activationd is indeed the dominant
phase-slip mechanism.

We also discuss in detail the instanton solution that satu-
rates the rate at nonzero momentum transferP. This instan-
ton corresponds to a complex saddle point forDx and is itself
complex. Unlike the periodic instanton of Ref.f19g, it has no
turning points. Nevertheless, it is possible to identify the
initial and final states connected by this complex instanton
and to reconstruct their real-time evolution. On the real-time
segments, the solution is real and can be interpreted as for-
mation and decay of coherent phonon states corresponding to

FIG. 1. A periodic configuration, in which instantonssopen
circlesd and anti-instantonssshaded circlesd are shifted relative to
each other in space byDx. At a finite temperatureT, the period of
the configuration isT=b=1/T.
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the tunneling end points. A direct computation confirms that
the total momenta of these states are −P/2 andP/2.

II. TOPOLOGICAL TERM

A weakly coupled 1D Bose gas can be described by the
Gross-PitaevskysGPd Lagrangian, which in the Euclidean
signature reads

LE = c†]tc +
1

2m
u]xcu2 +

g

2
ucu4 − mucu2. s1d

Here t= it is the Euclidean time,m is the mass of the par-
ticles, g.0 is the coupling constant, andm is the chemical
potential. We assume that the system is subject to periodic
boundary conditions in thex direction:csx+Ld=csxd.

Instantons are vortices of this theory in thesx,td plane,
corresponding to nontrivial winding of the phase of the order
parameterc.

The number density of the gas isn̂=c†c and can be writ-
ten as a sum of the average densityn and a fluctuationdn:
n̂sx,td=n+dnsx,td. We consider the uniform case whenn
sthe averaged is independent ofx, but will comment briefly
on the effect of nonuniformn, such as resulting from a con-
fining potential.

At large wavelengths, fluctuations of the density are
small, soc has well-defined modulus and phase. We write
c=sn+dnd1/2 expsiud and, expanding in smalldn, obtain

LE < isn + dnd]tu +
n

2m
s]xud2 +

g

2
sdnd2. s2d

Note that we impose no restrictions on the size of fluctua-
tions of u, in accordance with the absence of long-range
order. Note also that in Eq.s2d we have omitted a term con-
taining gradients ofdn. This is correct in the leading long-
wavelength approximation, but at shorter wavelengths that
term will convert the purely acoustic dispersion law into the
full dispersion of Bogoliubov’s quasiparticlesf20g.

The approximations2d applies away from the instanton
core, but not at the core itself. This is because the size of the
core is determined by the healing length

j = s4gmnd−1/2, s3d

while the long-wavelength approximation corresponds to
wave numbersk!j−1 and so does not resolve the core.

In this approximation, the density fluctuations are Gauss-
ian and can be integrated out in the path integral. This
amounts to using the equation of motion fordn and substi-
tuting the result,dn=−si /gd]tu, back into Eq.s2d. In this
way, we obtain a phase-only theory with the Euclidean La-
grangian

LE < in]tu +
1

2g
s]tud2 +

n

2m
s]xud2. s4d

Instantons are singular solutions of this theory. The presence
of such singular solutions means that, even though the La-
grangian s4d is quadratic inu, the theory remains non-
Gaussian.

From Eq.s4d, we can read off the speed of Bogoliubov’s
phonons. We use units in which this speed is equal to 1:

cs = sgn/md1/2 = 1. s5d

In these units, Eq.s3d takes the form

j = s2gnd−1. s6d

If it were not for the first term, the Lagrangians4d would
be that of the usualXY model. In that theory, individual
QPS’s can occur atT=0 in any current-carrying state, due to
the energy released by unwinding the supercurrent. This ap-
plies regardless of the strength of the couplingg. Moreover,
at a sufficiently strong couplingswhich is outside the domain
of our semiclassical methodd instanton—anti-instantonsIA d
pairs unbind even in vacuum, resulting in a BKT phase tran-
sition.

However, the first term in Eq.s4d drastically modifies the
properties of the theory. We refer to this term astopological.
It is of the same nature as the topological contributionf21g to
the Magnus force acting on vortices in higher dimensionali-
ties s2D and 3Dd. As we will now see, in 1D, for Euclidean
paths that contain instantons, the topological term gives a
nonzero contribution to the Euclidean action. Being purely
imaginary, that contribution can be interpreted as the inter-
ference phase between QPS’s at different locations.

The simplest case when the the topological term can be
seen to play a role is a single IA pair, with the instanton
located atx0

m=sx0,t0d and the anti-instanton atx0
m8=sx08 ,t08d.

Away from the cores, the density is approximatelyn, and the
phase, in the absence of supercurrent, is

upairsx,td = argfx − x0 + ist − t0dg − sx0
m ↔ x0

m8d. s7d

For periodic boundary conditions, this is an approximation,
which applies when all of the distances involved,uxm−x0

mu,
uxm−x0

m8u, and ux0
m−x0

m8u, are much smaller than the lengthL
of the system.

The time derivative of the configurations7d is

]tupair =
x − x0

sx − x0d2 + st − t0d2 − sx0
m ↔ x0

m8d. s8d

Integrating overt andx, we obtain the topological action

DSpair = − 2pinsx0 − x08d. s9d

Since the variable conjugate to the position is momentum,
we can interpret the actions9d as resulting from production
of momentum,

P = 2pn, s10d

by the antiinstanton and its absorption by the instanton.
The above interpretation is of course nothing new and is

readily confirmed by a direct calculation. Noether’s momen-
tum following from the real-time version of Eq.s1d is

P = − iE dxc†]xc. s11d

The difference between the initial and final momenta can be
written as an integral over a large closed contour in thesx,td
plane:

TUNNELING IN A UNIFORM ONE-DIMENSIONAL… PHYSICAL REVIEW A 71, 013602s2005d

013602-3



Pfin − Pini = − iR
C

dl · c† = c, s12d

where C runs clockwise. If the contour encloses a single
instanton, without any phonon excitations, then away from
the core the density isn, and Eq.s12d equals precisely −2pn.

III. QPS RATE AT T=0

In general, the metastable states connected by the instan-
ton are current carrying, which implies that the phaseu
winds an integer numberN times over the lengthL of the
system. A suitable generalization of Eq.s7d is then

ucsx,td = upairsx,td +
2p

L
Nx. s13d

The second, winding, term corresponds to the superfluid ve-
locity

V =
2pN

mL
. s14d

In what follows, we will always assume thatV is much
smaller than the speed of sound,cs=1 salthough the more
general case can be considered by similar methodsd. For V
!1, the field of the IA pair is only weakly affected by the
superflow, and we can continue to use expressions7d. How-
ever, the presence superflow leads to an additional contribu-
tion to the action. To logarithmic accuracy, we obtain

Spair = − iPDx + EDt +
2p

g
ln

d

j
+ OS1

g
D , s15d

where Dx=x0−x08, Dt=t0−t08, d=sDx2+Dt2d1/2 is the
instanton-antiinstanton separation,j is the healing lengths3d,
and

E = EN ;
s2pd2Nn

mL
= PV. s16d

Note thatEN is precisely the energy released by a single
instanton, as it unwinds the order parameter and reduces the
supercurrent.

The use of logarithmic accuracy means that we assume
the separationd to be much larger than the instanton core
size:d@j. This condition has to be verifieda posteriori for
typical configurations.

To compute the rate of QPS at zero temperature, we need
to integrate over all values ofDx andDt:

R , ImE dDtdDx exps− Spaird. s17d

The rate computed in this way will be the inclusive rate; i.e.,
it will take into account the possibility of quasiparticle pro-
duction in the final state. In other words, Eq.s17d can be
viewed as an optical theorem for inelastic tunneling. This
relation between the imaginary part of the partition sum of
the IA pairs and the rate of inelastic tunnelingf22g is familiar
from the theory of instanton-induced cross sections in par-

ticle physicsf18g. Another way to look at it is to think about
the IA pair as abouncef23g, describing the decay of a meta-
stable current-carrying state. Then, Eq.s17d is the usual ex-
pression for the decay ratef24g, adapted to take into account
the presence of the “soft” collective coordinatesDt andDx
corresponding to the IA separation.

As it is written, Eq.s17d does not include the preexponent
and can be used to calculate only the leading exponential
factor in the rate.sWe will describe how to estimate the
preexponent later.d Assigning the main role to the exponen-
tial factor implies the use of a semiclassical approximation
and requires that the couplingg should be small. However,
we will see that the main result—the absence of QPS’s in a
uniform system atT=0—can be plausibly extrapolated to
larger couplings.

The integral overDx is standardf25g:

E
0

` cossPxddx

sx2 + Dt2dn+1/2 = S P

2uDtuD
n Îp

Gsn + 1
2d

KnsPuDtud,

s18d

where for our case 2n+1=2p /g. Equations18d has to be
integrated further overDt with exps−EDtd. We see that this
integral is convergent forE, P and divergent forE. P. This
means that atE, P the IA pair has a finite separation; that is,
QPS’s are always bound in pairs and cannot occur individu-
ally. Note that the potential binding QPS atE, P is linear in
uDtu.

Interpretation of the threshold atE=P is simple. Since
instantons produce momentum, in a uniform system an iso-
lated instanton has to be accompanied by production of qua-
siparticlessBogoliubov’s phononsd that carry that momen-
tum away, so that momentum conservation is satisfied. But
producing phonons with total momentumP requires, in a
weakly coupled gas, energy of at leastE=P. Note that the
condition of weak coupling is essential here. The coherent
state of phonons that forms as a result of tunneling decays
into individual quasiparticles, and in the weakly coupled case
we know their dispersion law—it is given by Bogoliubov’s
formula f20g. So we can explicitly verify that the energy of
such a final state always exceeds its momentumstimes csd.
This in general will not be true in a strongly interacting
systemse.g., liquid heliumd.

Now, if E is given by Eq.s16d—i.e., the only source of
energy is unwinding of the supercurrent—the conditionE
. P can never be satisfied in the superfluid state. This is
obvious in the limitV!1, in which we have derived the pair
action s15d, but the expressions16d in fact holds also at
largerV. We see thatE. P impliesV.1, while according to
Landau’s criterion the superfluid state must haveV,1.
Thus, in the absence of additional sources of energy, the
superfluid state is always in the regimeE, P, and atT=0
individual QPS’s cannot occur.

Although we have obtained this result within the weak-
coupling limit, the simple energetics underlying it allows us
to speculate that it extends to arbitrary values ofg. In other
words, unlike theXYmodel, the uniform 1D Bose gas has no
BKT phase transition. This conclusion matches the observa-
tion that the correlation function of the Bose gas, found in
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Ref. f1g, evolves continuously withg. It is also consistent
with the expected Galilean invariance of theT=0 state.

The requirement for vortex unbinding,E. P, can be
avoided in a nonuniform system, where momentum conser-
vation need not be exact, for example, as a result of a short-
scale perturbation. For a weak perturbation with length scale
of order of or shorter thanj, the exponential factor in the
rate, to the same logarithmic accuracy, can be found by in-
serting a delta function ofDx under the integral in Eq.s17d,
so that

Rloc , ImE dDt expS− EDt −
2p

g
ln

Dt

j
D . s19d

Equations19d coincides with the instanton rate that has
been computed, for a microcanonical initial state of energy
E, in Ref. f19g. That computation has been done in the con-
text of the Abelian Higgs model in the limit when it effec-
tively reduces to theXY model. The salient point of the cal-
culation is that the integrals19d is divergentswhich, as we
have seen, corresponds to unbinding of the IA paird and has
to be defined by analytical continuation. The analytical con-
tinuation produces a finite imaginary part.sFor a similar dis-
cussion in the context of dissipative quantum mechanics of a
single degree of freedom, see Ref.f26g.d

Thus, we formally continue Eq.s19d to real-time separa-
tion Dt=−iDt,

Rloc ,E dDt expS− iEDt −
p

g
ln

− Dt2

j2 D , s20d

and then observe that the integrand has a saddle point at

Dt = Dt* ; i
2p

gE
. s21d

Deforming the integration contour so that it passes through
the saddle point, as shown in Fig. 2, and replacing the expo-
nent with the saddle-point value produces the following ex-
ponential factorf19g:

Rloc , expH2p

g
lnsgEjdJ . s22d

The exponent here has logarithmic accuracy, meaning that
Eq. s22d applies only as long asgEj!1.

Although this section is devoted primarily to theT=0
case, we also list here for future reference the counterpart of
Eq. s22d for TÞ0. This can be obtained from the action of
the periodic instanton of Ref.f19g by replacing the period
with b=1/T or by integrating Eq.s22d overE with the Bolt-
zmann factor exps−bEd. The result reads

Rloc , expH2p

g
lnsTjdJ s23d

and applies atTj!1. In the context of cold Bose gases,
perturbed by an external potential at a length scale shorter
thanj, this result was obtained by a different method in Ref.
f13g, where in addition the preexponent was estimated.

Because sharply localized perturbations that lead to these
relatively large rates are unlikely to occur naturally in
trapped atomic gases, it makes sense to inquire about gentler
sources of momentum nonconservation, such as a smooth
variation of the trap potential. Since this question is some-
what outside the main subject of this paper, we will only
address it qualitatively. Namely, we return to the actions15d,
but now we do not assume thatE andP in it are given by the
specific expressionss16d and s10d. This describes qualita-
tively a situation when some of the momentum is absorbed
by the potential. Note that for a smooth potential typical
values ofP will be close, even though not exactly equal, to
the values10d. Nevertheless, the regimeE. P can now be
realized.

The same setup can be used to model the presence of an
additional source of energy: we simply increaseE relative to
Eq. s16d. One possible such source is the time dependence of
the parameters, which, as discussed in the Introduction, is of
interest for analog models of gravity. For example, decreas-
ing the couplingg reduces the interaction energy, and one
could imagine that some of the released energy becomes
available for enhancement of QPS’s. Of course, there is no
reason to think that the expressions15d with E. P will be
literally applicable in this case, but one may hope that it will
at least mimic some of the main features of the situation.

As before, the integral overDt is defined by analytical
continuation to realDt=−iDt, so that Eq.s17d becomes

R ,E dDtdDxeiPDx−iEDt expS−
p

g
ln

Dx2 − Dt2

j2 D . s24d

For E. P, the integrand has a saddle point at

sDt,Dxd = sDt* ,Dx*d ; i
2p

g

sE,Pd
E2 − P2 . s25d

Deforming the integration contours so that they pass through
the saddle pointscf. Fig. 2d, we obtain the exponential factor
in the rate as

R , expHp

g
lnfsE2 − P2dg2j2gJ , s26d

where the exponent again has logarithmic accuracy.
We reiterate that, just as all the other rates computed in

this section, Eq.s26d is an inelastic rate—it corresponds to
production of phonons with total momentumP in the final
state. It can be viewed as a generalization of Eq.s22d to the
case when there is a nonzero transfer of momentum to qua-
siparticles. Equations26d has the expected threshold atE
=P, reflecting the requirement that the production of
phonons with momentumP takes at leastE=P of energysin
units where the speed of phonons in equal to 1d. At E, P,
the integral in Eq.s17d is convergent, has no imaginary part,

FIG. 2. Integration contour passing through the saddle point
s21d.
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and the rate is zero. Note that the threshold is exponential: if
the additional sources of energy and momentum are weak,
the differenceE−P is small, and the rate is strongly sup-
pressed.

IV. QPS RATE AT TÅ0

A. Summary

We now turn to the main subject of this paper: calculation
of the QPS rate in a uniform system at a low, but finite,
temperatureT. The boundary problem, satisfied by theSma-
trix in the one-instanton sector atTÞ0, is quite involved,
and so we begin with a brief summary of the main points of
the calculation.

We consider only the case of low temperatures:

T ! gn=
1

2j
. s27d

It would be interesting to extend the calculation to higherT.
In the case of a sharply localized perturbation, we expect a
crossover to thermal activation atT,gn—i.e., when the pe-
riod b=1/T of the periodic instanton becomes comparable to
the core sizej; cf. Ref. f19g. In the Abelian Higgs model,
such a crossover was indeed found numericallyf27g. In a
uniform Bose gas, where momentum transfer is necessary, it
is not clear how such a crossover will occur and, in fact, even
if it exists at all. In this case, the regionT,gn can presum-
ably be also addressed numerically, but in the present paper
we will limit ourselves to a few comments on it in the con-
clusion.

An intuitive approach to the problem at temperaturess27d
would be to place the system on a cylinder of circumference
b=1/T—i.e., consider configurations that are periodic in the
Euclidean timet with period equal tob. We have taken this
approach in Ref.f4g. However, to make this approach rigor-
ous, one has to prove that the configurations found in Ref.
f4g are indeed the dominant pathways for phase slips. A more
systematic approach, which we take in this paper, is to first
consider tunneling from a microcanonical state of a given
energy E and then integrate overE with the Boltzmann
weight exps−bEd. This second method allows us to find di-
rectly the energies corresponding to the dominant paths and,
in particular, to show that in the regimes27d thermally as-
sisted tunneling is the dominant phase-slip mechanism, more
important than overbarrier activationsif anyd.

In addition, and curiously so, it turns out that to properly
explore the initial and final states connected by tunneling
and, also, to compute the first correction to the semiclassical
exponent requires using a more precise dispersion law for
quasiparticles than the simple acoustic one. The method we
use below allows us to take this modification into account
without having to explicitly find the instanton solution cor-
responding to the more precise dispersion law. This method,
developed in Ref.f19g, is a sort of perturbation theory in
energy—hence the limitation to the low-T ranges27d, where
the characteristic energies are not too large. In the present
paper, we adapt this method to the case when instantons
transfer momentum to quasiparticles.

Now, the main difference from tunneling atT=0 is that at
TÞ0 there are preexisting quasiparticles in the initial state,
and the tunneling path can make use of those. Indeed, we
will show explicitly that tunneling now occurs between co-
herent quasiparticle states with total momenta −P/2 and
P/2, so that the full momentumP is transferred but only
energyE< P/2 is required. This is in contrast to theT=0
case, where quasiparticles with total momentumP had to be
produced, requiring energy of at leastE=P. Accordingly, the
leading exponential in the rate atTÞ0 is

RT , expf− P/2T + scorrectionsdg, s28d

where the corrections are controlled by the small parameter
T/gn. Using the improved dispersion law for quasiparticles
will allow us to obtain the first of these corrections.

B. Boundary problem and the modified instanton

The starting point point of our calculation is the expres-
sion f19g for the microcanonical density matrix of phonons,

PE , dsĤ − Ed, s29d

in the coherent-state representation

PEsb* ,ad = NE dh expS− iEh +E dkbk
*ake

ivkhD . s30d

The constant normalization factorN is chosen so thatPE has
the property of a projector:

PE
2sb* ,ad = PEsb* ,ad. s31d

This makes it a projector on the subspace of a given energy
E.

The density matrixs30d will be our initial condition on a
complex time contour shown in Fig. 3; cf. Ref.f19g. The
precise form of the contour will only become important later.
For now, all that matters is that there is some initial Euclid-
ean timeti and some finalt f, both of which can be complex
but can be associated with the distant past and distant future,
respectively. As typical in problems where the evolution
starts in the distant past, the interaction is adiabatically

switched off in the initial state, so that the HamiltonianĤ in
Eq. s29d is simply the Hamiltonian of free phonons. Accord-
ingly, expsivkhd factor in Eq. s30d is a result of the free
evolution of a coherent stateual:

eiĤhuakl = uake
ivkhl, s32d

wherevk is the frequency of the phonon mode with momen-
tum k. The coherent states are normalized by the condition

FIG. 3. Complex time contour for calculation of theS matrix in
the one-instanton sector. The circle denotes the instanton position.
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kbual=expsb*ad. Combining this condition with Eq.s32d,
one can in fact quickly derive Eq.s30d.

Note that we fix by hand the initial energy, but not the
initial momentum. The most probable momentum of the ini-
tial state will be determined dynamically: it is the total mo-
mentum of the statepkuakl corresponding to the most advan-
tageous tunneling path.

The probability of an individual QPS is

Prob = TrfSPES†g = TrfSESE
†g, s33d

where S is the S matrix and SE=SPE; we have used the
projector propertys31d. The tracing in Eq.s33d is over all
states that differ by unit of winding number from the super-
current state on which the density matrixs30d is built. In
other words, Eq.s33d is an inclusive probability.

In the coherent-state representation,SE acquires a conve-
nient form f19g

SEsb* ,ad =E duidu fDudh expH− iEh + Bisake
ivkh,uid

+ Bfsbk
* ,u fd −E

ti

tf

LEdtJ . s34d

Note that besides the usual path integral over the intermedi-
ate values of the fieldu and the integral overh, inherited
from the projectors30d, we have here also integrals over the
initial and final values of the field. These are needed to con-
vert SE to the coherent-state representation: expBi and
expBf are the wave functions for the coherent statesuake

ivkhl
and kbu:

Bisake
ivkh,uid =E dkH−

1

2
aka−ke

2vks−ti+ihd −
1

2
vkũiskdũis− kd

+ Î2vkakũiskdevks−ti+ihdJ , s35d

Bfsbk
* ,u fd =E dkH−

1

2
bk

*b−k
* e2vktf −

1

2
vkũ fskdũ fs− kd

+ Î2vkbk
* ũ fs− kdevktfJ , s36d

where tildes denote spatialsin our case, one-dimensionald
Fourier transforms—for example,

ũiskd = ũsk,tid =E dx
Î2p

usx,tideikx. s37d

The restriction that the winding number changes by 1
means that in Eq.s34d we consider paths of the form

usx,td = uIsx − x0,t − t0d + Îgnsx,td +
2p

L
Nx, s38d

whereuI is the one-instanton solution andn is a fluctuation
that has zero total windingsbut may still include IA pairsd.
As before, we consider only relatively smallN, when the
superfluid velocitys14d satisfies the conditionV!1.

The approximate instanton solution, obtained from the
long-wavelength Lagrangians4d, is

uIsx − x0,t − t0d = argfx − x0 + ist − t0dg. s39d

We will see that at temperatures in the ranges27d, the typical
wavelengths of quasiparticles participating in the process are
indeed large, much larger than the healing lengthj, so the
long-wavelength limit Eq.s4d is applicable. Nevertheless,
there are corrections to results obtained in this limit. In par-
ticular, for an accurate study of the saddle point that deter-
mines the QPS rate, the instantons39d will have to be cor-
recteds“modified”d to take into account a deviation of the
quasiparticle dispersion law from the purely acoustic one.

Using Eq.s4d for LE in Eq. s34d, we find that the integra-
tion overnsx,td is Gaussian and gives rise to the free equa-
tion of motion:

¹2n = 0. s40d

The integrals over the boundary values ofn result in the
boundary conditionssBC’sd

vkñis− kd − ṅ̃is− kd = Î2vke
vks−ti+ihdak, s41d

vkñ fskd + ṅ̃ fskd = Î2vke
vktfbk

* . s42d

Overdots denote derivatives with respect to the Euclidean
time t. Thus, the coherent-state parametersa and b* deter-
mine, through the BC’ss41d ands42d, the non-Feynman parts
of the fluctuationn—the negative frequency part atti and the
positive frequency part att f.

The Fourier transform of the instanton fields39d itself is
computed at realt0, such that Reti ,t0,Ret f, and realx0
and then analytically continued to arbitrary complex values.
We find

1
Îg

ũIsk,tid =
1

Î2vk

evksti−t0d+ikx0Rskd, s43d

1
Îg

ũIs− k,t fd =
1

Î2vk

e−vkstf−t0d−ikx0Rskd, s44d

where

Rskd =
i

k
Spvk

g
D1/2

. s45d

Because the instanton field satisfies Feynman BC’s in both
directions, it does not directly participate in the BC’ss41d
ands42d. However, as seen from Eqs.s35d ands36d, it acts as
a source for the coherent-state parametersa andb* .

In the expressions45d,

vk = uku, s46d

in accordance with the fact that the solutions39d was ob-
tained from the long-wavelength limits4d, in which the pho-
non dispersion is a simple acoustic one. As it turns out, im-
portant phonon momenta in our case are of the order
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k , sj2Td−1/3 ln1/3
T
j

, s47d

whereT@j is the period of the configurationssee belowd.
Since this momentum is much smaller thanj−1, the acoustic
approximations46d is adequate for use in the coefficients
Rskd. However, as will be shown below, in the exponentials
exps±vktd we need to use a more precise approximation to
Bogoliubov’s full dispersion lawf20g

vk = sk2 + k4j2d1/2 < uku +
1

2
uku3j2. s48d

This means that the instanton that we will be using is in fact
modified relative to the simple expressions39d. This modi-
fied instanton could in principle be obtained from the Fourier
transformss43d and s44d, in which we substitute the more
accurate dispersion laws48d in the exponents. One of the
advantages of the present approach, however, is that it will
allow us to obtain many interesting physical quantities with-
out ever needing the explicit form of the modified instanton.

C. Microcanonical rate

The solution to the boundary problems40d–s42d is

nsx,td =E dk

2Îpvk

sake
vks−t+ihd+ikx + bk

*evkt−ikxd + n8sx,td,

s49d

where n8 is a solution to Eq.s40d with Feynman BC’s. A
nontrivial n8 is only possible because the region of applica-
bility of Eq. s40d has a “hole” at the instanton core. To find
n8, we need, in principle, to consider the equation for the
entire fluctuation of the order parameter, including both the
modulus and phase. In other words, instead of Eq.s38d we
would write

c = scI + dcdexps2piNx/Ld, s50d

where cI is the instanton solution anddc is a fluctuation.
Instead of the long-wavelength limits4d, we would have to
consider the full Lagrangians1d. The integration overdc will
no longer be automatically Gaussian, but it will become such
in the leading semiclassical approximation. The correspond-
ing equation for the fluctuation is

D2dc = 0, s51d

whereD2 is the second-order differential operator in the in-
stanton background. Fortunately, in what follows we will not
need the explicit form of Eq.s51d, but only the general prop-
erties of its solutions.

There are two types of solutions to Eq.s51d. Solutions
satisfying the Feynman BC’s are the zero modes of the op-
eratorD2, associated with the collective coordinatesx0 and
t0 of the instantons39d. The coefficients with which these
zero modes occur indc are arbitrary and need to be inte-
grated over. These integrations can be converted in the usual
way into integration over the collective coordinates.

The other type of solutions are delocalized modes. These
contain non-Feynman parts, so the coefficients with which

they appear indc are fixed by the BC’s. The main idea of the
perturbative method developed in Ref.f19g is that when the
typical momentak of excitations involved in tunneling are
small, the delocalized modes can be approximated by the
plane-wave solution given by Eq.s49d with n8=0. We stress
that this “perturbative” method is not an expansion in small
couplingg. Instead, corrections to the plane wave, which are
due to scattering of the plane wave on the instanton core, are
controlled by the parameterkj. According to the estimate
s47d, this parameter is small. Thus, to the leading order, we
can simply neglectn8 and use in Eq.s34d the fields38d with
n given by the plane wave only.

Next, we observe that the tracing in the expressions33d
for the probability can be done in the coherent-state repre-
sentation by integrating overa andb with exps−a*a−b*bd as
the measure, and this integration is Gaussian. After some
algebra, we obtain

Prob,E dx0dt0dx08dt08dhdh8e−2S0+iPDx−iENDt−iEz+W,

s52d

where

W=E dkuRu2Sskdeivkzfe−iKDX + eiKDX−ivkz − 2g. s53d

We have introduced the following notation:z=h−h8, Dx
=x0−x08, Dt= t0− t08, KDX=vkDt−kDx, and

Sskd = s1 − eivkzd−1. s54d

R is given by Eq.s45d. As in Eq. s24d, we have regularized
the divergent integrals overt0 andt08 by continuation to real
time.

The doubling of the number of integrations in Eq.s52d
has to do with the presence of two path integrals in Eq.s33d:
one in SE and the other inSE

†. If SE is associated with an
instanton, thenSE

† can be associated with an antiinstanton.
The first three terms in the exponent of Eq.s52d are the sum
of the actions of a single instanton and a single antiinstanton.
In particular, to logarithmic accuracy,

S0 =
p

g
ln

L

j
, s55d

where the size of the systemL is used as an infrared cutoff.
Comparing Eq.s55d to the actions15d of an instanton—anti-
instanton pair, we see thatL now appears in place of the IA
separationd. This is because we are now computing not the
action of a pair, but the sum of the individual actions, each of
which is infrared divergent. As we will see, the dependence
on L will be removed by theW term s53d, whose presence
reflects the nonvacuum nature of the initial and final states of
phonons. This is similar to how the IA interaction atT=0
reflects a nonvacuum final state, a correspondence well
known from the studies of instanton-induced cross sections
in particle theoryf18,19,22g.

Nontrivial integrals in Eq.s52d are those over the relative
positionsz, Dt, andDx. The remaining integrals, those over
the “center-of-mass” positions, simply produce powers of
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space and time volumes, which are either absorbed in the
normalization of the projectorPE or factored out when we
compute the probability per unit length and unit time—i.e.,
the rate.

We begin by integrating overz and Dt. These integrals
can be done by steepest descent, and the corresponding
saddle-point conditions have simple physical meaningf19g.
In our case, the saddle-point conditions are

E = 2E dkvkuRu2eivkzscosKDX − 1dS2, s56d

EN =E dkvkuRu2seiKDX − eivkz−iKDXdS. s57d

These can be rewritten as

E =E dkvkak
*ak, s58d

EN =E dkvksbk
*bk − ak

*akd, s59d

where a, a* , b, and b* are the saddle-point values corre-
sponding to the Gaussian integration that led to Eq.s52d.
These values characterize the most probable initial and final
states and will be discussed in detail in the next subsection.
For now, we will only need the corresponding quasiparticle
densities

ak
*ak = uRu2

sin2fvkDt/2 − kDx/2g
sin2svkz/2d

, s60d

bk
*bk = uRu2

sin2fvksz − Dtd/2 + kDx/2g
sin2svkz/2d

, s61d

where the upper sign corresponds toa and the lower one to
b. Notice that Eq.s58d is a natural expression for the energy
of the initial state, while Eq.s59d expresses energy conser-
vation: the change in energy of the phonon subsystem equals
the energy produced by unwinding the current.

It is of interest to consider both the case whenDx is real
swhich is its original domaind and the case whenDx is purely
imaginary swhich is where the saddle point for it will be
foundd. In either of these cases, the saddle points forz andDt
are purely imaginary—in particular,

z = iT, s62d

with T.0. As we will see,T is the period of the configura-
tion.

In this paper, we consider only the limit when the energy
EN released by unwinding the current is much smaller than
the typical thermal energyE salthough the more general case
can be considered similarlyd. Then, the left-hand side of Eq.
s57d can be set to zero, and we find that

Dt =
z

2
=

i

2
T. s63d

These are the same saddle-point relations as those found in
Ref. f19g, but obtained here for a somewhat more general
situation—when an instanton causes a nonzero momentum
transfer.

The energy conditions56d can now be rewritten in the
form

E =
1

2
E

−`

` dkvkuRu2

sinh2svkT/2d
fcoshsvkT/2dcoskDx − 1g. s64d

This implicitly determinesT in terms of energyE.
The exponentW at the saddle point equals

W=E
−`

`

dkuRu2H coskDx − 1

sinhsvkT/2d
+

2

evkT/2 + 1J . s65d

The integral of the second term is infrared divergent. Using
the longitudinal sizeL as an infrared cutoff, we find that to
logarithmic accuracy the integral iss2p /gdlnsL /Td. In the
exponent of Eq.s52d for the probability,W is combined with
twice the instanton actions55d. As a result, the dependence
on L disappears.

By a direct calculation, one can verify that the saddle-
point expressionss64d and s65d are related:

U ] W

] T UDx

= − E. s66d

This relation is convenient if we want to restoreW sup to a
constantd from an already calculatedE.

For realDx, the first integral in Eq.s65d rapidly converges
in the ultraviolet. If we use the simple acoustic dispersion
law s46d, this integral can be computed explicitly, and we
obtain, to logarithmic accuracy,

Wac= −
2p

g
ln cosh

pDx

T +
2p

g
ln

L

T . s67d

This is the same expression as obtained in Ref.f4g by com-
puting the action of a certain periodic field. For an individual
real Dx, Eq. s67d is indeed an adequate approximation toW,
but we still need to integrate overDx. This will be done by
steepest descent, and we will see that on the corresponding
scomplexd saddle point the integral does not converge as rap-
idly. As a result, the saddle point cannot be thoroughly ex-
plored in the acoustic approximation: we will need the more
accurate dispersion laws48d.

Using Eq. s65d, we obtain the following saddle-point
equation forDx:

iP =E
−`

`

dkkuRu2
sinkDx

sinhsvkT/2d
, s68d

which shows that the saddle pointDx lies on the upper
imaginary axis. Equations68d can be cast into a form similar
to Eqs.s58d and s59d:
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P

2
= −E

−`

`

dkkak
*ak =E

−`

`

dkkbk
*bk. s69d

The integrals here are the total momenta of quasiparticles in
the initial and final states. Thus, on the one hand, Eq.s69d
expresses momentum conservation and, on the other, shows
that tunneling occurs between states with momenta7P/2.

We are interested in the range of energies, for which the
periods satisfy

T @
1

gn
= 2j s70d

sthe second relation applies due to our choice of units with
cs=1d. In this case, the saddle pointDx is of the form

Dx =
i

2
sT + dd, s71d

with 0,d!T. Using the corrected dispersion laws48d in the
exponents and the acousticvk= uku in the coefficientR, we
bring Eq.s68d to the form

P

2
=

p

g
E

0

`

dkexpS−
1

4
k3j2T +

1

2
kdD . s72d

We see that without the cubic term in the exponent the inte-
grand would not have the correct large-k behavior.

The integrand in Eq.s72d has a maximum atk=k* :

k*
2 =

2d

3j2T . s73d

Assuming that the maximum is sufficiently sharpsthis can be
confirmeda posteriorid and approximating the integrand near
it with a Gaussian, we obtain

k*
3 =

2

3j2THln
T
j

+ OSln ln
T
j
DJ . s74d

Here we have usedP=2pn=p /gj. The sharpness of the
maximum and therefore the accuracy of this calculation is
controlled by the large lnsT /jd.

Now, comparing the expressionss58d for the energy and
s69d for the momentum, we see that the main difference be-
tween the two is due to the deviation ofvk from the strict
acoustic form. Indeed,sassumingEN→0d we can write

E −
P

2
=E

−`

`

dksvk − kdbk
*bk. s75d

Using Eq.s61d with the saddle-point values ofz, Dt, andDx,
we see that fork,0 the integral is rapidly converging, and
the contribution from this region is small: most of the total
comes fromk.0, where the integral converges much more
slowly. Using the same Gaussian approximation as above,
we obtain

E −
P

2
=

1

4
j2k*

2PH1 + OSln−1/2
T
j
DJ , s76d

or, substitutingk* from Eq. s74d,

E −
P

2
<

P

4
S 2j

3TD2/3

ln2/3
T
j

. s77d

Thus, the energy of the optimal initial state is close toP/2,
but there is a correction, given by the right-hand side of Eq.
s76d.

Note that in the above calculation it was sufficient to use
Rskd obtained in the limitvk= uku: any corrections toRskd due
to the modified dispersion law multiply the already small
vk−k in Eq. s75d and do not affect the leading correction
computed in Eq.s76d. The same applies to any changes in
the relation betweena, b, and R that are due to scattering
corrections.

We can now use Eq.s66d to restore the exponentW gov-
erning the QPS rate. In doing so, we need to take into ac-
count the fact that in Eq.s66d the derivative is at fixedDx,
while Eq.s76d was obtained using the saddle pointDx, which
itself is a function ofT. This difficulty can be circumvented
in the following way. We first rewrite Eq.s66d as

]

] T usW+ iPDxduDx = − E s78d

and then observe that the partial derivative here can be re-
placed by the total, since the part due to the dependence of
Dx on T vanishes at the saddle point. Thus, integrating Eq.
s76d over T we obtain not justW but the sumW+ iPDx.

For the full exponent

Ŵ= − 2S0 + iPDx − iEz + W, s79d

which according to Eq.s52d governs the exponential factor
in the ratesin the limit EN→0d, we find

Ŵ= SE −
P

2
DT −

p

2g
S3T

2j
D1/3

f1 + Osln−1/2dgln2/3
T
j

, s80d

where ln; lnsT /jd. In the same approximation, we can use
Eq. s77d to express the periodT through energy:

T <
j

8
S P

E − P/2
D3/2

ln
P

E − P/2
. s81d

Substituting this into Eq.s80d, we obtain our final expression
for the exponent:

Ŵ< −
p

4g
S P

E − P/2
D1/2

ln
P

E − P/2
, s82d

which applies at energies such that

E − P/2 ! P. s83d

The microcanonical rate is

R , expsŴd. s84d

It corresponds to the optimal choice of the tunneling end
point among all states of a given energyE. It is exponentially
larger that the estimates26d, which corresponds to somea
priori , non optimal, way of injecting the energy. In particu-
lar, the threshold for quasiparticle production has moved
from E=P in Eq. s26d to E=P/2 in Eq. s84d.
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D. Initial and final states

We have referred several times toT as the period, but we
have not yet exhibited the periodicity of the field configura-
tion. The field can be obtained by substituting the saddle-
point values ofa andb* into Eq. s49d. In addition to deter-
mining the field, these parameters also determine the most
probable initial and final states. We now turn to a detailed
discussion ofa andb* .

The requisite saddle-point values are

ak =
1 − evkDt−ikDx

1 − eivkz R*evkt08−ikx08−ivkh8, s85d

bk
* =

eivkz − evkDt−ikDx

1 − eivkz Re−vkt0+ikx0. s86d

The values fora* andb are obtained by reverting all signs in
all exponentials and replacingR with R* . Substituting these
expressions into Eq.s49d and settingn8=0, we obtain the
fluctuationn.

The saddle-point solutions63d fixes the difference be-
tween t0 and t08, but not the “center-of-mass” positionst0

+t08d /2. The latter will in general have both real and imagi-
nary parts. The real part is fixed by the position of the time
contour, on which theS matrix is defined. If we use the
contour shown in Fig. 3, then the real part oft0 is zero, so
we can writet0= itR, wheretR is real—it is the momentsin
real timed at which the QPS tales place. Since the collective
mode associated withtR is not important for the present ar-
gument, we settR=0, so that

t0 = 0, s87d

t08 = T/2. s88d

This places the instanton at the origin, as indicated in Fig. 3.
With the help of Eqs.s85d and s86d, the fluctuationn is

obtained as an integral overk; see Eq.s49d. To similarly
represent the full fieldu=uI +Îgn, we need also the Fourier
transform of thesmodifiedd instanton fielduI. Note that this
has different forms in the regionst.0 andt,0; cf. Eqs.
s43d ands44d. For definiteness, we considert.0, where we
can use Eq.s44d with t f replaced byt. As a result, the field
can be written as

1
Îg

usx,td =E dk

2Îpvk

seivkz − evkDt−ikDxdfsx,tdSskd,

s89d

where

fsx,td = Revkst−t0d−iksx−x0d + R*e−vkst−t08d+iksx−x08d s90d

andSskd is defined in Eq.s54d. Note thatS can be rewritten
as

Sskd = o
n=0

`

einvkz. s91d

This allows us to interpret Eq.s89d as a sum over instantons
and anti-instantons at various locations, in parallel with the

interpretation of periodic instantons in Ref.f19g.
Indeed, if we substitutez= iT and restrict our attention to

the intervals0,T /2d, we see that the fields89d can be inter-
preted as the sum of fields from two periodic chains: one of
instantons, at locationsx=x0, t=nT, and the other of anti-
instantons, at locationsx=x08, t=sn+1/2dT, n=0, ±1,… .

If we keepx0 and x08 real, we have a family of periodic
configurations, such as the one shown in Fig. 1. These are the
same configurations as found in Ref.f4g by imposing from
the start the requirement of periodicity in the Euclidean time
t. Here we have reconstructed them without any sucha pri-
ori requirement, following instead the perturbative method
of Ref. f19g. We have seen, however, that the integral over
Dx in the probabilitys52d is not determined by a real saddle
point. So, unlike the case considered inf19g, none of these
real-x0 configurations is an approximate classical solution.
The approximate solution that determines the rate corre-
sponds to the complex saddle points71d and is itself com-
plex.

For realx0 andx08, the integral in Eq.s89d converges in the
ultraviolet, for anyt in the interval s0,T /2d, even in the
acoustic approximationvk= uku. Using the acoustic dispersion
is equivalent to approximating each instanton in the chain by
uIsx−x0,t−tnd, where uI is the unperturbed solutions39d.
The sum overn can then be done explicitly, resulting inf4g

uacsx,td =
1

2i
flns1 − e−it−x+x0d − lns1 − eit−x+x0d

− lns1 + e−it−x+x08d + lns1 + eit−x+x08dg, s92d

where all distances and times are measured in units ofT /2p.
This configuration is explicitly periodic with period 2p, and
its Euclidean action per period to logarithmic accuracy
equals −Wac− iPDx+2S0, whereWac is the approximate ex-
pressions67d.

Now, consider the case when

x0 = xR + Dx/2, s93d

x08 = xR − Dx/2, s94d

wherexR is real andDx is the saddle-point values71d. Note
that thesex0 andx08 are complex conjugate to each other. In
this case, the integral in Eq.s89d is not convergent in the
acoustic approximation, and we need to use the more precise
dispersion laws48d.

The sections of Euclidean time att= ±T /4, which are
halfway between the instantons and anti-instantons, are ex-
pected to have a special significance. Since the complete
periodic solution determines the ratesi.e., the amplitude
squaredd, we should be able to cut it in half, att= ±T /4, to
obtain the tunneling path and then attach this tunneling path
to real-time evolution. A direct calculation shows that when
x0 andx08 are complex conjugate, as in Eqs.s93d ands94d, the
Euclidean velocity]tu at t=T /4 is purely imaginary, while
the field itself there is purely real. The same is true att=
−T /4. Therefore, the solution becomes purely real at
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t = ± T/4 + it8, s95d

with real t8—i.e., on the horizontal, real-time, segments of
the contour of Fig. 3.

An immediate consequence of this result is that the real-
time segments do not contribute to the imaginary part of the
action, so the tunneling exponent is determined by the Eu-
clidean segment alone. Another consequence is that the real-
time evolution can be interpreted as formation and decay of
the coherent fields corresponding to the tunneling end points.
For example, att=T /4+it8 the real-time solution, as a func-
tion of t8 andx, can be read off the expressions89d, in which
we substitute Eqs.s93d ands94d and the saddle-point values
of all the parameters. Note that due to the deviation of the
dispersion law from the purely acoustic one, the wave pack-
ets of quasiparticles do disperse, so att8→ ±` the coherent
states become collections of free quasiparticles. This means
that the expressionss58d for the total energy ands69d for the
total momentum should apply quite generally—i.e., even
with the scattering corrections included—despite the fact that
these corrections will modify the simple relationss85d and
s86d betweena andb* and the instanton’s Fourier transform.

Finally, we note that, as clear from the expressionss60d
and s61d for the quasiparticle densities, the initial statesat
t8→−`d contains mostly phonons with positive momenta,
while the final statesat t8→`d mostly with negative.

E. Canonical rate

The leading exponential factor in the QPS rate at a tem-
peratureT=1/b is obtained by integrating the microcanoni-
cal rate over energyE with the Boltzmann weight:

RT ,E dEe−bER ,E dEeWb, s96d

where

Wb = Ŵ− bE. s97d

Since all variational parameters in the expressions79d for Ŵ
are already at their saddle-point values, the total derivative of

Ŵ with respect toE coincides with the partial—i.e.,

dŴ

dE
= T. s98d

Thus, the exponential in Eq.s96d quite generically has an
extremum at the energyE* corresponding toT=b. This is
consistent with the standard argument, according to which at
a finite temperature we should be looking for solutions that
are periodic int with period b. However, in general, the
extremum can be either a maximum or a minimum. In the
present case, under the low-temperature conditionb@j, the
energyE* falls into the ranges83d, where we can apply Eq.
s82d. We find that

E* <
P

2
+

P

4
S 2j

3b
D2/3

ln2/3b

j
s99d

is a maximum and the only one in this range. Thus, levels
with energies nearE* give the main contribution to thermally

assisted tunneling among all levels in the ranges83d. This
has to compete with transitionsstunneling or overbarrierd
from levels outside the ranges83d—i.e., those for whichE
−P/2=OsPd. However, the transition rate for such levels is
suppressed at least by the Boltzmann factor exps−E/Td
=exps−cP/Td, wherec.1/2. On the other hand, as we will
soon see, tunneling fromE<E* is suppressed, atb@j,
mainly by exps−P/2Td, so at these temperatures it is more
important.

All that remains, then, is to substituteT=b=1/T into Eq.
s80d. We obtain

RT , expH−
bP

2
−

p

2g
S3b

2j
D1/3

f1 + Osln−1/2dgln2/3b

j
J ,

s100d

which is our final result. Here ln=lnsb /jd; the preexponent is
estimated in the next subsection.

Recall thatP=2pn, wheren is the average density. So,
under the conditions27d, the first term in the exponent of Eq.
s100d is much larger than the second. This term was obtained
in Ref. f4g from the approximate expressions67d, which is
based upon using the acoustic dispersion law throughout.
Obtaining the second, correction, term requires, as we have
seen, the use of the more precise dispersion laws48d. The
second term becomes of the same order as the first atb,j,
where the present approximation breaks down.

F. Estimate of the preexponent

A naive dimensional estimate for the preexponent in the
QPS rate would beL /j2, whereL is the total length of the
system. In actuality, of course, there is a multiplicative cor-
rection to this estimate. Note, however, that the estimate of
accuracy in Eq.s100d implies that we have already omitted a
variety of subleading terms, such as, for instance,

− 2S0 +
2p

g
ln

L

b
< −

2p

g
ln

b

j
s101d

swhich is the leading contribution in the case of a sharply
localized perturbation, but is only subleading in the uniform
systemd. At small g, this term, omitted in theexponentof the
rate, is more important than any correction to the naive pre-
exponent that we may obtain. Nevertheless, we now present
an estimate of the preexponent, given the traditional interest
in values of the “attempt frequency”swhich is what the pre-
exponent representsd.

The preexponent comes from the ratio of two determi-
nants: one for small fluctuations near the periodic instanton
and the other for small fluctuations in vacuum—similarly to
the case of a bouncef24g; for a review, see Ref.f28g. Near
the periodic instanton, fluctuations can be expanded into nor-
mal modes, which satisfy the eigenvalue equation

DP
2cn = lncn, s102d

where DP
2 is a small-fluctuation operator in the periodic-

instanton background. The modescn should be periodic with
the same periodb. We can use a classification of modes
similar to that used after Eq.s51d: there are modes that are
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localized in regions of a spatial size of orderj around the
individual instantons and antiinstantons and modes that are
not. Delocalized modes withln!1/j2 si.e., with typical mo-
menta much smaller than 1/jd, as well as modes withln
&1/j2, both delocalized and localizedsif anyd, contribute
only a numerical factor of order unity to the ratio of the
determinantsscf. Ref. f28gd, and we will not be interested in
this factor in what follows.

Large factors can only come from localized modes with
ln!1/j2, corresponding to the “soft” collective coordinates.
The periodic instanton has two strictly zero modessln=0d,
corresponding to translations of the entire configuration in
space and time. These are the translations described by the
parametersxR andtR of Sec. IV D. Each of these zero modes
contributes a normalization factor of order 1/jÎg, up to a
power of lnsb /jd, times the total volume associated with the
corresponding collective coordinate. The temporal volume
cancels out when we go from the probability to the rate,
while the spatial volumeL remains, resulting in the zero-
mode factor

V1 ,
L

gj2 . s103d

In addition, there are two quasizero modes, corresponding to
changes in therelative position of the instanton and anti-
instanton chains. These modes are described by the saddle-
point parametersDx and Dt. They have approximately the
same normalization factors as the strictly zero modes, but
their volumes are determined by the saddle-point
integrations—i.e., by the second derivatives of the exponent
W, Eq.s53d, with respect toDx andDt. These volumes are of
ordersk*Pd−1/2 eachswhile the mixed second derivative van-
ishesd, so the quasizero modes contribute the factor

V2 , sgj2k*Pd−1 , sjk*d−1, s104d

wherek* is given by Eq.s74d with T=b. Multiplying V1 and
V2, we obtain an estimate for the preexponent:

V ,
L

gj2Sb

j
D1/3

, s105d

which is accurate up to a power of lnsb /jd.

V. CONCLUSION

In a uniform system, instantons that generate momentum
by unwinding a persistent current need to transfer a compen-
sating momentum to quasiparticles. We have seen that these
instantons have many interesting properties that are absent in
cases when no such momentum transfer is necessary. We
have considered in detail the case of a weakly coupled 1D
superfluid at temperaturesT!gn,cs/j, wherecs is the pho-
non speed andj is the healing length.sIn this section, we
restorecs, which was set to 1 earlier in the paper.d

On the theoretical side, perhaps the most curious features
of this case are that the instanton is complex, has no turning
points, and yet its analytical continuation to the appropriate
real-time segments is real. On the real-time segments, the
solution can be interpreted as formation and decay of coher-

ent states of quasiparticles. These initial and final states have
opposite total momenta7P/2, allowing for a transfer of
momentumP.

A possibility of experimental detection of QPS’s in nar-
row superfluid channels via momentum imaging has been
mentioned in the Introduction. Looking at our final result
s100d, which to the leading order we can rewrite as

RT , expS−
pcs

g

gn

T
D , s106d

and comparing it to its counterparts23d for the case of a
sharply localized perturbation, we see that the temperature
dependence of the rate is much steeper in the uniform case: a
logarithm of gn/T in the exponent is now replaced by a
power. As the calculation makes clear, this additional sup-
pression results from the need to use states with relatively
high energyE<csP/2. The “dynamical” suppression, con-
trolled by the quantum overlap between the optimal initial
and final states, is in the uniform case only subleading.

It is of interest to extend the present results in several
directions. First, it would be interesting to extend them to
higher temperatures,T,gn. A striking property of the rate
s106d is that, at anyT!gn, it is exponentiallysmaller than
the rate of thermal activation that one would obtain within
the LAMH theory f10,11g. Indeed, when the energyEN re-
leased by unwinding the current is negligiblefthe same limit,
in which Eq.s106d was obtainedg, the LAMH rate is

RLAMH , expS−
4csn

3T
D . s107d

On the other hand, we have shown in Sec. IV E that atT
!gn our instanton is the dominant path for phase slips, more
important than any thermal activation. The discrepancy can
be traced to the fact that the original LAMH theory makes no
account of momentum conservation. Recall that the LAMH
saddle point, whose energy determines the rates107d, has
order parameter that is nonvanishing everywheresexcept for
the special case of exactly zero currentd. Usually, one as-
sumes that this saddle point is close to some time-dependent
fluctuation, for which the order parameter vanishes at some
point, allowing for a phase slip. Our results imply that in a
uniform system, where there are no external “sinks” of mo-
mentumssuch as impurities, etc.d, this is not a good assump-
tion; i.e., in this case the LAMH saddle point does not nucle-
ate any phase-slip process. We have preliminary numerical
data supporting this conclusion. Accordingly, it is by no
means clear if, in a uniform system, there is a crossover to a
thermally activated mechanism for phase slips atany T.

Another direction in which one may be able to extend the
present results is systems of higher dimensionalitys2D and
3Dd. There, the role of the topological term is taken over by
the Magnus force, which suppresses tunneling in a rather
similar wayf14g. In either case, the suppression can be seen
as a result of destructive interference between tunneling at
different values of the spatial coordinate. It is natural to ask
if in 2D and 3D this suppression can be circumvented by an
inelastic mechanismsproduction of phononsd similar to the
one considered here.

TUNNELING IN A UNIFORM ONE-DIMENSIONAL… PHYSICAL REVIEW A 71, 013602s2005d

013602-13



One last case of interest we mention is that of BCS-paired
superfluids and superconductors. In that case, an additional
channel of momentum productionf4g becomes available. It
is associated with zero modes of fermionic quasiparticles at
the instanton core. For superconductors, the problem is com-
plicated by the scattering of quasiparticles on disordersand,
in 1D and 2D, on the boundaries of the sampled, which alters
the momentum balance. Nevertheless, this channel of inelas-
tic tunneling deserves a further study, especially in view of
its possible relevance to experimentsf16,17g on supercon-
ducting nanowires.

Note added in proof.Recently we have learned that
Kashurnikovet al. f29g had also considered suppression of
QPS’s by the topological term. However, we disagree with
their conclusion that QPS’s are always absent in a uniform

superfluidsor in the presence of an incommensurate periodic
potentiald and with their statement that the uniform system is
“trivially” superfluid. Indeed, their conclusion apparently ne-
glects the possibility of momentum transfer to phonons,
which can destroy superfluidity in these cases. One manifes-
tation of this mechanism is the nonzero rate for thermally
assisted QPS’s in a uniform superfluid, computed in the
present paper.
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