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We report the use of adaptive interferometry to detect a monolayer of protein immobilized in a
periodic pattern on a spinning glass disk. A photorefractive quantum-well device acting as an
adaptive beam mixer in a two-wave mixing geometry stabilizes the interferometric quadrature in the
far field. Phase modulation generated by the spinning biolayer pattern in the probe beam is detected
as a homodyne signal free of amplitude modulation. Binding between antibodies and immobilized
antigens in a two-analyte immunoassay was tested with high specificity and without observable
cross reactivity. ©2005 American Institute of Physics. fDOI: 10.1063/1.1915511g

Interferometric biosensing has the advantages of fast,
tag-free, and high-sensitivity molecular detection relative to
other optical biosensing techniques.1 To be sensitive to phase
si.e., optical thicknessd, interferometry must work near the
quadrature condition where the relative phase between the
signal and the reference is equal top /2. Most interferomet-
ric biosensing techniques use integrated interferometric
sensors.2,3 Free-space interferometry, on the other hand, has
the advantage of multiple simultaneous spatial channels, but
has suffered from perturbations and mechanical vibrations
that can cause large signal drift. A free-space interferometric
method with quadrature stability was recently developed.
This method, called microdiffraction biocompact disk
sBioCDd, sets the phase of the interference by the height of
gold microstructures on a spinning disk.4 In this letter, we
describe an adaptive solution for the phase stabilization5–7 on
a BioCD that does not need any microstructuring of the re-
action surface. This enables multianalyte biosensing on a
plain glass disk.

The adaptive opticalsAO-classd BioCD uses spatially
periodic patterns of biomolecules immobilized on a spinning
glass disk that impart a periodic phase modulation on a probe
laser beam. The probe beam is mixed with a coherent refer-
ence beam in a two-wave mixing configuration in a photore-
fractive quantum-well device that converts the phase modu-
lation to an amplitude modulation. Detecting biomolecules
as a spinning phase pattern has two advantages. First, bio-
molecules are detected by measuring signals at a high fre-
quency, which avoids 1/f noise and also allows narrowband
detection based on repetitive sampling. Second, the phase
signal measured by the system is the optical thickness differ-
ence between the molecular spoke pattern and a reference
surface. In an assay application, the molecular spoke can be
a recognition molecule like an antibody that recognizes and
binds a specific molecule in a sample. The reference surface
can carry an inert molecule or a molecule that is specific to a
different target protein. Nonspecific protein-protein binding
scalled cross reactivityd will be common to both surfaces and
is therefore automatically cancelled out.

The phase modulation scheme of the AO-BioCD is
shown in Fig. 1. The adaptive BioCD disksFig. 1 bottomd is
a 4 in. diameter glass disk with printed biomolecules in a
1024-wedged-spoke pattern, in which the spoke width in-
creases linearly with the radius to maintain the pattern duty
cycle. When the disk is spun at a constant 50 Hz speed, the
protein pattern is transferred onto the 30µm diameter probe
beam as a time-domain phase modulation at 51 kHz. The
spinning BioCD thus acts as a phase modulator with a modu-
lation depth that is linear in the optical thickness relief of the
biomolecule pattern. Detection is performed on circular
tracks with radii that are selected by moving the spinner with
a computer-controlled linear stage. To provide a reference
signal for lock-in detection, the disk has 1-mm-wide gold-
patterned synchronization tracks on the outer rim providing
from 1st to 16th harmonic signals of the rotation frequency
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FIG. 1. The AO-BioCD disk and probe geometry that converts a periodic
pattern of printed protein on a spinning disk into a high-frequency phase
modulation. The figure shows the adaptive BioCD layoutsbottomd, the prob-
ing schemestop-rightd, and fluorescence photo of the protein pattern
stop-leftd.
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sonly three tracks are shown in the layoutd, plus a 1024 ele-
ment track as a carrier frequency monitor.

The phase-modulated probe beam is sent into a photore-
fractive quantum wellsPRQWd device8 and mixed with a
local oscillator beam by two-wave mixing,9 which can self-
compensate environmental and mechanical disturbances to
maintain the quadrature condition with a compensation rate
higher than a kHz.10 Phase modulation in the probe beam at
frequencies higher than the compensation rate of the PRQW
device is read out by a photodetector as amplitude modula-
tion caused by interference between the reference beam and
the first-order diffraction of the signal beam. The phase dif-
ference between the two fields is tuned to the quadrature
condition9 by selecting the operating wavelengthsnear 830
nmd at which homodyne signals depend linearly on phase
modulation. Homodyne detection in photorefractive materi-
als has been applied in ultrasound detection with subpicom-
eter sensitivity to optical path change,11,12which is much less
than a monolayer of biological macromolecules such as an-
tibodiess5–8 nmd.

In the probe beam, the amplitude noise caused by dif-
fraction from the spatial index variations in the disk is typi-
cally much stronger than the molecular signal. Extracting
small phase modulation in the presence of large amplitude
modulation is difficult for conventional interferometry, in
which the probe and the local oscillator are directly mixed
and the amplitude noise in the probe beam dominates. How-
ever, the adaptive interferometer has separate output ports for
the probe beam and local oscillator, which makes it possible
to detect the molecular signal in the local oscillator that is
free of amplitude modulation. Under the condition of quadra-
ture, the transmitted local oscillator is influenced only by the
molecular signal and by the phase noise in the probe beam.

The system uses a tunable external cavity diode laser
sEOSI 2010d, whose wavelength is tuned to quadrature near
830 nm. After mixing the probe beam and the local oscillator
in the PRQW device, homodyne signals are read out by an
amplified avalanche photodiodesHamamatsu C5460d cen-
tered on the local oscillator beam and measured by either a
spectrum analyzer or a lock-in amplifier. To validate the sys-
tem, a 5-MHz-resonant phase modulatorsNewfocus 4001d is
placed in the probe beam before the BioCD disk, and a ho-
modyne signal is measured with known phase-modulation
amplitudes. The frequency response of the PRQW device
was verified to be the same between 50 kHz and 5 MHz
allowing phase modulations from BioCD disks are calibrated
by comparing their homodyne signals with the phase-
modulator signal.

Figure 2sad plots the 3-kHz-bandwidth homodyne spec-
trum from a BioCD disk printed with Bovine serum albumin
sBSAd by an “ink” gel stamping method in which a poly-
acrylamide patterned gel stamp containing BSA is brought
into contact with the BioCD disk, whose surface has been
activated with chlorodimethyloctadecylsilane. Protein is
transferred to the disk surface by physical adsorption.13 Fluo-
rescein conjugated BSAsSigmad was used to verify printing,
and the fluorescence photofFig. 1 topg shows a uniform
intensity. The spectrum, combined with the phase-modulator
calibration fFig. 2sbdg determined that the BSA pattern has
an optic thicknesssn−1dd=0.6 nm. The physical thickness
of the pattern was also measured using atomic force micro-
scope, shown as the insert in Fig. 2sad as a height gray-scale
map of a 10310 mm scan on the edge of one spoke. The

scan measured the BSA region 2.5±0.7 nm higher than the
glass region, which verified that the BSA was printed as a
protein monolayer and also confirmed a refractive index of
1.2±0.1 for BSA.

The signal-to-noise ratio of the system is determined by
the noise equivalent optical thicknesssNEOTd, defined
through the expression

S

N
=

sdPL8d2
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NEOT
D2

, s1d

where NL and NP are noise amplitudes contributed by the
local oscillator and the phase noise from the disk, respec-
tively. At the 51-kHz-modulation frequency,NP dominates,
which gives a NEOT equal to 0.3 nm. Much higher sensitiv-
ity can be achieved by narrowing the detection bandwidth
with lock-in detection, because lock-in noise measurements
show that NEOT caused by the disk phase noise decreases
linearly to the detection bandwidth. However, the current
system is limited to a detection bandwidth of approximately
3 kHz due to mechanical factors. Future technical improve-
ments should allow narrower detection bandwidths and more
sensitive thickness measurements.

We have implemented the AO-BioCD as an immunoas-
say seeking antigen-antibody molecular recognition. First, a
mouse IgG 1024-spoke pattern was printed on the disk sur-
face, after which the free surfacessunprinted areasd were
saturated by BSA. The disk was divided into four annular
tracks sA–Dd for sample incubation. Nonspecific binding
was tested first by incubating track C with 200µg/ml anti-
rabbit IgG antibody solution for 30 min. Specific binding
was tested after applying 200µg/ml anti-mouse IgG solution
to Tracks B and C. Homodyne signal amplitudes, which were
scanned across the disk in 0.1 mm radius steps, recorded the
optical thickness difference between the mouse IgG areas
and the BSA-saturated areas. Figure 3sad shows that no sig-
nal change occurred after the incubation withsnonspecificd
anti-rabbit IgG. Subsequently, after being exposed tosspe-
cificd anti-mouse IgG, Tracks B and C showed approximately
equal signal increases. This result demonstrates that the tech-

FIG. 2. The AO-BioCD calibration.sad The homodyne signal spectrum of
printed BSA. Insert: the atomic force microscope scan of the edge of one
BSA spoke.sbd The homodyne signal spectrum of the phase modulator,
driven by a 5 MHz ac voltage withVpp=40 mV, which generates a phase
modulation offpp=2.1310−2 rad for an equivalent optical thickness of 2.8
nm.
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nique recognizes target antibody, and also shows that the
prior exposure to non-specific reagents does not affect the
molecular recognition.

We then performed a two-analyte assay. Mouse IgG was
again printed on the disk in a 50% duty-cycle 1024 spoke
pattern, but this time rabbit IgG antigen was used as the
free-surface saturating reagent, instead of the BSA. This gen-
erated a pattern of alternating spokes of mouse and rabbit
antigen. Because both proteins had almost the same optical
thickness, the disk homodyne signal amplitudes were the
same as the noise level, as shown in Fig. 3sbd. In the incu-
bation process, Tracks B and C were first exposed to anti-

rabbit IgG antibody, and Tracks C and D were subsequently
exposed to anti-mouse IgG. Antibody incubation generated
homodyne signal peaks on both Tracks B and D, correspond-
ing to positive detections of anti-rabbit IgG and anti-mouse
IgG, respectively. On Track C, a double positive response to
both antibodies canceled out the homodyne signal, as shown
in Fig. 3sbd. This experiment demonstrates that mouse IgG to
anti-mouse IgG binding has the same high affinity as the
rabbit IgG to anti-rabbit pair.

In conclusion, we have demonstrated the first adaptive
interferometric BioCD for molecular recognition. The sensi-
tivity for transmission through the glass disk was determined
to be 0.3 nm, with significant future improvements possible
by shifting to a reflection geometry that will not be sensitive
to density fluctuations in the glass. No observable cross re-
activity was observed between two-analyte binding. With fu-
ture developments improving sensitivity, increasing track
density and increasing the number of analytes, this technique
opens the door to high-speed high-throughput biomolecular
screening.
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FIG. 3. The AO-BioCD Immunoassay results.sad Single-analyte experiment
detecting specific binding between mouse IgG and anti-mouse IgG. Tracks
B and C are incubated with specific antibody, showing positive detection.
sbd Two-analyte experiment detecting specific bindings between mouse IgG
srabbit IgGd and anti-mouse IgGsanti-rabbit IgGd. Tracks B and C were
incubated with rabbit, and C and D were incubated with mouse antibody.
The overlapping detection in Track C cancels out.
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