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Massive Schwinger model with a finite inductance: theta (in)dependence, the U�1� problem,
and low-energy theorems

S. Khlebnikov
Department of Physics, Purdue University, West Lafayette, Indiana 47907, USA
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Gauge theories embedded into higher-dimensional spaces with certain topologies acquire inductance
terms, which reflect the energy cost of topological charges accumulated in the extra dimensions. We
compute topological susceptibility in the strongly-coupled two-flavor massive Schwinger model with such
an inductance term and find that it vanishes, due to the contribution of a global low-energy mode (a
‘‘global axion’’). This is in accord with the general argument on the absence of � dependence in such
topologies. Because the mode is a single oscillator, there is no corresponding particle, and the solution to
the U�1� problem is unaffected.

DOI: 10.1103/PhysRevD.74.085007 PACS numbers: 11.10.Kk, 11.30.Er

I. INTRODUCTION

An important aspect of the nontrivial vacuum structure
of QCD [1–5] is the formation of coherent superpositions
known as �-vacua. To each value ��< � � �, there
corresponds a separate sector of the Hilbert space, and
transitions between different sectors are prohibited by a
selection rule. For all values of � except 0 and�, the theory
breaks CP symmetry; the absence (or unnatural smallness)
of this CP breaking in practice presents a naturalness
problem, known as the strong CP problem.

The presence of a �-angle reflects the perfect degeneracy
between states connected by topologically nontrivial
(‘‘large’’) gauge transformations [4,5]. The axion solution
[6,7] does not destroy this degeneracy but screens the value
of � in a way somewhat similar to how the usual Higgs
mechanism screens an electric field [8]. This solution gives
rise to a new light particle—the axion [9,10] (for a recent
review, see Ref. [11]).

On the other hand, if there are extra dimensions with
suitable topology, the degeneracy is no longer protected by
gauge invariance, and that gives a reason to think that in
this way an axion-free solution to the strong CP problem
can be achieved [12,13]. (Other extra-dimensional solu-
tions have been proposed in Refs. [14,15].)

One may worry, however, that the solution proposed in
Refs. [12,13] is in conflict with the low-energy theorems of
QCD, such as those derived in Refs. [16–18]. These the-
orems connect the existence of observable �-dependencies
to a successful solution to the U�1� problem—the absence
of a light �0 meson. In the present paper, we argue that this
concern is not justified, using the massive two-flavor
Schwinger model (two-dimensional electrodynamics),
about which much is known [19], as an example.

The strongly-coupled Schwinger model provides a
rather close analogy to QCD, including a solution to the
U�1� problem. Of course, not all observable quantities of
QCD have direct analogs in this model. An important one
that does is the vacuum topological susceptibility, a low-
energy relation for which was derived in Refs. [16,17].

Here we consider the essentially identical relation appli-
cable in the Schwinger model.

The single (but crucial) new ingredient that we add to the
model is a finite inductance, which reflects the energy of
magnetic flux in the extra dimensions. Such a flux is the
simplest example of a topological charge (instanton num-
ber), and a finite energy associated with accumulation of
the topological charge in the extra dimensions appears
naturally in the scenario of Ref. [13].

Thus, we consider the theory on a ring (Fig. 1) em-
bedded in a higher-dimensional space. The length L of
the ring is taken to be much larger than the inverse of either
the fermion mass m or the gauge coupling g. The fermions
are confined to move along the ring, but the gauge field can
penetrate some distance into the bulk. Nevertheless, the
gauge field is assumed localized, in the sense that the total
number of modes available to it at low energies is the same

FIG. 1 (color online). A ring threaded by a magnetic flux.
Instanton transitions in the gauge theory on the ring correspond
to changing the value of the flux, and �-vacua—to a steady
current of flux into the ring. One expects that the energy cost
associated with increasing the flux (a finite inductance) will
prevent such steady currents.
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as in the two-dimensional (one space and one time) theory.
(In particular, the Coulomb law is the same as in two
dimensions.) The precise mechanism of localization will
not be important here. (For a variant of such a mechanism,
see Ref. [13].)

A finite inductance lifts the degeneracy between vacua
corresponding to different values of magnetic flux through
the ring, and it stands to reason that this will prevent
formation of �-vacua. We stress that the system is not
confined to a vicinity of a specific value of the flux:
transitions between different values are fully allowed,
and the true vacuum is a superposition of different flux
states. It is just that this superposition is now unique and is
no longer characterized by a value of ‘‘quasimomentum’’
(a �-angle).

In the present paper we show that this � independence is
in complete accord with the low-energy theorem and does
not in any way upset the solution to the U�1� problem.
What happens is that the global topological mode, which
was originally frozen by the superselection rule, is now
liberated and contributes precisely the right amount to
satisfy the theorem.

These results are derived in Secs. II and III.
Considerations of Sec. II are general, while in Sec. III we
restrict our attention to the strong-coupling limit, where the
analogy with QCD applies. In that limit, we explicitly
compute the topological susceptibility and find that it is
zero.

The topological mode is a single oscillator: there is no
particle associated with it (it is a ‘‘global axion’’ in the
terminology of Ref. [13]). Thus, the price one pays for such
a solution to the strongCP problem is a (weak) violation of
Lorentz invariance.

II. THE ROLE OF FINITE INDUCTANCE

The model contains two species of fermions of equal
massesm, interacting with an Abelian gauge field A�,� �
0, 1. The action is
 

S �
Z
dxdt

�
1

2
F2

01 �
g�
2�

F01

�
X
f�1;2

� f�i���@� � igA�� �m� f

�
�

1

2I

Z
dt�2;

(1)

where F01 � @0A1 � @1A0, � is the magnetic flux through
the ring:

 � �
Z L

0
dxA1;

and I is a finite inductance. The usual two-flavor massive
Schwinger model is recovered in the limit I ! 1.

Following Ref. [19], we will make use of the bosoniza-
tion technique. However, we will need to bosonize on a
circle, as opposed to the infinite line. Bosonization on a

circle has a sizable literature on the particle-theory side of
the problem (see Ref. [20] and references therein) and an
even larger one on the condensed-matter side (see the
review [21]). For developments along different lines, see
Ref. [22] (on the relation to conformal field theory) and
Ref. [23] (on lattice results).

We summarize key bosonization formulas in
Appendix A, where we also indicate simplifications ob-
tained by restricting to the sector with zero total fermionic
charges (the only sector relevant to the present problem). In
particular, the crucial relation for the fermionic currents, in
terms of two scalars�1;2, in the zero-charge sector does not
acquire any 1=L corrections and reads exactly as on the
infinite line:

 

� f�
� f �

1����
�
p ���@��f: (2)

(A gauge-invariant regularization of the left-hand side is
discussed in the Appendix.)

We now fix the gauge @1A1 � 0, substitute Eq. (2) into
Eq. (1), and separate the action into two parts: the part
containing the dependence on the spatially constant
(‘‘zero’’) mode of A1 and the remainder. The first of these
equals

 SA � L
Z
dt
�
1

2
�@0A1�

2 �
g�
2�

@0A1 ��@0’A1 �
L
2I
A2

1

�
;

(3)

where� � g
���������
2=�

p
, and’ denotes the zero mode of�� �

��1 ��2�=
���
2
p

(L is the length of the ring).
Upon integrating out A1, Eq. (3) gives rise to the follow-

ing term in the effective action for ’:

 S1 �
1

2
L�2

Z
dtdt0’0�t�G�t� t0�’0�t0� (4)

where ’0 � ’� �=2
�������
2�
p

, and

 G�t� �
Z d!

2�
e�i!t

!2

!2
LC �!

2 ;

!LC �
��������
L=I

p
is the LC frequency. (The terminology

comes about because the first term in Eq. (3) can be
thought of as capacitive energy.)

We can now appreciate the role of finite inductance. If
we formally set I to infinity, Eq. (4) becomes a mass term
for ’0. This mass term pulls ’ towards the value �=2

�������
2�
p

,
and that value then shows up in the remainder of the action.
This is the source of the � dependence described in
Ref. [19]. On the other hand, if keep !2

LC is finite and
consider the modes with !2 	 !2

LC, Eq. (4) is not a mass
but a kinetic term. As a result, � disappears from the theory.
Its role is taken over by the initial value of ’.

As we will see in the next section, interaction with
�� � ��1 ��2�=

���
2
p

produces an effective potential for
’ with a minimum at ’ � 0. If ’ has a chance to relax to
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this minimum (either through a decay into light particles or
through friction effects at a finite temperature), the mem-
ory of its initial value will be lost, and no counterpart of �
will be left.

This conversion of the �-angle into a global time-
dependent degree of freedom (a ‘‘global axion’’) is the
essence of the solution to the strong CP problem proposed
in Ref. [13]. The solution does not seem to do much
damage to the known QCD phenomenology, and so it is
natural to think that the low-energy theorems will some-
how work out correctly. To help alleviate possible doubts,
we explicitly address here the fate of one of those theo-
rems—the relation for the topological susceptibility
[16,17].

III. TOPOLOGICAL SUSCEPTIBILITY

We now restrict ourselves to the strong-coupling limit
g
 m, the one that provides an adequate analogy to QCD.
In this case, the nonzero modes of �� are heavy, with a
mass of order g, and decouple at low energy. The low-
energy theory contains the light field ��, described by the
Hamiltonian [19]

 H � Nm
Z
dx
�
1

2
p2
� �

1

2
�@1���2

� 2cm3=2�1=2 cos�
�������
2�
p

’� cos�
�������
2�
p

���
�
; (5)

and the zero mode ’ of ��, described by the effective
action [cf. Equation (4)]

 S0 � S1 �
1

2
L
Z d!

2�

�
1�

�2

!2
LC �!

2

�
!2j ~’�!�j2: (6)

In this section, we compute topological susceptibility of
the vacuum with � � 0; this will determine the response of
that vacuum to a small �-term. Accordingly, ~’ in Eq. (6) is
simply the Fourier transform of ’. In Eq. (5), Nm denotes
normal ordering with respect to the mass m, and c is a
numerical constant inherited from the bosonization
procedure.

We will see that fluctuations of ’ in the ground and low
excited states are small, so in these states cos�

�������
2�
p

’�
deviates little from unity. For our purposes, it will be
sufficient to consider only the terms of the zeroth and
second order in ’. The first of these is the low-energy limit
of the usual two-flavor massive Schwinger model and
determines the properties of the �� subsystem, in particu-
lar, the ‘‘quark condensate’’

 C � �
�X
f

� f f

�
� h2cm1=2�1=2Nm cos�

�������
2�
p

���i: (7)

Dependence of C on m can be understood by normal
reordering with respect to the mass M � �2cm�1=2�2=3,
which then becomes the only mass parameter in the
Hamiltonian of �� [19]. As a result,

 mC � hM2NM cos�
�������
2�
p

���i �M
2;

which scales as m4=3.
The second-order term

 H2 � 2�cm3=2�1=2’2
Z
dxNm cos�

�������
2�
p

���

is an interaction between ’ and ��. It affects little �� but
significantly ’: averaging it over the vacuum of �� gives
rise to an effective potential E�’� � �mC’2. The full
effective action of ’ in this approximation is quadratic:

 Seff � S0 � S1 � L
Z
dtE�’�; (8)

where S0 � S1 is given by Eq. (6).
We can now read off the frequency of small oscillations

of ’:

 !2
0 � E00�0�

�
1�

�2

!2
LC

�
�1
:

The approximation sign corresponds to the limit !0 	
!LC, which as we see is always justified. Depending on
the relation between !LC and �, !0 can be either much
smaller than M or of the same order. It is important to note
that it always belongs to the low-energy sector.

Equation (8) also shows that the strength of zero-point
fluctuations of ’ is controlled by the parameter

 	 �
!0

LE00�0�
: (9)

Given that L is macroscopic, this parameter is always
small, 		 1. This justifies the expansion in powers of
’. We will find, however, that, although the fluctuations of
’ are suppressed by a power of L, their contribution to the
topological susceptibility is not.

Topological susceptibility is defined as

 K � i
Z �

T
2g
�
F01�x�

2g
�
F01�0�

�
d2x;

where T denotes the T-product, and the averaging is over
the true vacuum of the entire system. K determines the
average electric field in the vacuum induced by a small
�-term in the Lagrangian. It satisfies a relation virtually
identical to the relation derived in Refs. [16,17] for the
topological susceptibility in QCD. In our case, the relation
is

 K � 4m
�X
f

� f f

�
� 4im2

Z
hTO�x�O�0�id2x; (10)

where O � i
P
f

� f�5 f is the pseudoscalar density, �5 �

�0�1. Derivation of Eq. (10) is completely parallel to that
in the case of QCD and will not be repeated here.
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The correlator appearing in Eq. (10) can be expressed as

 i
Z
hTO�x�O�0�id2x � 2L

X
s

1

Es
jhsjO�0�j0ij2; (11)

where j0i is the vacuum of the system, and jsi are excited
states, with energies Es relative to the vacuum. The opera-
tor O has the quantum numbers of an �0 meson. One
relevant quantum number is G-parity [19], under which
�� is even, while �� and O are odd. If there were no low-
energy excitations with odd G-parity, the second term in
Eq. (10) would scale asm2 at small m. Meanwhile, the first
term scales as m4=3 (the corresponding term in QCD scales
linearly with the quark masses). Hence, the first term
would win and make K nonzero.

We have seen, however, that in the presence of a finite
inductance there is a low-energy oscillator mode, ’. It has
precisely the right quantum numbers and therefore needs to
be included in (11). Because this mode is a single oscil-
lator, it does not correspond to a new particle, and so the
solution to the U�1� problem (the absence of a light �0) is
unaffected.

The pseudoscalar density can be bosonized in the usual
way:

 i
X
f

� f�5 f � 2cmNm cos�
�������
2�
p

���Nm sin�
�������
2�
p

���;

but the sine needs to be reordered, to get rid of the tadpoles
of the heavy field �� (cf. Ref. [19]). Upon doing that,

 i
X
f

� f�5 f � 2cm3=2�1=2 sin�
�������
2�
p

’�Nm cos�
�������
2�
p

���

� �
�������
2�
p

’
X
f

� f f;

where we have used the fact that fluctuations of ’ are
small. Thus, the sum in (11) is saturated by the first excited
state of ’:

 i
Z
hTO�x�O�0�id2x �

2�L	
!0

C2;

and using Eq. (9) for 	 we see that the second term in
Eq. (10) precisely cancels the first. We obtain K � 0, our
main result.

IV. CONCLUSION

The overall picture that emerges from the present study
is of the world as a giant resonator, whose global oscillat-
ing mode is coupled to a continuum branch (the familiar
elementary particles). In the massive two-flavor Schwinger
model, analytical methods take us quite far, even in the
strongly-coupled limit, which has many analogies to QCD.
For that case, we have explicitly computed the topological
susceptibility and seen that the global oscillator contributes
just so as to banish the vacuum � dependence.

We find it remarkable that the cancellation of the topo-
logical susceptibility occurs even though the coupling of
the global mode to the continuum is suppressed by the
‘‘size of the universe’’ (the length of the ring in our
example). This mode has the quantum numbers of �0 but,
being a single oscillator, does not correspond to a new
particle. Therefore, the solution to the U�1� problem is not
affected.
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APPENDIX: BOSONIZATION ON A CIRCLE

We follow the approach popular in the condensed-matter
literature (for a review, see Ref. [21], whose notation we
mostly follow). In this approach, Bose operators are con-
structed in terms of the operators of a massless free Fermi
field. Since these are equal-time operator relations, they are
true regardless of what the actual fermion dynamics is (i.e.,
even if the fermion is massive and interacting, as in our
case). In the particle-theory language, this approach cor-
responds to normal ordering (a gauge-invariant version
thereof) with respect to a mass of order 1=L. Once all
the requisite operators are constructed in this way, they can
be reordered with respect to any mass by using the reorder-
ing relations of Ref. [24]. To simplify notation, we set
L � 2�.

We use the chiral representation of the �-matrices, in
which they are �0 � 
1 and �1 � �i
2, so that �5 �
�0�1 � 
3. The upper and lower components of a Dirac
fermion are expanded in Fourier series as follows

  �
 R
 L

� �
�

1�������
2�
p

P
k
	keikxP

k
�yk e

ikx

0
B@

1
CA:

The operators 	 and � obey the usual equal-time anticom-
mutation relations. If  really were a free massless fer-
mion, these operators would correspond to right- and left-
movers. The momentum k takes the values

 k � nk � �;

where nk are integers, and 0 � � < 1 is a fraction depend-
ing on the boundary conditions. We will consider a general
�, even though compactifications that lead to theories with
finite inductances typically produce a special case—anti-
periodic fermions (� � 1

2 ) [13].
In a gauge theory, we identify  with the fermion in the

Coulomb gauge @1A1 � 0. So, in what follows, only the
large gauge transformations, which change A1 by a con-
stant, will be of relevance. (In this Appendix, we use the
calligraphic A to denote the gauge field.)
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Define Bose operators (q is a positive integer)

 Aq � �
i���
q
p

X
k

	yk�q	k; Bq � �
i���
q
p

X
k

�yk�q�k:

Aq and Ayq0 (and Bq and Byq0) obey the usual Bose commu-
tation relation. Then, the density operators are

 

X
q;k

eiqx: 	yk�q	k :� i
X
q>0

���
q
p
fAqeiqx � A

y
qe�iqxg � N	;

X
q;k

eiqx: �k�q�
y
k

:� i
X
q>0

���
q
p
fByqeiqx � Bqe�iqxg � N�:

Note that the sums on the left are over all integer q,
including q � 0, but each has been reorganized into a
sum over q > 0 plus a q � 0 term, proportional to the
particle number.

The normal ordering in these expressions is defined so as
to include the effect of the spectral flow, i.e., it is with
respect to the vacuum j0i such that

 	kj0i � �kj0i � 0; k� gA1 > 0;

	yk j0i � �yk j0i � 0; k� gA1 � 0;

where A1 is the constant (zero-momentum) component of
the gauge field, and g is the gauge coupling. The resulting
expressions for the densities are invariant under the large
gauge transformations. Once again, we stress that the
vacuum thus defined does not have to be the true vacuum
of the system.

Using the above expressions for the component den-
sities, we can express the total charge density as

  �:  yR R:� : yL L :�
1����
�
p @x��

1

2�
�N	 � N��;

(A1)

where

 � �
1�������
2�
p

X
q>0

1������
2q
p f�Aq � B

y
q �eiqx � �A

y
q � Bq�e

�iqxg

(A2)

is a scalar field. It has not yet acquired a zero (q � 0) mode
but for now, as only the derivative of � occurs in Eq. (A1),
that does not matter. The zero-charge sector is defined by
the condition

 N	 � N� � 0: (A3)

We use Dirac’s � notation to indicate that this is a condi-
tion imposed on states, rather than operators. In this sector,
Eq. (2) becomes the � � 0 component of Eq. (2) (for each
f � 1, 2 separately).

Similarly, the electric current density can be expressed
as

 j �:  yR R:� : yL L :� �
1����
�
p p� �

1

2�
�N	 � N��;

(A4)

where

 p� � �
i

2
����
�
p

X
q>0

���
q
p
f�Aq � B

y
q �eiqx � �Bq � A

y
q �e�iqxg:

Comparing this to Eq. (A2), we see that the Fourier modes
of p� are canonical momenta conjugate to the (nonzero)
modes of �. For the zero mode, however, we need to be
more careful: our normal ordering of fermions depends on
the gauge field, and so N	 � N� is not the zero-mode
canonical momentum (p0) of the scalar. The correct ex-
pression is

 N	 � N� � �
1����
�
p

�
p0 �

g����
�
p �

�
;

where � �
H
A1dx is the flux through the circle.

Equation (A4) then becomes the � � 1 component of
Eq. (2).

In this notation, the bosonization identities [21] read

  R�x� �
1�������
2�
p F	e

i�N	���x: e
i
P
q>0

�1=
��
q
p
��Aqeiqx�A

y
q e�iqx�

:;

(A5)

  L�x� �
1�������
2�
p ei�N����xFy�: e

�i
P
q>0

�1=
��
q
p
��Bqe�iqx�B

y
q eiqx�

:;

(A6)

where F	 and F� are the so-called Klein factors (or
‘‘ladder operators’’), which are unitary, anticommuting
(fF	; F�g � fF	; F

y
�g � 0) and satisfy these relations:

 F	eiN	� � ei�N	�1��F	

and the same with 	! �; � is an arbitrary c-number.
Again, a simplification occurs in the zero-charge sector:
from Eqs. (A5) and (A6) we obtain, for example,

  yL R �
1

2�
F�F	: e2i

���
�
p

�:;

where � is the field (A2). Moreover, since F�F	 is a
unitary Bose operator, we can express it as F�F	 �
�e2i

���
�
p

�0 , where �0 is a single degree of freedom which
now becomes the zero-momentum mode of the field �.
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