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Density-functional theory of bosons in a trap
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A time-dependent Kohn-ShafiS-)like theory is presented fdX bosons in three- and lower-dimensional
traps. We derive coupled equations, which allow us to calculate the energies of elementary excitations. A
rigorous proof is given to show that the KS-like equation correctly describes the properties of one-dimensional
impenetrable bosons in a general time-dependent harmonic trap in theNldirge:-

DOI: 10.1103/PhysRevA.67.015602 PACS nuntder03.75.Hh, 05.30.Jp

The recently reported Bose-Einstein condenséB&C’s)  We define the density of the system m&",t)=|¥(r,t)|?,
of weakly interacting alkali-metal atomil] stimulated a and the velocity field v as o(f,t)=A(V*V¥
large number of theoretical investigatiofzee recent reviews —WwV¥*)/[2imn(F,t)].

[2]). Most of this work is based on the assumption that the From Egs.(1) and (3), we obtain the following KS-like
properties of the BEC are well described by the Grosstime-dependent equation:

Pitaevskii(GP) mean-field theory3]. The validity of the GP

equation is nearly universally accepted. A4 %2 5 dne(n)]

The experimental realization of quasi-one-dimensional ih— == 5 VW VeV + — — ¥
(1D) and quasi-two-dimensiondPD) trapped gasef4—6]
stimulated much theoretical interest. The theoretical aspec

Eﬁ the adiabatic local-density approximatiGhLDA )
of BEC'’s in quasi-1D and quasi-2D traps have been reporte _ " U
in many paper&7—17]. For the case of dimensions<3, it is We note here that the current-density-functional theory

known that the quantum-mechanical two-bddyatrix van- (CDF) for fermions, which goes beyond the ALDA, was

ishes[18] at low energies. Therefore, the replacement of theformulated in Ref.[23]. In our future work, we will also

; : : . . o consider the CDFT for bosons.
two-body |ntere}ct|on by th? matrix, as Is .done in deriving If the trap potentiaV., is independent of time, one can
'EFE%D mean-field theory, is not correct in generalder3 Wri_te the ground-s_tate wave f_unction 85_(F,t)=<D_(F)exp

The density-functional theoryDFT), originally devel- E’n ;#Ztgg’tgvthheéetcﬁ;fm;ggre g';ﬂrt?gégtr%’)@TNIST?]%:
oped for interacting systems of fermiof20], provides a Eq. (4) becomes '
rigorous alternative approach to interacting inhomogeneousq'
Bose gasef21,22. The main goal of this Brief Report is to
develop a Kohn-ShartKS-)like time-dependent theory for
bosons.

We consider a system df interacting bosons in a trap
potential V. Assuming that our system is in local therma
equilibrium at each position with the local energy per par- . N .
ticle e(n) (e is the ground-state energy per particle of the!€ntial x is given byu=JE/JN. Equation(S) has the form

homogeneous system amds the density, we can write a of the KS equation. .
zero-temperature classical hydrodynamics equatidi8js The ground-state energy per particle of the homogeneous
systeme(n) for dilute 3D[24] and dilute 20[25] Bose gases

IS

4

{— (h212m) V24Vt d[ne(n) )/ on}®d = ud, (5)

where the solution of Eq5) minimizes the KS energy func-
| tional in the local-density  approximation E
=N(®|(#2/2m)V?+ Vgt €(n)|®), and the chemical po-

anlat +V-(ng)=0, (1)

= e(n)= (2mh2/m) agpn[1+ (128/15/7) (nad,) 2
vl ot + (1/m) V (Ve t d[ne(n)]/on + 3 mv?)=0, (n)=( 3pN[1+ ( (nagp

) +8(4m/3—v3)nad,In(nadp) +- -], (6)
wherev is the velocity field. and
Adding the kinetic energy pressure term, we have
h?n 2 -1 2 \|-1/5
1. anem] 1, #2 1 e(n)= —_——[In(na3p)| *[1+O(In(nagp) "*7)],  (7)
+_ —_—

—+ = + — — 2yn|=0.
at mV ext an o mv 2m\/ﬁV\/ﬁ 0

(3)  whereasp and a,p are the 3D and 2D scattering lengths,
respectively.
For a 1D Bose gas interacting via a repulsigéunction
*Email address: yekim@physics.purdue.edu potential §&(x), e(n) is given by [26] €(n)
"Email address: zubareva@physics.purdue.edu =(#2/2m)n%e(y), where y=mg (%2n) and for small val-
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ues ofy, the following expression foe(n): e(n)=(g/2)[n Lu+ {#°[ne(n)]/on?} ®*2u=—twv, (14
—(4/3m)ymgn/h~+---] is adequate up to approximatejy
=2 [26]. which can be used to calculate the energiesfiw of the
For a large coupling strengti [26], elementary excitations. Equatiori4) are reduced to the
fourth-order differential equations for the functioms. =u
e(n)= (A%mw’n?/6m) (1+ 24°n/mg) 2. 8  *uv.
For the remainder of this paper, we will focus solely on
Equation(8) is accurate to 1% foiy=10[26]. the one-dimensional case. For low-energy excitatiafis,

For the 1D impenetrable boson cage{«) and for the <y, of a Bose gas in a 1D harmonic trafy,,= mm?x?/2,
dilute 2D boson casf In(na3y)| —]1, Eq. (4) is equivalent we obtain in the case of large
to the low-dimensional modifications of the GP equations,

given by Ref[12]. Pne(m)] \*( 4% d*> A% d’n'?
In the limit of largeN, by neglecting the kinetic energy a2 M T oma  2m" gk
term in the KS equatiort5), we obtain an equation corre-
sponding to the Thomas-FerrfiiF) approximation Fne(m] \*
X|—o7—n| x=&x (15
Vextt dlne(n)]/on=p 9

. . ) - ) ] where n is the solution of Eqg. (99 and 7.
in the region whera(r) is positive anch(r) =0 outside this ={none(n)]/(an?)} Y2y, If
region.

Equation(5) can be written as the stationary GP equa- e(n)xn?®, (16)
tion with  density-dependent coupling parameter
{d[ne(n)]/on}/n, and, for example, for a dilute 2D Bose the solution of Eq. (15 has the form y(X)=(1

gas, Eq(7), the coupling parameter is#i?imin(nasy)| L. —%2)~Y2-U(29p(x), wherex=x\ma2/(2) andP(X) sat-
This result agrees with energy-depend&mhatrix approach isfies the hypergeometric differential equatiéfil —%2)P”
[27]. —2%P'+2[&l(A@)]?P=0. The solution of this equation

Now we turn our attention to elementary excitations, cor-can be written as the expansi®{X)==3."_,c¢;%;, where the
responding to small oscillations 8f(r,t) around the ground coefficientsc; satisfy the recurrence relatiog} , ,=c;{i(i
state. Elementary excitations can be obtained by standard 1)s+ 20— 2[&/(h@)PH[(i+2)(i+1)8]. The conver-
linear response analysi8,29 of Eq. (4), as resonances in gence condition a&k=1 requires the termination of the ex-

the linear response. We add a weak sinusoidal perturbation &nsion ai :j , and for the energy Spectrum we have
the time-dependent equatid#):

. (EIhD)°=jI2[2+8(j—1)]. 17
ih—-={- (h2/2m) V2+Veyet d[ne(n)/an The spectrum Eq17) agrees with Ref.30] where a similar
_ _ expression was obtained based on the hydrodynamics ap-

+fe !+ f e}, (100 proximation. In the case of=1, we findé=% from Eq.
] , (17), in agreement with the generalized Kohn theol&).
and assume that the solution of H40) has the following  Note that, for impenetrable bosods- 2, Eq.(17) reduces to
form: the exact excitation spectrum of the harmonically trapped 1D
. it i e ideal Fermi gas€=jh .

W(rH=e (N tune o (Ne, (1) Now we describe the application of the time-dependent
equation(4) to the case of nonlinear dynamics. We turn to
the limit of very strong coupling between the interacting
bosons in 1D, the so-called Tonks-Girardeau [@2§. In this
impenetrable boson case, the energy dengity reduces to

where®d(r) is the ground-state solution of E(p).
Linearization in the small amplitudasandv yields the
inhomogeneous equations

— 32,22
(L—ﬁw)u+ {aZ[ne(n)]/anZ}q)ZU:_f+q)' f(n)—h w“n</6m, and Eq(4) readS[lz]
v h? 9 h2m?
(L+ha)o+ (Pne(n)ion?} &*2u=—f_®, (12 L v ) DO

wheren=|®(f)|? an
eren=|2(N)| and with [2|W(x,t)[2dx=N.
h? dne(n)] 4’ [ne(n)] For a general time-dependent harmonic trafy,
L==5 VitVeqpt ——+——7—n. (13  =me¥(t)x¥2, with the initial condition ¥ (x,0)=®d(x),
where ®(x) is the ground-state solution of the time-
Settingf . to zero in Eq.(12), we obtain the coupled equa- independent equation
tions

B2 R meAOpE pPat
Lu+ {32 ne(m)]/n?} &2 =tou, “omadt T2t o [0 | @=ud, (19
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Eq. (18) reduces to the ordinary differential equation, which N
can provide the exact solution of E@.8). 2

Indeed, if we assume that the solutidh(x,t) can be =1
expressed as

72 2 mo?(0)x? O ED
Toamad T 2 | PFTEYE

Therefore, for the exact density ng(x,t)

=[T2dxy - [T 2dxy| W(X,Xa, ... Xy, t)|2, we have

(20) 1 N-1 ( X )
il =
(1)

| | | o ng(xt)= —— >,
we obtain the following equations farand g after inserting A(t) 1=0
Eq. (20) into Eq. (18): )
where ¢;(x) =¢; exp(—x4/2)H;(x), ¢;= 7 Y42'i1) "2 and
A 02(HN=02(0)/\3, N(0)=1, A (0)=0, H;(x) are Hermite polynomials. Note that the evolution of
ng(x,t) can be written as Eq22), corresponding to a time-
dependent dilatation of the length scale.
From the knowledge ofg(x,t) and n{g(x,t) one can

i _ + 2 1/2
Thus, the ordinary differential equations E¢$9) and (21) evallirite the rz;dur(lt/)z—[f_wnB(x,t)g dx]™ and rre(t)
give the exact solution of Eq18), and the evolution of the =[J-<ntr(X,t)x°dx]™* and the ratior(t)/nyx(t). This

W (x,t) = {O[X/\ (1) ]/ YN ()} @ TBO+ImOCBON)
2

: (26)

B=ultiN?, pB(0)=0. (22)

density can be written exactly as quantity is equal to 1 at anlyfor any N. This circumstance
explains why for a harmonic trap the ground-state density
n(x,t)=[1A(t)Jn(x/\(1),0). (22)  profile from Eq.(18) agrees well with the many-body results

for systems with a rather small number of atoRs 10[12].

For the case of free expansion, the confining potential i#\S for a general trap potential, we expect such agreement for
switched off att=0 and the atoms fly away. In this case, much largem. It was shown in Refl15] that Eq.(18) over-
Egs. (21) can be integrated analytically, leading to the fol- €stimates the interference between split condensates that are
lowing solutions for\ and 8: A (t)=1+2(0)t% B(t)  recombined at a small number of atonté~10).
= [ uw/ho(0)]arctafiw(0)t]. We note that self-similar solu-  Using the relatior{36]
tions[33] of Eq. (18) were discussed in Ref34] (see also n
Refs.[35]). M I H . (x)12= (2" 1n1) YT H x)12

In the largeN limit, where the kinetic energy term in Eq. mE:O (27mb) = THm GO 1=( D A1 (0)]
(19 is dropped altogethefthe so-called Thomas-Fermi

limit), the corresponding density is —Hp(X)Hp42(X)}, (27
1 2 112 2 we ob'Fain an analytical formula for the exact density
Nre(x,t) = —— <2N—~ ) ¢9(2N—~ ) 23 Melxb):
A (1) NA(1) NA(t) T ¢ ~
ne(x,t)=[1/2\(D)]cf_ e M [ H (/A (1)]
and for the Fourier transform  n(k,t) - _
=(127) [T Zn(x,t)e*dx we have —Hy- 1 (AN () H N 1 (N (D)} (28)

Then the Fourier transform is given
re(k,t) = (NI 27) [23,(V2NR (K 2NR (K], e the Fourer ransform is given By
(29 -

nB(k,t)= Le)\z(t)kZM[ NLF\IO)(XZ(t)kZ/Z)

whereX (t) ={A/[mw(0)]}*\(t) andJ, is the Bessel func- V2w
tion of first order. X2(t)k?
The exact many-body wave functi®ing(x; ,Xs,... Xy 1),
of a system ofN impenetrable bosons in a time-dependent 2

1D harmonic trap, can be found from the Fermi-Bose mapWhereL(“) are Laguerre polvnomials. Using an asvmptotic
ping  [15] [Wa(X1.Xz, ... X, 1) =[We(X1,Xa, . X 1)), n guerre poy - -Sing ymp

where W is the fermionic solution of the time-dependent Lormulﬁ of Hilb's typegorr] the Lagulfrre polynomiE&G], we
many-body Schidinger equation ave the asymptotic behavior ng(k,t) asN—oe:

v, N B2 R med)xd ne(k,t)=(N/\2m)[231(V2NX () K)/ V2NX (1) k] + O(N4),

L&, (N(DK?2)|, (29)

which is valid uniformly in any bounded region & (t).
with initial condition We(Xq,X2,.. - Xn,0) Equation(30) for the case of=0 is a rigorous justification
=D p(Xq,X,...Xn), WhereDe(Xq,Xs,...Xy) is the fermi-  of the Thomas-Fermi approximatidt3,37] for a system of
onic ground-state solution of the time-independent Schrononinteracting 1D spinless fermions in harmonic trapping
dinger equation potentials.
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Comparison of Eq(30) with Eq. (24) shows that in the Bose gas in a 1D harmonic trap, EG6), is the same as that
largeN limit the KS-like time-dependent theory for 1D im- found in the hydrodynamics approximation. For a one-
penetrable bosons in a time-dependent harmonic trap, Eq_imensional condensate_of impene_trable bosons in a general
(24), gives the same result as the exact many-body treatmerftme-dependent harmonic trap, it is shown that the corre-

Eq. (30). Hence, we have rigorously proved that E2@)cor- sponding equation reduces to the ordinary differential equa-

rectly describes the properties of a 1D Bose gas in a timelons and gives the same results as the exact many-body

. : o . treatment in the larg&t limit.
dependeﬂt h‘f"fmo.”'c trap in the I'r_mt O,f large This is a Note addedRecently, Ref[38] appeared. The authors use
posteriorijustification of our approximations.

X ; a 1D nonlinear Schdinger equation, which is equivalent to
_ In conclusion, we have developed a time-dependent KSthe 1D variant of Eq(4), to analyze the expansion of a 1D
like theory for bosons in three- and lower-dimensional trapspose gas after removing the axial confinement.

We have derived coupled equations that can be used to cal- We thank B. Tanatar for his interest and comments and E.
culate the energies of elementary excitations and have shovB. Kolomeisky for informing us about Reff34] and for use-
that the energy spectrum provided by these equations for fal suggestions.
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