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The action for a non-BP§=2 brane embedded in a flbt=1, D=4 target superspace is obtained through
the method of nonlinear realizations of the associated super-Poisyraraetries. The brane excitation modes
correspond to the Nambu-Goldstone degrees of freedom resulting from the broken space translational symme-
try and the target space supersymmetries. The action fopth® brane is found to be an invariant synthesis
of the Akulov-Volkov and Nambu-Goto actions. The dual D2-brane Born-Infeld action is derived. The invari-
ant coupling of matter fields localized on the brane to the Nambu-Goldstone modes is also obtained.
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[. INTRODUCTION where the new coset elemefit has the form
. . iy !m H ’ soormyy!
A domain wall spontaneously breaks the Poindaxeri- Q' =eX "Pmel ¢ () Zglv T )Km, 1.3

ance of the target space down to the symmetry group of the . . .
world volume subspace of the wall, which includes a Iower"’_md yields the transformation law for the coordinates and
dimensional Poincarsymmetry. The long wavelength oscil- fields and
lation modes of the domain wall are described by the h= el B"(@.0)M, (1.4)
Nambu-Goldstone bosons associated with the collective co- '

ordinate translations transverse to the wall. Indeed, thgows O’ to be written as a coset element. The set of

Nambu-Goto action governing the zero mode fields’ dynam¢harges{p™ M™ generate the vacuum stability grotpof

ics is easily obtained in a model independent way by nonlinthe system and are linearly represented. For the general set of
early realizing the broken symmetries on the Nambu-nfinitesimal transformationg € G

Goldstone fieldg1,2]. In the case of a two dimensional
domain wall(or p=2-brang embedded in three dimensional g= el[a"Pm+2Z+b Kyt o™ (1.5
space, theD=3 Poincaregenerators,p™ for space-time i

translations and1™=3¢e™""M,, for Lorentz rotations, form the D=4 Poincarealgebra, written inD=3 Lorentz group
an unbroken subgroup =1S0(1,2) of theD=4 Poincare form
group G=1S0(1,3). The broken generators are the=4

m nl— m n— _;-mnr
translation generator transverse to the wall which i® a [p".p"1=0 [MP.MT]=—1e™"M,
=3 Lorentz scalar, denoted, and the three brokeD =4 m men ©_mnr,
; ' ' ,Z]=0 MM K" =~ K
Lorentz rotations which form @& =3 Lorentz vector, de- [p™.2] [ ] '€ '
noted K™. The D=4 Poincaregroup can be realized by [K™K"=+ie™M,
group elements acting on the co$&0O(1,3)/SO(1,2) ele-
ment() formed from thep™, Z, K™ charges [M™p"=—ie™p, [K™p"l=+ip""Z
Q=g "Pmgi 6(0Zgiv (K (1.2 [M™Z]=0 [K™Z]=+ip™ (1.6

where the world volum® = 3 space-time coordinates of the ¢@n be exploited to find the space-time coordinate variations
2-brane wall in the static gauge ar', while ¢(x) and @nd field transformations

v™(x) are the collective coordinate Nambu-Goldstone X/ M= XM+ aM— fhM+ MMy x

bosons associated with the brokBr=4 Poincaresymme- e

tries corresponding to the excitation modes of the 2-brane. Ap=z—bx" (1.7
The D=4 Poincaregroup transformations are realized by
left multiplication by group elements, Jo? Jo? b"o™
Avmz —2bm+ 1— —2 2
gQ=Q'h, 1.2 tanhyv tanhyv v
+e™av, .

*Email address: clark@physics.purdue.edu Here the field transformations are total variations so that

"Email address: nitta@physics.purdue.edu Ap(x)= ¢’ (X")— ¢(x), and likewise foro™.

*Email address: veldhuis@physics.umn.edu Constructing the Maurer-Cartan world volume one-forms,
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1- COSW) v
cosh/v?

Q HO=i[0pat 0 Z+ 0K+ 0M,], (1.8
end= 62+

2
defines the dreibeirg, 2, which relates the covariant world v

volume coordinate differential®? to the world volume co- PRV Y LY
ordinate differentialgix™, so thatw?®=dx™e2, the covari- =8,2—(1—1—(9¢)2)— > (1.19
ant derivatives of the fieldsy,= »?V,¢ and og=w?V,0°, (9¢)
and the spin connectiombMEwaFab. Once again utilizing
the D=4 Poincarealgebra, the dreibein is found to be The determinant oé simplifies to become
vy ? sinhyv? 1
e2= 8,2+ [coshjvZ—1] :2 + Oppv? J:L/z_ dee= p———— V1= 0™, (1.17
(1.9

. _ _ o and the Nambu-Goto actidd—6] for ap=2 brane embed-
while the ¢-field covariant derivative is ded inD=4 space-timdin the static gaugés obtained

wz=wVa=dxX"e Va

I=- af d3X\1— 9™ . (1.18

=dxMcosh/v?
tanhyv? Alternatively, the¢ andv™ fields can be kept as indepen-
X| Im$p+vm W2 | (1.10 dent degrees of freedom. The action is given in terms of Eq.

(1.14). The ¢ equation of motion,sT'/§¢=0, can be ex-
pressed as thb =3 Bianchi identity,d,,F™=0, for the field

The one-form transformation laws follow from E(..2),
strength vector

(Q Q) =h(QtdQ)h t+hdh™ L, (1.19

m—

- sinhyv?
and are homogeneous except for the case of the brBken B Jo?2
=4 Lorentz rotations generated k', in which case

(1.19

Substituting this into Eq.(1.14) vyields dee=1+F?
+9m@F™. Integrating the second term by parts and using
dmF™=0 implies duality of the Nambu-Gotp=2 brane ac-
implying thatwy™ transforms with an additional inhomoge- tion to the Born-Infeld actio7] for a D2-brane
neous term as required of a connection one-form.

Given these building blocks and their transformation
laws, the low energyG-invariant action,I', is obtained in = —of d3x dee= —of d3xy1+F2. (1.20
leading order in the domain walbrangtensiona,

h= ef(i/2)[tanh(l/2)v/u_2/(1/2)v/u_2] by €™ ™My, (1.12

A slightly generalized approach can be applied to the above
=— Uf d3x det, (1.13  coset method as described[BI. The brane world volume is
parametrized by th® =3 vector&™ and the brane’s gener-
. ] . alized coordinates are maps of tHis=3 parameter space
with the determinant oé determined to be into the D=4 target manifoldx*“(&) = (x"(&), ¢(&)). The
exterior derivative is given bg=dé&Ma/9&™ and it is world
tanhy/v? volume reparametrization invariant. The Maurer-Cartan one-
1+9n¢vn?l- (1.14 forms, Eq( 1.8), are also reparametrization invariant since
v they depend on the exterior derivative. From this point of

. L . . view the covariant differential one-formsy®, define the
Since the dreibein depends only off and not its deriva- dreibein asw?=d&Me, @ where now

tives, its Euler-Lagrange equation of motion can be used to
eliminatev™ in terms of . This is just the “inverse Higgs )
mechanism’[3], equivalently obtained by setting th& co- ox-

dee=cosh/v?

variant derivative, Eq(1.10), to zero:V,¢=0 and hence X2 vb@” 9b  sinhyu?
en’= +[cosh\/v2—1]—2 +—va—2.
W Z3 v o™ \?
tanhyv (l 2])
vaZ—é’m(f). (1.15 :
v
Similarly the covariant differential one-form;, of the ¢ (&)
Substituting this into the dreibein, it has the form coordinate is given by its covariant derivative
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a 2 broken translational invariance is small compared to the
d¢p  ox*  tanhju . X e o
0= 0 V,p=dgmcoshv? — + —uv,—=—|. wavelength of its fluctuations, and if in addition some super-
23 VU symmetry remains unbroken, then such a defect is a super

(1.22  Pp-brane[11,12. The world volume theory on the defect in-
herits extended supersymmetry. Part of this supersymmetry
The Maurer-Cartan one-form can be calculated sequentiallgs well as central charges corresponding to spontaneously

as broken translation generators of the target space are nonlin-
early realized 13].
Q*ldgze*iv”Kn(dJridxupﬂ)eﬂv”Kn The previous illustrative example dealt with B=3

o . space-time world volume of the=2 brane being embedded
=idx#A,"(v)P,+e " ¥nde" W Kn (123  in a targetD=4 space-time. Alternatively, th® =3 space-
time world volume can be embedded in a taretl, D
WhereA,uV(l)) is a brokenD=4 Lorentz transformation de- =4 superspace; this is the case of a non_Bogemo|’nyi_
termined byv", andP,=(py,Z). Thus it is seen that the prasad-Sommerfield saturatédon-BPS brane embedded
one-forms w*=(w® wz) are related todx* by a Lorentz into N=1, D=4 superspace, the main topic of this paper.
transformation When such a 2-brane domain wall is embedded into super-
. space, all supersymmetry is spontaneously broken as well as
wt=dx"A A (v). (124 the spatial translation symmetry.

If in contrast the defect is a BPS domain wall, then the
supersymmetry is only partially brokei4]. The tension
saturates its lower bound, which is equal to the absolute
value of the central charge, and the domain wall is therefore
stable. The world volume of the corresponding super 2-brane

=dxty,,dx". (1.29 isN=1, D=3 superspace. In the thin wall limit its dynamics
my were studied using the method of nonlinear realizations
As before, the inverse Higgs mechanism may be applied15.16 as well as equivalently using the superembedding

From the invariance of th&® =4 Minkowski metric 7,
underD =4 Lorentz transformations, it follows that

w"nww”Z dX“AﬂpﬂpaA Lrdx”

=0, yielding technique[17]. The world volume theory of BPS domain
walls with finite width was also studiefd 8,19 through an
anWszdgmemanabenbdgn expansion in modes about classical domain wall solutions.
BPS saturated domain walls provide an effective mecha-
_aem IXH . &i " (1.26 nism for the partial k_Jreakin_g of supersymmetry and may
P P-Vﬁfn ' even be a necessary ingredient in a more fundamental brane

world and M-theory description of nature. On the other hand,
This is just theG-invariant interval, hence the world volume & Non-BPS domain wall can be stable and as such can pro-

reparametrization invariant ar@invariant action is vide a means to completely break the supersymmetry. The
lower dimensional manifold of the domain wall will then

\/ XM ox” also include the corresponding Goldstino modes besides the

= _gf d3¢dee=—o d3§ \( ) broken translational symmetry Nambu-Goldstone boson

ﬁfm " ogn mode. These fields correspond to the excitations of the brane

(1.27) in all possible target space directions, the space direction
orthogonal to the brane and in this case the Grassmann co-

Thus, the general form of the Nambu-Goto action fop a ordinate directionsd, and 6, of N=1, D=4 superspace
=2 brane is secured. The reparametrization invariance mayhen in the static gauge. It is the purpose of this paper to
be used to fix the static gauge™=¢£™ and = ¢(x), in  construct the effective action via the method of nonlinear
which case the action reduces to that of Egl18. The re-  realizations for these low energy degrees of freedom. In ad-
mainder of the paper is in the static gauge. dition to the massless Nambu-Goldstone fields of the 2-brane
The above considerations can be generalized to apply in motion, there also can be light matter field degrees of free-
supersymmetric context by embedding a topological defectiom localized on the domain wall brane. Their invariant in-
in superspace. Apart from Goldstone bosons associated witeraction with the Nambu-Goldstone fields is determined as
spontaneously broken translational invariances, there are ivell.
this case additional fermionic long wavelength oscillations. Section Il analyzes the method of the nonlinear realization
These Goldstinos reflect collective Grassmann coordinatesf N=1, D=4 super-Poincarsymmetries on the Nambu-
which are associated with spontaneously broken supersynGoldstone fields as coset manifold coordinates. The associ-
metries. Additional massless world volume degrees of freeated Maurer-Cartan one-forms are constructed in Sec. lll.
dom may be required to complete multiplets of the unbrokerincluded in these is thB =3 world volume dreibein which
supersymmetries. Topological defects which spontaneouslig used to construct thd=1, D =4 super-Poincarsvariant
break down target space super-Poindavariance to a lower action. In Sec. IV, the covariant derivatives of the Nambu-
dimensional super-Poincaymmetry were considered by Goldstone fields, obtained from the Maurer-Cartan one-
[9,10. If the spatial extension of a defect in directions of forms, are shown to provide a means to covariantly reduce
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the number of fields, through the inverse Higgs mechanism oo A

[3], to the minimal set of independent degrees of freedom  N,°= 6,2+ [cosh/v?— 11—+ (Dap+Da07°\
needed to describe the fluctuations of the 2-braneNin v

=1, D=4 superspace. This description of the brane dynam- inhyo?

ics is performed in the partially covariant one-form basis — 949D )\)vbsm v (1.3
which reveals the product nature of the world volume é Jo?

dreibein and leads directly to the invariant synthesis of the
Narn_bu-Goto and Akulov-Volkov actions. _Alte_rnatlvely, eX- \where f)a:églm g, is the Akulov-Volkov partial covariant
ploiting the general form of the brane action in terms of all yo iy ative. The determinant of the Nambu-Goto dreibein is
fields, the duality between the Nambu-Goto-Akulov-Volkov found to be
action and thé 2-brane(nonlinearly realizeflsupersymmet-

ric Born-Infeld action is derived. Finally, in Sec. V, the in-

variant action describing scalar and fermion matter fields lo- _ A A 0
calized on the brane is constructed. deN=coshv?) 1+ (Dag+ DatyA
The brane and matter field actions are the lowest order
terms in an expansion in powers of the domain wall thick- on atanh\/F
ness. In this approximation the 2-brane is thin relative to its — 0y Dal)v Jo2 (132

fluctuation wavelength, but the amplitude of the fluctuations

may be large. The covariant derivatives for Goldstone an . Lo .
matter fields determined in Secs. IV and V form the building S with the dreibein, the Maurer-Cartan one-fprm assoc_lated
blocks from which higher order terms in the expansion ca V.V'th th_e central Ch_arga has a supersymmetric ggnerallza-
be constructed in order to obtain an action that describeto" to include motion in the anticommuting directions

large amplitude, shorter wavelengdtbut still larger than the

domain wall thickness fluctuations as well. Additional

higher order terms have coefficients that parametrize in the wz=cosW{(d¢+d6y0)\— 6y°d\)

world volume theory indirect effects of massive modes

which exist in the underlying fundamental theory. Such mas- . tanhyv?

sive modes generically have masses proportional to the in- +dx"entv,—=—|- (1.33
verse of the domain wall width. The remainder of the Intro- o?

duction outlines the results derived in Secs. |-V of the body ) ] )
of the paper. Setting it to zero once again leads to the “inverse Higgs

The Nambu-Goldstone modes’ action is an invariant synmechanism:”
thesis of the Akulov-Volkov actiof20] and the Nambu-Goto

action. This action consists of a product of the Akulov- tanhyv? - A o on
Volkov lagrangian and a modified Nambu-Goto Lagrangian Ua?: —(Dap+Da0y N— 0y DaN). (1.39

allowing for excitations of the non-BPS brane in the Grass-

mann coordinate directions of the target superspace .
g persp Thus the super Nambu-Goto determinant reduces to

= V1= (D,+ D69\ — 6y° D)2
(1.35

Ir=-o f d3xdee=—o f dx deedeN, (1.29 detN=

1
coshJv?

where the 2-brane dreibein is given by a product of dreibeine oL o .
ema:émbNba_ The Akulov-Volkov dreibeinéma is Hence, theD =4 super-Poincarsvariant action is obtained

from the product of Eqs(1.30 and(1.35.
The domain wall world volume embedded in superspace
8 8=A 8= 5§ a1ig 0,903047i9 N\0y2\, (1.2 is dual to theD 2-brane embedded in superspf2#,22 as is
m = Am T Om T OmTY Y AN (129 expressed by the above Nambu-Goto-Akulov-Volkov action
being dual to the supersymmetric Born-Infeld action. Treat-
with the Goldstino fields given by th®=3 Majorana ing all fields as independent degrees of freedom,dtfesid

spinors 6;(x) and \j(x). The Akulov-Volkov determinant equation is obtained from Eq&l.30 and(1.32 above and
term in the action has its typical form takes the form of th® = 3 Bianchi identity,d,,F™=0, with
the field strength vector now given by

dee=def 8,2+i3,07°y20+id A y°y*\]. (1.30 _sinhyo? .
F'=dee——=—v%, ™. (1.3
Jo?
The Nambu-Goto dreibeiN,’ is given by a supersymmetric
extension of Eq(1.9) above Substituting this into the determinant of the dreibein yields
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deedeN = decosh/v 2+ F"(d,607°\ — 029\ ) +F"d,, . Linate= VaS72PVS—V(S) +i ry2Vath— M+ Y(S, ).
(1.37 (1.40

The last term integrates to zero to obtain that the non-Bp3he scalar field potential (S) is an arbitrary function o6
p=2 brane Nambu-Goto-Akulov-Volkov action is dual to the and the generalized Yukawa coupliNgS, 4¢) is a function
D2-brane supersymmetric Born-Infeld action coupling the scalar fieldSto the scalar bilineargy. In the
case of a single species & =3 Majorana fermion, the
r= _Uf BX(Vde( Gt Frn) + F[d,07°N — 69°9,\ 1) Yukawa term terminates at the fory{S) 4, with the arbi-
trary Yukawa coupling functiory(S). The masses and cou-
pling constants of the matter are left as parameters of the
=— o'f d3x(v/deg+F™g,, F"+F"d,09y°N— 6y°9,\]),  effective theory to be specified by the matching to a specific
underlying domain wall model. Th&-covariant derivatives
(1.38 of the matter fields are obtained in terms of tAeovariant
. space-time derivative®,=e, Mg, and the components of
where the Akulov-Volkov metric is given byg.,, the spin connectiormb,\,,zwal“aID in the G-covariant basis
:émanabénb andF ,= €mn " w?=dx"ep®
A specific example of an underlying field theory realizing
a stable non-BPS domain wall can be constructed as a gen- VaS=D,S
eralized Wess-Zumino model iB=4 dimensiong18]. It
contains two chiral superfields and®, with superpotential
W=X(u?—A\®?) and canonical Kaler potential. The ten-
sion o= u%/\\ of the domain wall that interpolates be- ) o )
tween the two vacuX=0, == JuZ/\ does not saturate The fully covariant derivative®, can be expresseg in terms
the BPS bound2AW|=0, yet the wall is stable. The width of the partially covariant Akulov-Volkov derivativeB, with
of the wall is 1A/u?\. All of the supersymmetry and the the help of the Nambu-Goto dreibein
translational symmetry in one direction are broken by the .
domain wall solution, however the symmetry of the model Dy= N;lbDb. (1.42
is left unbroken. The quantum fluctuations about the wall
solution include the zero mode Nambu-Goldstone and GoldLikewise, the components of the spin connection can be ex-
stino excitations. The spectrum in addition contains a numpressed in this partially covariant bas[r%b:N;lcfcb_ So
ber of localized massive excitations corresponding to breathdoing, the fully G-invariant matter field Lagrangian in the
ing modes of the wall with masses betwegm?\ and partially covariant basis becomes
2\u?\, and a continuum of nonlocalized modes starting at A A A
2\/u®\. The parameters of the effective domain wall world £, ,4e= VaSPV,S— V(S) +i 9PNy 22V, — myyp
volume theory valid below the scalgu?\ of all the massive _
modes are in principle determined by integrating out these +Y(S, ), (1.43
massive excitations. However, the form of the low energy o .
effective action is determined solely by the group theoreticalVith the Nambu-Goto metric given in terms of the Nambu-
nonlinearly realized broken symmetry techniques discusse§0to dreibeinn®®=N_ %N *® while the partially cova-
above. The thin domain wall action is given by E¢s.28,  riant matter field derivatives are defined by
(1.30 and (1.395. Non-BPS domain walls also have been

i
Vathi=Dathi — Erab?’bijlﬁj- (1.4

considered in case one of the target space dimensions is com- 2S=D,S
pact[23].
The brane localized matter fields’ action is constructed A -~ i~
using the covariant derivatives of the nonlinearly realized Vathi=Dathi— fra Ynij ¥ - (1.44

spontaneously brokeB =4 super-Poincargymmetries. To

this end the method to include matter fields in theories withFinally, the Appendix is a summary of-E8 Lorentz spinor
nonlinearly realized supersymmefg4] is extended to also and tensor definitions and identities along with Dirac matrix
include nonlinearly realized translation symmetry. The formconventions.

of the leading terms in the domain wall width expansion of

the eﬁ:e.Ctive .aCtion fO.r ScalaS(X), and fermion,l//i(X), 1I. COSET CONSTRUCTION AND SUPER-POlNCARE,
matter fields is determined to be SYMMETRIES
3 Besides the space-time translation and Lorentz rotation
L mate= | d°Xde®Lyater (1.39  generators, thél=1, D=4 super-Poincéréransformations
include the Weyl spinor supersymmetry char@@sandQ,,
with the G-invariant matter field Lagrangian obeying the anticommutation relation
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{Q,.Q.0=+25"P,. (2.))  Where the complex numberis a=e'™".
arse aa K TheN=1, D=4 super-Poincarelgebra can be written in
This relation is invariant under the automorphism generatederms of theD=3 Lorentz group representation charges as
by the R charge that in Eqg.(1.6) and the commutators involving the super-
symmetry charges

[RQ.]=+Q, L L
[RO.]= -0, 2.2 [Mm”,Qi]=—§7ir}qu' [Km,Qi]=+§7iTSj
Y 1 1
[R,P¥]=0=[R,M*"]. [an,Si]:_EYiTnsj [Kmasi]:_EYiTqi
A domain wall spontaneously breaks tBe=4 symmetries _
to those ofD=3. In the case of a static planar non-BPS [R,qi]=+is; 19i,9j} = +2(¥"C)ijPm
domain wall centered on the-y plane, the above symme- [R,s]=—iq; {si,s}=+2(¥"C)i;pm

tries are broken to only retain those of tBe=3 Poincare .
transformations of the wall. Nambu-Goldstone zero mode {gi s} =—2iC;;Z.

degrees of freedom corresponding to the brokefirection (2.4
translation generator and the four supersymmetry generators

propagate along the wall. Geor_netrically this d(_escribes thehe charge conjugation matrix and the-2 (D= 3) dimen-
embedding of a non-BPS spatial 2-brane havinp&3  sjional gamma matrices in the appropriate representation are
space-time world volume into a targbt=1, D=4 super- presented in the Appendix.

space. In the static gauge, the Nambu-Goldstone boson de- The action for the 2-brane can be found by means of the
scribes motion of the brane in the spatia) (direction nor-  coset construction. Towards this end a cd3£60(1,2)® R

mal to the brane while the Goldstino fields correspond toelement(), with G theN=1, D=4 super-Poincargroup, is
motion of the brane in the Grassmann coordinate directiongyritten as

of N=1, D=4 superspace.

Sincg the unbroken symmetries are those of Ehe3 QEeixmpmei[¢z+§iqi+Tisi]eium|<m, (2.5
Poincaregroup, it is useful to express tH2=4 charges in
terms of theiD =3 Lorentz group transforma.tion properties. \yhere thex™ denote theD =3 space-time coordinates pa-
However, the SUSY is completely broken in the non-BPSiametrizing the world volume of the 2-brane in the static
case, SO the fields will not belong to linear SU_SY represeNgayge, while the Nambu-Goldstone fields, denoted by
tation multiplets. Thus, the space-time translation generato&(x), 6:(x), \;(x) andv™(x), describe the target space ex-
P#, which transforms as a vectog ( 3) representation of citations of the brane. Taken together, they act as coordinates
the D=4 Lorentz group, consists of @=3 Lorentz group of the coset manifold. The unbroken symmetry gradips
vector,p™=P™, with m=0,1,2, and D=3 central charge generated by the set of chardes”, M™, R}. Multiplication
scalar,Z=P;. Likewise, the Lorentz transformation charges of the coset elementQ by group elementg e G from the
M#" are in theD =4 (1,1), representation which consists of left results in transformations of the space-time coordinates
two D=3 vector representationg™"=¢M""M, and K™  and the Nambu-Goldstone fields according to the general
=M™, TheR charge is a singlet from both points of view. structure

Finally the D=4 SUSY (3,0) spinorQ, and the (G})

spinor Q,, consist of twoD=3 two-component Majorana
spinors:q; ands;, with i=1,2, comprising the charges for
(centrally extendedN=2, D=3 SUSY. These spinors are

gQ=0'h, (2.6

where the infinitesimal transformatiogsare parametrized as

given as linear combinations ¢j, and 6& according to g:ei[ampm+gq+;s+zz+mem+ ™Myt pR] 2.7)
1 - —
g:==[a(Q;—Q,)+a(Q;—Q,)] Upon application of the Baker-Campbell-Hausdorff formulas
2 for infinitesimal A and arbitrary B, with Lie derivative
i La-B=[A,B],
0= T[a(Ql—’_QZ)_a(Ql"_QZ)] eAeBe’AzeBHA*B]
1 S eBeA = gB+ Lap [A+coth(Cep) - Al 28
s1=5[a(Q1 Q) +2(Q,-Qy)] 9
eAeB: eB— LB/Z' [A—COth(LBlz) A] ,

5= — [a(Q1+ Q) —a(Q+ Q)]

the transformed coset element is given by the total variation
(2.3 of the fields so that
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Q' =X MPmgild’ (X)Z+ 0] (x)ai+ N (X )sil giv (X )K, The metric can be constructed from the domain wall dreibein
’ (2.9 obtained from the Maurer-Cartan one-form.

Whlle h allows ()’ to be written as a coset element and is IIl. MAURER-CARTAN ONE-FORMS AND THE
given by INVARIANT ACTION
h:ei(a”meRf(1/2)[tanh(1/2»vn/(1/2)ﬁf]bmvre’“’”Mn) According to the coset construction method, the dreibein,
o the covariant derivatives of the Nambu-Goldstone fields and
=elPReiAT(@ )M, (2.10  the spin connection can be obtained from the Maurer-Cartan

one-forms. The Maurer-Cartan one-forms can be determined
The infinitesimal transformations induced on the 2-braneby use of the Feynman formula for the variation of an expo-
space-time coordinates and fields are obtained as nential operator along with the B-C-H formulef'Be A
—_al
_ _ =e"A.B,
X'M=x"+am—i(&y"0+ 7y"™\) — pb"+ €™M X,

' ' 1 , .
| : 671A56+1A:f dte*er(iéA)eﬂL”A
A O =&+ (Y™ )i~ phi— 5 an(Y"6), X

LA
. . =——(i8A)
! I m L_ia
ANi= 7= 5 Pu(y"0)i+ipbi— 5 an(y™N); ,
(211 =i5A—( ) ——{A,64]—
Ap=2+(EY°N—67n)—b™xy D)
- (n+1)'[A JA, . L [A8A] ]
\/v—z v'bv —
Avm= + h\/—z bm— 2 11— CcoImmutators
t
anhyv v 3.0
v'b™
’ e ap, . The Maurer-Cartan one-forms are given as
The intrinsic variation of the fieldsse=¢'(X)— ¢(X), is QO =i[ 0P, + wgd + wsiSi+ ©,Z
related to the above total variatioh g, by the Taylor expan- a a
sion shift in the space-time coordinates: togKat oyMat 0rR] 3.2
S¢=AMp—X"Ine, (212 where the individual world volume one-forms are found to
be
with oxM=x"m—x"M,
The nonlinearly realized =4 super-Poincaresymme- a= (dx™+id #v°vM9+ id\ O\
tries induce a field dependent general coordinate transforma- w0 =( vy Yy
tion of the world volume space-time coordinates. From
above, the general coordinate transformation for the world
volume space-time coordinate differentials is given by
inhW/o2
rm_ v m sinfyv
dx dx Gn , (213) +(d¢+d0’y0)\_d)\'}’06) Ua
Vu?
where
m_ ox'™ . smhi\/_
Gn n |
X —coshz—\/—da > (@dM);
= 33— (308 YE+ N YY) — D™+ €. 7\
(2.19
The G-invariant interval can be formed by means of the met- . sin \/—z
ric  tensor g,, SO that ds’=dxMg.,dx"=ds?2 e J—d)\ + —Z (4de),
=dx'Mg/,,dx'" where the metric transforms as a tensor hZ_ \/—2 '
gmn_Gm grsGr:ls' (2'15) (3.3)
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wz=(d¢p+dy°\ —dx y°)cosh/v?+ (dx™

PHYSICAL REVIEW D 67, 085026 (2003

(3.7)

w3=dxMe, 2.

sinhy/v? From Eq.(3.3) this yields
+id8y°ymo+idA Yy y™ v . o b o b
Vv end= (0" +idm0y° Y0+ Ay y°\)

; vpv? . -

03 =dvb| 5,2+ 5'”WU—2_1 Py X 5ba+(coshJu—f—1)b—2+(pb¢+pbay°x
K \/U_Z v
~ sinhyv?

vpdu —0y°D \N)v? , 3.8

cuf;‘,|=(coshJ7—1)—b2 £ gabe ¥ Dol Jv Jo? ) 38
1%

with the Akulov-Volkov derivativef)az e, 1™a,, defined be-
low [see Eq.4.13]. Under aG-transformation the dreibein

The Maurer-Cartan one-forms transform covariantl un_transforms with one world index and one tangent space
y (structure groupindex as

der all of theG symmetries except the unbrokén=3 Lor-

WR= 0

entz transformation one-formg, , which transforms with an e a=G 1ng b 2 (3.9
- . 1 _ m m n b .

additional shift pdh™ *#0)under the broke® =4 Lorentz

transformations, as required of a connection one-form. Exand likewise for the inverse dreibein e, '™

plicitly, recalling that left multiplication by a group member = Lglbel;l“(;nm_ By direct calculation from the form af,
induces a transformation in the world volume space-time cogq, (3.6), the flat tangent space metrig,y, is invariant
ordinates and fieldsgQ)='h, the Maurer-Cartan one-

forms transform as 7ap=La7cdlp?= Nap - (3.10
(Q Q) =h(Q 1dQ)h *+hdh L. (3.4  The metric tensor is given in terms of the dreibein as
From this the dreibein, the covariant derivatives and the spin Imn=€m” 7aven’, (3.11

connection transformations can be obtained. In addition, atsne transformation properties of which are given by Eq

zﬂrcr)]vi\;]natt()aetlr?;v;/vtgﬁ E%Vﬁgﬂgu?g%ﬁé&é ;2% gg tlrjl.i?tjhgo (2.15 and follow frqm those of the dreibein ar_ld the flat

independent degrees of freedom include only the Nambut-angem space metric. Consequently the covariant Maurer-
. Cartan one-form can be used to express the invariant interval

Goldstone modes for the spontaneously broken translation

symmetry and supersymmetry. These correspond to excita-

tions of the 2-brane inttN=1, D=4 superspace directions (3.12

“normal” to the spatial non-BPS domain wall brane. To-

wards this end, the world volume tangent space covarianthe leading term in th® =4 super-Poincargvariant action

coordinate basis differentials are given by th2 one-form. is given by the “cosmological constant” term

For a G-transformation they transform under the broken

=4 Lorentz transformations and the unbrok&s 3 Lorentz =— J' d3xd

) ) o xdete,
rotations according to theld =3 (local) Lorentz vector na-
ture as given by in Eq. (2.10 (and areR invarian). Writing

h ash=gPa(9.vIM? the transformation o2 is given by

ds?=dX"gmdX"= w?7,,0°.

(3.13

with the brane tension parameter The Lagrangian is the
constant brane tension integrated over the area of the brane.
The action is invariant

w'a=waba, (3.5
where the transformation is simply I'= —g'f d3x’ dek’ = —a'f (d°xdeG)(delG ~tdetedet.)
Lp?= 8%+ Boecy™= (€ Peliecto) 2, (3.6

=- of d3xdee=T. (3.149

with the D=3 Lorentz vector representation matrix

(Myectore)a "= €c2°. The determinant oL is unity: det
=1. (The remaining one-forms similarly transform accord-
ing to theirD=3 Lorentz character. Because of this local
Lorentz structure group transformation property of the vector The world volume exterior derivatived=dx"d,,,, can
one-forms, their indices are denoted by letters from the bealso be written in terms of the fullg-covariant one-form
ginning of the alphabeta, b, c, ...=0, 1, 2) basis
The two sets of coordinate basis differentidls” and w?
are related to each other through the dreibsjf

IV. DREIBEINE, COVARIANT DERIVATIVES AND BRANE
DYNAMICS

d=dx"9p= 0, Min=w?D,, 4.1
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with the fully G-covariant derivative éma: AR (4.9

—~—1m
Da=e€; " "m. 4.2 where the Akulov-Volkov matrixA,2 is defined as

The exterior derivative is fullyG-invariantd’=d since the a_ o a,; 0. ap. 0.a
. o . ) A l2=060t10 +idp\ \. 4.1
coordinate derivative transforms inversely to the coordinate m m m0Y" Y 019w Yy (4.10

H fale ! _~—1n '
differential: d,=G,"dy. Hence, D, transforms asD,  Erom these thed =3 SUSY S@1,2) covariant derivatives

—1 —1b
=L, D,. . follow
For each one—formp%, with Q,={q;,s;,Z,K™}, the re-
spective covariant derivative of the related Nambu- d=dx"9,= 0D, (4.11)

Goldstone fieldp={6; ,\;,¢,v™}, is defined according to
whenceD,=e; ' "4, where the inverse dreibei;, ' ™, so

wo =w?V,p=dx"e, 2 A4 n A aa_ L
Q, a® m Va® thatealmem b= 5,2 ande,, aea1n=5m”, is given by

=dx"wq mzwaeglmwQ m- 4.3
@ @ e
a

tm_p tm, (4.12
Hence it is obtained that ) ) S
Hence the partial covariant Akulov-Volkov derivative is ob-

Vio=e, 1mwQ¢m (4.4 tained
or the inverse Dy=e;! "on=A " Map,. (4.13

emaVan:wQ¢m- (4.5  The G-transformation properties of the partially covariant
one-forms, Eq(4.7), can be found from the factorization of
Recall that each one-form begins with the space-time derivathe coset element and the general transformation law. Writ-

tive of the associated Nambu-Goldstone fieidju;m:am(p ing Q=0Q, the transformation langQ=0Q’h implies
+ee that

Besides the fullyG-covariant basis of one-forms, partially
covariant bases associated with restricted motions in the Q71O =h(Q " dO)h L, (4.14
coset manifold can be defined. In particular the basis ob-

tained from motion in the manifold with the coset coordinate,yhere nowh involves the broken and unbroken Lorentz gen-

v"=0is aD=3 Lorentz but notD=4 Lorentz covariant erators but with the field independent transformation param-
one-form basis. Most directly these one-forms, dreibein an%ters ofg A= eiPRaib ™K ngia™, | particular, this yields the

partially covariant derivatives can be obtained by taking the i i ~
n o . . ~ noncovariant transformation law fes® (even so, the use of
v" field to zero in the above expressions, for exampl@,

. . indices f h inni f the alph [
= ?| n_. Alternatively, since the Maurer-Cartan one—formsIndlces rom the beginning of the alphabet is retained

can be built-up sequentially by including the different sym-

“ra_ " bi a
metry generators W =w'ly
0 ldQ=e [ d+ Q" tdOJe K, (4.9 = WP 8,2+ a®egy®— Vphb?), (4.19
where the{) includes the remaining generators, the partiallywith the partially covariant derivative op, V,, given by
covariant one-forms are given by the Maurer-Cartan one-form, ,
Q1O =i[0%p,a+ wqiG + wsSi+ w7Z] wy= 0V,p= 0 Dacp+ D07 — 07 DA ].

(4.1

Hence, the Akulov-Volkov derivative transforms as

=i[dx®+id 0y’ y20+id\y°y3\]pa
+idog+idrs+i[dp+doy°n
~/ " —1bs
—dny06]Z. (4.7 Da=La "Dy, (4.17)

The space-time coordinate differentials can be expressedf'd as such is not full-covariant due to its variation under
in terms of this one-form basis through the Akulov-Volkov the broken Lorentz transformations" 0). As with w?, the

dreibein Akulov-Volkov derivative D, is only SO(1,2) partially co-
R ~ variant.
w?=dxMe,". (4.9 It is useful to expand the one-forms of the fuBO(1,3)
R covariant basis in terms of tH&0O(1,2) covariant basis. The
From Eqs.(4.7) and (4.9 [or e,2=en3|,n=0 in EQ. (3.8)] two bases are related as
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&)a:wbegl mg a independent Nambu-Goldstone fields, 6 and\. Alterna-
" tively, the Maurer-Cartan one-form associated with the bro-
i &)bég lmg a @1 ken translation generat@ can beG-covariantly set to zero.

Expanding thew, one-form in terms of then? basis gives
which follows from the superspace coordinate differentials

dx"= wie; T M= o3l ™ 4.19 wy= &acosh\/vz{ (Dap+Dy0y°\— 6y°D,\)
Likewise, through the exterior derivatived=dx"d, tanhyp2
= w?D,=w?D,, the (partially)covariant derivatives are re- +va—21. (4.26
lated o?
F —a-1 Mg bp Setting this to zero results in the “inverse Higgs mechanism”
a~ ‘“a m &b
o tanhyv? . . . -
D,=e; ' Me,PD,. (4.20 Va o =—(Dap+Da0y°N— 0y°DN) = —V, .
1%
In particular the G-covariant coordinate differential one- (4.27)

a . . ) :
form, »* has a simple relation to the partially covariant This result is also obtained in the Euler-Lagrange approach.

coordinate differential one-formy?, Substituting this into the determinant of the Nambu-Goto
o “brr a dreibein yields the SUSY generalization of the Nambu-Goto
w®=w"Np", (4.21 Lagrangian as given in Eq1.35
where the Nambu-Goto dreibei,?, is found from Egs. 1
(3.3 and (4.7 deN= ——
coshJv?
a
Upv A ~ = = ~
Np?= 8%+ (costNv®—1)——+(Dyd+ Dpfy°\ —\1—(Dap+Da09yN— 0y°DN)2. (4.2
v
inhyo? Hence the completeG-invariant Nambu-Goto-Akulov-
_ ayo@b)\)vas'n 2” _ (427  Volkov action is given by
Vu?
_ 3 a ; 0.a H 0.a
Similarly the dreibeine are related, E®.9), I'= ‘Tf d*x{del ™ +iamby"y 0 +idmh v y"A]
e 2=8,"Ny2. (4.23 X 1= (Dydp+ Dy 6y°N— 67°D\ )2 (4.29
Thus the invariant action takes on a factorized form Returning to Eq(4.25and treating all fields as independent

leads to thep equation of motion as thB =3 Bianchi iden-

~ 1 1 m
r— _UJ dPxdep— _Uf PxdebdeN. (424 1Y for the field strength vectoF

oI
~ I — m
The dee has the usual form of the Akulov-Volkov determi- 0 S5¢p ImF (4.30
nant for spontaneously brokéw=2, D=3 supersymmetry.
The deN term can be evaluated to yield the SUSY generali-where
zation to the Nambu-Goto action for thpe=2 brane allow- _
ing for its motion into the Grassmann directions of the target FM_ deb aﬂ_mSilnh\/v7 (4.31)
N=1, D=4 superspace —0eBUTE, W2 '
detN=cosh/o? 1+(ﬁa¢+@a970)\ Substituting this back into the Lagrangian yields
deedeN=detcosh/v2+ F™ d,,¢+ dm8y°N — 7%\ ].
. tanhyv?
— 0y°D\ )02 N ] (4.2 (4.32
v Exploiting the definition ofF™ so that

There are two equivalent ways in which to proceed in order b r e om b
to simplify the action by the elimination of the™ field. The viv®  (Flen’)(F'en’) 4.33
Euler-Lagrange approach is a result of the fact that the action 02 (Fe)? '

depends only on™ and not its derivatives. Hence the"
field equation,sT/8v™=0, will expressv™ in terms of the  results in
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(Fe)2 Expanding the covariant derivative one-form in terms of
cosh/v?= — |- (4.34 the tangent space covariant coordinate basis differentials,
(dek) w?, the component form of the covariant derivative is ob-

tained
Integrating this over the world volume, the non-BBRS 2
brane supersymmetric Nambu-Goto-Akulov-Volkov action is V,M=(D,+ il“abl\~/l p)M, (5.6)
dual to the D2-brane supersymmetric Born-Infeld action

where I',> are the components of the connectian,,®

N =w?,P. Also, in component form, the connection transfor-
= _Uf Px(Vdet G+ Fnn) + FL0007°N = 07 0\ ]) mation law is found to be
= = rb_ —lcp df b_ | —1c b
=—a'f d3x(\deQ+F™ g F "+ F"[d,07°\ — 07°9,\]), I =Ly "TLg’—La "D (5.7

43 Since the covariant coordinate differentials transform accord-
(4.39 ing to the D=3 (field dependenliocal Lorentz (structure
group vector representation matricds,”, Eq. (3.5, the

. " component form of the covariant derivative has @érans-

= ema"labenb andF = Emanr- formation law

where the Akulov-Volkov metric is given byf;mn

V. BRANE LOCALIZED MATTER FIELDS (VaM)' (x")=hL; ®V,M(x). (5.9

The matter fields localized on the brane are characterizedor scalar matter fields the covariant derivative is simply the
by their D=3 Lorentz transformation properties. A scalar covariant space-time derivatii@,=e; *Mdp, :

field, S(x), is in the trivial representation of the Lorentz
group: M2—(M?)=0. Fermion fields,#:(x), are in the VaS(X) = DaS(X). (5.9
spinor representatiod\‘/la—>(l\~/la)ij= —1/2yj; . Each matter

field, M(x), transforms unde6 as SinceSis invariant,S’ (x') = S(x), the covariant derivative

transforms as a tangent space vector
M’ (x")=hM(x), (5.1) (V,9)' (x')=L; PV, S(x). (5.10

whereh is given byh, Eqg. (2.10, with M2 replaced byM?  Because the flat tangent space metrj2?, is invariant, the
and the field'sR-weight phasep,,, a model dependent con- leading terms in the brane width expansion of the
vention G-invariant action for the scalar matter field are obtained as

F]:eiﬁa(gyv)M eiPM_ (52) FS:f d3X dee £Sr (511)

The covariant derivative for the matter field is defined using . ) . ) . - .
the spin connection one-form with the scalar field invariant Lagrangidthat is invariant

under totalG transformations and hence a scalar density un-
VM E(d+iwﬁ‘,,lVIa)M. 5.3 der intrinsicG transformationsgiven by
Ls=(VaS7"WVS) —V(8), (5.12
The transformation properties of the covariant derivative,
where the scalar field potenti®l(S) is an arbitrary function
(VM) (x")=hVM(x), (54 ofS
The fermion matter fieldj;(x) transforms as th® =3
are obtained from the invariant nature of the exterior derivalorentz group spinor representation
tive d, the field dependent transformation equationNband -
the inhomogeneous transformation property of the connec- Pl (X" ) =hij (%), (5.13
tion. For infinitesimalG transformations recall thdidh™ ! ) ) ) )
— —id82M, so that the connection one-form transforms ac-With (suppressing th&-transformation weight

. . a —ia ~ i
cording to[with (M {gcio)bc=1€pd R, =(e‘("2)"’aya)ij . (5.14
ra_ b a__ a _ _
op =oubo"~dB Hence the bilinear productyy, is invariant, @)’ (x')
:wa(e*chWemm)b a—dpe. (5.5 =(h)(X). The vector bilinear p@duct transforms as a tan-
gent space vectori(y2)' (x') = (¢y°¥) (X)L, The cova-
The covariant derivative transformation law equati&m) riant derivative now involves the spin connection and, in
follows. component form, is given by
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The relation betweefipartially) covariant derivatives is se-

i
Vathi =Dyt — Erabybijlﬂj : (5.19  cured[see Eq(4.20)
The fermion covariant derivative transforms according to Dy=e, "en"Dp
(Vath)' (X" )=y Ly Vil (5.16 =N, D, (5.24
The invariant kinetic energy bilinear is given by4V.4)  Recall thatD,= A, ™4, is just the SUSY covariant Akulov-
so that \Volkov derivative, Eq.(4.13.
— . — Besides the derivatives, also the connection can be ex-
(Y Vah) (X)) = (¥ Vath) (X). (5.17  pressed in terms of the partially covariant coordinate differ-

. . . entials. Recall the connection from .3
The G invariant action has the form E&-3
=0T ,P= 0P
Ff: f dSXdeEL:f ) (518)
. o , =(COSh\/v2—1)eba°%. (5.25
where the invariant Lagrangian involves the fermion and v?

scalar matter fields
Upon application of thev,=0 constraint, the above expres-

Li=i¢y Vaty—mipip+ Y(S,44h), (5.19  sion becomes
with the generalized Yukawa coupling to the scalar fields, e do
Ll , ; ) wf) = (1/deN—1)ePac"C (5.26

Y(S, ). In the case of a single species@f=3 Majorana M o2 :
fermion, the Yukawa term terminates at the fou{S) ¢,
with the arbitrary Yukawa coupling functioy(S). where ¢, is defined by

The above covariant derivatives were expanded in the A A A
fully covariant w® basis, the relation to the expansion in ©a=Dadp+Da0y°\— 0y°D,\. (5.27

terms of the partially covariank? basis can also be ob- ) . ) .
tained. As found above, the scalar and fermion covariant dgl' components in the fully covariant basis, the connection

rivatives in the fullyG covariant basis are involves the fully covariant derivative
V.S=D,S v.Dv
a>™ Ta I'>=(cosh|p?—1)*ed——"-C, (5.29
. 1%
i
- T b
Vathi =Dats 2Fa Voij ¥ - (5.20 Using the relation between the two bases, the connection

_ o ) components are related according to
The covariant derivatives are related through the exterior de-

rivative and the dreibeine as in Eq€.18—(4.20. The co- b= NI b (5.29
ordinate differentials are related according to é a e

_ with
w?=dxMe,2 dx"= e, 1M
~ ~ A~ ~ U @ U
w?=dxMe,? dx"= w2, 1M I',°=(coshjv?— 1)eb°d°—:d, (5.30
v
a_ " bpn a —1ny b_pn—1b
@ =Ny~ € "€ =Ng (521 \which, after imposition of thev,=0 constraint, becomes
The relation between the covariant derivatives is found o P o
through the exterior derivative I.°=(1/deN—1)ePed c : d (5.31)
@

d=dx"d,= 0?D,= ©*D,
The matter field covariant derivatives then have the form
=dxMe 2D, =dx"e 2D, (5.22) o
V,S=D,S=N_ Vs
with, as previously defined,

Dy=e; "9, Vathi =Ny Vi, (5.32

A~ am with the scalar and fermion fields’ partially covariant deriva-
Dy=€," dm. (5.23  tives defined as
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@ S:f) S The fully G-invariant matter action then takes the form

%awi a¢| a yb”% (5_33) 1—‘matter 1_‘S“'Ff_J d3XdEE£matterr (5-43

The matter field action can be written in terms of the par-Where the invariant matter Lagrangian can be written as

tially covariant derivatives but the Nambu-Goto dreibein and r

: . ! . =L+
metric are needed in order to restore f@linvariance. Using matier= L5+ Ly
the Nambu-Goto dreibeiN, its inverse is =, SPP%,S—V(S) +i g y2 Vs — myyt Y(S, ).
1 (5.44)
Na =8 ———=——(N-4,"), (5.34
coshjv?+d.v°®
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andN is given in Eq.(4.22
NL=P, 1.2+ cosh/u2P, .+ do®. (5.36 APPENDIX: CONVENTIONS
Upon application of thev,=0 G-covariant constraint, these S ;lr(?:-tilrjn: 3in5)ig2§ tr)n atl;l]X corygn'gogs fgrrélc?cgf\lgr?ieﬁge
dreibeine reduce to P ynn,...= L
here
— cosh/o? v
Nab:5ab+1 cosTvu Uav 77mn:(+v_a_)a 6012:+1
coshjv? 2
A
€mn|€
N; 2= 5,°+ (coshVu?—1)P®,, . " e

(5.37) €mn€"S=+26%,

This can be used to form the Nambu-Goto metric g .
y"=(a?iotic)=—y™, olo?=io®

nab: N_laﬂCnglb
’ C=y’=0?=C"!, C'=-C

=9 ,ym,yn: nmn1+i6mnr,yr

(5.38) ,ym,yn,yr:+i6mnr1+ nmn,yr nmr,yn+ 7] ’)’
The invariant interval can be written as
{(Y" =427
ds?=dX"g dX"= 02 7,,0°= 02n,,0°,  (5.39

W|th nab: Nacﬂchbd: ﬂab_ (U avb/vz)tanf?\/;z. mn_ [7 ’y ] m?’r (Al)
The fully G-invariant kinetic energy term for the scalar
field in terms of the partially covariant derivatives then be- Y= — 50y 0= _pmt  (,0,mT_ 0, m
comes
R N m.n_ o mn
V5720V, S=V,S PV, S. (5.40 i en
. . . . . L Kol ym=2j kim
Likewise, the fully G-invariant fermion kinetic energy be- Yij Yik Yki
comes - ) ’
o o y=—o'=-vy
Ly Vath =14y Vaih, (5.4
a a YPl=jg3= — 410
where the Dirac matrices in the partially covariant basis are
defined by means of the Nambu-Goto dreibein yP2=—iglt=— 4?0
y3= 9Ny 2. (5.42 YC=(1,— 03 0h)
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(Ao— A1)
Az

Az

m .s =
(y C)l]Am (Ag+A;) ij-

Conventions involving the two-component real Grass-

mann variabléMajorana fields 6; and\; are given below in
terms ofé with corresponding formulas for all such anticom-
muting variables. The derivative with respectéas defined
through the Taylor expansion formula

J
f(6+50)=f(0)+50iwf(6). (A2)
i
Hence the derivative is given by

6, 01

In a similar manner the conjugate Majorana spiEp'rs de-
fined as

6=(7%)i;0;,=C;; 0. (Ad)

[For complex spinorgmatter fields, ¢;, the adjoint is de-

fined as usualy=¢"°.] The derivative with respect to is
defined analogously

(A5)

In other words

1%

96," (AB)

1%
Z=—(y),
6, Y )ij
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so that the mixed derivative formulas are

i— 0;=—(7°)ij

36,

&_aigj:_(')’o)ij- (A7)
Consequently the product of spinors

() =041 (A8)
Further

6i6;=506 . (A9)
which leads to

9y™9=0
0y"y"0=007™" (A10)

0y Yy 0=i00™.

Projectors can be defined in terms of fbe=3 vectorp™
as

(A1)
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