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The action for a non-BPSp52 brane embedded in a flatN51, D54 target superspace is obtained through
the method of nonlinear realizations of the associated super-Poincare´ symmetries. The brane excitation modes
correspond to the Nambu-Goldstone degrees of freedom resulting from the broken space translational symme-
try and the target space supersymmetries. The action for thisp52 brane is found to be an invariant synthesis
of the Akulov-Volkov and Nambu-Goto actions. The dual D2-brane Born-Infeld action is derived. The invari-
ant coupling of matter fields localized on the brane to the Nambu-Goldstone modes is also obtained.
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I. INTRODUCTION

A domain wall spontaneously breaks the Poincare´ invari-
ance of the target space down to the symmetry group of the
world volume subspace of the wall, which includes a lower
dimensional Poincare´ symmetry. The long wavelength oscil-
lation modes of the domain wall are described by the
Nambu-Goldstone bosons associated with the collective co-
ordinate translations transverse to the wall. Indeed, the
Nambu-Goto action governing the zero mode fields’ dynam-
ics is easily obtained in a model independent way by nonlin-
early realizing the broken symmetries on the Nambu-
Goldstone fields@1,2#. In the case of a two dimensional
domain wall~or p52-brane! embedded in three dimensional
space, theD53 Poincare´ generators,pm for space-time
translations andMm5 1

2 emnrMnr for Lorentz rotations, form
an unbroken subgroupH5ISO(1,2) of theD54 Poincare´
group G5ISO(1,3). The broken generators are theD54
translation generator transverse to the wall which is aD
53 Lorentz scalar, denotedZ, and the three brokenD54
Lorentz rotations which form aD53 Lorentz vector, de-
noted Km. The D54 Poincare´ group can be realized by
group elements acting on the cosetISO(1,3)/SO(1,2) ele-
mentV formed from thepm, Z, Km charges

V[eixmpmeif(x)Zeivm(x)Km, ~1.1!

where the world volumeD53 space-time coordinates of the
2-brane wall in the static gauge arexm, while f(x) and
vm(x) are the collective coordinate Nambu-Goldstone
bosons associated with the brokenD54 Poincare´ symme-
tries corresponding to the excitation modes of the 2-brane.
The D54 Poincare´ group transformations are realized by
left multiplication by group elementsg,

gV5V8h, ~1.2!

where the new coset elementV8 has the form

V85eix8mpmeif8(x8)Zeiv8m(x8)Km, ~1.3!

and yields the transformation law for the coordinates and
fields and

h5eibm(g,v)Mm ~1.4!

allows V8 to be written as a coset element. The set of
charges$pm,Mm% generate the vacuum stability groupH of
the system and are linearly represented. For the general set of
infinitesimal transformationsgPG,

g5ei [ampm1zZ1bmKm1amMm] , ~1.5!

the D54 Poincare´ algebra, written inD53 Lorentz group
form

@pm,pn#50 @Mm,Mn#52 i emnrMr

@pm,Z#50 @Mm,Kn#52 i emnrKr

@Km,Kn#51 i emnrMr

@Mm,pn#52 i emnrpr @Km,pn#51 ihmnZ

@Mm,Z#50 @Km,Z#51 ipm ~1.6!

can be exploited to find the space-time coordinate variations
and field transformations

x8m5xm1am2fbm1emnranxr

Df5z2bmxm ~1.7!

Dvm5
Av2

tanhAv2
bm1S 12

Av2

tanhAv2D bnvnvm

v2

1emnranv r .

Here the field transformations are total variations so that
Df(x)5f8(x8)2f(x), and likewise forvm.

Constructing the Maurer-Cartan world volume one-forms,
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V21dV[ i @vapa1vZZ1vK
a Ka1vM

a Ma#, ~1.8!

defines the dreibein,em
a, which relates the covariant world

volume coordinate differentialsva to the world volume co-
ordinate differentialsdxm, so thatva5dxmem

a, the covari-
ant derivatives of the fields,vZ[va¹af andvK

b [va¹avb,
and the spin connectionvM

b [vaGa
b. Once again utilizing

the D54 Poincare´ algebra, the dreibein is found to be

em
a5dm

a1@coshAv221#
vmva

v2
1]mfva

sinhAv2

Av2
,

~1.9!

while thef-field covariant derivative is

vZ5va¹af5dxmem
a¹af

5dxmcoshAv2

3F ]mf1vm

tanhAv2

Av2 G . ~1.10!

The one-form transformation laws follow from Eq.~1.2!,

~V21dV!85h~V21dV!h211hdh21, ~1.11!

and are homogeneous except for the case of the brokenD
54 Lorentz rotations generated byKn, in which case

h5e2( i /2)[tanh(1/2)Av2/(1/2)Av2]bmvre
mrnMn, ~1.12!

implying thatvM
m transforms with an additional inhomoge-

neous term as required of a connection one-form.
Given these building blocks and their transformation

laws, the low energyG-invariant action,G, is obtained in
leading order in the domain wall~brane!tensions,

G52sE d3x dete, ~1.13!

with the determinant ofe determined to be

dete5coshAv2F11]nfvn
tanhAv2

Av2 G . ~1.14!

Since the dreibein depends only onvm and not its deriva-
tives, its Euler-Lagrange equation of motion can be used to
eliminatevm in terms off. This is just the ‘‘inverse Higgs
mechanism’’@3#, equivalently obtained by setting thef co-
variant derivative, Eq.~1.10!, to zero:¹af50 and hence

vm
tanhAv2

Av2
52]mf. ~1.15!

Substituting this into the dreibein, it has the form

em
a5dm

a1S 12 coshAv2

coshAv2 D vmva

v2

5dm
a2~12A12~]f!2!

]mf]af

~]f!2
. ~1.16!

The determinant ofe simplifies to become

dete5
1

coshAv2
5A12]mf]mf, ~1.17!

and the Nambu-Goto action@4–6# for a p52 brane embed-
ded inD54 space-time~in the static gauge!is obtained

G52sE d3xA12]mf]mf. ~1.18!

Alternatively, thef andvm fields can be kept as indepen-
dent degrees of freedom. The action is given in terms of Eq.
~1.14!. The f equation of motion,dG/df50, can be ex-
pressed as theD53 Bianchi identity,]mFm50, for the field
strength vector

Fm[vm
sinhAv2

Av2
. ~1.19!

Substituting this into Eq.~1.14! yields dete5A11F2

1]mfFm. Integrating the second term by parts and using
]mFm50 implies duality of the Nambu-Gotop52 brane ac-
tion to the Born-Infeld action@7# for a D2-brane

G52sE d3x dete52sE d3xA11F2. ~1.20!

A slightly generalized approach can be applied to the above
coset method as described in@8#. The brane world volume is
parametrized by theD53 vectorjm and the brane’s gener-
alized coordinates are maps of thisD53 parameter space
into the D54 target manifold:xm(j)5„xm(j), f(j)…. The
exterior derivative is given byd5djm]/]jm and it is world
volume reparametrization invariant. The Maurer-Cartan one-
forms, Eq.~ 1.8!, are also reparametrization invariant since
they depend on the exterior derivative. From this point of
view the covariant differential one-forms,va, define the
dreibein asva[djmem

a where now

em
a5

]xa

]jm
1@coshAv221#

vb

]xb

]jm
va

v2
1

]f

]jm
va

sinhAv2

Av2
.

~1.21!

Similarly the covariant differential one-formvZ of thef(j)
coordinate is given by its covariant derivative
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vZ5va¹af5djmcoshAv2F ]f

]jm
1

]xa

]jm
va

tanhAv2

Av2 G .

~1.22!

The Maurer-Cartan one-form can be calculated sequentially
as

V21dV5e2 ivnKn~d1 idxmPm!e1 ivnKn

5 idxmLm
n~v !Pn1e2 ivnKnde1 ivnKn, ~1.23!

whereLm
n(v) is a brokenD54 Lorentz transformation de-

termined byvn, and Pm5(pm ,Z). Thus it is seen that the
one-formsvm[(va,vZ) are related todxm by a Lorentz
transformation

vm5dxnLn
m~v !. ~1.24!

From the invariance of theD54 Minkowski metric hmn

underD54 Lorentz transformations, it follows that

vmhmnvn5dxmLm
rhrsLn

sdxn

5dxmhmndxn. ~1.25!

As before, the inverse Higgs mechanism may be applied,
vZ50, yielding

vmhmnvn5djmem
ahaben

bdjn

5djm
]xm

]jm
hmn

]xn

]jn
djn. ~1.26!

This is just theG-invariant interval, hence the world volume
reparametrization invariant andG-invariant action is

G52sE d3jdete52sE d3jAdetS ]xm

]jm
hmn

]xn

]jnD .

~1.27!

Thus, the general form of the Nambu-Goto action for ap
52 brane is secured. The reparametrization invariance may
be used to fix the static gauge:xm5jm and f5f(x), in
which case the action reduces to that of Eq.~1.18!. The re-
mainder of the paper is in the static gauge.

The above considerations can be generalized to apply in a
supersymmetric context by embedding a topological defect
in superspace. Apart from Goldstone bosons associated with
spontaneously broken translational invariances, there are in
this case additional fermionic long wavelength oscillations.
These Goldstinos reflect collective Grassmann coordinates
which are associated with spontaneously broken supersym-
metries. Additional massless world volume degrees of free-
dom may be required to complete multiplets of the unbroken
supersymmetries. Topological defects which spontaneously
break down target space super-Poincare´ invariance to a lower
dimensional super-Poincare´ symmetry were considered by
@9,10#. If the spatial extension of a defect in directions of

broken translational invariance is small compared to the
wavelength of its fluctuations, and if in addition some super-
symmetry remains unbroken, then such a defect is a super
p-brane@11,12#. The world volume theory on the defect in-
herits extended supersymmetry. Part of this supersymmetry
as well as central charges corresponding to spontaneously
broken translation generators of the target space are nonlin-
early realized@13#.

The previous illustrative example dealt with aD53
space-time world volume of thep52 brane being embedded
in a targetD54 space-time. Alternatively, theD53 space-
time world volume can be embedded in a targetN51, D
54 superspace; this is the case of a non-Bogemol’nyi-
Prasad-Sommerfield saturated~non-BPS! brane embedded
into N51, D54 superspace, the main topic of this paper.
When such a 2-brane domain wall is embedded into super-
space, all supersymmetry is spontaneously broken as well as
the spatial translation symmetry.

If in contrast the defect is a BPS domain wall, then the
supersymmetry is only partially broken@14#. The tension
saturates its lower bound, which is equal to the absolute
value of the central charge, and the domain wall is therefore
stable. The world volume of the corresponding super 2-brane
is N51, D53 superspace. In the thin wall limit its dynamics
were studied using the method of nonlinear realizations
@15,16# as well as equivalently using the superembedding
technique@17#. The world volume theory of BPS domain
walls with finite width was also studied@18,19# through an
expansion in modes about classical domain wall solutions.

BPS saturated domain walls provide an effective mecha-
nism for the partial breaking of supersymmetry and may
even be a necessary ingredient in a more fundamental brane
world and M-theory description of nature. On the other hand,
a non-BPS domain wall can be stable and as such can pro-
vide a means to completely break the supersymmetry. The
lower dimensional manifold of the domain wall will then
also include the corresponding Goldstino modes besides the
broken translational symmetry Nambu-Goldstone boson
mode. These fields correspond to the excitations of the brane
in all possible target space directions, the space direction
orthogonal to the brane and in this case the Grassmann co-
ordinate directionsua and ū ȧ of N51, D54 superspace
when in the static gauge. It is the purpose of this paper to
construct the effective action via the method of nonlinear
realizations for these low energy degrees of freedom. In ad-
dition to the massless Nambu-Goldstone fields of the 2-brane
motion, there also can be light matter field degrees of free-
dom localized on the domain wall brane. Their invariant in-
teraction with the Nambu-Goldstone fields is determined as
well.

Section II analyzes the method of the nonlinear realization
of N51, D54 super-Poincare´ symmetries on the Nambu-
Goldstone fields as coset manifold coordinates. The associ-
ated Maurer-Cartan one-forms are constructed in Sec. III.
Included in these is theD53 world volume dreibein which
is used to construct theN51, D54 super-Poincare´ invariant
action. In Sec. IV, the covariant derivatives of the Nambu-
Goldstone fields, obtained from the Maurer-Cartan one-
forms, are shown to provide a means to covariantly reduce
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the number of fields, through the inverse Higgs mechanism
@3#, to the minimal set of independent degrees of freedom
needed to describe the fluctuations of the 2-brane inN
51, D54 superspace. This description of the brane dynam-
ics is performed in the partially covariant one-form basis
which reveals the product nature of the world volume
dreibein and leads directly to the invariant synthesis of the
Nambu-Goto and Akulov-Volkov actions. Alternatively, ex-
ploiting the general form of the brane action in terms of all
fields, the duality between the Nambu-Goto-Akulov-Volkov
action and theD2-brane~nonlinearly realized! supersymmet-
ric Born-Infeld action is derived. Finally, in Sec. V, the in-
variant action describing scalar and fermion matter fields lo-
calized on the brane is constructed.

The brane and matter field actions are the lowest order
terms in an expansion in powers of the domain wall thick-
ness. In this approximation the 2-brane is thin relative to its
fluctuation wavelength, but the amplitude of the fluctuations
may be large. The covariant derivatives for Goldstone and
matter fields determined in Secs. IV and V form the building
blocks from which higher order terms in the expansion can
be constructed in order to obtain an action that describes
large amplitude, shorter wavelength~but still larger than the
domain wall thickness! fluctuations as well. Additional
higher order terms have coefficients that parametrize in the
world volume theory indirect effects of massive modes
which exist in the underlying fundamental theory. Such mas-
sive modes generically have masses proportional to the in-
verse of the domain wall width. The remainder of the Intro-
duction outlines the results derived in Secs. II–V of the body
of the paper.

The Nambu-Goldstone modes’ action is an invariant syn-
thesis of the Akulov-Volkov action@20# and the Nambu-Goto
action. This action consists of a product of the Akulov-
Volkov lagrangian and a modified Nambu-Goto Lagrangian
allowing for excitations of the non-BPS brane in the Grass-
mann coordinate directions of the target superspace

G52sE d3xdete52sE d3x detêdetN, ~1.28!

where the 2-brane dreibein is given by a product of dreibeine
em

a5êm
bNb

a. The Akulov-Volkov dreibeinêm
a is

êm
a5Am

a5dm
a1 i ]mug0gau1 i ]mlg0gal, ~1.29!

with the Goldstino fields given by theD53 Majorana
spinors u i(x) and l i(x). The Akulov-Volkov determinant
term in the action has its typical form

detê5det@dm
a1 i ]mug0gau1 i ]mlg0gal#. ~1.30!

The Nambu-Goto dreibeinNa
b is given by a supersymmetric

extension of Eq.~1.9! above

Na
b5da

b1@coshAv221#
vavb

v2
1~D̂af1D̂aug0l

2ug0D̂al!vb
sinhAv2

Av2
, ~1.31!

where D̂a5êa
21m]m is the Akulov-Volkov partial covariant

derivative. The determinant of the Nambu-Goto dreibein is
found to be

detN5coshAv2F11~D̂af1D̂aug0l

2ug0D̂al!va
tanhAv2

Av2 G . ~1.32!

As with the dreibein, the Maurer-Cartan one-form associated
with the central chargeZ has a supersymmetric generaliza-
tion to include motion in the anticommuting directions

vZ5coshAv2F ~df1dug0l2ug0dl!

1dxmêm
ava

tanhAv2

Av2 G . ~1.33!

Setting it to zero once again leads to the ‘‘inverse Higgs
mechanism:’’

va

tanhAv2

Av2
52~D̂af1D̂aug0l2ug0D̂al!. ~1.34!

Thus the super Nambu-Goto determinant reduces to

detN5
1

coshAv2
5A12~D̂af1D̂aug0l2ug0D̂al!2.

~1.35!

Hence, theD54 super-Poincare´ invariant action is obtained
from the product of Eqs.~1.30! and ~1.35!.

The domain wall world volume embedded in superspace
is dual to theD2-brane embedded in superspace@21,22# as is
expressed by the above Nambu-Goto-Akulov-Volkov action
being dual to the supersymmetric Born-Infeld action. Treat-
ing all fields as independent degrees of freedom, thef field
equation is obtained from Eqs.~1.30! and ~1.32! above and
takes the form of theD53 Bianchi identity,]mFm50, with
the field strength vector now given by

Fm[detê
sinhAv2

Av2
vaêa

21m . ~1.36!

Substituting this into the determinant of the dreibein yields
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detêdetN5detêcoshAv21Fn~]nug0l2ug0]nl!1Fn]nf.

~1.37!

The last term integrates to zero to obtain that the non-BPS
p52 brane Nambu-Goto-Akulov-Volkov action is dual to the
D2-brane supersymmetric Born-Infeld action

G52sE d3x„Adet~ ĝmn1Fmn!1Fn@]nug0l2ug0]nl#…

52sE d3x„Adetĝ1FmĝmnF
n1Fn@]nug0l2ug0]nl#…,

~1.38!

where the Akulov-Volkov metric is given byĝmn

5êm
ahabên

b andFmn5emnrF
r .

A specific example of an underlying field theory realizing
a stable non-BPS domain wall can be constructed as a gen-
eralized Wess-Zumino model inD54 dimensions@18#. It
contains two chiral superfieldsX andF, with superpotential
W5X(m22lF2) and canonical Ka¨hler potential. The ten-
sion s5 8

3 m3/Al of the domain wall that interpolates be-
tween the two vacuaX50, F56Am2/l does not saturate
the BPS boundu2DWu50, yet the wall is stable. The width
of the wall is 1/Am2l. All of the supersymmetry and the
translational symmetry in one direction are broken by the
domain wall solution, however theR symmetry of the model
is left unbroken. The quantum fluctuations about the wall
solution include the zero mode Nambu-Goldstone and Gold-
stino excitations. The spectrum in addition contains a num-
ber of localized massive excitations corresponding to breath-
ing modes of the wall with masses betweenAm2l and
2Am2l, and a continuum of nonlocalized modes starting at
2Am2l. The parameters of the effective domain wall world
volume theory valid below the scaleAm2l of all the massive
modes are in principle determined by integrating out these
massive excitations. However, the form of the low energy
effective action is determined solely by the group theoretical
nonlinearly realized broken symmetry techniques discussed
above. The thin domain wall action is given by Eqs.~1.28!,
~1.30! and ~1.35!. Non-BPS domain walls also have been
considered in case one of the target space dimensions is com-
pact @23#.

The brane localized matter fields’ action is constructed
using the covariant derivatives of the nonlinearly realized
spontaneously brokenD54 super-Poincare´ symmetries. To
this end the method to include matter fields in theories with
nonlinearly realized supersymmetry@24# is extended to also
include nonlinearly realized translation symmetry. The form
of the leading terms in the domain wall width expansion of
the effective action for scalar,S(x), and fermion,c i(x),
matter fields is determined to be

Gmatter5E d3xdeteLmatter, ~1.39!

with the G-invariant matter field Lagrangian

Lmatter5¹aShab¹bS2V~S!1 i c̄ga¹ac2mc̄c1Y~S,c̄c!.

~1.40!

The scalar field potentialV(S) is an arbitrary function ofS
and the generalized Yukawa couplingY(S,c̄c) is a function
coupling the scalar fieldsS to the scalar bilinearsc̄c. In the
case of a single species ofD53 Majorana fermion, the
Yukawa term terminates at the formy(S)c̄c, with the arbi-
trary Yukawa coupling functiony(S). The masses and cou-
pling constants of the matter are left as parameters of the
effective theory to be specified by the matching to a specific
underlying domain wall model. TheG-covariant derivatives
of the matter fields are obtained in terms of theG-covariant
space-time derivativesDa5ea

21m]m and the components of
the spin connectionvM

b 5vaGa
b in the G-covariant basis

va5dxmem
a

¹aS5DaS

¹ac i5Dac i2
i

2
Ga

bgbi jc j . ~1.41!

The fully covariant derivativesDa can be expressed in terms
of the partially covariant Akulov-Volkov derivativesD̂a with
the help of the Nambu-Goto dreibein

Da5Na
21bD̂b . ~1.42!

Likewise, the components of the spin connection can be ex-

pressed in this partially covariant basisGa
b5Na

21cĜc
b. So

doing, the fully G-invariant matter field Lagrangian in the
partially covariant basis becomes

Lmatter5¹̂aSnab¹̂bS2V~S!1 i c̄gbNb
21a¹̂ac2mc̄c

1Y~S,c̄c!, ~1.43!

with the Nambu-Goto metric given in terms of the Nambu-
Goto dreibeinnab5Nc

21ahcdNd
21b while the partially cova-

riant matter field derivatives are defined by

¹̂aS5D̂aS

¹̂ac i5D̂ac i2
i

2
Ĝa

ngni jc j . ~1.44!

Finally, the Appendix is a summary of D53 Lorentz spinor
and tensor definitions and identities along with Dirac matrix
conventions.

II. COSET CONSTRUCTION AND SUPER-POINCARÉ
SYMMETRIES

Besides the space-time translation and Lorentz rotation
generators, theN51, D54 super-Poincare´ transformations
include the Weyl spinor supersymmetry chargesQa andQ̄ȧ
obeying the anticommutation relation
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$Qa ,Q̄ȧ%512saȧ
m

Pm . ~2.1!

This relation is invariant under the automorphism generated
by theR charge

@R,Qa#51Qa

@R,Q̄ȧ#52Q̄ȧ ~2.2!

@R,Pm#505@R,Mmn#.

A domain wall spontaneously breaks theD54 symmetries
to those ofD53. In the case of a static planar non-BPS
domain wall centered on thex-y plane, the above symme-
tries are broken to only retain those of theD53 Poincare´
transformations of the wall. Nambu-Goldstone zero mode
degrees of freedom corresponding to the brokenz direction
translation generator and the four supersymmetry generators
propagate along the wall. Geometrically this describes the
embedding of a non-BPS spatial 2-brane having aD53
space-time world volume into a targetN51, D54 super-
space. In the static gauge, the Nambu-Goldstone boson de-
scribes motion of the brane in the spatial (z) direction nor-
mal to the brane while the Goldstino fields correspond to
motion of the brane in the Grassmann coordinate directions
of N51, D54 superspace.

Since the unbroken symmetries are those of theD53
Poincare´ group, it is useful to express theD54 charges in
terms of theirD53 Lorentz group transformation properties.
However, the SUSY is completely broken in the non-BPS
case, so the fields will not belong to linear SUSY represen-
tation multiplets. Thus, the space-time translation generator

Pm, which transforms as a vector (1
2 , 1

2 ) representation of
the D54 Lorentz group, consists of aD53 Lorentz group
vector,pm5Pm, with m50,1,2, and aD53 central charge
scalar,Z[P3. Likewise, the Lorentz transformation charges
Mmn are in theD54 (1,1)A representation which consists of
two D53 vector representations:Mmn5emnrMr and Km

[Mm3. The R charge is a singlet from both points of view.

Finally the D54 SUSY (1
2 ,0) spinor Qa and the (0,12 )

spinor Q̄ȧ consist of twoD53 two-component Majorana
spinors:qi and si , with i 51,2, comprising the charges for
~centrally extended! N52, D53 SUSY. These spinors are
given as linear combinations ofQa andQ̄ȧ according to

q15
1

2
@a~Q12Q2!1ā~Q̄12Q̄2!#

q25
2 i

2
@a~Q11Q2!2ā~Q̄11Q̄2!#

s15
1

2
@ ā~Q12Q2!1a~Q̄12Q̄2!#

s25
2 i

2
@ ā~Q11Q2!2a~Q̄11Q̄2!#,

~2.3!

where the complex numbera is a[eip/4.
TheN51, D54 super-Poincare´ algebra can be written in

terms of theD53 Lorentz group representation charges as
that in Eq.~1.6! and the commutators involving the super-
symmetry charges

@Mmn,qi #52
1

2
g i j

mnqj @Km,qi #51
1

2
g i j

msj

@Mmn,si #52
1

2
g i j

mnsj @Km,si #52
1

2
g i j

mqj

@R,qi #51 isi $qi ,qj%512~gmC! i j pm

@R,si #52 iqi $si ,sj%512~gmC! i j pm

$qi ,sj%522iCi j Z.

~2.4!

The charge conjugation matrix and the 211 (D53) dimen-
sional gamma matrices in the appropriate representation are
presented in the Appendix.

The action for the 2-brane can be found by means of the
coset construction. Towards this end a cosetG/SO(1,2)^ R
elementV, with G theN51, D54 super-Poincare´ group, is
written as

V[eixmpmei [fZ1 ū i qi1l̄ i si ]eivmKm, ~2.5!

where thexm denote theD53 space-time coordinates pa-
rametrizing the world volume of the 2-brane in the static
gauge, while the Nambu-Goldstone fields, denoted by
f(x), u i(x), l i(x) andvm(x), describe the target space ex-
citations of the brane. Taken together, they act as coordinates
of the coset manifold. The unbroken symmetry groupH is
generated by the set of charges$pm, Mm, R%. Multiplication
of the coset elementsV by group elementsgPG from the
left results in transformations of the space-time coordinates
and the Nambu-Goldstone fields according to the general
structure

gV5V8h, ~2.6!

where the infinitesimal transformationsg are parametrized as

g5ei [ampm1 j̄q1h̄s1zZ1bmKm1amMm1rR] . ~2.7!

Upon application of the Baker-Campbell-Hausdorff formulas
for infinitesimal A and arbitrary B, with Lie derivative
LA•B5@A,B#,

eAeBe2A5eB1[A,B]

eBeA5eB1LB/2•[A1coth(LB/2)•A] ~2.8!

eAeB5eB2LB/2•[A2coth(LB/2)•A] ,

the transformed coset element is given by the total variation
of the fields so that
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V85eix8mpmei [f8(x8)Z1 ū i8(x8)qi1l̄ i8(x8)si ]eiv8n(x8)Kn,
~2.9!

while h allows V8 to be written as a coset element and is
given by

h5ei „anMm1rR2(1/2)[tanh(1/2)Av2/(1/2)Av2]bmvre
mrnMn…

5eirReibm(g,v)Mm. ~2.10!

The infinitesimal transformations induced on the 2-brane
space-time coordinates and fields are obtained as

x8m5xm1am2 i ~ j̄gmu1h̄gml!2fbm1emnranxr

Du i5j i1
i

2
bm~gml! i2 irl i2

i

2
am~gmu! i

Dl i5h i2
i

2
bm~gmu! i1 iru i2

i

2
am~gml! i

~2.11!

Df5z1~jg0l2ug0h!2bmxm

Dvm51
Av2

tanhAv2 S bm2
v rbrv

m

v2 D
1

v rbrv
m

v2
1emnranv r .

The intrinsic variation of the fields,dw[w8(x)2w(x), is
related to the above total variation,Dw, by the Taylor expan-
sion shift in the space-time coordinates:

dw5Dw2dxm]mw, ~2.12!

with dxm5x8m2xm.
The nonlinearly realizedD54 super-Poincare´ symme-

tries induce a field dependent general coordinate transforma-
tion of the world volume space-time coordinates. From
above, the general coordinate transformation for the world
volume space-time coordinate differentials is given by

dx8m5dxnGn
m, ~2.13!

where

Gn
m5

]x8m

]xn

5dn
m2 i ~]nug0gmj1]nlg0gmh!2]nfbm1en

msas .

~2.14!

TheG-invariant interval can be formed by means of the met-
ric tensor gmn so that ds25dxmgmndxn5ds82

5dx8mgmn8 dx8n where the metric transforms as a tensor

gmn8 5Gm
21rgrsGn

21s . ~2.15!

The metric can be constructed from the domain wall dreibein
obtained from the Maurer-Cartan one-form.

III. MAURER-CARTAN ONE-FORMS AND THE
INVARIANT ACTION

According to the coset construction method, the dreibein,
the covariant derivatives of the Nambu-Goldstone fields and
the spin connection can be obtained from the Maurer-Cartan
one-forms. The Maurer-Cartan one-forms can be determined
by use of the Feynman formula for the variation of an expo-
nential operator along with the B-C-H formulaeABe2A

5eLA
•B,

~3.1!

The Maurer-Cartan one-forms are given as

V21dV5 i @vapa1v̄qiqi1v̄sisi1vZZ

1vK
a Ka1vM

a Ma1vRR# ~3.2!

where the individual world volume one-forms are found to
be

va5~dxm1 idug0gmu1 idlg0gml!

3S dm
a1~coshAv221!

vmva

v2 D
1~df1dug0l2dlg0u!

sinhAv2

Av2
va

vqi5cosh
1

2
Av2du i2

i

2

sinh
1

2
Av2

1

2
Av2

~v”dl! i

vsi5cosh
1

2
Av2dl i1

i

2

sinh
1

2
Av2

1

2
Av2

~v”du! i

~3.3!
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vZ5~df1dug0l2dlg0u!coshAv21~dxm

1 idug0gmu1 idlg0gml!vm

sinhAv2

Av2

vK
a 5dvbFdb

a1S sinhAv2

Av2
21D PvTb

aG
vM

a 5~coshAv221!
vbdvc

v2
eabc

vR50.

The Maurer-Cartan one-forms transform covariantly un-
der all of theG symmetries except the unbrokenD53 Lor-
entz transformation one-formvM

a , which transforms with an
additional shift (hdh21Þ0)under the brokenD54 Lorentz
transformations, as required of a connection one-form. Ex-
plicitly, recalling that left multiplication by a group member
induces a transformation in the world volume space-time co-
ordinates and fields,gV5V8h, the Maurer-Cartan one-
forms transform as

~V21dV!85h~V21dV!h211hdh21. ~3.4!

From this the dreibein, the covariant derivatives and the spin
connection transformations can be obtained. In addition, as
shown below, theG-covariant one-formvZ can be used to
eliminate the would be Nambu-Goldstone fieldvm so that the
independent degrees of freedom include only the Nambu-
Goldstone modes for the spontaneously broken translation
symmetry and supersymmetry. These correspond to excita-
tions of the 2-brane intoN51, D54 superspace directions
‘‘normal’’ to the spatial non-BPS domain wall brane. To-
wards this end, the world volume tangent space covariant
coordinate basis differentials are given by theva one-form.
For a G-transformation they transform under the brokenD
54 Lorentz transformations and the unbrokenD53 Lorentz
rotations according to theirD53 ~local! Lorentz vector na-
ture as given byh in Eq. ~2.10! ~and areR invariant!. Writing
h ash5eiba(g,v)Ma

, the transformation ofva is given by

v8a5vbLb
a, ~3.5!

where the transformation is simply

Lb
a5db

a1bcecb
a5~e2 ibcM̃vector

c
!b

a, ~3.6!

with the D53 Lorentz vector representation matrix
(M̃ vectorc)a

b5 i eca
b. The determinant ofL is unity: detL

51. ~The remaining one-forms similarly transform accord-
ing to their D53 Lorentz character. Because of this local
Lorentz structure group transformation property of the vector
one-forms, their indices are denoted by letters from the be-
ginning of the alphabet:a, b, c, . . . 50, 1, 2.!

The two sets of coordinate basis differentialsdxm andva

are related to each other through the dreibeinem
a

va5dxmem
a. ~3.7!

From Eq.~3.3! this yields

em
a5~dm

b1 i ]mug0gbu1]mlg0gbl!

3S db
a1~coshAv221!

vbva

v2
1~D̂bf1D̂bug0l

2ug0D̂bl!va
sinhAv2

Av2 D , ~3.8!

with the Akulov-Volkov derivativeD̂a5êa
21m]m defined be-

low @see Eq.~4.13!#. Under aG-transformation the dreibein
transforms with one world index and one tangent space
~structure group! index as

em8
a5Gm

21nen
bLb

a, ~3.9!

and likewise for the inverse dreibein ea8
21m

5La
21beb

21nGn
m. By direct calculation from the form ofL,

Eq. ~3.6!, the flat tangent space metric,hab , is invariant

hab8 5La
chcdLb

d5hab . ~3.10!

The metric tensor is given in terms of the dreibein as

gmn5em
ahaben

b, ~3.11!

the transformation properties of which are given by Eq.
~2.15! and follow from those of the dreibein and the flat
tangent space metric. Consequently the covariant Maurer-
Cartan one-form can be used to express the invariant interval
as

ds25dxmgmndxn5vahabv
b. ~3.12!

The leading term in theD54 super-Poincare´ invariant action
is given by the ‘‘cosmological constant’’ term

G52sE d3xdete, ~3.13!

with the brane tension parameters. The Lagrangian is the
constant brane tension integrated over the area of the brane.
The action is invariant

G852sE d3x8dete852sE ~d3xdetG!~detG21detedetL !

52sE d3xdete5G. ~3.14!

IV. DREIBEINE, COVARIANT DERIVATIVES AND BRANE
DYNAMICS

The world volume exterior derivative,d5dxm]m , can
also be written in terms of the fullyG-covariant one-form
basis

d5dxm]m5vaea
21m]m[vaDa , ~4.1!
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with the fully G-covariant derivative

Da[ea
21m]m . ~4.2!

The exterior derivative is fullyG-invariant d85d since the
coordinate derivative transforms inversely to the coordinate
differential: ]m8 5Gm

21n]n . Hence, Da transforms asD a8
5La

21bDb .
For each one-form,vQw

, with Qw5$qi ,si ,Z,Km%, the re-
spective covariant derivative of the related Nambu-
Goldstone field,w5$u i ,l i ,f,vm%, is defined according to

vQw
[va¹aw5dxmem

a¹aw

[dxmvQwm5vaea
21mvQwm . ~4.3!

Hence it is obtained that

¹aw5ea
21mvQwm ~4.4!

or the inverse

em
a¹aw5vQwm . ~4.5!

Recall that each one-form begins with the space-time deriva-
tive of the associated Nambu-Goldstone field:vQwm5]mw

1••• .
Besides the fullyG-covariant basis of one-forms, partially

covariant bases associated with restricted motions in the
coset manifold can be defined. In particular the basis ob-
tained from motion in the manifold with the coset coordinate
vn50 is a D53 Lorentz but notD54 Lorentz covariant
one-form basis. Most directly these one-forms, dreibein and
partially covariant derivatives can be obtained by taking the

vn field to zero in the above expressions, for example,v̂a

[vauvn50. Alternatively, since the Maurer-Cartan one-forms
can be built-up sequentially by including the different sym-
metry generators

V21dV5e2 ivnKn@d1V̂21dV̂#e1 ivnKn, ~4.6!

where theV̂ includes the remaining generators, the partially
covariant one-forms are given by

V̂21dV̂[ i @v̂apa1 v̂̄qiqi1 v̂̄sisi1v̂ZZ#

5 i @dxa1 idug0gau1 idlg0gal#pa

1 id ūq1 idl s̄1 i @df1dug0l

2dlg0u#Z. ~4.7!

The space-time coordinate differentials can be expressed
in terms of this one-form basis through the Akulov-Volkov
dreibein

v̂a5dxmêm
a. ~4.8!

From Eqs.~4.7! and ~4.8! @or êm
a5em

auvn50 in Eq. ~3.8!#

êm
a5Am

a ~4.9!

where the Akulov-Volkov matrixAm
a is defined as

Am
a5dm

a1 i ]mug0gau1 i ]mlg0gal. ~4.10!

From these theD53 SUSY SO~1,2! covariant derivatives
follow

d5dxm]m[v̂aD̂a , ~4.11!

whenceD̂a5êa
21 m]m where the inverse dreibeinêa

21 m , so

that êa
21 mêm

b5da
b and êm

aêa
21 n5dm

n, is given by

êa
21m5Aa

21 m . ~4.12!

Hence the partial covariant Akulov-Volkov derivative is ob-
tained

D̂a5êa
21 m]m5Aa

21 m]m . ~4.13!

The G-transformation properties of the partially covariant
one-forms, Eq.~4.7!, can be found from the factorization of
the coset element and the general transformation law. Writ-
ing V5V̂VK , the transformation lawgV5V8h implies
that

~V̂21dV̂!85ĥ~V̂21dV̂!ĥ21, ~4.14!

where nowĥ involves the broken and unbroken Lorentz gen-
erators but with the field independent transformation param-
eters ofg, ĥ5eirReibnKneianMn. In particular, this yields the
noncovariant transformation law forv̂a ~even so, the use of
indices from the beginning of the alphabet is retained!

v̂8a5v̂bL̂b
a

5v̂b~db
a1acecb

a2¹̂bfba!, ~4.15!

with the partially covariant derivative off, ¹̂af, given by
the Maurer-Cartan one-formv̂Z ,

v̂Z5v̂a¹̂af5v̂a@D̂af1D̂aug0l2ug0D̂al#.
~4.16!

Hence, the Akulov-Volkov derivative transforms as

D̂a85L̂a
21bD̂b , ~4.17!

and as such is not fullyG-covariant due to its variation under
the broken Lorentz transformations (bnÞ0). As with v̂a, the
Akulov-Volkov derivativeD̂a is only SO(1,2) partially co-
variant.

It is useful to expand the one-forms of the fullySO(1,3)
covariant basis in terms of theSO(1,2) covariant basis. The
two bases are related as
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v̂a5vbeb
21 mêm

a

va5v̂bêb
21mem

a ~4.18!

which follows from the superspace coordinate differentials

dxm5vaea
21 m5v̂aêa

21 m . ~4.19!

Likewise, through the exterior derivative,d5dxm]m

5vaDa5v̂aD̂a , the ~partially!covariant derivatives are re-
lated

D̂a5êa
21 mem

bDb

Da5ea
21 mêm

bD̂b . ~4.20!

In particular theG-covariant coordinate differential one-
form, va, has a simple relation to the partially covariant
coordinate differential one-form,v̂a,

va5v̂bNb
a, ~4.21!

where the Nambu-Goto dreibein,Nb
a, is found from Eqs.

~3.3! and ~4.7!

Nb
a5db

a1~coshAv221!
vbva

v2
1~D̂bf1D̂bug0l

2ug0D̂bl!va
sinhAv2

Av2
. ~4.22!

Similarly the dreibeine are related, Eq.~3.8!,

em
a5êm

bNb
a. ~4.23!

Thus the invariant action takes on a factorized form

G52sE d3xdete52sE d3xdetêdetN. ~4.24!

The detê has the usual form of the Akulov-Volkov determi-
nant for spontaneously brokenN52, D53 supersymmetry.
The detN term can be evaluated to yield the SUSY generali-
zation to the Nambu-Goto action for thep52 brane allow-
ing for its motion into the Grassmann directions of the target
N51, D54 superspace

detN5coshAv2F11~D̂af1D̂aug0l

2ug0D̂al!va
tanhAv2

Av2 G . ~4.25!

There are two equivalent ways in which to proceed in order
to simplify the action by the elimination of thevm field. The
Euler-Lagrange approach is a result of the fact that the action
depends only onvm and not its derivatives. Hence thevm

field equation,dG/dvm50, will expressvm in terms of the

independent Nambu-Goldstone fields,f, u andl. Alterna-
tively, the Maurer-Cartan one-form associated with the bro-
ken translation generatorZ can beG-covariantly set to zero.
Expanding thevZ one-form in terms of thev̂a basis gives

vZ5v̂acoshAv2F ~D̂af1D̂aug0l2ug0D̂al!

1va

tanhAv2

Av2 G . ~4.26!

Setting this to zero results in the ‘‘inverse Higgs mechanism’’

va

tanhAv2

Av2
52~D̂af1D̂aug0l2ug0D̂al!52¹̂af.

~4.27!

This result is also obtained in the Euler-Lagrange approach.
Substituting this into the determinant of the Nambu-Goto
dreibein yields the SUSY generalization of the Nambu-Goto
Lagrangian as given in Eq.~1.35!

detN5
1

coshAv2

5A12~D̂af1D̂aug0l2ug0D̂al!2. ~4.28!

Hence the completeG-invariant Nambu-Goto-Akulov-
Volkov action is given by

G52sE d3x$det@dm
a1 i ]mug0gau1 i ]mlg0gal#

3A12~D̂bf1D̂bug0l2ug0D̂bl!2%. ~4.29!

Returning to Eq.~4.25!and treating all fields as independent
leads to thef equation of motion as theD53 Bianchi iden-
tity for the field strength vectorFm

05
dG

df
5]mFm, ~4.30!

where

Fm5detêvaêa
21msinhAv2

Av2
. ~4.31!

Substituting this back into the Lagrangian yields

detêdetN5detêcoshAv21Fm@]mf1]mug0l2ug0]ml#.

~4.32!

Exploiting the definition ofFm so that

vavb

v2
5

~Fmêm
a!~Fnên

b!

~Fê!2
~4.33!

results in
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coshAv25AS 11
~Fê!2

~detê!2D . ~4.34!

Integrating this over the world volume, the non-BPSp52
brane supersymmetric Nambu-Goto-Akulov-Volkov action is
dual to the D2-brane supersymmetric Born-Infeld action

G52sE d3x„Adet~ ĝmn1Fmn!1Fn@]nug0l2ug0]nl#…

52sE d3x~Adetĝ1FmĝmnF
n1Fn@]nug0l2ug0]nl#!,

~4.35!

where the Akulov-Volkov metric is given byĝmn

5êm
ahabên

b andFmn5emnrF
r .

V. BRANE LOCALIZED MATTER FIELDS

The matter fields localized on the brane are characterized
by their D53 Lorentz transformation properties. A scalar
field, S(x), is in the trivial representation of the Lorentz
group: Ma→(M̃a)50. Fermion fields,c i(x), are in the
spinor representation:Ma→(M̃a) i j 521/2g i j

a . Each matter
field, M (x), transforms underG as

M 8~x8![h̃M ~x!, ~5.1!

whereh̃ is given byh, Eq. ~2.10!, with Ma replaced byM̃a

and the field’sR-weight phase,rM , a model dependent con-
vention

h̃5eiba(g,v)M̃a
eirM. ~5.2!

The covariant derivative for the matter field is defined using
the spin connection one-form

¹M[~d1 ivM
a M̃a!M . ~5.3!

The transformation properties of the covariant derivative,

~¹M !8~x8!5h̃¹M ~x!, ~5.4!

are obtained from the invariant nature of the exterior deriva-
tive d, the field dependent transformation equation forM and
the inhomogeneous transformation property of the connec-
tion. For infinitesimalG transformations recall thathdh21

52 idbaMa so that the connection one-form transforms ac-
cording to@with (M̃ vector

a )bc5 i e bc
a ]

vM8
a5vM

b Lb
a2dba

5vM
b~e2 ibcM̃vector

c
!b

a2dba. ~5.5!

The covariant derivative transformation law equation~5.4!
follows.

Expanding the covariant derivative one-form in terms of
the tangent space covariant coordinate basis differentials,
va, the component form of the covariant derivative is ob-
tained

¹aM5~Da1 iGa
bM̃b!M , ~5.6!

where Ga
b are the components of the connection,vM

b

5vaGa
b. Also, in component form, the connection transfor-

mation law is found to be

Ga8
b5La

21cGc
dLd

b2La
21cD cb

b. ~5.7!

Since the covariant coordinate differentials transform accord-
ing to the D53 ~field dependent!local Lorentz ~structure!
group vector representation matrices,La

b, Eq. ~3.5!, the
component form of the covariant derivative has theG trans-
formation law

~¹aM !8~x8!5h̃La
21b¹bM ~x!. ~5.8!

For scalar matter fields the covariant derivative is simply the
covariant space-time derivativeDa5ea

21m]m :

¹aS~x!5DaS~x!. ~5.9!

SinceS is invariant,S8(x8)5S(x), the covariant derivative
transforms as a tangent space vector

~¹aS!8~x8!5La
21b¹bS~x!. ~5.10!

Because the flat tangent space metric,hab, is invariant, the
leading terms in the brane width expansion of the
G-invariant action for the scalar matter field are obtained as

GS5E d3x dete LS , ~5.11!

with the scalar field invariant Lagrangian~that is invariant
under totalG transformations and hence a scalar density un-
der intrinsicG transformations! given by

LS5~¹aShab¹bS!2V~S!, ~5.12!

where the scalar field potentialV(S) is an arbitrary function
of S.

The fermion matter fieldc i(x) transforms as theD53
Lorentz group spinor representation

c i8~x8!5h̃i j c j~x!, ~5.13!

with ~suppressing theR-transformation weight!

h̃i j 5~e2( i /2)baga
! i j . ~5.14!

Hence the bilinear product,c̄c, is invariant, (c̄c)8(x8)
5(c̄c)(x). The vector bilinear product transforms as a tan-
gent space vector, (c̄gac)8(x8)5(c̄gbc)(x)Lb

a. The cova-
riant derivative now involves the spin connection and, in
component form, is given by
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¹ac i5Dac i2
i

2
Ga

bgbi jc j . ~5.15!

The fermion covariant derivative transforms according to

~¹ac i !8~x8!5h̃i j La
21b¹bc j . ~5.16!

The invariant kinetic energy bilinear is given by (c̄ga¹ac)
so that

~ c̄ga¹ac!8~x8!5~ c̄ga¹ac!~x!. ~5.17!

The G invariant action has the form

G f5E d3xdeteLf , ~5.18!

where the invariant Lagrangian involves the fermion and
scalar matter fields

Lf5 i c̄ga¹ac2mc̄c1Y~S,c̄c!, ~5.19!

with the generalized Yukawa coupling to the scalar fields,
Y(S,c̄c). In the case of a single species ofD53 Majorana
fermion, the Yukawa term terminates at the formy(S)c̄c,
with the arbitrary Yukawa coupling functiony(S).

The above covariant derivatives were expanded in the
fully covariant va basis, the relation to the expansion in
terms of the partially covariantv̂a basis can also be ob-
tained. As found above, the scalar and fermion covariant de-
rivatives in the fullyG covariant basis are

¹aS5DaS

¹ac i5Dac i2
i

2
Ga

bgbi jc j . ~5.20!

The covariant derivatives are related through the exterior de-
rivative and the dreibeine as in Eqs.~4.18!–~4.20!. The co-
ordinate differentials are related according to

va5dxmem
a dxm5vaea

21m

v̂a5dxmêm
a dxm5v̂aêa

21m

va5v̂bNb
a ea

21nên
b5Na

21b ~5.21!

The relation between the covariant derivatives is found
through the exterior derivative

d5dxm]m5vaDa5v̂aD̂a

5dxmem
aDa5dxmêm

aD̂a , ~5.22!

with, as previously defined,

Da5ea
21m]m

D̂a5êa
21m]m . ~5.23!

The relation between~partially! covariant derivatives is se-
cured@see Eq.~4.20!!

Da5ea
21mêm

bD̂b

5Na
21bD̂b . ~5.24!

Recall thatD̂a5Aa
21m]m is just the SUSY covariant Akulov-

Volkov derivative, Eq.~4.13!.
Besides the derivatives, also the connection can be ex-

pressed in terms of the partially covariant coordinate differ-
entials. Recall the connection from Eq.~3.3!

vM
b 5vaGa

b5v̂aĜa
b

5~coshAv221!ebac
vadvc

v2
. ~5.25!

Upon application of thevZ50 constraint, the above expres-
sion becomes

vM
b 5~1/detN21!ebac

wadwc

w2
, ~5.26!

wherewa is defined by

wa5D̂af1D̂aug0l2ug0D̂al. ~5.27!

In components in the fully covariant basis, the connection
involves the fully covariant derivative

Ga
b5~coshAv221!ebcd

vcDavd

v2
. ~5.28!

Using the relation between the two bases, the connection
components are related according to

Ga
b5Na

21cĜc
b, ~5.29!

with

Ĝa
b5~coshAv221!ebcd

vcD̂avd

v2
, ~5.30!

which, after imposition of thevZ50 constraint, becomes

Ĝa
b5~1/detN21!ebcd

wcD̂awd

w2
. ~5.31!

The matter field covariant derivatives then have the form

¹aS5DaS5Na
21b¹̂bS

¹ac i5Na
21b¹̂bc i , ~5.32!

with the scalar and fermion fields’ partially covariant deriva-
tives defined as
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¹̂aS5D̂aS

¹̂ac i5D̂ac i2
i

2
Ĝa

bgbi jc j . ~5.33!

The matter field action can be written in terms of the par-
tially covariant derivatives but the Nambu-Goto dreibein and
metric are needed in order to restore fullG invariance. Using
the Nambu-Goto dreibeinN, its inverse is

Na
21b5da

b2
1

coshAv21dcv
c
~Na

b2da
b!, ~5.34!

where

da5wa

sinhAv2

Av2
~5.35!

andN is given in Eq.~4.22!

Na
b5PvTa

b1coshAv2PvLa
b1davb. ~5.36!

Upon application of thevZ50 G-covariant constraint, these
dreibeine reduce to

Na
b5da

b1
12coshAv2

coshAv2

vavb

v2

Na
21b5da

b1~coshAv221!PvLa
b .

~5.37!

This can be used to form the Nambu-Goto metric

nab5Nc
21ahcdNd

21b

5hab1
vavb

v2
sinh2Av2.

~5.38!

The invariant interval can be written as

ds25dxmgmndxn5vahabv
b5v̂anabv̂

b, ~5.39!

with nab5Na
chcdNb

d5hab2(vavb /v2)tanh2Av2.
The fully G-invariant kinetic energy term for the scalar

field in terms of the partially covariant derivatives then be-
comes

¹aShab¹bS5¹̂aSnab¹̂bS. ~5.40!

Likewise, the fully G-invariant fermion kinetic energy be-
comes

i c̄ga¹ac5 i c̄ĝa¹̂ac, ~5.41!

where the Dirac matrices in the partially covariant basis are
defined by means of the Nambu-Goto dreibein

ĝa5gbNb
21a . ~5.42!

The fully G-invariant matter action then takes the form

Gmatter5GS1G f5E d3xdeteLmatter, ~5.43!

where the invariant matter Lagrangian can be written as

Lmatter5LS1Lf

5¹̂aSnab¹̂bS2V~S!1 i c̄ĝa¹̂ac2mc̄c1Y~S,c̄c!.

~5.44!
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APPENDIX: CONVENTIONS

The D53 Dirac matrix conventions are~labeling all
space-time indices bym,n, . . . 50, 1, 2 for convenience
here!

hmn5~1,2,2 !, e012511

emnle
lrs5dm

r dn
s2dm

s dn
r

emnle
nls512dm

s

gm5~s2,is1,is3!52gm!, s1s25 is3

C5g05s25C21, CT52C

gmgn5hmn11 i emnrg r

gmgng r51 i emnr11hmng r2hmrgn1hnrgm

$gm,gn%512hmn

gmn[
i

2
@gm,gn#52emnrg r ~A1!

gmT52g0gmg052gm†, ~g0gm!T5g0gm

g i j
mg j i

n 52hmn

g i j
k g jk

l gki
m52i eklm

g1252s252g21

g015 is352g10

g0252 is152g20

gmC5~1,2s3,s1!
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~gmC! i j Am5S ~A02A1! A2

A2 ~A01A1!
D

i j

.

Conventions involving the two-component real Grass-
mann variable~Majorana! fieldsu i andl i are given below in
terms ofu with corresponding formulas for all such anticom-
muting variables. The derivative with respect tou i is defined
through the Taylor expansion formula

f ~u1du!5 f ~u!1du i

]

]u i
f ~u!. ~A2!

Hence the derivative is given by

]

]u i
u j5d i j . ~A3!

In a similar manner the conjugate Majorana spinorū i is de-
fined as

ū i[~g0! i j u j5Ci j u j . ~A4!

@For complex spinors~matter fields!, c i , the adjoint is de-
fined as usualc̄5c†g0.# The derivative with respect toū is
defined analogously

]

]ū i

ū j5d i j . ~A5!

In other words

]

]ū i

52~g0! i j

]

]u j
, ~A6!

so that the mixed derivative formulas are

]

]ū i

u j52~g0! i j

]

]u i
ū j52~g0! i j . ~A7!

Consequently the product of spinors

~ ū ic i !
†5 ū ic i . ~A8!

Further

u iu j5
1

2
ūug i j

0 , ~A9!

which leads to

ūgmu50

ūgmgnu5 ūuhmn ~A10!

ūgmgng ru5 i ūuemnr.

Projectors can be defined in terms of theD53 vectorvm

as

PvT
mn5S hmn2

vmvn

v2 D
PvL

mn5
vmvn

v2
. ~A11!
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