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ABSTRACT

The predicted central densities of dark matter halos in ACDM models exceed those observed in some galaxies.
Weinberg & Katz argue that angular momentum transfer from a rotating bar in the baryonic disk can lower the halo
density, but they also contend that N-body simulations of this process will not reveal the true continuum result unless
many more than the usual numbers of particles are employed. Adopting their simplified model of a rotating rigid bar
in a live halo, I have been unable to find any evidence to support their contention. I find that both the angular momen-
tum transferred and the halo density change are independent of the number of particles over the range usually em-
ployed, up to that advocated by these authors. I show that my results do not depend on any numerical parameters and
that field methods perform equally with grid methods. I also identify the reasons that the required particle number
suggested by Weinberg & Katz is excessive. I further show that when countervailing compression by baryonic settling is
ignored, moderate bars can reduce the mean density of the inner halo by 20%—30%. Long, massive, skinny bars can
reduce the mean inner density by a factor ~10. The largest density reductions are achieved at the expense of removing
most of the angular momentum likely to reside in the baryonic component. Compression of the halo by baryonic settling

must reduce, and may even overwhelm, the density reduction achievable by bar friction.

Subject headings: galaxies: evolution — galaxies: formation — galaxies: halos —
galaxies: kinematics and dynamics — galaxies: spiral

1. INTRODUCTION

The ACDM model for the formation of structure and galaxies
in the universe makes specific predictions about the density pro-
files of galaxy halos. It is generally reported that the spherically
averaged density profile approximates a broken power law of the
form
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with ps and 7 setting the density and spatial scales,and 1 < a <
1.5. The NFW profile (Navarro et al. 1997) has a = 1, but re-
cent work supports larger values (e.g., Diemand et al. 2004).
Power et al. (2003) and Navarro et al. (2004) suggest that the
inner profile slope decreases continuously toward smaller radii,
but the logarithmic slope remains <—1.

The halo concentration is defined as ¢ = rq/ry, with the outer
radius, 7oy, being that inside of which the mean density, in units
of the cosmic closure density, is dou; commonly 8y, = 200. The
concentration, ¢, can readily be related to p, by integrating equa-
tion (1). Its mean value, which varies slowly with halo mass, is a
second major prediction of the simulations (e.g., Bullock et al.
2001, but see also Neto et al. 2007).

Attempts to estimate the dark matter density profiles in galax-
ies directly are beset by many observational and modeling diffi-
culties (e.g., Swaters et al. 2003; Rhee et al. 2004; Valenzuela et al.
2007). Alam et al. (2002) therefore proposed a quantity that is less
sensitive to observational uncertainty, although it is still based on
the spherically averaged mass distribution. They define A, to be
the mean halo density, normalized by the cosmic closure density,
interior to the radius at which the circular speed of the halo alone
rises to half its maximum value. As this radius is typically a few
kiloparsecs from the center of a galaxy, the quantity is less sensi-
tive to observational, or numerical, uncertainties. The quantity is
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easily extracted from simulations and can be estimated from high-
quality observational data, if the baryonic contribution to the cen-
tral attraction is known or can be neglected.

A major advantage of A, is that it does not require any assump-
tion to be made about the halo density profile. However, it may be
useful to note that for the NFW halo (v = 1 in eq. [1]), we have
Fup =~ 0.127r and A,y = 3.3680c/[In (1 + ¢) — /(1 + ¢)].

I have redrawn the principal figure of Alam et al. as Figure 1.
The plus symbols show the points collated by those authors from
fits to galaxies for which the baryonic contribution was assumed
to be negligible. The points for NGC 4123 and NGC 3095 are
from Weiner (2004), while that for NGC 1356 is from Zanmar
Sanchez et al. (2008) using the same method. I plot two points
for the Milky Way: the top point is model B; from Klypin et al.
(2002), while the bottom one shows the upper limit from Binney
& Evans (2001) that the maximum halo contribution at the solar
circle (» = 8 kpc) is 100 km s~ For this latter model, I adopted
vmax = 200 km s~! in the Milky Way for the abscissa, but the
ordinate does not depend on this assumption, since Binney &
Evans argue that the halo density cannot increase steeply toward
the center. It is unclear how these two separate models could be
reconciled.

Predictions from two separate ACDM models are also repro-
duced from Alam et al. The solid lines in Figure 1 show the pre-
dicted values of A, when 2, =03, h=0.7, 05 =1,n=1,
and for values of @ = 1 and 1.5. The error bar indicates their es-
timated factor ~2.5 spread in the predicted values of A,,. The
recent Wilkinson Microwave Anisotropy Probe (WMAP) results
(Spergel et al. 2007) require a lower og and also suggest that the
initial power spectrum of density fluctuations is not scale free, as
assumed for the solid lines, but may be tilted with less power on
small scales. Zentner & Bullock (2002) have already shown that
power spectra of this form lead to halos of lower concentration,
and the predictions for one such model (£2,, = 0.4, 1 = 0.65,
og = 0.7, and n = 0.93) adopted by Alam et al. are shown by the
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Fic. 1.—Following Alam et al. (2002). The solid and dashed lines show A,
predicted from two different parameter sets for ACDM and for two different val-
ues of the slope of the inner density profile. The error bar indicates the approximate
spread in these predicted values. Plus symbols show the galaxy data collated by
Alam et al., and the sources for the five large labeled points are described in the text.

dashed lines. Modern data (e.g., Tegmark et al. 2006) indicate a
slightly higher o, suggesting that the dashed lines are on the low
side.

The data points in this plot are not in good agreement with the
predictions, especially since simulations suggest & > 1. Note that
three of the large points, which are based on detailed models for
each galaxy, are among the most discrepant, and that the discrep-
ancy for these baryon-dominated galaxies will widen by at least a
factor of a few when halo compression by baryonic infall is taken
into account. The particular tilted spectrum model shown by the
dashed lines reduces the discrepancy between the prediction and
the data but does not eliminate it. Dynamical friction constraints
from Debattista & Sellwood (2000) lend support for low dark mat-
ter densities in barred galaxies.

The point for NGC 1365 is from an NFW halo with concentra-
tion ¢p99 = 61, which Zanmar Sanchez et al. (2008) determined
to yield the best-fit to their data. I plot this point from the current
compressed halo in order to be consistent with the other points
that also show the compressed halos. Zanmar Sanchez et al. esti-
mate that an initial halo with ¢;g0 = 22 would yield an accept-
able fit after compression, although the baryon fraction in this case
is a very high 27%. This uncompressed halo is much closer to the
ACDM predictions, with A, = 3.5 x 10°, but most discrepan-
cies would worsen were halo compression taken into account for
all other galaxies also.

Low central densities of dark matter (DM ) in galaxies today
need not be a problem for ACDM if the cusps can be erased sub-
sequently during galaxy formation or evolution. Several ideas to
reduce the central DM density have been proposed:

1. Binney etal. (2001) and others have proposed that the halo
profile is altered by adiabatic compression as the gas cools fol-
lowed by impulsive outflow of a large fraction of the baryon mass.
One possible mechanism to produce such an outflow might be
supernovae and stellar winds resulting from a burst of star for-
mation. The idea was examined by Navarro et al. (1996) and by
Gnedin & Zhao (2002), who found that only a mild reduction in
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the central DM density could be achieved in this way. Gnedin &
Zhao tested the extreme case that 100% of the baryonic compo-
nent was somehow blasted out instantaneously, yet found that
even with this deliberately extreme assumption, the central den-
sity decreased by little more than a factor of 2, unless the initial
baryons were unrealistically concentrated in the halo center.

2. El-Zant et al. (2001) propose that the cusp in the halo den-
sity can be erased by dynamical friction with orbiting mass clumps.
In essence, this is a process of mass segregation, in which heavy
“gas” particles lose energy and settle to the center due to inter-
actions with the light DM particles. However, Jardel & Sellwood
(2008) show that the settling time is uninterestingly slow unless
the baryonic clumps are extremely massive.

3. Milosavljevi¢ et al. (2002) point out that a binary super-
massive black hole (BH) pair created from the merger of two
smaller galaxies will eject DM (and stars) from the center of the
merger remnant. They also argue that the DM mass removed for
a given final BH mass is greater if the final BH is built up in a se-
ries of mergers, each having correspondingly lower m ass BHs.
While this mechanism must operate wherever binary BHs have
been formed, the radial extent over which the mass is reduced is
rather limited. They predict that the cores in the DM halos could
possibly be larger than those in the bulge stars, whereas the dis-
crepancy shown in Figure 1 applies to much larger radii. Further-
more, shallow density gradients are observed in DM-dominated
galaxies with insignificant bulges (Simon et al. 2005; Kuzio de
Naray et al. 2006), which are likely to have very low mass BHs
(Gebhardt et al. 2000; Ferrarese & Merritt 2000), if they contain
BHs at all.

4. Weinberg & Katz (2002) suggest that a bar in the disk could
flatten the cusp also through dynamical friction. Here I study this
possibility in more detail.

Bar-driven halo density changes in fully self-consistent simula-
tions reported so far have been minor, and of both signs. Debattista
& Sellwood (2000) showed a modest halo density reduction in
their Figure 2, and Athanassoula’s (2003) simulations also indi-
cate a small halo density decrease. On the other hand, Sellwood
(2003) and Colin et al. (2006) report the opposite behavior in
simulations with more extensive halos, finding instead that loss
of angular momentum from the disk caused the halo to contract,
with the deeper disk potential well compressing the halo still
more. Holley-Bockelmann et al. (2005), however, report that the
inner cusp was flattened in most of their experiments. While the
radial extent of the effect was modest, the cusp was erased to a
radius less than one-fifth the bar semimajor axis, they continue to
insist that the effect can be important. They further argue that the
absence of significant density reductions in some published cases
is due to numerical inadequacies.

Thus, two separate issues need to be clarified. First, what are
the numerical requirements to obtain reliable results from simu-
lations? And, second, what physical properties of the bar affect
the extent to which the halo density can be reduced?

Weinberg & Katz (2007a, 2007b; hereafter WK07a and WK07b)
claim that to obtain the correct result simulated halos should contain
between tens of millions and billions of particles. They reach this
conclusion from perturbative calculations of the interaction be-
tween a rotating quadrupole potential and orbits in a spherical
halo. Previous theory (Tremaine & Weinberg 1984) had shown
that the important exchanges occur at resonances, and while an
individual halo orbit may either gain or lose angular momentum,
anet torque arises because there is a slight excess of gainers over
losers. WKO07a argue that it is important to have an adequate
density of particles in phase space in order to obtain the correct
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balance, a criterion they dub “coverage.” They also argue that
density fluctuations due to a finite number of particles cause the
orbits of particles in simulations to deviate from those in a smooth
potential and that particles will therefore diffuse into and out of
resonances due to such effects. If the diffusion rate is high, the sim-
ulation will not capture the appropriate smooth behavior, affect-
ing the torque between the bar and the halo particles. They further
argue that the lumpiness of the potential due to particle fluctua-
tions depends on the method for calculating the gravitational field
and that field methods that employ an expansion in a set of basis
functions will be intrinsically smoother than all other methods,
and will therefore yield more reliable results.

Studies of bar-halo interactions, the slowing of bars, and the
evolution of halo mass profiles cannot be pursued with confidence
until the issues raised by WKO07a are addressed. It is important to
check whether results from previous and future studies with the
usual O(10°) particles are, or are not, compromised by numerical
inadequacies.

In Sellwood (2006, hereafter Paper 1) I demonstrated explic-
itly that resonant exchanges between halo particles and the quad-
rupole field of a mild bar were taking place. I also showed that
simulations both with and without self-gravity could converge to
a frictional drag that was independent of the number of particles
for feasible particle numbers. The mild bars used in that study
did not, however, cause any significant change to the halo mass
profile and did not therefore represent a direct challenge to the
claims by WKO07a. Other studies (Athanassoula 2002; Ceverino
& Klypin 2007) have demonstrated the existence of many orbits
trapped in various resonances, suggesting that particle noise does
not preclude trapping from occurring, even when N ~ 10°.

In this paper I first present (§ 3) a further study of bar-halo in-
teractions with much stronger bars that do cause large density re-
ductions in order to provide a direct test of the issues raised by
WKO07a. Again I find (§ 4) that numerical results are quite insen-
sitive to the particle number and calculation method. As my re-
sults are at variance with the conclusions in WK07a and WKO07b,
I show (§ 5) that my simulations do indeed reproduce a strong
resonant response. I also identify (§ 6) the reasons why those au-
thors reached incorrect criteria for the number of particles needed.

[ turn to the physically more interesting question of how strong
and large a bar is needed to cause a large density reduction in the
inner halo in § 7. I show that large, massive, skinny bars can in-
deed flatten the central cusp, as was already reported by Hernquist
& Weinberg (1992) and confirmed in the rigid-bar experiments
of Weinberg & Katz (2002), Sellwood (2003), and McMillan &
Dehnen (2005). However, I also find that more realistic bars cause
only slight density reductions. In § 8 I show that the possible
changes in A, in real galaxies are limited by the angular mo-
mentum content of the baryons.

2. MODEL SETUP

In this section I describe the numerical model I use throughout
the paper. I choose a sufficiently simple model that others can
easily check my experiments.

2.1. Halo
For the unperturbed halo I employ the Hernquist (1990) profile

Mr
27r(ry + r)3 ’

po(r) = (2)

which has total mass M and scale radius ry. I use the isotropic
distribution function (DF) for this halo, which is also given by
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Fic. 2.—Radial variation of the boost factor to the effective number of par-
ticles when unequal particle masses are used. The solid line is for Ly = 0.01, and
the dashed line for Ly = 1073,

Hernquist. The density declines as #~! for » < r, and as

for » > r,. It should be noted that this model differs only in the
outer power-law slope from the Navarro et al. (1997) profile
used by WKO07b, but the important inner cusp is the same.

While all halo particles have equal mass in most cases,' in
order to concentrate greater numbers in the dense inner regions |
also report experiments in which the particles have individual
masses. | set particle masses proportional to a weight function
w(L) = Lo + L, where L = |L]| is the total specific angular mo-
mentum in units of (GMr;)12 and L, is a constant, and select par-
ticles from the DF weighted by w~'. Figure 2 plots the boost
factor for the effective number of particles n(r) = N )/ M(r),
where N (r) and M (r) are, respectively, the fraction of the num-
ber of particles and the fraction of mass enclosed within radius 7.

Choosing Ly = 0.01 results in the heaviest particle being some
250 times the mass of the lightest and in half the particles being
enclosed in a sphere » = 0.6. A smaller sphere with » = 0.33 en-
closes the same fraction when Ly = 10~%, where the lightest par-
ticle is 4 x 10~ of the mass of the heaviest. As the N-body codes
used here are designed to simulate collisionless dynamics, a range
of particle masses should not lead to any mass segregation. A test,
run for 100 dynamical times with no perturbation, revealed no
tendency for the small changes to either the specific energy or spe-
cific angular momentum of the particles to correlate with particle
masses.

It is inefficient to employ many particles at large radii that take
no part in the friction process. I therefore truncate the model by
setting the DF to zero forall E > ®(rey), with ®(r) = —GM/(r +
rs) being the gravitational potential of the infinite Hernquist halo.
This change eliminates any particle with sufficient energy to reach
r > Fey, and the density tapers smoothly to zero at r = ry. The
gravitational potential from the remaining particles is somewhat
modified, and the model is no longer an exact self-consistent equi-
librium. However, the results presented below show that the trun-
cation has very little effect on the equilibrium and the density
profile hardly evolves in response. I choose ¢y = 157, while
the bars I employ are typically much smaller, with semimajor
axis a < r;. I show in § 4 that the density changes in the inner
halo are unaffected by the choice of ., over a wide range of
values.

! I select particles according to the procedure described in the Appendix of
Debattista & Sellwood (2000).
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2.2. Bar

In order to be able to control the bar parameters, I again em-
ploy artificial, rigid bars (see Paper I). The homogeneous ellip-
soid has mass M}, and axes a:b:c with a > b > c. It is centered
on the halo center and rotates about its shortest axis at angular
rate (2. The angular speed of the bar is adjusted to take account
of the torque from the halo, assuming it slows as a rigid bar of
moment of inertia/ = Mj(a® + b?)/5. 1use only the (2, 2) quad-
rupole term of the gravitational field of the bar, as originally pro-
posed by Hernquist & Weinberg (1992). I have shown in Paper I
that higher terms have a small effect, and suppression of the mono-
pole terms allows the bar to be introduced without affecting the
radial balance of the halo.

The approximate quadrupole field adopted by Weinberg (1985)
was designed to match that of a homogeneous bar. I write his ex-
pression for the bar quadrupole in spherical (not cylindrical, as
misstated in Sellwood 2003) polar coordinates as

GMb 0(27"2

102 0 2i(d—d0)
sin“fe , (3
a3 1 +(r/aﬁz)5 ( )

(I)b(ra 97 ¢): -

where a is the semimajor axis of the bar and ¢y is the phase
angle of the bar major axis. I give Weinberg’s prescription for
selecting the dimensionless amplitude and radius scaling param-
eters, ap and (3, in the Appendix and, for fixed a/c = 10, list their
values for the bars used here in Table 1.

I show, also in the Appendix, that this expression is a good
match to the quadrupole field of a homogeneous bar when a/b ~ 2,
but it gives a peak perturbation that is increasingly too strong as a/b
is increased. In Paper I T used the exact quadrupole field, which I
added to my numerical solution for the self-consistent part of the
halo field. As expansion of the gravitational field in multipoles
on spherical shells is not a widely used technique, such a bar field
is hard for others to reproduce. Reproducibility therefore dictates
that T use the simple and convenient expression (3), but it must be
borne in mind that the density distribution corresponding to this
quadrupole is increasingly different from that of a homogeneous
ellipsoid having the nominal axis ratio as a/b is increased.

As noted above, a fixed bar field is required in order to be able
to control the properties of the bar and address the scientific ob-
jectives of this paper. Bars in real galaxies do not approximate
homogeneous ellipsoids, but the quadrupole part of the field is
unlikely to differ substantially from the form of equation (3),
which Weinberg (1985) selected in order to have the appropriate
asymptotic behavior both for » < a and for » > a. Few real bars
have isophotes skinnier than a/b ~ 3 (Reese et al. 2007; Marinova
& Jogee 2007), while their mass distributions are more concen-
trated than a uniform density, implying that the quadrupole field
for a given a/b probably peaks interior to r/a = (%)'/ 33,, where
the peak of the radial part of equation (3) occurs. Higher multi-
poles are considerably less important to the dynamics discussed
here (Paper I'). The monopole part of the bar field could be consid-
ered part of the spherical halo, although the orbits of the particles
would be rather different. The two most significant approxima-
tions of the adopted bar field are that it slows as a rigid object and
does not adjust in response to the loss of angular momentum.

I introduce the bar perturbation smoothly by increasing the
quadrupole term as a cubic function of time from zero at t = 0 to
its final value at = ¢,. Tests revealed that the outcome was in-
sensitive to the growth time of the bar over a broad range of val-
ues, so all experiments reported here use #, = 10 in units in which
G=M=r,=1.
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TABLE 1
VALUES OF s AND (3,

alb bla 1628 By
6.667 0.1500 17.9874 0.3822
6.000 0.1667 14.9372 0.3962
5.000 0.2000 10.6953 0.4225
4.545 0.2200 8.9196 0.4374
4.000 0.2500 6.9336 0.4586
3.571 0.2800 5.4966 0.4787
3.333 0.3000 4.7499 0.4917
3.226 0.3100 4.4255 0.4980
3.125 0.3200 4.1290 0.5043
3.000 0.3333 3.7717 0.5125
2.000 0.5000 1.3772 0.6059

2.3. Determination of the Gravitational Field

In most calculations I compute the gravitational field of the
halo particles using the radial grid method originally devised by
McGlynn (1984), with some refinements described in Sellwood
(2003). The coefficients of a multipole expansion of the interior
and exterior masses are tabulated at a set of radii. The default grid
spacing for these experiments places the jth grid shell according
to the rule r; = € — 1 with ¥ = In(rmax + 1)/n, where n is the
number of radial shells and ry,,x is the outer limit of the grid. I
generally use n = 300 radial grid shells, set ry,.x = 167, and ex-
pand up to /. = 4.

This default rule for the radial grid is arbitrary, however, and 1
also present results using the alternative rule 7; = rmax( Jj/n)? in
order to place grid points more densely in the inner parts. In this
case, | have employed » = 1000 radial shells.

In order to test the assertion by WKO07b that field methods are
superior to all others, I present some results using the self-consistent
field (SCF) method described by Hernquist & Ostriker (1992), for
which the fundamental function of the expansion is the Hernquist
density function (eq. [2]). With this procedure, I include 20 radial
functions, while again expanding in angle up to /.x = 4.

Expansion to low azimuthal order in both methods eliminates
small-scale variations of both the azimuthal and radial fields,
thereby hiding the graininess of the particle distribution.” There-
fore, no further smoothing, such as gravity softening, is required
for either method.

2.4. Lop-sided Instability

I compute the motion of the halo particles in the gravitational
field arising from the particles, together with that of the external
field of the bar. Past experience (Sellwood 2003; McMillan &
Dehnen 2005; WK07a) has revealed that a rigid bar can drive the
center of the particle distribution away from the bar center, which
results in unphysical evolution. Special precautions are therefore
needed to keep the particle distribution centered on the bar. Since
compute the field of the halo particles by a surface harmonic ex-
pansion on spherical shells, it is simplest to eliminate only the
[ = 1 terms from the field determination, which is sufficient to en-
sure that the distribution of forces is always point symmetric
about the origin and no lop-sidedness can develop.

WKO07b, who employ an SCF-type method, keep the / = 1 term
active but include the unchanging monopole term of the bar in
order to inhibit growing asymmetries in the particle distribution,

2 The radial grid smooths discontinuities in the field across the radius of a
source particle.
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as did McMillan & Dehnen (2005) in some of their experiments.
Not only does this stratagem complicate the creation of the initial
equilibrium, it also introduces a rigid mass component that in-
hibits the collective effects responsible for cusp flattening. Fur-
thermore, WKO7b report that their results are unaffected by the
omission or inclusion of the / = 1 terms; eliminating the dipole
contribution to self-gravity is therefore the simplest way to sup-
press this artifact. (This stratagem is easy with a field or grid
method, but not for a tree code. McMillan & Dehnen describe how
a tree code needs to be adapted in order to prevent unphysical
behavior when rigid bars are employed.)

2.5. Other Details

Unless otherwise stated, the simulations reported here employ
10% equal mass 2particles that move with a basic time step of
0.005(r3/GM )2, the radial grid has 300 spherical shells, and I
expand the density distribution of the particles using only the
0 <[ < 4 terms, with the / = 1 term suppressed. These choices
of parameters are justified in § 4.

As the orbital frequencies of particles decrease strongly with
increasing radius, I employ the multizone time-step scheme
described in Sellwood (1985). I use five time-step zones with the
step size increasing by a factor 2 from zone to zone; i.e., the outer-
most particles are stepped forward once for every 16 steps taken
by the innermost particles. The contributions to the gravitational
field from slowly moving particles are interpolated in time as
needed when accelerating particles in the inner zones.

I adopt units such that G =M =r; = 1.

In order to estimate the halo mass profile at any time, I sort the
particles in radius and record the radius of every nth particle. An
estimate of the density is the mass of the » particles between these
two radii, divided by the volume of the spherical shell containing
them, and I assign this value to be the density at the midpoint of
that radial range. I reduce the noise in this estimate by combining
multiples of n particles over the bulk of the model.

3. A FIDUCIAL MODEL

Following WKO7b, I first present a fiducial model in which
the bar has a semimajor axis a = ry, a mass of half that of the
halo enclosed within a so that M}, = 0.125M, and the initial pat-
tern speed is set to place corotation at the bar end, i.e., 2, = 0.5
with the initial bar rotation period = 4 time units. The nominal
axis ratio is a:b:c = 1:0.2:0.1, although the actual quadrupole
field employed in the simulation is stronger than that of this el-
lipsoid (see the Appendix). Thus, the bar is unrealistically large,
massive, and skinny, but it makes a useful starting point since
WKO7b correctly argue such a model should be very easy to
simulate.

The time evolution of the model is shown in Figure 3. Friction
with the halo particles, which results from resonant interactions
as described in Paper I and § 5 below, causes the pattern speed
(Fig. 3a) to start to decrease as the perturbation amplitude grows.
The bar amplitude reaches its final value at = 10; the bar pat-
tern speed is dropping very rapidly at this time, but levels out
later to about 25% of its initial value.

The halo mass profile (Fig. 3b) does not change at first, con-
firming that the model is an excellent initial equilibrium, despite
the truncation at r,.. However, the central density undergoes a
rapid decrease over the time interval 8 < ¢ < 12, after which fur-
ther changes are comparatively minor. Continuation of the evolu-
tion beyond ¢ = 20 revealed little further change, and it is therefore
reasonable to describe the simulation at £ = 20 as representing its
final state.
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FiG. 3.—Time evolution of (@) the bar pattern speed and () the radii contain-
ing different mass fractions in the fiducial run. The smallest radius is that con-
taining 200 particles, or 1/5000 of the mass in particles, and the mass fraction is
successively doubled for each subsequent trace. The initial and final density (c), and
mass, (d), profiles in the same run; the solid lines are measured from the particles
while the dashed lines show the theoretical profile (2). Note that the decreased inner
density requires that the mass enclosed (d) cannot meet up with the unperturbed
mass profile until a larger radius than where the cusp in (c) is flattened.

Figure 3¢ shows the initial and final density profiles. As esti-
mates of density from the finite number of particles always suf-
fer from some noise, I plot the much more robust measure of the
mass enclosed as a function of radius in Figure 3d. Initially,
M(7)  r? in the cusp, while the almost homogeneous core at
later times has M(r) o< 73 in the inner parts. These curves are
measured directly from the radial distribution of particles with
no smoothing, indicating that the monopole part of the poten-
tial derived from the particles cannot suffer from significant
fluctuations.

It should be noted that the density change shown in Figure 3¢
is larger than that reported by WKO07b in a similar experiment. As
my result agrees with those found earlier (Hernquist & Weinberg
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1992; Weinberg & Katz 2002; Sellwood 2003; McMillan &
Dehnen 2005) and with those from other experiments with the
NFW mass profile (not reported here), other differences in their
physical model, such as the rigid monopole term, are the likely
cause.

4. NUMERICAL CHECKS

Here I present a number of checks of this and other results that
are designed to address some of the numerical concerns raised
by WK07a and WKO7b. In all cases, the bar mass is set to be half
the enclosed halo mass at r = a, i.e., M) = 0.5Ma*/(r; + a)?,
and the initial pattern speed places corotation at the bar end, i.e.,
Qp = (GM/a)"2/(ry + a).

4.1. Particle Number

Figure 4 presents results from two series of experiments in
which the number of equal-mass particles is varied over the range
10* < N < 1.6 x 108 for a large bar (@ = ;) (top row) and a
short bar (a = ry/5) (middle row). The evolution of the bar pattern
speed and change in the mass profile are insensitive to the particle
number as longas N 2 10°; N = 10* even seems adequate for the
larger bar—the mass profile is less smooth but the reduction in
density clearly does not differ significantly. It is worth noting that
WKO7b estimate that the large bar case requires 10® equal-mass
particles to obtain the appropriate behavior, whereas my result
with N > 10% is no different from that with 3 orders of magni-
tude fewer.’

The convergence in Figure 4 is exquisite; the different curves
show direct measurements from the simulations without smooth-
ing. Yet curves for the largest N mostly overlay, and therefore ob-
scure, those for the next largest NV, and differences become visible
only for much smaller N. WK07a correctly argue that if the phase
space coverage were inadequate, exchanges at resonances would
depend on the few particles that happened to occupy the resonance,
making the net balance between gainers and losers stochastic, and
the resulting evolution could not converge as impressively as
shown in Figure 4. Repeated calculations of the large-bar case
with different random seeds reveal some slight stochastic be-
havior when N = 10*, but the evolution of the pattern speed
and change to the mass profile is practically identical in another
set of runs with N = 10°, as should be expected from the im-
pressive data in Figure 4.

The dotted curves in the middle row are from a run with un-
equal mass particles (Lo = 107%), the alternative grid spacing rule
and half the standard time step. The larger number of particles
near the center allows the mass profile to be traced to smaller radii,
but otherwise these refinements have no effect on either the pattern
speed or mass profile evolution.

The bottom row of Figure 4 is for a still shorter bar, this time
with unequal mass particles selected with Ly = 0.01 (see § 2.1)
and with a slightly rounder bar (a/b = 4). The results shown by
the solid curves were obtained using a grid method, while the
dotted curves were obtained using the SCF method. The results
from the two methods can barely be distinguished in most cases.
It is clear that using unequal mass particles leads to convergence
atasmaller NV in this numerically still more challenging case com-
pared with that shown in the middle row.

> My model is not identical to that employed by WK07b, but is close enough
for the particle requirement to be similar. The unperturbed potential, the DF and
the dimensionless frequencies are very similar in the cusps of both the Hernquist
and NFW halos and, if anything, my bar perturbation is stronger than that they
used, which reduces the required particle number.

WKO7b report results from two experiments with a = r,/6
that are similar to those in the bottom row of Figure 4. Using un-
equal mass particles, they find a greater density reduction with
N = 5x 106 than with N = 10°, which they attribute to the im-
proved numerical quality of the slightly larger N experiment. My
experiments are not an exact match to theirs; the most important
difference is their inclusion of the fixed monopole term of the bar,
but the quadrupole field of their 5:1 bar appears to be weaker
than I would employ for the same axis ratio (see the Appendix),
which is the reason I used the weaker quadrupole of a 4:1 bar.
Because of these differences, the comparison with their work is
not exact, but it is clear that I find no change in the outcome for
N > 10° and only a minor difference at N = 10°.

4.2. Grid and Field Methods

WKO07b expect field methods to be intrinsically less noisy than
other techniques, yet I obtain practically identical results using
either the SCF or a grid method (Fig. 4, bottom row).

It should be noted that Hernquist & Ostriker (1992) also ex-
pected their field method to yield a slower relaxation rate than
found by other methods, but were disappointed to find that in-
dividual particle energy variations in simulations of equilibrium
spherical models computed by the SCF method were just about
as large as those for many other methods. Thus, my finding that
the evolution is independent of the method used to calculate the
forces was expected. (See also § 6.3.)

4.3. Other Checks

The code I have used tabulates coefficients of the surface har-
monic expansion of the interior and exterior masses on a radial
grid for almost all experiments. The mass profiles in experiments
in which the number of radial grid points and the rule for their
spacing were varied, yielded results that could hardly be distin-
guished from those with the standard values (Fig. 4, middle row).
Furthermore, results from experiments in which the time step was
halved, and the multizone time step scheme (Sellwood 1985) was
turned off, overlay those with the standard step and integration
scheme almost perfectly. As noted above, other tests revealed that
the outcome was insensitive to the growth time of the bar over a
broad range of values.

These simulations are heavily smoothed, in the sense that only
low-order multipoles (/ < 4,/ # 1) contribute to the self-gravity
of the particles. I have therefore tried increasing /i, to 8, 12,
and 16, with no noticeable effect, even for a short bar, as shown
in Figure 5. The same plot includes a curve with /;,,x = 2, which
is barely distinguishable from the others. These experiments in-
clude both even- and odd-/ terms, except / = 1 is always turned
off.

Figure 6 shows that the Hernquist halo can be truncated for
any eyt > Sry with only a slight effect on the change to the inner
mass profile. Setting rey = 2ry (dotted curve) significantly de-
creases the unperturbed density everywhere, including in the cusp,
although the density change is not very different. However, the
benefit of severe truncation, in terms of putting more particles in
the dynamically important region, is modest; merely ~43% of
the full Hernquist halo is discarded with the severe truncation of
reut = Srs. Truncating the more extended NFW mass profile is
more beneficial in this regard, however.

These tests have shown that results from these experiments
with rigid bars are insensitive to all numerical parameters and do
not change when a field method is substituted for the grid to de-
termine the gravitational forces from the particles. While the be-
havior of simulations using other N-body methods has not been
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Fic. 4.—Pattern speed evolution (left panels) and initial and final mass profiles (right panels) in three series of simulations in which the number of particles is varied.
The top two rows show results using a grid method only and mostly equal mass particles. The bar length used in top panels is a = r, and in the middle panels a = r,/5. The
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solid curves show results with a grid method, while dotted curves were obtained using a field method.
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Fic. 5.—Initial (dotted line) and final (solid lines) mass profiles in a series of
simulations in which the expansion for the self-gravity of the halo particles is car-
ried to increasing azimuthal order. As in the other figures, the dashed line shows
the mass profile from the function eq. (2). The final mass profiles for /i, = 2, 4,
8, 12, and 16 are barely distinguishable. All these experiments are for the case of
a short bar with a = 0.2r;.

tested here, results from the different test of several methods pre-
sented by Hernquist & Barnes (1990) suggest that the perfor-
mance of other methods may not be radically different.

5. BEHAVIOR AT RESONANCES

The stark contrast between the predictions of WK07a and the
robust behavior of my simulations requires explanation. Since
their analysis focuses on resonances, I here examine the resonant
interactions in my simulations.

5.1. Inner Lindblad Resonance

As Weinberg and his collaborators have reported, I find that
the inner Lindblad resonance (ILR) is the most important in the
early stages of these particular experiments with massive, skinny
bars. In Paper I I found that corotation and the direct radial reso-
nance were the two most important resonances when using more
realistic bars in simulations that evolved on a much longer time-
scale and produced little density change.* The relative importance
of the different resonances in individual cases depends on the ra-
dial variation of the quadrupole field strength and the density of
particles as functions of the actions, as described in WKO07a.

The solid curve in Figure 7 shows the locus of the ILR in the
space of energy and fraction of the maximum angular momen-
tum L. for a quadrupole perturbation with €, = 0.5 in the
Hernquist halo. The range of E shown is strongly restricted to the
part deep in the center of the potential. The condition for the reso-
nance is Q, = Qy — §2,/2, where 2, and €24 are, respectively, the
uniform angular frequencies of the radial and azimuthal motion
of the particles (Binney & Tremaine 1987, hereafter BT87, p. 106).
The solid curve in the figure shows that more eccentric resonant
orbits are more tightly bound (have lower E') than more nearly
circular orbits. The lower half of this figure shows the similar
resonance for retrograde orbits for which Q, = Q4 + ,/2, with
Q4 negative.

As described in BT87 (p. 348), orbits at the ILR drawn in a
frame that rotates with the perturbation are stationary ellipses.
Lynden-Bell (1979) pointed out that one can regard nearly reso-
nant orbits as pursuing ellipses that precess relative to the pattern

4 The direct radial resonance arises when the period of radial motion of a par-
ticle is equal to the bar rotation period; interactions at this resonance can be strong
only for particles on near polar orbits.

\ogmM(r)
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Fic. 6.—Initial and final mass profiles in a series of simulations of the fiducial
run but in which the truncation radius of the halo, ry, is varied. The dashed line
shows the mass profile of the theoretical Hernquist halo and the dotted curve shows
the final profile only in the extreme case of rgy = 2.

at the slow angular rate Q; = Q) — (Qy — 2,/2). The dashed
curves in Figure 7 show the loci of lines of constant () along
which all orbits precess at the same slow rate relative to the pattern.

The sign of the average angular momentum exchange between
nearly resonant orbits and the perturbation is determined by their
relative precession rate. Orbits with small positive {); gain L on
average, while those with negative ), lose on average; the net ef-
fect at the resonance depends on the relative numbers of gainers
and losers, which depends on the gradient of the particle density in
frequency across that resonance.’

5.2. Coverage

In order to show that the simulations are capturing the reso-
nant behavior properly, Holley-Bockelmann et al. (2005) and
WXKO07b determine the difference between the density of particles
at two different times in the space of the two integrals E and L
[more precisely L/Lm.x(E)]. They evaluate the density in this
space from the particles in the simulation using a smoothing
kernel and color code regions by the change in density between
the two times. They also draw the loci of several resonances and
call attention to the changes associated with resonances.

Their diagnostic therefore requires phase space to be so densely
populated that the appropriate change in density occurs at every
point in the two-dimensional (2D) space of these integrals, which
requires many particles at each point and a very large number in
total. However, the resonance extends over a long path through
this space, and it is unnecessarily stringent to insist that the correct
balance between gainers and losers be fulfilled separately at each
point. Instead, the balance need be realized for all resonant par-
ticles, which requires many times fewer particles.

5.3. A Superior Diagnostic

To demonstrate that the appropriate resonant exchanges are
occurring at much lower particle numbers than WK07a suggest
are needed, I compute the average density change along lines of

5 The evolution of the pattern speed in these models is rapid, in contrast to the
slow trapping of orbits discussed by Lynden-Bell (1979).
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FiG. 7.—Solid curve shows the locus of the ILR in the space of energy and fraction of the maximum angular momentum for €, = 0.5 near the center of a Hernquist
halo. The resonance extends to retrograde orbits in which the signs of €24 and / are reversed. The dashed curves show the loci of orbits that are not precisely resonant, and
precess at the rates {2y = +0.025 and €2, = +0.05 relative to the pattern. The closed orbits shown are representative of those that precess at {2, = £0.05 relative to the
disturbance; they have a wide range of sizes, with the more eccentric orbits being smaller. The horizontal lines, which have a length of 0.17, show the linear scale for the orbits.

constant frequency difference (), such as the dashed lines in Fig-
ure 7. The average so defined is a function of the single variable
), but since this is not an intuitive quantity, I map €2 to the quan-
tity L res, the angular momentum of the circular orbit that precesses
at the rate {2, relative to the perturbation.

In practice, I compute the frequencies €2, and €2, for every par-
ticle in the simulation in the spherically averaged potential at some
moment during the evolution. I compute the frequency difference
), for a selected resonance and evaluate the density of particles at
each (2 using a one-dimensional (1D) kernel estimate. Then the
relation between €2 and L. yields the 1D function F'(L ) at the
selected time (Paper I). This diagnostic is therefore both easier to
show and less affected by shot noise than is the density of particles
as a function of the two classical integrals £ and L.

Once the halo density profile starts to change in these experi-
ments, the spherically averaged gravitational potential and the res-
onant locus also change. I therefore focus here on the early stages
before this complication becomes important, although F' (L) can
be computed with a little more effort for any arbitrary potential, as
shown in Sellwood & Debattista (2006).

Figure 8 shows the ratio of F'(L ) to its initial value for the
ILR in the convergence tests shown in the top and middle rows of
Figure 4. The quantity shown is the ratio of (L) to its undis-
turbed value for different values of N. The left panels show re-
sults at # = 8 for the long bar (@ = ;) and the right panelsat = 4
for the short bar (@ = r,/5). The top panels show the results with
a fixed kernel width, while the width of the smoothing kernel is
halved for every factor 10 increase in N in the bottom panels. The
cyan curve in the right panels is for unequal mass particles with a
further reduction of the smoothing kernel width in the lower panel.

As N isincreased by 3 orders of magnitude in the large bar case
(left panels), the results quickly converge when a fixed kernel is

employed (fop). Reducing the kernel width as N rises (bottom) re-
veals more detail of the function shape. Even for the smallest par-
ticle number (N = 10%), the function shows a substantial change
associated with the resonance, but lacks the central spike at
L..s = 0visible in the other cases. The local maximum at L, = 0
arises because particles of very low angular momentum have
orbits that precess at such a high rate they are well inside the ILR
and their angular momenta are little affected by the perturbation.
The kernel width is too large to reveal this feature in the N = 10*
case.

Results for the short bar are shown on the right, which again
quickly converge with a fixed kernel width (fop). When the ker-
nel width is decreased (bottom), a central spike appears only in
the case of unequal mass particles (cyan line), for which I also
refined the radial grid to place more shells in the inner parts. Note
that the resonance is still well populated in the other three experi-
ments, since F'(L ) is strongly affected in the appropriate sense,
and the time evolution of the pattern speed and density profile,
shown by the dotted curves in the middle row of Figure 4, are no
different from those in the coarser experiments. The number of
equal mass particles above the resonance in these cases is too
small to reveal the spike, whereas the unequal mass case packs in
many high-frequency particles; clearly, adding particles that are
adiabatically invariant to the perturbation can have no effect on
the outcome.

6. DISCUSSION

6.1. Frequency Broadening

The range of L. over which the ratio departs from unity in
Figure 8 indicates the extent of the resonance during this short
time interval, and one can count the numbers of particles within
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for unequal mass particles, particles have equal mass in all other cases.

this range. For the large bar, in the left panels of Figure 8, I find
fully 10% of equal-mass particles have {2, within the range af-
fected by the resonance, but this factor drops to 20.7% for the
shorter bar (@ = r,/5). While this smaller fraction clearly implies
that a larger number of particles is needed in this more delicate
case, as already found empirically in Figure 4, the ~7000 reso-
nant particles in a simulation with N = 10° are enough to capture
the appropriate response. The resonant fraction with unequal par-
ticle masses rises to 20%, even in this short-bar case, but the evo-
lution is no different.

The fraction of particles that participate in the ILR is far higher
than expected in the calculations by WKO07a. This is because their
estimate of the resonance width neglects frequency broadening
due to the time evolution of the perturbation. Resonances are broad-
ened both by the time evolution of the amplitude, which rises
smoothly from zero to its full value in 10 time units, and also be-
cause the bar slows over an even shorter time interval (see Fig. 4).
The initial bar period of the large bar is ~12.5 time units, which is
longer than both the turnon time and the slowdown time. The bar
period for the shorter bars is ~3 time units initially, and therefore
frequency broadening of resonances is slightly less than for the
large bars, but is still highly significant.

Thus, the estimates from WKO07a of the particle numbers re-
quired to “cover” the resonance are for very slowly evolving per-
turbations and not for realistic experiments that might produce a
large density change. It is perplexing that these authors explicitly

discount frequency broadening, since Weinberg (2004) has al-
ready shown that the pattern speed evolution depends on the time
history of the perturbation—a clear indication that the resonant
interactions responsible for friction do depend on the broadening
of the resonance by the time evolution of the perturbation.

6.2. Particle Noise

As for the coverage issue, the timescale for bar pattern speed
evolution is so rapid in cases in which the halo density is changed
that the timescale for interactions with the bar is very short. Ques-
tions of orbit quality in a noisy potential seem of marginal rele-
vance when the location of the resonance moves faster than any
reasonable orbit diffusion rate.

From a crude analysis, BT87 find the relaxation time of a col-
lection of N point masses is

0.1IN
relax =~ 77 Torb; 4
Trel ]nNTob ( )

where 7, 18 a typical orbit period. This is an underestimate of
the relaxation time for most collisionless N-body methods, which
smooth the gravitational field through particle softening, limited
mesh resolution, or some form of filtering of the high spatial fre-
quencies of the potential. To be conservative, I ignore this fa-
vorable caveat for now and continue the argument with the above
crude estimate of the relaxation rate.
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Since the relaxation time is approximately the time to cause an
order unity change to the initial energy of a typical particle, the
fractional energy change per orbit AE/E ~ 10 InN/N. If frac-
tional changes in the important frequencies of an orbit scale as
the fractional change in energy of the orbit (this appears to be
approximately true in many potentials), orbit scattering will be
too slow to affect resonant interactions as long as the fractional
change in the bar frequency in one orbit

AQy >
Q

10 InN
N

. (5)

This very crude estimate suggests that relaxation is utterly ir-
relevant when |A$,/Q,| ~ 1 in one orbit (e.g., Fig. 4) and will
not become an issue except for very mildly braked bars simu-
lated with small numbers of particles. Again WK07a conclude
that much larger numbers of particles are needed, because their
analysis fails to take the changing pattern speed of the pertur-
bation into account.

6.3. Self-Gravity Methods

Relaxation is conventionally thought of as the cumulative ef-
fect of pairwise encounters between particles, as above, but it
can also be regarded as the effect of square root of N-type exci-
tations of a number of neutral modes of the equilibrium system, as
remarked by Sellwood (1987) and calculated by Weinberg (2001).
WKO07a attempt to separate N-body fluctuations into small- and
large-scale noise and appear to associate simple two-body scat-
tering with small-scale noise and large-scale noise with that from
the neutral modes excited by shot noise in the particle distribution
(Weinberg 2001). Such a distinction is artificial, since both ap-
proaches describe the same physical process.

Hernquist & Barnes (1990) and Hernquist & Ostriker (1992)
measured very similar relaxation rates in spherical models sim-
ulated by various N-body methods. Their important finding can
be understood from either approach. First, the Coulomb logarithm
appears in the expression for the relaxation rate because every
decade of impact parameters contributes equally (BT87). As col-
lisionless N-body methods have a limited range of spatial res-
olution, the number of decades over which scattering must be
integrated is strictly limited, and not very different from method to
method. Second, only a limited number of neutral modes affect the
behavior of an N-body simulation, because softening, grid reso-
lution, or truncation of the field expansion quickly cuts off the
dynamical influence of the higher modes that have shorter wave-
length. Thus, either conceptual approach to the influence of noise
leads to the same conclusion that no valid N-body method is dra-
matically less collisional than any other (Hernquist & Barnes
1990). (Methods that do not employ many particles per effective
softening volume should manifest higher relaxation rates.)

WKO07a argue correctly that a well-chosen basis allows forces
from unwanted fluctuations on small spatial scales to be filtered
out. Despite this, Hernquist & Ostriker (1992) found little im-
provement in the relaxation rate from this method over others.
Thus, we conclude that all methods filter out all but the longest
range encounters, unless resolution is taken to extreme, leading to
atmost marginal differences of quality between different methods.

6.4. Previous Work

The ability of N-body simulations to capture resonant ex-
changes with a perturbation has previously been demonstrated in
the case of disk instabilities. Global modes that lead to bars rely
on the emission of angular momentum at the ILR and its absorp-
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tion at other resonances farther out in the disk (e.g., Kalnajs 1977).
Since the mode is driven by second-order coupling between the
particles and the wave at resonances, the dynamics resembles that
of bar-halo coupling in 3D. In particular, the third action for each
orbit is zero for precisely spherical potentials, making the unper-
turbed motion of each halo particle no more complicated than
in 2D. It is worth noting that Rybicki (1972) pointed out that
2D disks are essentially more collisional than 3D systems, which
would argue that if relaxation were an important problem, it ought
to be harder to get disks right.

Sellwood (1983), Sellwood & Athanassoula (1986), and Earn
& Sellwood (1995) report they are able to reproduce the global
bar modes of some disks in simulations with comparatively mod-
est numbers of particles. Tests of a disk without velocity disper-
sion, employing a large softening length to inhibit local instabilities,
may not be a fair comparison with 3D systems. However, Earn &
Sellwood (1995) present results for disks with velocity disper-
sion using both a field method and a 2D polar grid. The pre-
dicted eigenfrequency was reproduced to within 5% percent
using a field method with as few as 15K particles, and agreement
with theory improved for moderately larger N. Results with the
polar grid were discrepant because gravity softening was required,
but Figure 4 of that paper shows that the trend with softening
length could plausibly extrapolate back to the predicted frequency
at zero softening.

These reassuring results indicate that simulations do indeed
capture the appropriate collective response at resonances, with-
out requiring vast numbers of particles. Again, the dynamical
response of the collection of particles extends over the entire
resonance, broadened by the growth rate of the bar, and does not
need to reproduce the detailed balance of gainers and losers at
every point in integral space.

6.5. Numerical Convergence

WKO07a argue that numerical convergence alone is not a guar-
antee that the result is correct. They suggest that low-/N experiments
could converge to the wrong result, where friction is determined
by one-time encounters between the particles and the bar, while
the proper resonant behavior would not be revealed until some
much larger particle number is reached.

This argument is unconvincing for several reasons. First, if
coverage were inadequate, as WK07a note, the exchange of an-
gular momentum with the bar would depend on just the few par-
ticles that happened to be in resonance, resulting in significant
stochasticity in the evolution. The pattern speed and density changes
would depend on the random seed, which I do not observe, and
the curves in Figure 4 could not overlay so perfectly. Second, as
shown in Figure 8, I have been able to detect the influence of res-
onances over a wide range of N. Third, WK07b estimate that
N = 108 equal mass particles should be sufficient for a strong bar
with semimajor axis equal to the profile break radius 7. I have
presented a result with N = 1.6 x 108 that behaves no differently
from experiments with much lower N. This sequence of experi-
ments therefore demonstrates that nothing different occurs when
their criteria are met.

WKO7b present a result for a strong bar with length equal to
r/6 in which the evolution differs when N is increased from 10°
to 5 x 10°. T have been unable to reproduce a change in behavior
at any N in tests with similar, although not identical, bars; their
bar had an axis ratio of 5:1, which I have also used, but since it is
possible that the quadrupole field of their bar is weaker than the
one given by equation (3), I chose to present a 4:1 bar in the bot-
tom row of Figure 4 (as described in § 4.1). It is unclear why
WKO7b find a different result with different N, but my failure to
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Fig. 9.—Changes to the mass profile for the fiducial bar with the monopole
term active (solid curves) and in an identical case when the / = 0 term of the halo
mass distribution is held fixed (lower dashed curve). These experiments em-
ployed 107 unequal mass particles.

observe differences of this kind in a similar regime suggests that
the difference they report must be due to factors other than they
suggest.

7. HALO DENSITY REDUCTION
7.1. Cusp Flattening

Figure 9 compares the mass evolution in the fiducial run, for
unequal mass particles, with that when the monopole term of the
halo mass distribution is held fixed. It should be noted that these
two runs differ only in the monopole terms, the gravitational field
from the 2 < / < 4 density response of the particles is included
in both cases. It is clear that including the change in the potential
that arises from the change to the radial mass profile is crucial for
creating a large density reduction, as previously found for driven
bars (Sellwood 2003).

Thus, flattening of the cusp is a collective effect that is sup-
pressed when the self-consistent potential changes are eliminated.
Once the collective change is initiated, the different radial mass
profile allows somewhat more angular momentum to be accepted
by the resonant particles; the torque in the self-consistent case is
some 20% larger at its peak, near ¢ = 8, than when the central at-
traction is held fixed. This is physically reasonable, since adjust-
ments to the central attraction of the mass distribution will further
broaden the resonances. Note that the self-consistent density change
could not be predicted from simple perturbation theory, since the
global potential in which the particles move undergoes substantial
evolution on an orbital timescale during the cusp-flattening stage
(see Fig. 3).

WKO7b report much smaller density reductions than I find with
similar strong, skinny bars. It is likely that the collective effect I
find to be responsible for large density reductions is inhibited by
the rigid mass component they include. To test this hypothesis, I
have tried similar experiments that include the rigid-bar monopole
term and find that density reduction is almost entirely suppressed.

7.2. Variation of Bar Properties

Here I report the results of changing the physical parameters
of the bar perturbation: its length, mass, and axis ratio.
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Fic. 10.—Results from five different experiments with different bar lengths.
(a) The dashed line shows the initial profile given by eq. (2). The solid lines show
estimates from the particles of the initial (black) and final (color) density profiles
from a series of runs with different bar semimajor axes, a. (b) The same results
plotted as halo mass enclosed as a function of radius.

Figure 10 shows the final density profiles from a series of five
separate simulations using bars of different lengths. The lengths
spantherange 0.2 < @ < 1,inequal steps of Aa = 0.2, while the
nominal bar axis ratios are kept at a/b =5 and a/c = 10. As
above, the bar mass is half the enclosed halo mass at » = a and
the initial pattern speed places corotation at the bar end. In all
experiments shown in Figure 10, the final halo density is flattened
inside r ~ 0.3a, while remaining essentially unchanged at larger
radii.

Figure 11 shows the effect of changing the bar axis ratio b/a.
The nominal bar axis ratios in the models shown range from
al/b =5toa/b=2;inall cases, a = r;, M, = 0.125, and €2, =
0.5 initially. The more elliptical bars produce large density changes,
whereas rounder bars have little effect. A sharp transition is evi-
dent in these results between 0.30 < b/a < 0.32. Tests with the
SCF method (Hernquist & Ostriker 1992) also reveal the sharp
transition at the same bar axis ratio.

A similar effect is seen in Figure 12, in which 0.050 < M}, <
0.125, i.e., the bar mass ranges from 20% to 50% of the enclosed
halo mass, while the bar axis ratio is held fixed at b/a = 0.2. The
sharp transition occurs between 0.0625 < M, < 0.07.

7.3. Sharp Transition

The bimodal nature of the density change shown in Figures 11
and 12 appears to be real. The models evolve more slowly as fric-
tion is weakened by reducing the bar quadrupole field, either by
making the bar rounder or by reducing its mass, but the halo den-
sity change undergoes an abrupt transition as the parameter is
varied smoothly.

Figure 13a shows results in the space of the two parameters
a/b and M, from experiments run to map out the transition bound-
ary, always for the case of the long bar with a = ;. The quadrupole
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Fig. 11.—Solid lines show the initial and final mass profiles from a series of
runs in which the bar axis ratio b/a was varied. The pronounced gap in the final
mass profiles is bracketed by two runs in which b/a = 0.32 and 0.30; the dotted
lines show reruns of these models with more individual-mass particles. The dashed
line shows the Hernquist profile.

fields of the bars are shown in Figure 13b. This figure suggests
that there is a critical quadrupole field strength required to cause
the cusp to flatten, which may decrease slightly toward skinnier
bars where the quadrupole peaks at smaller radii.

It is unclear what triggers the collective response. Figure 14
shows more information from the two cases that straddle the sharp
transition in the density change as the axis ratio is changed. The
angular momentum absorbed by the halo (fop panels) differs very
little between the two cases, yet the slightly stronger bar flattened
the cusp at late times (after most of the angular momentum had
been lost), while the other did not. I have checked that no dramatic
density changes occur in the cases with weaker quadrupoles, no
matter how long the simulations are continued. Friction tails off at
late times in these runs without producing a large density change.

Notice also the clear time sequence in the density reduction
(bottom left); the density in the outer part of the cusp is reduced
before that in the inner part.
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Fic. 12.—Same as Fig. 11, but from a series of runs in which the bar mass was
varied. The sharp transition occurs between 0.0625 < M}, < 0.07.
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Fic. 13.—Results near the sharp transition. () Circles indicate that the cusp
flattened for the bar mass and axis ratio, while squares indicate it did not. The bar
semimajor axis is held constant at @ = r in all cases. (b) The quadrupole poten-
tial along the bar major axis given by eq. (3) for the bars in the simulations shown
in (a). Bar potentials that caused the cusp to flatten are drawn with solid lines,
those that did not are dashed.

The mass profile evolution is insensitive to numerical param-
eters everywhere except near the transition. Section 4 presented
numerous tests to show that the evolution of these simulations
does not depend on numerical parameters. Since WKO07b argue
that more delicate cases require larger N, I simulated the large,
massive bar model with b/a = 0.32 and 1.6 x 10® unequal mass
particles, finding a small change to the mass profile that is no
different from that in simulations with lower N.

However, the outcome of experiments for the marginal case of
the large, massive bar with axis ratio b/a = 0.31 does depend on
numerical parameters. In some cases the cusp flattens, while in
others it does not; the result is never intermediate, however. Thus,
these simulations cannot pin down the parameter values at which
the outcome changes to better than a few percent.

I have searched the experimental results for a property that
could be the cause of the sharp transition. I examined resonant
exchanges in two simulations that straddle the boundary using
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Fic. 14—Top panels: Angular momenta of the bar (decreasing dashed curve) and of the halo (increasing dashed curve) and total (solid curve) in two simulations
straddling the boundary between cusp flattening and more gradual density change. That on the left had b/a = 0.30, while that shown on the right had b/a = 0.32. Bottom
panels: Radii containing different fractions of the total number of particles in the two cases.

the procedure described in § 5, finding only very minor differ-
ences in F(L ) between the two cases. The ILR continues to be
the most important resonance, even at late times when the pattern
speed is about 20% of its initial value; friction is weak and changes
to F(Lyes) are correspondingly small, but still detectable. Other
properties, such as the amplitude of the bisymmetric distortion in
the halo response, all varied smoothly with the strength of the
quadrupole field.

While the trigger for the collective response that brings about
the large density change remains elusive, further investigation
seems warranted only if a similar sharp transition were found in
fully self-consistent models.

7.4. More Gradual Density Changes

The large density changes emphasized so far are confined to
the region well interior to the end of the bar. They result from a
collective response of the halo particles to the torque from a mas-
sive, skinny bar. The perturbing potential is not only stronger than
that of the nominal homogeneous ellipsoidal bar (see the Appen-
dix), but is also not easily related to bars in real galaxies that may
have somewhat different quadrupole fields. However, it seems

unlikely that real bars, which typically have a/b < 3, are strong
enough to provoke such a collective halo response.

The bars that did not produce large density changes are still
strong, both in mass and in axis ratio. Friction from these bars does
lead to a slight reduction in halo density over a more extended
radial range; tests reported in Paper I and further tests here confirm
that these results are also insensitive to numerical parameters. It is
likely that the modest mass profile change reported by Debattista
& Sellwood (2000) and those discernible in Athanassoula’s (2003)
results are of this kind.

8. MEAN DENSITY REDUCTION
8.1. Changes to A,

This study was motivated by the discrepancy, illustrated in
Figure 1, between the predictions of halo density from ACDM
and that observed in real galaxies. The solid and dashed lines in
that figure show the predicted value of A,; (Alam et al. 2002)
for dark matter halos, which are generally above the observed
points. If bar-halo friction could effect a reduction of the mean
inner halo density by about 1 order of magnitude, as measured
by A,, the predicted lines could be shifted down by that factor
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O T T T T ) TABLE 2
o O ] u u SUMMARY OF SIMULATIONS PLOTTED IN FIGURE 15
% o M, a b oA o Flattened MOI
Y 1 ()] 3 “ (%) (6) (M
O 0.0139 0.2 0.04 0.00006 0.59595 Y
) 0.0408 0.4 0.08 0.00033 0.25639 Y
o 00703 06 012 000096  0.15082 Y
0.0988 0.8 0.16 0.00184 0.09279 Y
3 0.125 1.0 0.20 0.00288 0.06936 Y
O 0.0139 0.2 0.04 0.00024 0.44957 Y 5
8 0.125 1.0 0.20 0.00288 0.06936 Y
0.1 oO_. 0 g ] 0.1 1.0 0.20 0.00236 0.08386 Y
O, 0.075 1.0 0.20 0.00176 0.11818 Y
g 0.07 1.0 0.20 0.00176 0.12763 Y
0.0625 1.0 0.20 0.00156 0.60344 N
o 0.050 1.0 0.20 0.00113 0.84208 N
® 0.050 1.0 0.20 0.00514 0.74350 N 5
. . . 0.125 1.0 0.20 0.01215 0.04334 Y 5
0.000 0.004 0.008 0.012 0.0625 1.0 0.20 0.00629 0.10646 Y 5
0.125 1.0 0.25 0.00283 0.07789 Y
oA 0.125 1.0 0.27 0.00298 0.08104 Y
FiG. 15.—Fractional changes, u, to A, in many experiments. The abscissae 0.125 1.0 0.29 0.00315 0.09306 Y
show the angular momentum given to the halo, expressed as the usual dimen- 0.125 1.0 0.30 0.00323 0.09352 Y
sionless spin parameter. Open circles mark results from experiments in which the 0.125 1.0 0.31 0.00312 0.34321 Y
density profile of the inner cusp was flattened, while squares indicate experiments 0.125 1.0 0.33 0.00274 0.70371 N
where cusp flattening did not occur. Filled symbols show results from experiments 0.125 1.0 0.50 0.00296 0.91227 N
in which the MOI of the bar was increased by a factor 5 in all cases except the point 0.125 1.0 0.33 0.00982 0.04764 Y 5
at the top right, where the MOI was increased 10-fold. The changes to A, 0.125 1.0 0.50 0.00874 0.89144 N 5
make no allowance for halo compression. The bar parameters in each case are 0.125 1.0 0.50 0.01378 0.83108 N 10

listed in Table 2.

and the discrepancy between the predictions and the data would
be largely removed.

Since the halo parameters of mass and linear size in my sim-
ulations can be scaled as desired, the only quantity of relevance
that can be extracted from them is the fractional change in A,:
= A (0)/A,n(0). Figure 15 shows the fractional change to the
inner halo density, 4, measured from the simulations listed in
Table 2. Results presented are exclusively from cases that are
numerically converged—i.e., results from low-/N simulations in
convergence tests are excluded. Circles mark results from ex-
periments in which the density profile of the inner cusp was flat-
tened. Weaker bars of any length lead to mild density reductions,
as shown by the points marked with squares. The largest reduc-
tions to A, by a factor /fl Z 10, occur when the inner part of
the cusp is flattened by exchanges with a long (@ = ry) bar. Strong
short bars also flatten the cusp, but over a smaller volume, leading
to a smaller reduction in A,,.

The density reductions possible with rigid bars may underes-
timate the largest that can be achieved, since real stellar bars are
not rigid objects with pattern speeds that decrease as dictated by
a fixed moment of inertia (MOI) as angular momentum is re-
moved. The stars within the bar must lose angular momentum,
but the pattern speed of the bar is determined by the mean preces-
sion rate of the orbits. (It could even rise as the orbits shrink in
size, although such behavior has not been reported in any simu-
lation, as far as I am aware.) Thus, adopting the fixed MOI of a
homogeneous ellipsoid may seriously underestimate the angular
momentum that could be extracted from the bar.

Accordingly, I experimented with bars in which the effective
MOI was increased by a factor of 5 or 10 from the standard value
employed so far, as noted in Table 2. This stratagem resulted in a
correspondingly greater transfer of angular momentum to the halo
over a more protracted period as the pattern speed declined more
slowly, and the results are shown by the filled symbols in Fig-

Notes.—Cols. (1)—(3) summarize the properties of the bar. Cols . (4) and (5)
give the principal results. Col. (6) indicates whether or not the cusp was flat-
tened, and col. (7) gives the factor by which the moment of inertia was increased.

ure 15. The enhanced MOI caused a greater reduction in the inner
halo density than in comparable experiments with the standard
MOI, but by a significant factor only if cusp flattening occurred.

A decrease in A, by a factor 210 requires a large (@ = ry),
massive, skinny bar, and the greatest changes occur when the MOI
of such bars are increased. The density reduction by a shorter bar,
a = 0.2ry, is to about 60% of the original A, which can be
boosted to ~45% by increasing the MOL

8.2. Angular Momentum Extracted from the Bar

It is useful to express the angular momentum transferred to
the halo in terms of the usual dimensionless spin parameter, 1 =
LE"2/GM>?. Tidal torques lead to halos with a log-normal dis-
tribution of spin parameters with amean A ~ 0.05. Assuming, as
usual, that the baryons and dark matter are well mixed initially,
the fraction of angular momentum in the baryons is equal to the
baryonic mass fraction: some 10%—-20%.

The abscissae in Figure 15 show the angular momentum trans-
ferred to the halo, expressed as a change to 4. Thus, the angular
momentum that must be transferred from the baryons to the dark
halo to increase its spin parameter by AZ, ~ 0.01 requires the
removal of all the angular momentum that could reasonably be
expected to be possessed by the baryons! This conclusion sug-
gests that no greater density reductions could be achieved by this
method. Note that as the estimates of halo density in Figure 1 are
all from rotationally supported disks, these galaxy disks must re-
tain a significant fraction of their initial angular momentum.

Since I have excluded the monopole term of the bar potential
and kept the bar quadrupole fixed, these experiments ignore ef-
fects that increase the halo density. The halo must be compressed
as baryons cool and settle to make the disk, and contraction of a
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self-consistent bar as it loses angular momentum can cause the
halo to compress further (Sellwood 2003; Colin et al. 2006), over-
whelming any density reduction caused by the angular momen-
tum transferred. Thus, the changes to A,); reported in Figure 15
are likely to be overestimates.

9. CONCLUSIONS

I have shown that reliable results can be obtained from careful
simulations of self-gravitating halos perturbed by a rigid bar with-
out the need for immense numbers of particles. Rigid bars are an
idealization, but they simplify the dynamics down to the bare es-
sentials over which disagreements remain.

Weinberg & Katz (2007a) estimate the required numbers of
particles from perturbation theory. Their “coverage” criterion is
based on a requirement that there be enough particles in a narrow
range of frequencies around the resonance to yield the correct
statistical balance between gainers and losers in resonant inter-
actions. Their criterion, however, takes no account of the time
dependence of the perturbation, which causes resonances to be
broadened over a wide range of frequencies, allowing the correct
response to be captured with a much smaller N. The excessive re-
quirements suggested by WKO07a apply to the numerically much
more delicate case of a steadily rotating, fixed amplitude pertur-
bation. Furthermore, their diagnostic diagrams require detailed
balance at each point in (£, L)-space, whereas the balance must
be right for the complete ensemble of resonant particles, which is
a much larger fraction of the total. My Figure 8 shows that sim-
ulations do indeed manifest resonant exchanges with the pertur-
bation that include a significant fraction of the particles and the
resonant response converges at moderate N. Larger particle num-
bers enable the changes at resonances to be illustrated in more de-
tail, but the physical outcome of the experiments is no different.

The minimum number of particles needed to obtain a con-
verged result does depend slightly on the bar properties and can
be lowered by adopting unequal mass particles. I have shown that
neither the angular momentum transferred nor the halo density
change varies as N is increased above ~107 equal mass particles
for long, massive, skinny bars. Simulations with over 10® par-
ticles, which meet the criteria suggested by WK07a, do not be-
have any differently from those with 3 orders of magnitude fewer
particles. Shorter bars do require more care than do large bars,
but again I find the behavior converges at moderate NV, and that
10% unequal mass particles are far more than is needed.

Above this modest minimum number of particles, I find that
results from a grid code are identical to those obtained using the
field method devised by Hernquist & Ostriker (1992), as explained
in § 6.3. Results with different NV, or with different random seeds,
show none of the stochasticity expected if there were too few par-
ticles in any of the dynamically important resonances.

Mild bars, for which evolution is slower, require greater care;
e.g., my convergence test for the pattern speed evolution with self-
gravity (Fig. 13 of Paper I) indicated that N = 10° was required
for a very mild bar (a = 7, a:b = 1:0.5, and M, = 0.02 or 8%
of the enclosed halo mass). However, more delicate cases such
as this are incapable of effecting a substantial density reduction
(§8).

WKO07a also invoke orbit scattering by density fluctuations as
a second reason to require large N. In simulations where the halo
density reduction is substantial, the bar is slowed on an orbit time-
scale, which is always much shorter than the relaxation timescale
(BT87), leading to a much lower particle number requirements
(§ 6.2). Furthermore, the experimentally determined mass profiles
are very smooth, and the radial acceleration will have correspond-
ingly little noise. While this argument ignores fluctuations in non-
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axisymmetric forces, I find my results are also insensitive to
changes in the order of azimuthal expansion (Fig. 5).

These results indicate that the estimates of the required num-
bers of particles given by Weinberg & Katz are greatly exag-
gerated. The evidence I have presented continues to indicate
that careful simulations with O(10°) halo particles yield reliable
indications of the evolution of both the pattern speed and density
profile.

I have also determined the amount of halo density reduction
that can be brought about through angular momentum transfer
from a strong, initially rapidly rotating bar, again with the limita-
tion that the simulations are not fully self-consistent. My simu-
lations with massive, skinny bars confirm earlier work that the
densities of cusped DM halos can be reduced by bar-halo inter-
actions. However, I also show that more moderate bars are able
to achieve no more than a minor reduction in the mean density of
the inner halo when halo compression is neglected.

I'have found that large density reductions occur only when the
inner cusp is flattened to create a uniform density core, which I
show extends to a radius of about one-third the bar semimajor
axis. I have demonstrated that flattening of the inner cusp is a col-
lective response of the halo that is driven by the bar torque.

In sequences of experiments in which the mass or axis ratio of
the rigid bar is gradually weakened, I find an abrupt change
of behavior from cusp flattening to mild density reductions. The
sharp transition as the bar quadrupole field is weakened appears
to be real. Behavior on either side of the sharp transition is in-
dependent of the numerical parameters or the code used. Pairs of
simulations straddling the boundary behave bimodally and re-
sults are never intermediate. Since I have found that triggering of
the collective effect in truly marginal cases does depend on nu-
merical parameters, the parameter values at which the outcome
changes cannot be determined precisely from simulations. How-
ever, | emphasize again that the outcome of all simulations re-
ported in this paper is independent of all numerical parameters,
aside from an extremely narrow range around this boundary.

A reduction of the mean inner density by an order of magni-
tude requires a bar, having a semimajor axis equal to the break
radius of the halo density profile, i.e., ~12-20 kpc, axis ratio
al/b z 3, and bar mass 230% of the enclosed halo mass. Large
reductions must be offset in part, and mild reductions over-
whelmed, by halo compression through baryonic settling, which
has not been included here.

Real bars probably have higher effective moments of inertia
allowing more angular momentum to be extracted from them.
Experiments to mimic this effect resulted in somewhat larger den-
sity reductions for a given bar; for reasonable bars, the overall den-
sity reduction remained less than a factor 2. Extreme bars with
enhanced moments of inertia also achieved greater density re-
ductions, but at the cost of transferring more angular momentum
to the halo than the baryons are likely to possess.

The angular momentum available in the baryons limits the den-
sity reduction achievable by bars. Since the galaxies for which
halo density measurements are available in Figure 1 are all still
rotationally supported, the baryons cannot have invested all their
angular momentum into halo density reduction. External per-
turbers, such as massive companions, undoubtedly contain more
angular momentum and energy in orbital motion, and therefore
may seem to have the potential to achieve greater reductions. It
should be noted, however, that merging is a process already taken
into account in the predicted profiles, since individual halos gen-
erally result from a series of mergers (e.g., Wechsler et al. 2002).

The density reductions reported here are overestimates of those
possible in reality, since I did not include the monopole terms of
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the bar field. A massive disk, in which the bar forms, must have
compressed the halo as the baryons settle toward its center, and the
mean density of the inner halo will have risen by perhaps a factor
of 3 (e.g., Sellwood & McGaugh 2005). Furthermore, loss of an-
gular momentum from the bar causes it to contract further, pro-
ducing yet more halo compression that may even overwhelm any
reduction in halo density resulting from the angular momentum
transfer (Sellwood 2003; Colin et al. 2006).

I thank Victor Debattista for a number of helpful comments
and suggestions throughout this project, and Doug Hamilton for
auseful conversation. I also thank Stacy McGaugh, Juntai Shen,
Kristine Spekkens, and Ben Weiner for helpful comments on the
manuscript. This work was supported by grants AST 05-07323
from the NSF and NNG 05GC29G from NASA.

APPENDIX
For a homogeneous bar, Weinberg (1985) adopts the approx-
imate quadrupole potential (his eq. [28])

2
D y0.6— b0, (AD)

(I)h(raa7¢) = 1+ (l"/bS)

where Ys, = [15/(327)]"? sin®0e2(@~%) and ¢, is the phase of
the bar. For a bar with axes a;:a,:a3 and density p, he chooses

8
b= WGP\/E(AI —42) (A2)

and
2a2—q4?
b= =z 1 A3
3= Gadas g (A3)

The dimensionless elliptic integrals A; are defined by
Chandrasekhar (1969, p. 41, eq. [18]):

o du
A= o A4
a1a2a3/0 (a? + wA (Ad)
with
A% = (at + u)(ai + u)(a32 + u). (A5)

Note that the expression for by, equation (A2), is twice that
given in equation (46) of Weinberg (1985), in order to obtain
the correct variation in ®; between the major and minor axes at
small 7.

I prefer to write equation (A1) in the form (cf. eq. [3])

GM;, a2r2

* sin?fe?@=%)  (A6)
a 14 (./B)

q)b(ra 97 ¢) = -

with . = r/a and a;:a5:a3 = a:b:c. Comparing equations (3)
and (Al), we find that 3, = bs/a and

3a?
Q = %(Al — 43), (A7)
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Fic. 16.—Quadrupole part of the gravitational potential along the major axis
of a homogeneous bar with a/b = 2 (top) and a/b = 5 (bottom). The solid curve
gives the exact potential, the dashed curve the approximation eq. (3). The ap-
proximation matches well at small and large distances, but strongly overestimates
the peak for skinny bars. Note the difference in scale of the ordinates between the
two panels.

since M, = 4mwabcp/3. Table 1 gives the values of ap and 3,
for the bar axis ratios used in this paper (n.b. a/c = 10 in all
cases).

For completeness, the quadrupole potential in Cartesian co-
ordinates is

_ GM, (x% — y2) cos 2¢9 + 2xy sin 2¢y

Dp(x, y, 2) = PE 1+ (r/ Bra)’

(A8)

Writing n = r/(2a), v = 1 +n°, and £ = [(x> — y?) cos 2¢p +
2xy sin 2¢y]/a’, this simplifies to

GMpa; €
a v’

(bb(xv ) Z) = - (A9)
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The acceleration components are

_ GMjya; 2uv(x c08 2 + y sin 2¢g) — 5axn* /(r32)

x PE 2 ’
(A10)
GMpyoy 20(x sin 2¢g — y cos 2¢) — SEayn’* /(r32)
ay = a3 1/2 )
(A1)
and
GMya, 5 M

a,= .
: a’  rBu?

Figure 16 compares the exact quadrupole potentials of two
homogeneous ellipsoids of different axis ratios with the ap-
proximation given by equation (3); a/c = 10 in both cases. The
values of the parameters a, and 3, are defined to ensure a good
match at small and large distances for bars of any axis ratio,
which indeed they achieve. While the approximation is pretty
good everywhere for the 2:1 bar (top panel), it increasingly
overestimates the peak strength of the quadrupole field as the
bar ellipticity increases, as shown for a 5:1 bar (bottom panel).

The exact field, which I used in Paper I, can be determined
only numerically, and therefore would not be easy for others to

reproduce. Throughout this paper, I have continued to use the
approximation given by equation (3), even though it clearly pro-
vides a stronger perturbation than the nominal homogeneous bar
when a/b > 2. The results continue to be of interest, however,
since some other density distribution could give rise to this stronger
quadrupole.

It is unclear what form of the quadrupole WKO07b adopted.
The text of their paper states that they used the quadrupole ap-
proximation of equation (3), which is the reason I adopted this
expression, but their Figure 3 shows the radial dependence for
different axis ratios on logarithmic scales. Since the free param-
eters simply set the amplitude and radius scales of the function,
these curves all ought to be self-similar, but they are not. WK07b
give no explanation, but the deviations from the simple fitting
function are in the correct sense to provide a better fit to the exact
field of a homogeneous ellipsoid.

I'have made repeated attempts to reproduce results from WKO07b,
using NFW halos, including a rigid monopole term of the bar, and
experimenting with different approximations to the quadrupole,
but have not succeeded in reproducing the pattern speed or density
evolution they report for any of their simulations with skinny bars;
this contrasts with the success I had (Sellwood 2003) in repro-
ducing a result from Hernquist & Weinberg (1992) for a rounder
bar. It seems likely that the quadrupole field they used for the 5:1
bar in their fiducial and other experiments has the form shown in
their graph, and not the functional form stated in their paper.
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