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We have obtained an analytic expression for the ring diagram contribution to the correlation energy of a
two-dimensional electron liquid as a function of the uniform fractional spin polarization. Our results can be
used to improve the interpolation formulas which represent the basic ingredient for the construction of modern
spin-density functionals in two dimensions.
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The electron liquid, an ideal model in which electrons
interact via a Coulomb potential in the presence of a uniform
rigid neutralizing background, represents a fundamental
paradigm for the understanding of condensed-matter
systems.1 Although for homogeneous states the ground-state
properties are completely determined by the number density
n, it can be useful and often necessary to study the properties
of the system in the presence of a given uniform spin polar-
ization. Accordingly, for the case under consideration of a
two-dimensional system, alongside the traditionally em-
ployed dimensionless density parameter rs=1/��naB

2 we
will consider the effects of polarization as parametrized by
p=

2Sz

�n , where Sz is the uniform spin-polarization density.
While in the general uniform case the total energy of the

system can be accurately obtained only by numerical means
and is available in the form of interpolation formulas of
Monte Carlo results,1,2 an exact analytic treatment is possible
in the high-density limit in the form of a perturbative expan-
sion in rs, which in this case is vanishingly small.3 In this
limit, the first-order correction to the noninteracting energy
simply coincides with the familiar exchange energy, which
has a simple analytic formula proportional to rs

−1. The re-
maining correction is referred to as the correlation energy.1

The high-density expansion of the correlation energy was
studied in the classic Ref. 4. The final expression for the
paramagnetic case �in Rydberg units� reads

Ec�rs,p = 0� = − 0.385 −
2�2

3�
�10 − 3��rs ln rs + ¯ , �1�

while the p=1 result can also be obtained by making use of
a simple transformation.4

For generic values of the polarization, the coefficients of
expansion �1� become functions of p.

The constant term in Eq. �1� is obtained from second-
order perturbation theory and is the sum of two distinct con-
tributions. The first is the second-order exchange energy,
which is independent of p and can be calculated
analytically.5 The second one stems from the second-order
direct energy term, commonly referred to as the first ring
diagram. The latter has been recently evaluated numerically
for generic values of p in Ref. 6. These contributions are
accurately represented by the interpolation formula of Ref. 2.

The next perturbative terms are in general divergent and a
finite result is obtained upon exact summation of the infinite

series of the most diverging contributions, the remaining ring
diagrams. This leads to the subleading rs ln rs term.

This elegant method was originally developed for the cor-
responding unpolarized three-dimensional case,7 a problem
in which the ring diagrams sum up to give the leading ln rs
contribution to the correlation energy.8 For the three-
dimensional case, the exact polarization dependence was
also determined.9

The generic dependence of the rs ln rs term on p is ob-
tained in this work. The complete formula for the presently
known leading terms of Ec�rs , p� is provided for reference in
the Appendix.

Following Ref. 4, the value of the generic diverging ring
diagram of order n is obtained from the expression

fR
�n��p� = −

�− 1�n

�nrs
2 �

−�

+�

du�
0

�

q2dq�Qq�u�rs

2�2�q
�n

, �2�

where n is a positive integer larger than 1.
The explicit expression for Qq�u� is given by

Qq�u� = �
�=↑,↓

� dk

q

q + 2kx

�q

2
+ kx�2

+ u2

n��k��1 − n��k��	 , �3�

where k�=��kx+q�2+ky
2. The polarization dependence of

Qq�u� is implicitly determined by the occupation functions

n��k� = ��k� − k� . �4�

For each of the two spin orientations, the Fermi wave vector
is obtained from the relation

k↑�↓� = �1 ± p , �5�

where for convenience we have rescaled the wave vectors by
kF=�2�n.

The expression corresponding to the generic ring diagram
of Eq. �2� has a �formal� dependence of rs

n−2, but in reality for
n�3 it involves a diverging integral. The sum to infinite
order is
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fR�p� =
1

�rs
2�

−�

+�

du�
0

�

q2dq
ln�1 +
Qq�u�rs

2�2�q
� −

Qq�u�rs

2�2�q

+
1

2�Qq�u�rs

2�2�q
�2� , �6�

which is instead a converging integral whose leading contri-
bution in the rs→0 limit is again proportional to rs ln rs and
is determined by the small-q integration region.10 Accord-
ingly, it is sufficient to employ here the limiting value
Qq=0�u�, as obtained from Eq. �3�. The result can be written
as

Q0�u� = 2��R�u/k↑� + R�u/k↓�	 , �7�

where the function R�u� is defined as

R�u� = 1 −
1

�1 + 1/u2
. �8�

To this point, our discussion follows Ref. 4, where the
implicit expression �6� as well as Eq. �7� were originally
provided for a generic value of p. There, however, the ex-
plicit evaluation was only done for p=0. In the general case,
using Eq. �7� and performing in Eq. �6� the wave-vector in-
tegration �up to an arbitrary upper limit�, one extracts the
leading contribution in rs:

fR�p� � −
rs ln rs

3�2�2��4�
−�

+�

�Q0�u�	3du , �9�

which gives the standard result �1� by making use of Q0�u�
=4�R�u�, i.e.,

fR�0� � −
2�2

3�
�10 − 3��rs ln rs. �10�

We find that the integral in Eq. �9� can be performed
exactly in the general case. The result can be expressed in
terms of the function

F�x,y� = �
−�

+�

�R�u/x�	2R�u/y�du , �11�

which has the explicit expression

F�x,y� = 4�x + y� − �x − 4xE�1 −
y2

x2� +

2x2 arccos
y

x
�x2 − y2

.

�12�

Here, E�x� is the complete elliptic integral of the second

type,11 and one should use the identity
arccos y

x
�x2−y2 =

arccosh y
x

�y2−x2 for
y�x. At p=0, one only needs the value F�1,1�=10−3�.

The result for the ring diagrams at finite polarization can
be compactly and elegantly expressed in terms of the corre-
sponding polarization scaling function IR�p�, defined as

IR�p� = lim
rs→0

fR�p�
fR�0�

. �13�

The final expression is given by

IR�p� =
1

8
�k↑ + k↓ + 3

F�k↑,k↓� + F�k↓,k↑�
10 − 3�

� , �14�

which readily gives the correct value at p=0. At p=1, using
F��2,0�=F�0,�2�=0, we obtain the known result4 IR�1�
=

�2
8 .
As it turns out, the exact result IR�p� is not well reflected

in the most recent interpolation formulas of Monte Carlo
calculations provided in the literature. In particular, from the
correlation energy formula of Ref. 2, denoted here as
Ec

MC�rs , p�, the following limit is obtained:

IR
MC�p� = lim

rs→0

Ec
MC�rs,p� − Ec

MC�0,p�
fR�0�

� 1 − 0.3932p2 − 0.4297p4, �15�

which is compared in Fig. 1 to the exact result of Eq. �14�.
The difference is remarkable, even if the specific aim of Ref.
2 is to address the polarization dependence of the whole
correlation energy. Agreement of IR

MC�p� with the exact result
is only achieved for p=0 and p=1, values known from the
extant literature. A noticeable failure is the behavior near
p=1, where the polynomial �15� gives a finite slope while
the leading term in the exact expression is

IR�p� �
�2

8
+

14 − 3�

4�10 − 3��
�1 − p . �16�

Around p=0, while being correctly quadratic in p, Eq. �15�
displays an incorrect coefficient. The exact coefficient is
given by

IR�p� � 1 −
168 − 45�

160�10 − 3��
p2 � 1 − 0.2893p2. �17�

The disagreement between I�p� and the Monte Carlo
based interpolation IMC�p� is hardly surprising, for the latter
was obtained by sampling the energy at a number of polar-

FIG. 1. Plot of the scaling factor IR�p� �defined in Eq. �13�	 as a
function of the fractional polarization p. Solid line: Exact expres-
sion �14�. Dashed line: Eq. �15� as obtained from the interpolation
formula proposed in Ref. 2.
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ization values for each of the values rs=1,2 ,5 ,10, which are
clearly outside of the rs�1 perturbative regime.12 In prac-
tice, IR�p� refers to the subleading term in the density expan-
sion, so that it gives only small corrections to the total en-
ergy. Nevertheless, incorporating this exact formula would
certainly result in an improved empirical expression for the
polarization dependence of the correlation energy.

We conclude by noting that a similar, yet more involved,
calculation can be carried out for the high-density limit of
the electron liquid correlation energy in the presence of the
Rashba spin orbit. An analysis of this interesting and timely
problem is provided elsewhere.13

APPENDIX

For ease of reference, we collect here the explicit form of
all the leading terms contributing to the perturbative expan-
sion of the total energy of the two-dimensional electron liq-
uid at finite polarization. The general formula �in Rydberg
units� reads

E�rs,p� = EK�rs,p� + Ex�rs,p� + Ec�rs,p� . �A1�

In this expression, EK�rs , p� represents the noninteracting ki-
netic energy and is given by

EK�rs,p� =
1 + p2

rs
2 , �A2�

while Ex�rs , p� represents the exchange energy,

Ex�rs,p� = −
8�2

3�

�1 + p�3/2 + �1 − p�3/2

2rs
. �A3�

The expansion for the correlation energy takes the form

Ec�rs,p� = E2�p� −
2�2

3�
�10 − 3��IR�p�rs ln rs + ¯ ,

�A4�

where the omitted corrections are of order O�rs�. In this ex-
pression, IR�p� is defined by Eqs. �14�, �12�, and �5�. The
density independent term is in turn given by

E2�p� = E2
�b� + E2

�r��p� , �A5�

where5

E2
�b� = 0.2287 �A6�

and6

E2
�r��p� = − 0.6137I2�p� , �A7�

where the scaling function I2�p� is given by

I2�p� = 1 −
�1 + p�ln�1 + p� + �1 − p�ln�1 − p�

4 ln 2
−

	f�p�
2

,

�A8�

with14

	f�p� � 0.0636p2 − 0.1024p4 + 0.0389p6. �A9�
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