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We present measurements of decay matrix elements for hadronic transitions of the form ��nS� !
��mS���, where �n;m� � �3; 1�; �2; 1�; �3; 2�. We reconstruct charged and neutral pion modes with the
final state Upsilon decaying to either ���� or e�e�. Dalitz plot distributions for the 12 decay modes are
fit individually as well as jointly assuming isospin symmetry, thereby measuring the matrix elements of
the decay amplitude. We observe and account for the anomaly previously noted in the dipion invariant
mass distribution for the ��3S� ! ��1S��� transition and obtain good descriptions of the dynamics of
the decay using the most general decay amplitude allowed by partial conservation of the axial-vector
current considerations. The fits further indicate that the ��2S� ! ��1S��� and ��3S� ! ��2S���
transitions also show the presence of terms in the decay amplitude that were previously ignored, although
at a relatively suppressed level.
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I. INTRODUCTION

The transitions ��nS� ! ��mS��� are of particular
interest as probes of heavy quark and low energy QCD
systems. The large b quark mass causes the b �b bound state
to have a very small radius (� 1 GeV�1) and to be non-
relativistic (�v=c�2 � 0:1). This makes these transitions
ideal to study the process by which a pion pair is excited
from the vacuum by the gluon field. The transitions among
the massive bound states making up the ��nS� family can
be calculated in terms of multipole moments of the chro-
modynamic field, providing simple relative rate and tran-
sition rule predictions. The pion pair excitation can be
factored out and approximated separately. Most recent
theoretical work has concentrated on this latter aspect of
the decays.

The �0 ! ��� transition was the first decay of this
form studied [1], followed some years later by the  0 !
J= �� transition [2]. The �0 decay is only barely above
threshold, and so the transition cannot show significant
structure. Detailed study of the kinematics confirmed
this. In contrast to this, the  0 decay has decay dynamics
very different from a phase space distribution. The dipion
invariant mass distribution of this decay shows strong
enhancement at larger values of M��. However, this is
consistent with the presence of only the simplest term in
the general Lorentz invariant amplitude derived from par-
tial conservation of the axial-vector current (PCAC) con-
siderations [3,4]. This is supported by the isotropic decay
angular distribution of the pions, implying a minimal
D-wave component.

Previous CLEO data have been used to study ��nS� !
��mS��� transitions [5–8], with the ��2S� ! ��1S���
and ��3S� ! ��2S��� transitions following this same
pattern in the dipion invariant mass spectra as for the
lighter mesons. But the ��3S� ! ��1S��� transition has
a second, strong rate enhancement near the �� invariant
mass threshold. This enhancement and the accompanying
depletion at intermediate invariant mass are inconsistent
with either pure phase space or the simple matrix element
describing the  0 ! J= �� observations. Either another
term must be included in the Lorentz invariant matrix
element or one must question the applicability of PCAC
to the pion excitation and the validity of the multipole
expansion of the b �b bound state.

Various mechanisms have been suggested to explain this
anomaly, such as (i) large contributions from final state
interactions [9,10], (ii) a � isoscalar resonance in the ��
system [11,12], (iii) exotic �� � resonances [9,13–15],
(iv) an ad hoc constant term in the amplitude [16],
(v) coupled channel effects [17,18], (vi) S�D mixing
[19], and (vii) relativistic corrections [20].

More recent experimental analyses with the very large
data sets accumulated by the B factories at the ��4S� show
interesting behavior as well. Belle [21] and BABAR [22]
do not see such anomalous behavior in the ��4S� !

��1S��� transition, but BABAR does see such a double
peaked structure in the ��4S� ! ��2S��� transition.

The shapes of the decay distributions originate in the
details of the excitation of the pion pair from the vacuum
and the particular projection of the initial state onto the
final state. Hence, the enhancement of the decay rate at low
M��, thus far considered an anomaly, is a good probe of
the details of low energy QCD in the transitions of the
bound states and the excitation of light hadrons from the
vacuum.

The general matrix element constrained by PCAC was
derived by Brown and Cahn [3] and is further constrained
by treating the Upsilon transition as a multipole expansion
as derived by Gottfried [23], Yan [24], Voloshin and
Zakharov [25], and others. The general transition ampli-
tude is then given in nonrelativistic form:
 

M �A��0 � ���q2 � 2M2
�� �B��0 � ��E1E2

� C���0 � q1��� � q2� � ��0 � q2��� � q1��; (1)

where �0 and � are the polarization vectors of the parent
and final state Upsilons, and q1;2 are the four-momenta of
the pions. In the first term, q2 is the invariant mass of the
pion pair. The quantities E1 and E2 are the energies of the
two pions in the parent rest frame, essentially indistin-
guishable from the lab frame due to the large masses of
the Upsilons.1 The third, or ‘‘C,’’ term in this expression
couples transitions via the chromomagnetic moment of the
bound state b quarks, hence requiring a spin flip. This is
expected to be highly suppressed by the large mass of the b
quark, so we expect only the first two terms to contribute.
Neglecting the dependence on the parent and final state
Upsilon polarizations (which apply only to the C term), we
have only two degrees of freedom, the Dalitz variables
q2 � M2

�� and r2 � M2
��. In writing this amplitude, we

have assumed the chiral limit, so that a fourth term, gM2
�, is

taken to be zero [26,27].
The expression in Eq. (1) can be made fully Lorentz

invariant by rewriting the energy product in the B term as

 E1E2 � 	�P
0 � q1��P � q2� � �P

0 � q2��P � q1�
=	2M�0M�
;

(2)

with P0 and P being the initial state and final state � four-
momenta.

The quantities A, B, and C are form factors that depend
on the detailed dynamics of the decay. They are in principle
functions of the Dalitz variables q2 and r2. However, we
expect them to vary on the scale of �QCD, which is com-
parable to the total energy release of the decays, so to first

1For transitions from the ��3S�, the parent frame and lab
frame are virtually identical. Even for ��2S� ! ��1S��� tran-
sitions, in which the ��2S� comes from hadronic or electromag-
netic transitions from the ��3S�, the parent’s motion in the lab
frame is unobservable other than in a small broadening of recoil
mass peak and a slight smearing of reconstructed variables.
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order we assume they are complex constants. Angular
structure or M�� dependence beyond that indicated in
the explicit amplitude, Eq. (1), would be an indication of
the nonconstancy of these form factors, or alternately the
breakdown of the assumptions leading to Eq. (1).

The dipion transition can be interpreted as taking place
in sequential two-body decays through a fictitious inter-
mediate state X via the chain ��nS� ! ��mS�X and X !
�� (see Fig. 1). In this view we can define the helicity
angle of the X ! �� decay in the usual manner of the
Jacob and Wick formalism. The polar helicity angle is
referred to as �X. Its cosine is used interchangeably with
the second Dalitz variable, r2, as they are linearly related:

 2r2 � 2M2
� �M

2
�0 �M

2
� � q

2

� cos�X

�����������������������������������������������������������������
1

q2 �q
2 � 4M2

���3�M2
�0 ;M

2
�; q

2�

s
; (3)

where �3�a; b; c� � a2 � b2 � c2 � 2ab� 2ac� 2bc.
These variables (r2 or cos�X) carry structure from the
second term in the amplitude due to the following relation:

 E1E2 �
1
4��E1 � E2�

2 ��E2
maxcos2�X�; (4)

with �E � E2 � E1. Because the initial state and final
state Upsilons are essentially at rest, the energy sum E1 �
E2 is nearly a constant and equal to the mass difference
between the Upsilons. For the ���� final state, �X is
defined as the angle of the positive pion, with �1<
cos�X < 1; for the �0�0 final state, because one cannot
distinguish between the two neutral pions, we take 0<
cos�X < 1.

Finding the presence of a nonzero C term would indicate
the breakdown of the multipole expansion, i.e., of the
assumption that the pion pair excitation is independent of
the Upsilon transition process from n3S1 state tom3S1, and
that the spin flip of the b quarks is suppressed. However,
finding a nonzero C term could also be due to distortions of
the distribution not accountable for by using only the first

two terms with complex, but constant, coefficients A and
B.

II. DATA SETS AND EVENT SELECTION

Data were collected with the CLEO III detector which is
described in detail elsewhere [28–30]. In this analysis we
observe e�, ��, ��, and � particles in the final state, and
so use both the tracking and calorimetry information from
the detector, as well as lepton identification. Thus we
employ global event, track, lepton, shower, and neutral
pion selection criteria, in addition to signal and background
identification criteria.

The data were taken while running on the ��3S� reso-
nance, subject to standard CLEO data quality selections,
and represent an integrated luminosity of 1:14 fb�1, and an
��3S� production yield of �4:98� 0:01�  106. The ��2S�
sample is obtained by reconstruction of sequential decays,
��3S� ! ��2S� � anything, occurring in this sample. The
��2S� population of �5:27� 0:40�  105 is estimated from
the branching fraction [31] of 10:6%� 0:8% for the decay
��3S� ! ��2S� � anything, which is dominated by pion
pair transitions and sequential photon decays through the
�b�2P� states.

All integrals needed in the analysis (for evaluation of
acceptances and efficiencies) are calculated via the
Monte Carlo method. Physics event generation is per-
formed using the Lund Monte Carlo [32] embedded in
the CLEO physics Monte Carlo QQ [33]. The Lund event
generator is used because it accurately accounts for the
physics of the QCD bound state production. The ��3S�
produced in the e�e� collision is then decayed according
to standard decay tables and the detector response to the
decay products is simulated using the physics simulation
package GEANT [34].

In general, since all integrals are performed with respect
to the natural measure over phase space, only phase space
decays need be simulated. The decay amplitude is known
exactly as a function of the decay kinematics, so all inputs
to the matrix element extraction (other than acceptance and
efficiency) are known to the precision of detector
reconstruction.

FIG. 1. (Left) The decay ��nS� ! ��mS��� follows the production of an initial state labeled �0 which decays to an ��� state. In
our analysis, the final state � decays to a lepton pair whose momentum vectors are very nearly back-to-back due to the large energy
release. (Center) The decay of the initial state Upsilon is governed by two kinematic variables, the Dalitz masses M�� and M��.
(Right) Alternately one can think of the �� system as a composite, X, and study its structure via the pion ‘‘decay’’ angles.
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We select events containing two leptons (���� or
e�e�) and two pions (���� or �0�0). All low momen-
tum tracks are assumed to be pions, because there is
insufficient phase space for the production of a pair of
kaons in a transition among any two of the three bound
state Upsilons. Electrons and muons are identified by their
energy loss and penetration depth in the detector as de-
tailed below, and are required to be consistent with origi-
nating from either an ��2S� or an ��1S� decay. The pion
candidates are constrained to come from a common point
at the beam location and the recoil mass (M2

rec � Prec �
Prec; Prec � Pbeam � q1 � q2; see below) is used to iden-
tify the transition. The lepton pair invariant mass spectra
and the recoil mass spectra are shown in Figs. 2 and 3,
respectively.

A. Global event selection

The data used in this analysis are required to have been
taken while running on the ��3S� resonance energy. Global
event characteristics are used to preselect the events.
Excessive tracks or showers in an event can dramatically
increase the combinatoric background. To avoid this, re-
constructed events are selected subject to upper limits on
number of charged particle tracks and number of calorime-
ter showers. To establish conservative limits, signal
Monte Carlo is studied for ��2S� ! ��1S��� transitions,
which are the ‘‘worst case,’’ in that extra tracks and show-
ers in these modes arise from the initial transition from the
��3S� to the ��2S�. Neglecting stray particles and second-
ary showers, there should be no more than four low mo-
mentum charged particle tracks and no more than eight

FIG. 3. Recoil mass, Mrec, distributions for all modes. The upper plot is generated from neutral decays, ��nS� ! ��mS��0�0, and
the lower from charged decays, ��nS� ! ��mS�����. The final signal selections (track quality, pion quality, dilepton mass, etc.)
have been applied. The peaks at the ��1S� and ��2S� masses correspond to decays to these resonances from an ��3S� parent. The
peaks at 9:8 GeV=c2 are from ��2S� ! ��1S��� decays. The hatching shows the bounds on the recoil mass values for the three
transitions. See also the window definitions in Table I. Yields are set to zero in the regions that correspond neither to signal nor to
sidebands.

FIG. 2. Dilepton invariant mass distributions for lepton pairs; the abscissa is the dilepton invariant mass, showing peaks at the masses
of the ��1S� and ��2S�mesons. The hatching indicates the limits to the invariant mass selection windows. Candidates are plotted after
the signal selection described in Sec. II D. At left are the dimuon candidates and at right the dielectron candidates.
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electromagnetic showers in signal events. Comparison be-
tween data and Monte Carlo show good agreement in the
number of tracks and showers found in the selected events.

B. Selection of final state particles

All candidate charged tracks are required to satisfy
quality criteria. They must

(i) come from within 5 cm of the origin along the beam
axis (detector ẑ axis),

(ii) come within 5 mm of the beam axis (impact pa-
rameter),

(iii) have momentum less than the beam energy, and
(iv) have a good helix track fit, with �2 per hit less than

20.

These requirements are applied to all track candidates and
are augmented with identification criteria for leptons (see
below) before being accepted as decay candidates.

The charged transition pions frequently are of such low
transverse momentum that they make two or more semi-
circular arcs in the tracking volume. These ‘‘excess’’ tracks
are removed by comparing the helix parameters, taking
into account the expected energy loss as these pions spiral
through the drift chamber.

Candidate muons and electrons are required to have high
momentum by requiring their transverse momentum to be
pT > 1 GeV=c, which removes a large fraction of the
events with nonleptonic Upsilon decays. Because the lep-
tons we seek originate from the decay of objects more
massive than 9:4 GeV=c2, they pass this requirement
easily.

Muons are selected from among good tracks and are
additionally required to penetrate the muon chambers to a
depth of at least three interaction lengths. The ratio of
energy deposition in the calorimeter to track momentum
must also be less than one half, E=pc < 0:5.

Electrons are selected from among good tracks and are
additionally required to have a ratio of energy deposited in
the calorimeter to track momentum E=pc > 0:5, as well as
having a profile of energy deposition consistent with that of
an electromagnetic shower and a good spatial match be-
tween the shower and the track. The E=pc ratio selection is
a very loose requirement added only as a precaution
against muons contaminating the electron sample.

The dilepton mass is loosely required to be that of the
final state Upsilon being studied, as shown in Fig. 2. For the
��1S� we require 9:25<M‘‘ < 9:75 GeV=c2, while for
the ��2S�we demandM‘‘ > 9:85 GeV=c2. Because of the
large widths of these invariant mass peaks, no sideband
selection is performed in this variable, but rather only in
the recoil mass distribution.

The �0 candidates are reconstructed from photon pairs.
This begins by applying selection criteria to the showers.
To be considered a photon, a shower must

(i) have energy greater than 30 MeV,

(ii) have a lateral shower profile consistent with that of a
photon,

(iii) be inconsistent with the extrapolation of any track
in the detector,

(iv) not include noisy channels in the calorimeter,
(v) not be in the overlap region between the barrel and

end cap calorimeter modules, and
(vi) not be in the ring of crystals closest to the beam

axis.
Showers satisfying these selection criteria are consid-

ered to be photons and are combined into �0 candidates.
Photon pairs are required to have an invariant mass within
50 MeV=c2 of the nominal �0 mass, M�0 . They are then
required to fall within the asymmetric window

 � 4<
M�� �M�0

���
< 3: (5)

The photon-pair mass resolution, ���, is typically
5–7 MeV=c2. Candidate photon pairs are then kinemati-
cally constrained (subject to the measured uncertainties on
energies and shower spatial locations) to have an invariant
mass equal to M�0 . To be used, �0 candidates are further
required to have a successful kinematic fit with confidence
level (one degree of freedom) greater than 0.1%.

C. Recoil mass and signal and background regions

We select events for each transition by cutting on the
mass of the system recoiling against the two pions in the
�0 ! ��� “anything” decay: M2

rec � M2
�0 � q

2 � 2q �
P0, where, as above, q � q1 � q2 and P0 is the Lorentz
momentum of the initial state Upsilon. Given the large
mass of the initial state Upsilon, the dot product simplifies
and the recoil mass can be well approximated by M2

rec �

M2
�0 � q

2 � 2M�0 �E1 � E2�. For the cascade decays,
��2S� ! ��1S���, this is not quite correct because the
Lorentz momentum of the initial state Upsilon [the ��2S�]
is not equal to the beam momentum. However, because the
total momentum of the pions is small and the initial state is
approximately at rest, using the incorrect momentum for
the initial state does not significantly change the recoil
mass distribution other than to shift it by the difference
between ��3S� and ��2S� masses. Hence, we expect to
find three recoil mass peaks. The transitions originating
from the ��3S� will generate recoil mass (Mrec) peaks at
the masses of the ��1S� and ��2S�, while the ��2S� !
��1S��� decays will yield a peak at 9:79 GeV=c2. These
three peaks are clearly visible in Fig. 3.

The recoil mass, Mrec, is measured rather accurately,
especially in the charged case, due to the good resolution
on the momenta of the low-momentum pions. It is still
quite good for the neutral modes where the total pion
momentum is given as the sum of momenta of two �0

candidates reconstructed from the calorimeter showers.
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D. Signal and background selection

The fit requires signal and background samples. They
are determined as a function of the recoil mass, Mrec, only.
The recoil mass peak widths are determined from
Monte Carlo with tight selections on variables other than
the recoil mass. These widths are then used to determine
mass windows to select events in both Monte Carlo and
data samples. The signal regions are defined as the range

within 3 times the peak width of the nominal recoil mass,
while the backgrounds are the regions from 6 to 12 times
the peak width from the nominal mass above and below the
peak mass. The masses and widths used to define these
regions are listed in Table I. The width of the recoil mass
distribution in the decays ��2S� ! ��1S����� is
roughly twice that of the direct decays. This is due to the
boost of the initial state Upsilon imparted in its production

FIG. 4. Candidate events that passed all selection criteria, and that have the final state Upsilon decaying to ����. In the middle is
the decay ��3S� ! ��1S�����. To the left is its neutral counterpart ��3S� ! ��1S��0�0. To the right is the charged transition
��2S� ! ��1S�����, with the bulk of its distribution at large values of dipion invariant mass. In each plot there are ten degrees of
gray scale ranging from white (lowest occupancy per bin) to black (highest occupancy).

TABLE I. Recoil mass distribution central values and widths for the signal and background selections used in the fit. The central
values and the widths agree well between data and Monte Carlo. The signal windows are defined as the region within three times the
cut width (last column) of the central mass and the background windows are defined as the region from 6 to 12 cut widths from the
center on either side. The background subtraction is only important for the cascade decays for which there is a large contribution to the
signal region from event combinatorics.

Transition Recoil mass (MeV=c2) Width (data) (MeV=c2) Width (MC) (MeV=c2) Width (cut) (MeV=c2)

��3S� ! ��1S����� 9460.4 2.4 2.5 2.5
��2S� ! ��1S����� 9792.4 5.0 5.0 5.0
��3S� ! ��2S����� 10 023.3 2.2 1.9 2.1

��3S� ! ��1S��0�0 9460.4 15.0 12.7 13.8
��2S� ! ��1S��0�0 9792.4 10.9 10.5 10.7
��3S� ! ��2S��0�0 10 023.3 3.4 3.4 3.4

FIG. 5. Candidate events that have passed all selection criteria, and that have the final state Upsilon decaying to e�e�. As in the prior
plot, three transitions are, left to right, ��3S� ! ��1S��0�0, ��3S� ! ��1S�����, and ��2S� ! ��1S�����.

D. CRONIN-HENNESSY et al. PHYSICAL REVIEW D 76, 072001 (2007)

072001-6



by the cascade from the ��3S�. The edges of the signal
windows are indicated by the hatching in Fig. 3. Note that
in Fig. 3 the yield in the regions not used for either signal or
background definition have been set to zero.

The Dalitz plot distributions for the selected data in 6
of the 12 final states are shown in Figs. 4 and 5.
Comparison of the �0�0 and ���� for the ��3S� !
��1S��� shows the depletion in charged particle effi-
ciency at moderate dipion invariant mass and large
j cos�Xj. Comparison of the charged modes for ��3S� !
��1S����� and ��2S� ! ��1S����� shows, in two
dimensions, the obvious disparity between the two
distributions.

III. MATRIX ELEMENT FITS

A. Likelihood fitter

The binned likelihood fit to the kinematic distributions
of the ��mS� ! ��ns��� decays is designed to deal
correctly with the low bin yields expected from dividing
approximately 2000 events over a two-dimensional space
with more than 10 bins per dimension. The general case of
this problem is solved in Ref. [35]. Specific details of our
application of this technique, including notes on variable
smearing and background inclusion, are found in the
Appendix. We fit the decay distributions to a product of
the squared modulus of the decay amplitude and the phase
space density sculpted by the detector acceptance. The
matrix element has a known analytical form [see Eq. (1)]
as a function of the form factors A, B, and C, which are
taken as complex constants. Its leading angular structure is
known, and so long as the form factors are known, too, the
entire amplitude can be described exactly. However, we
cannot model the detector acceptance in analytic form, so
we approximate its effect via Monte Carlo integration.

We determine the integral of the phase space density in a
bin in �q2; cos�X�, sculpted by acceptance and efficiency,
by counting Monte Carlo events that pass the selection

criteria and fall into that bin. In Fig. 6 we show the two-
dimensional phase space after such sculpting. Note that
while the overall efficiency for the neutral final state is
lower than for its charged counterpart, the former is more
uniform, particularly in the regions of intermediate M��
and large j cos�Xj. For each bin of the observed distribution
we predict the number of events as a function of the matrix
element parameters by multiplying the Monte Carlo inte-
gral for that bin by the exactly calculated matrix element
value for that bin. This approach avoids generating
Monte Carlo integrated templates for each component of
the angular distribution and reduces the uncertainty due to
finite Monte Carlo sample size.

To fit the decay distribution we take the squared modu-
lus of the decay amplitude, Eq. (1), and decompose it as a
sum of six functional forms each multiplied by one of
jAj2, jBj2, jCj2, <�A�B�, <�A�C�, or <�B�C�. For
normalization, the matrix element A is set to unity.

The functional forms [e.g., �q2 � 2M2
��

2] depend on the
Dalitz variables and are preevaluated into templates over
the Dalitz space. The fitter then seeks the best fit as a
function of the matrix element ratios of A, B, and C.
The input to the fitter consists of only the data, background,
and phase space Monte Carlo binned across the Dalitz plot,
and the component templates of the decay distribution
derived from the exact decay amplitude, but taking into
account the kinematic smearing and acceptance and effi-
ciency effects due to reconstruction as determined from the
detector simulation. The background component is scaled
by the ratio of the signal region width (6�; see Sec. II D) to
the total background sideband width (nominally 12�).

In Fig. 7 we show the functional forms for jAj2,
<�A�B�, and jBj2 for the case of ��3S� ! ��1S���.
In our experiment, the complementarity of the neutral and
charged final states is particularly important in that the
rightmost of these (the form for jBj2�) depletes the region
for which the ���� channel has falling efficiency.
Consistent results between the �0�0 and���� transitions

FIG. 6. The efficiency-sculpted phase space in the two-dimensional plane for the transitions ��3S� ! ��1S����� (left) and
��3S� ! ��1S��0�0 (right). Note that the neutral final state has a more uniform efficiency, especially in the region of moderate dipion
mass and large j cos��X�j.
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gives us confidence that the simulation of this falloff in
efficiency is reliable. The matrix element extraction pro-
cedure is tested ‘‘end-to-end’’ by simulating signal with
known matrix elements in Monte Carlo and comparing the
fit result and its uncertainty with the known inputs.
Samples of the same size as the observed yield are gen-
erated and fit identically to the data. The results yield
standard normal distributions in the observed uncertainty
scaled residuals for widely distributed seed matrix element
values. This confirms the fitter is unbiased at the level of
precision to be expected from the sample size of the
measurement.

B. Fits with C � 0

The fits to the two-dimensional distributions ofM�� and
cos�X determine the matrix element ratios B=A and
C=A. The extracted values of <�B=A� and =�B=A�
are summarized in Table II, subject to the constraint that
C � 0. In that we only measure the cosine of the phase
difference between B and A, =�B=A� is only known to
within a sign. The upper set of matrix elements is obtained
from independent fits to ten individual decay modes; we
cannot individually fit the two modes associated with
��3S� ! ��2S����� because of their limited statistics.

FIG. 7. The three functions used in the fit for the ��3S� decay to ��1S���. From left to right these are for the pure A term, the
interference term, and the pure B term.

TABLE II. Fit results from ��nS� ! ��mS��� transitions for B=A with C set to zero. The
upper set of results is from individual fits to each separate decay mode and the lower set of
results is from simultaneous fits to both lepton final states and both pion charge modes. We
cannot fit the ��3S� ! ��2S����� transitions, individually in e�e� and ���� or combined,
because of their limited statistics. In the simultaneous fits the relative branching fractions are
allowed to float. Note that we know the value of the imaginary part of the ratio only to within a
sign.

Individual fits <�B=A� =�B=A�

��3S� ! ��1S�����; �! ���� �2:514� 0:037 �1:164� 0:059
�! e�e� �2:527� 0:049 �1:180� 0:079

��3S� ! ��1S��0�0; �! ���� �2:426� 0:085 �1:313� 0:159
�! e�e� �2:524� 0:093 �1:070� 0:153

��2S� ! ��1S�����; �! ���� �0:656� 0:126 �0:431� 0:089
�! e�e� �0:689� 0:147 �0:425� 0:102

��2S� ! ��1S��0�0; �! ���� �0:148� 0:280 0:000� 1:655
�! e�e� �0:293� 0:330 �0:001� 1:130

��3S� ! ��2S��0�0; �! ���� �0:283� 0:305 �0:001� 1:708
�! e�e� �0:583� 0:082 �0:003� 1:475

Simultaneous fits <�B=A� =�B=A�

��3S� ! ��1S��� �2:523� 0:031 �1:189� 0:051
��2S� ! ��1S��� �0:753� 0:064 �0:000� 0:108
��3S� ! ��2S��� �0:395� 0:295 �0:001� 1:053
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The lower set of three are from the simultaneous fits of all
final states for each given Upsilon transition.

In the simultaneous fits the relative branching ratios
between modes are not constrained, but it is assumed that
the dipion excitation dynamics is independent of the
charge of the pion final state (isospin symmetry) and lepton
flavor (lepton universality) and thus the decay distributions
should be identical to within statistical fluctuations for all

transitions between the same Upsilon states. This assump-
tion is supported by the consistency among the matrix
element values extracted independently, as well as their
consistency with the value extracted from the simultaneous
fit. In particular, the four final states studied for the tran-
sition from ��3S� to ��1S� show excellent agreement
between the two lepton species and between charged and
neutral pions.

FIG. 8 (color online). Plots overlaying projections of the data (points with error bars) and the fit result (histograms) onto theM�� and
cos�X variables. The plots are summed over electrons and muons, but are differentiated by pion charge. The neutral modes (open
symbols, dashed lines) show only a positive distribution in cos�X because the two pions are indistinguishable. For the charged modes
(solid symbols, solid lines) the angle is that of the ��.
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To study the fit quality we project the data and the
expected decay distribution for the matrix element value
preferred by the fit onto the dipion mass (M��) and dipion
helicity angle ( cos�X) variables and calculate a �2 for each
projection. To increase the bin contents we sum over lepton
species but not over pion charges. We expect the shapes for
charged and neutral pions to differ due to the rather differ-
ent efficiencies for reconstruction and resolutions, as well
as the folding of the neutral angle in the fits. Figure 8
presents plots of the data overlaid with the fit results,
showing good qualitative agreement. The �2 values from
these overlays, given in Table III, are acceptable, given the
simplicity of the fitted matrix element.

As a further fit quality test, we examine the two-
dimensional distribution over the Dalitz variables of
error-normalized deviations. The deviations, 	i, are the
difference, fit subtracted from the data, divided by the
mutual uncertainty:

 	i �
di � ~di
�i

; (6)

where each ~di is the predicted decay population in bin i.
The bin-by-bin uncertainties, �i, are composed of the
uncertainty on the data yield in the bin, �d �

�����
di
p

, and

the uncertainty on the template function, dominated by the
fluctuation in the Monte Carlo phase space yield and
proportional to 1=

�����
ai
p

, where ai is the Monte Carlo phase

space yield in bin i. Hence, �i �
�����������������������
di � ~d2

i =ai
q

.
The bins for which di � 0 require special treatment, and

�i is modified appropriately. To minimize the effect of
such bins with zero yield, we sum over muon and electron
final states. This takes a weighted average over the distri-
butions, rather than taking account of the differences be-
tween the individual distributions and their individual
template predictions.

The deviations between the data and the fit templates, 	i,
are shown in Fig. 9 for the charged and neutral transitions
between ��3S� and ��1S�. No significant bunching is
observed that would indicate a bias. We neglect the small
accumulations in the areas of low tracking efficiency (at
large j cos�Xj and intermediate M��), probably attribut-
able to the Monte Carlo detector model not being suffi-
ciently accurate.

C. Fits including the chromomagnetic term C

The fit results in Table II do not take into account the
possible presence of amplitude terms that come from chro-
momagnetic couplings, which would allow the additional C
term to appear. This term is nearly degenerate with the B
term, and fits allowing it to float show a strong covariance
between these two terms. This is caused by the similarity in
structure of the two terms; B accompanies a functional
dependence E1E2, while ��0 � q1;2��� � q2;1� emphasizes the
regions of phase space in which the pion spatial momen-
tum, and hence also the energy, are large. The low yield
modes do not allow the measurement of the term at all. We
therefore only study it in the ��3S� ! ��1S��� transi-
tions, and then only extract a value from the simultaneous
fit.

TABLE III. The figure of merit for each of the 12 projections
in the accompanying figure. For each projection we give the
value of �2 and, in parentheses, the number of bins used to
calculate it. Uncertainties in the fit results due to limited simu-
lation statistics are not included in these calculations.

Upsilon ���� �0�0

Transition cos�X M�� cos�X M��

3S! 1S 33.2 (16) 46.9 (32) 4.3 (8) 52.1 (32)
2S! 1S 6.1 (10) 22.7 (12) 3.4 (5) 13.7 (12)
3S! 2S 7.1 (7) 7.8 (6) 7.4 (4) 2.5 (7)

FIG. 9. Plots of the bin-by-bin deviations of the data from the fit templates normalized to the expected uncertainty on the bin content
for the transitions between ��3S� and ��1S�. The left plot is for the charged pion modes while the right plot is for the neutral pion
modes. The data are summed over lepton species. No strong concentration of deviations is apparent.
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The covariance between B and C for the ��3S� !
��1S��� transition is summarized in Fig. 10, which shows
the variation of extracted jB=Aj with jC=Aj, both as a fit
error ellipse, and as fit trials with jCj constrained to differ-
ent values. The ellipse corresponding to one standard
deviation from the best fit gives a value for ��3S� !
��1S��� of jC=Aj � 0:45� 0:18, with the uncertainty
being purely the statistics of the fit. The fit which
includes real and imaginary parts of C=A shows an im-
provement over the one with C fixed at zero of �2 lnL �
9:4. Although this implies a �3� improvement in fit
quality when C is allowed to float, systematic uncertainties,
which are significant, have not yet been taken into
account (see Sec. IV).

With this extended fit the six projections of Fig. 8 show
no significant changes, and for the ��3S� ! ��1S���
transition the best fit value of jB=Aj changes minimally
from 2.79 (C � 0) to 2.89 (C floating). The phase of B with
respect to A, denoted 	BA, changes little (about 2�) from
the 155� of the fit done with C � 0. The smallness of the
effects is not surprising as the shapes of the B and C
components of the amplitude are nearly degenerate. A
nonzero value of jC=Aj may be a consequence of statis-
tical fluctuations and small systematic biases or may be due
to A and B having some dependence on q2 and/or r2, i.e.,
not being complex constants.

D. Partial wave decomposition

Since the focus of this study is the decay dynamics of the
dipion system it is useful to think about the spin structure
of the dipion composite. The idea is to look for signatures
of higher spin resonances in the form factors A and B. We
must account for the intrinsic spin structure of the Lorentz
amplitude to do this. We equate the Lorentz amplitude with
the general partial wave amplitude to relate the matrix
elements.

The transition is of the form h�;Xj�0i. If the dipion
system has spin J we have

 h1; m�; JX;mXj1; m�0 i: (7)

In that here we assume that only A and B are nonzero,
there is no change in the polarization from the initial state
to final state Upsilon; more general partial wave decom-
positions can also be made [10,27]. The angular momen-
tum projections are then m�0 � m�, and mX � 0. Hence
the partial wave decomposition of the X system can only
have m � 0 components. Since the pions are in an iso-
singlet state, their parities require their relative orbital
angular momentum to be even, and hence the orbital
angular momentum between the final state upsilon and
the dipion composite must also be even. We can only
have even partial waves in our decomposition:

 M P � S�q2�Y0
0 �D�q2�Y0

2

� S�q2�
1�������
4�
p �D�q2�

�������
5

4�

s �
3

2
cos2�X �

1

2

�
: (8)

The functions S�q2� and D�q2� are composed of two terms
each, one from the A dependence and one from the B
dependence:

 

S�q2� �ASA�q
2� �BSB�q

2�; and

D�q2� �ADA�q
2� �BDB�q

2�: (9)

We here assume that there are no significant contributions
from partial waves higher than J � 2. This will be true if
there are no contributions from variations of form factors
over the Dalitz space. Higher J terms must originate from
structure in the form factors A and B.

Equating the decay distributions (or equivalently, pro-
jecting inner products over the angular space) yields the
following forms:

 SA�q
2� � q2 � 2M2

�; and DA�q
2� � 0 (10)

for a pure ‘‘A’’ decay, and

FIG. 10. Variation of B with C magnitudes. The points indicate
the fit and error for B at fixed values of C. The ellipse indicates
the one sigma bound on the free fit, the axis of which agrees well
with the point-by-point fits. The bands indicate the one standard
deviation error limits on B when C is fixed to zero.
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q2��M2

�0 �M
2
��

2 � �M2
�0 �M

2
��q

2 � 2q4�� 2M2
��M4

�0 � �M
2
� � q

2�2 � 2M2
�0 �M

2
� � q

2��

12
����������������
M2

�0M
2
�

q
q2

;

DB�q
2� �

�4M2
� � q

2��M4
�0 � �M

2
� � q

2�2 � 2M2
�0 �M

2
� � q

2��

12
���
5
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(11)

for a pure ‘‘B’’ decay. The overall amplitude is

 

MP � �ASA�q2� �BSB�q2��Y0
0

� �ADA�q2� �BDB�q2��Y0
2 ; (12)

where it is implied that Yml is a function of the helicity
angles of the pseudodecay X ! ��, �X and 
X (although
the latter variable plays no role in the description of this
decay, by the assumptions above). Interference between
the S-wave and D-wave components of the decay comes
from the functions S�q2� and D�q2� being complex valued.
Though SA;B�q2� and DA;B�q2� are real functions, A
and B are complex coefficients with nontrivial relative
phase.

The structure of S and D components as functions of q2

are determined by the assumptions underlying the deriva-
tion of the general Lorentz amplitude. The four functions
from the pure A and pure B components are sketched in
Fig. 11 together with the fractional S- and D-wave com-
ponents in the angular distribution (which can alternately
be thought of as the strengths of the S- and D-wave
components), extracted from our fit to ��3S� ! ��1S���.

This partial wave extraction becomes much more com-
plex if the form factors are assumed to be variable over the
Dalitz space, for example, due to resonant structure/en-
hancement in the decay. This will introduce higher powers

of cos2�X to the overall amplitude and will need higher
partial wave components to account for the variation.

The presence of D-wave components in the angular
distribution of the decay is not in itself an indication of
resonances contributing, nor the presence of unaccounted-
for physics. The presence of a q2-dependent D-wave com-
ponent could simply be a consequence of angular momen-
tum barriers in the three body phase space of the decay.
The data do not demand the introduction of a q2-dependent
magnitude or phase for A or B. These small D-wave
components are consistent with those derived in a recent
paper by Voloshin [20], in which he emphasizes the im-
portance of relativistic and chromomagnetic effects.

IV. SYSTEMATIC UNCERTAINTIES

We address three sources of systematic uncertainty in
the measurements of B=A and C=A: model dependence,
detector efficiency and resolution, and backgrounds.

In Sec. III we showed that our model provides a very
good description of the data in the �q2; cos�X� plane and
that the presence or absence of the chromomagnetic
coupled term in the amplitude has little effect on jB=Aj
and 	BA.

Uncertainty in the estimation of the detector efficiency
and resolution contributes most significantly in the charged
mode analyses due to our limited knowledge of the track-

FIG. 11. The left plot shows the amplitude component functions SA, SB, DA, and DB as a function of M�� �
�����
q2

p
. These are

summed to obtain the total amplitude. The partial rate to S-wave and D-wave components is shown in the right plot for the ��3S� !
��1S��� decay as determined from the results of this analysis: B=A � �2:52� 1:19i. Note that the D-wave contribution is largest
in the low to intermediate range of q2, and is suppressed at both extrema by angular momentum barrier effects. Note further that this is
not a resonance phenomenon despite its shape in M�� and the changing angular structure.
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ing efficiency at very low momentum. In that the low
momentum region is precisely where the matrix element
has potential suppression in the B term, this can potentially
cause a significant bias. To estimate this effect we use the
full Monte Carlo simulation with looser and tighter track
reconstruction requirements to provide bounds on the
shape of the efficiency as a function of track curvature.
We then create a number of analytic functions that span
these boundaries. Then we use a toy Monte Carlo to
simulate events with one of these analytic functions and
assume a different one for the reconstruction. The varia-
tions in the fit results are conservatively assumed to be one
standard error uncertainties on the extracted parameters.

The same process is repeated for the neutral modes,
varying the thresholds at which showers can be observed
in the detector. This obviously leads to a large variation in
branching ratios from simple inability to reconstruct the
decays, but does not exhibit any significant change in the
shape of the efficiency function over the measurement
variables. This is to be expected since the �0 decays
have largely flat acceptance over the kinematic range of
these decay modes.

We have evaluated the systematic errors associated with
detector resolution, and find them to be negligible in
comparison with the statistical errors from the fit and the
other systematic errors discussed here. The curvatures of
the matrix element components across the Dalitz plot are
all very much smaller than the variances of the recon-
structed measurement variables around their true values.
No systematic uncertainty is assigned to this source.

Background subtraction is only a source of bias if the
upper and lower sidebands in the recoil mass exhibit
markedly different shapes or the background is strongly
peaked under the signal. In this case the extrapolations of
the background shape and magnitude under the peak could
be distorted. We have redone the fits with the ratio of the
widths of sideband window to signal window both doubled

and halved, and with only using either the high-mass or
low-mass sideband. The variations in the fit are conserva-
tively taken to represent one sigma variations in the final
result, and are given in the last column of Table IV.

Finally, the lepton reconstruction is capable of contrib-
uting bias since all decay modes are fully reconstructed.
However, the detector response to leptons is sufficiently
well measured in other analyses that the detector simula-
tion is much more precise than what is required for this
data set. The variation of the shapes is furthermore only
relevant for the final C term, which is dependent on the
lepton polar angle. With the exception of a small part of the
C terms there can be no effect due to lepton acceptance. We

TABLE IV. Combined fit results for all transitions with statistical and systematic uncertainties. The systematic uncertainties are in
order: �� detection efficiency, �0 detection efficiency, and background subtraction. The upper set of results is for the fits assuming
contributions to the amplitude from only the A and B terms. The bottom two lines are the fit results when the C term is allowed to be
nonzero. The imaginary part of the ratio has a twofold ambiguity and is only known to within a sign. Note that for the transition
��3S� ! ��2S��� we do not have fits for the charged dipion case.

Fit, No C Statistical Efficiency (��) Efficiency (�0) Background subtraction

��3S� ! ��1S��� <�B=A� �2:523 �0:031 �0:019 �0:011 �0:001
=�B=A� �1:189 �0:051 �0:026 �0:018 �0:015

��2S� ! ��1S��� <�B=A� �0:753 �0:064 �0:059 �0:035 �0:112
=�B=A� 0.000 �0:108 �0:036 �0:012 �0:001

��3S� ! ��2S��� <�B=A� �0:395 �0:295 � � � �0:025 �0:120
=�B=A� �0:001 �1:053 � � � �0:180 �0:001

Fit, float C Statistical Efficiency (��) Efficiency (�0) Background subtraction

��3S� ! ��1S��� jB=Aj 2.89 �0:11 �0:19 �0:11 �0:027
jC=Aj 0.45 �0:18 �0:28 �0:20 �0:093

TABLE V. Fit results for all transitions with total uncertainties.
These numbers represent the final result of this analysis. In the
case of the magnitude ratio jC=Aj, we also quote a limit as
detailed in the text. The phase angles are quoted in degrees, and
have a twofold ambiguity of reflection in the real axis.

Fit, no C, total error

��3S� ! ��1S���

<�B=A� �2:52� 0:04
=�B=A� �1:19� 0:06
jB=Aj 2:79� 0:05
	BA 155�205� � 2

��2S� ! ��1S���

<�B=A� �0:75� 0:15
=�B=A� 0:00� 0:11
jB=Aj 0:75� 0:15
	BA 180� 9

��3S� ! ��2S���
<�B=A� �0:40� 0:32
=�B=A� 0:00� 1:1

Fit, float C, total error

��3S� ! ��1S���
jB=Aj 2:89� 0:25
jC=Aj 0:45� 0:40
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estimate any systematic error associated with the lepton
reconstruction to be negligible.

The fit results combined with these systematic uncer-
tainties are summarized in Tables IV and V. Since the
magnitude jC=Aj in the fit is only separated from zero
by about one standard error and is expected to be sup-
pressed in the theoretical models, we set a limit rather than
claim observation of a nonzero value.

We set this limit by assuming the value of C=A has a
Gaussian uncertainty in real and imaginary parts. We trans-
form variables to jC=Aj and arg�C=A�, using the sum of
the variances of statistical and systematic origin as the
overall variance. We then find the 90% upper limit from
the resulting distribution as

 jC=Aj< 1:09 at 90% C:L: (13)

V. SUMMARY

We quote fit results for the three transitions from simul-
taneous fits to the different decay modes with statistical
and systematic uncertainties in Table V. Only the simplest
features of the Brown and Cahn decay amplitude [Eq. (1)]
are included in our model, and the fits account for the
structure of the decay without introduction of new physics
or contributions from resonances.

The matrix elements are indicated as points in the com-
plex plane in Fig. 12. For the ‘‘anomalous’’ ��3S� !
��1S��� transition we fit for the presence of the ‘‘sup-
pressed’’ C term as a test for the breakdown of the under-

lying assumptions leading to the standard matrix element.
This term is not significant when systematic errors are
taken into account and the quality of the fit to the data is
good without it. Therefore, we set an upper limit of
jC=Aj< 1:09 at 90% C.L.

We note, in particular, that the treatment of the dipion
transitions via the full allowed matrix element under the
assumptions in Refs. [3,4,23–25] allows two matrix ele-
ments, only one of which has traditionally been assumed to
be nonzero. The description of the ��3S� ! ��1S���
transition dipion mass and angular structure as anomalous
is only true in the limit of this assumption. This analysis
shows, in particular, that the description of the decay
process in terms of the two favored amplitude terms,
with complex form factors constant over the Dalitz plane,
suffices to describe the decay distributions of ��3S� !
��1S���, ��3S� ! ��2S���, and ��2S� ! ��1S���,
provided the form factors are allowed to vary with the
transition. For the ��3S� ! ��1S��� transition, we find
jB=Aj � 2:79� 0:05, which could imply a large magni-
tude of B or a suppressed A; recent theoretical consid-
erations [20] favor the latter interpretation. While smaller
than in the case of ��3S� ! ��1S���, jB=Aj is also
determined to be nonzero for the case of ��2S� !
��1S���. The large imaginary part of B=A is intriguing
[27].

While there are not yet first principles predictions of the
values of the matrix elements of the decays studied here,
this analysis does provide complete measurements of the
relative matrix element magnitudes and phases that can
serve as a point of comparison with ab initio QCD
calculations.
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APPENDIX: DETAILS OF THE LIKELIHOOD
FITTER

This appendix gives some details of our application of
the likelihood fitter.

Smearing due to reconstruction resolution adds a small
variance to the Poisson error on the Monte Carlo integral,
but the smearing widths are small compared to the scales
over which the matrix element changes so this additional
variance is small. For any shape with an approximately
polynomial form at a point, the resolution is described by
convolving a Gaussian with the polynomial. As an ex-
ample, we assume a functional form gT � a� bx� cx2

FIG. 12 (color online). Complex values of matrix element ratio
B=A from combined fits for the three transitions under the
assumption that C � 0. Note the twofold ambiguity in the
imaginary part.
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and seek its observed shape in terms of the observed
variables, gO�xO�, using a Gaussian transformation:
 

gO�xO� �
Z
dxTG�xT � xOj� � 0; ��gT�xT� (A1)

 

�
Z
dxTG�xT � xOj� � 0; ���a� bxT � c�xT�2�

(A2)
 

� �a� c�2� � bxO � c�xO�2: (A3)

So long as�2 � a=c, i.e., the resolution is small compared
to the curvature, the shape will not be materially changed.
For the angular dependence, which is quartic in cos�X this
means the resolution need only be small compared to 1=2;
the observed resolutions are of the order of 5% or less. In
M�� the same holds true, with the scale being given by the
pion mass, 140 MeV=c2, and the observed resolutions
being at worst 10 MeV=c2. The shape of the decay ampli-
tude is not changed significantly by these resolutions, but
any residual effect is included in the estimated tracking and
shower systematic uncertainties.

Our problem differs from that discussed in Ref. [35] in
that the templates do not have independent Poisson fluctu-
ations. The underlying phase space simulation has a
Poisson fluctuation, but the templates are known (very
nearly) exactly and uncertainties on them do not contribute
to the overall likelihood function.

In the absence of background this problem is solved as
follows, with each two-dimensional �q2; cos�X� bin de-
noted by subscript i.

We compare the Monte Carlo simulated, acceptance and
efficiency-corrected, phase space distribution (with true
and observed yields Ai and ai), multiplied by the modulus
squared of the amplitude, with the data distribution (with
true and observed yields Di and di). Both distributions are
subject to Poisson fluctuation:

 P �di;Di� �
e�DiDdi

i

di!
and P �ai;Ai� �

e�AiAaii
ai!

:

(A4)

Bin-by-bin, the modulus squared of the decay amplitude
appears in the exact relation between the true data yields
Di and the true phase space yields Ai:

 Di � fi���Ai: (A5)

The function fi represents the decay distribution (jMj2) in
the kinematic space bin i as a function of �, the decay
parameters. In this case � consists of real and imaginary
parts of B=A and C=A.

The log likelihood used in this fit is then given by,
summing over all the bins,
 

lnL��� �
Xn
i�1

�di lnfi���Ai � fi���Ai � lndi!� ai lnAi

� Ai � lnai!�: (A6)

The Ai represent the phase space subject to efficiency
and acceptance effects and are uninteresting nuisance pa-
rameters that can be eliminated by extremizing the like-
lihood with respect to them. Proceeding in analogy with
the approach in [35] we can find the analytic extremum
condition, solve for Ai,

 Ai �
di � ai
fi � 1

; (A7)

and substitute back into the likelihood function to give a
reduced likelihood:
 

lnL��� �
Xn
i�1

	di lnfi��� � �di � ai� ln�1� fi����


� const: (A8)

We then minimize �2 lnL with respect to the fit parame-
ters � (occurring only in the coefficients fi). This is
implemented using the CERN Library minimization pack-
age, MINUIT [36].

The full likelihood as used in the fit includes an exten-
sion of this approach to account for background under the
signal peaks. This introduces additional parameters Bi and
bi. These represent bin-by-bin true and observed back-
ground yields. The Bi are a second set of nuisance parame-
ters that are eliminated in the same way as were the Ai
before. The resulting likelihood is significantly more com-
plicated in detail but not in principle. For brevity it is not
included here.
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