
HAL Id: hal-01105173
https://hal.inria.fr/hal-01105173

Submitted on 7 Apr 2015

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution| 4.0 International License

When App Stores Listen to the Crowd to Fight Bugs in
the Wild

Maria Gomez, Matias Martinez, Martin Monperrus, Romain Rouvoy

To cite this version:
Maria Gomez, Matias Martinez, Martin Monperrus, Romain Rouvoy. When App Stores Listen
to the Crowd to Fight Bugs in the Wild. 37th International Conference on Software Engineer-
ing (ICSE), track on New Ideas and Emerging Results (NIER), May 2015, Firenze, Italy. pp.4,
�10.1109/ICSE.2015.195�. �hal-01105173�

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by INRIA a CCSD electronic archive server

https://core.ac.uk/display/49534271?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://hal.inria.fr/hal-01105173
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr


When App Stores Listen to the Crowd
to Fight Bugs in the Wild

Marı́a Gómez, Matias Martinez, Martin Monperrus, Romain Rouvoy
Inria Lille - Nord Europe

University of Lille 1, France
Email: firstname.lastname@inria.fr

Abstract—App stores are digital distribution platforms that
put available apps that run on mobile devices. Current stores
are software repositories that deliver apps upon user requests.
However, when an app has a bug, the store continues delivering
defective apps until the developer uploads a fixed version, thus
impacting on the reputation of both store and app developer.
In this paper, we envision a new generation of app stores that:
(a) reduce human intervention to maintain mobile apps; and (b)
enhance store services with smart and autonomous functionalities
to automatically increase the quality of the delivered apps. We
sketch a prototype of our envisioned app store and we discuss the
functionalities that current stores can enhance by incorporating
automatic software repair techniques.

I. INTRODUCTION

Increasingly, mobile devices are infiltrating most of our
daily activities, and consumers are using more and more
mobile applications (apps for short). They download apps
from dedicated app stores (Google Play, Apple Store, Amazon
Appstore, etc.), which are in constant growth. In 2013, Google
Play Store reached over 50 billion app downloads 1.

Previous studies have shown that these stores deliver a
significant portion of buggy apps to mobile devices. For
instance, we have identified 10, 658 buggy-suspicious apps in
a dataset of 46, 644 apps collected from Google Play Store [5].
Currently, the repair activity of defective apps is manually
performed by app developers. After fixing the identified bugs,
developers upload the new version (with the fixes) to the app
store. Unfortunately, the time between the release of the defec-
tive app and the fixed version can be long. As a consequence, in
the meantime, consumers continue to download defective apps
and to experience undesired behaviors. This paper proposes the
idea of an app store that orchestrates hot patches in production
to overcome this issue.

To fight bugs in the wild, we devise the following approach.
Defective apps are detected by constant analysis of user
feedback in the form of reviews and ratings. While previous
research studied user feedback in app stores [8], [6], [9], [4],
none of them proposed mechanisms to exploit feedback by app
stores themselves, autonomously. Next, the app store generates
tentative hot patches for fixing app crashes. Finally, it monitors
the performance of the fixed apps in the wild to learn about
the correctness of the repairing and patch delivery process. The
proposed strategy allows the store to detect, repair and validate
defective apps without developers’ intervention.

1https://www.abiresearch.com/press/android-will-account-for-58-of-
smartphone-app-down

This orchestration is a feedback loop, since the app store
itself takes decisions based on the outcome of the previous
ones. If a patch generation technique fails (e.g., the fixed
app still crashes), the store learns from these failures; If a
delivery strategy distributes patches to the wrong set of devices
(e.g., not all the devices suffer from the same bug), the store
detects it. The app store continuously monitors both the fixed
apps’ execution and the user’s feedbacks as an oracle of the
autonomous improvement process. To sum up, we envision app
stores that go beyond the role of app repositories and become
intelligent agents. In this vision, app stores autonomously
take decisions to improve the quality of experience of their
customers.

To sum up, our contributions are:

• A blueprint of a smart app store capable of automatically
detecting, generating, and validating patches using crowd-
sourced information;

• A prototype implementation of such a smart app store;
• A preliminary evaluation over one real defective applica-

tion from the Google Play Store.

The reminder of the paper is organized as follows. Sec-
tion II describes the key components that form the infras-
tructure. Section III presents a prototype to demonstrate the
feasibility of our proposal. Section IV reviews the related work.
Section V concludes the paper.

II. VISION OF A SMART APP STORE

In our vision, app stores will incorporate two types of
mechanisms in order to fight bugs in the wild: 1) proactive
mechanisms, the store anticipates the emergence of bugs wild
upon submission of new apps using static app checkers [5];
and 2) reactive mechanisms, the store acts when users expe-
rience bugs after installing apps. While this paper focuses on
the latter, both mechanisms are complementary and can be
activated simultaneously.

The smart app store we envision is capable of: a) retrieving
and consolidating information from app’s users and from
devices running those apps, b) identifying apps that work unex-
pectedly in the wild (i.e., contain bugs), c) generating patches
automatically for the identified defective apps, d) delivering
fixed apps contextually, and e) validating the generated patches
automatically from information received from devices.

Figure 1 depicts an overview of the smart app store
we propose. This infrastructure builds on the principles of
autonomic computing [7] and presents an architecture based
on a feedback loop model, which combines five components:

https://www.abiresearch.com/press/android-will-account-for-58-of-smartphone-app-down
https://www.abiresearch.com/press/android-will-account-for-58-of-smartphone-app-down


Smart App Store

Patch
Generation

Patch 
Delivery

App
Monitor

App
Analysis

4.4

5.0

✓!

1

6

7

71

4.1

2

3 4

5

ratings
reviews

execution traces
crash reports

8

!

✓

patch1

patch2

patch1

crowd

!

Patch
Validation

Fig. 1. Overview of the Smart App Store vision.

App Monitor, App Analysis, Patch Generation, Patch Delivery,
and Patch Validation.

The functionality of a smart app store is defined as follows.
The app store makes available apps to users. Once an app is
installed and executed on mobile devices, the App Monitor
component receives information sent from devices and from
user feedbacks (reviews, scores, bug reports, etc.) (step 1,
2). This information is associated with the version number
of the app. Then, the App Analysis component analyzes the
retrieved information to decide if an app exercises a wrong
behavior—i.e., it has a bug (step 3). In that case, the Patch
generation component tries to synthesize candidate repairs
using automatic repair approaches, such as GENPROG [11]
(step 4). For each candidate patch, the component defines a
new release of the app that includes the patch (step 5). Then,
when the store receives a download request for a defective app,
the Patch delivery component delivers—when possible—an
alternative (patched) version of the app (step 6).

Afterwards, the store keeps monitoring these patched apps
to assess the effectiveness of the corresponding patches (step
7). For that, it uses the collected crowd-sourced information
from devices and from users’ feedback that run those apps.
Finally, when the store receives a new download request, it
delivers–if exists–a release that does not exercise the bug and
has better users’ feedback (step 8). The remainder of this
section details the role and relevance of each component.

A. Monitoring Experience from the Crowd

The App monitor component receives and stores infor-
mation coming from the crowd. We identify three types of
information: 1) comments and rankings that app users publish
in the store; 2) device’s features—e.g., the operating system
version that runs the app; 3) apps’ execution context—e.g.,
exception traces. The App monitor component associates the
retrieved information with the corresponding app version. For
example, the store keeps track of the device models and OS
versions that run a given app in the crowd.

B. Analyzing App’s Quality of Experience

The App analysis component analyzes the collected arti-
facts to detect apps that exercise an incorrect behavior—i.e.,

contain a bug. To detect bugs, the component is able to process
the different sources of information we identified previously.

1) Analyzing User Feedbacks: The App analysis compo-
nent incorporates functionality to continuously supervise the
user feedback published in the store (e.g., reviews, ranks). This
component can gather user feedbacks from different sources
to alert the presence of bugs. A listener continuously mines
user reviews in order to identify apps that accumulate error-
related reviews—i.e., those which discuss mainly about buggy
behavior. The App analysis component therefore computes
trends in the ratio of buggy reviews and other reviews over
time. When an app reaches a predefined threshold number (n)
of error-related reviews, the App analysis component flags the
app as buggy-suspicious and the store starts the inspection of
the suspicious app. Detailed information about the techniques
that this component leverages are available in [5].

2) Analyzing App Traces: The App analysis component
analyzes execution traces to confirm that a suspicious app
exhibits failures. There are many causes that induce app
failures—e.g., connectivity problems, memory exhaustion, or
insufficient permissions. If the failures are handled inade-
quately in the app code, then the app throws an unhandled
exception and the operating system terminates the app.

3) Controlling the Monitoring of Apps: In this paper, we
propose a two-step heuristic to detect defective apps. First, a
static analysis algorithm inspects the user feedback to know
if users experience bugs. Then, in order to confirm that a
suspicious app has a bug, the store monitors execution traces
to detect the rise of exceptions.

C. Planning Alternative Releases for an App

The Patch generation component receives as input a
defective app (from the App analysis component) and finds
candidate patches that eventually solve the bug. To synthesize
candidate patches, the component uses existing automatic soft-
ware repair approaches, such as GENPROG, which is capable
of repairing binary [10] and source [11] code. Current app
stores only have access to the bytecode of apps. Nevertheless,
future app stores could also enable developers to upload the
source code of their apps to allow for more powerful repairing
techniques.

To repair a bug, the Patch generation component can
produce several candidate patches. The rational behind gener-
ating multiple candidate patches is: a) the existence of several
solutions to fix a bug; b) the approach has a weak correctness
bug oracle, then producing incorrect candidate variants (no
solution). The component generates a new version of the
defective app for each candidate patch that it synthesizes. We
denote the set of patched versions as variants. Initially, patches
are assigned the under-validation state. After deployment and
checking their correction, the state changes to validated.

D. Executing the Delivery of Apps

When the store receives a download request for an app,
which has been previously identified as defective, the Patch
delivery component checks if there exists in the store at
least one patched version of the requested app. The delivery
contemplates two cases in priority order: 1) delivering val-
idated variants; 2) delivering under-validation variants—i.e.,



the patches are in an evaluation process to assess their validity.
The component delivers a validated variant, if present. Other-
wise, it delivers an under-validation variant. In the absence of
variants, the store delivers the original app.

To select the variant for delivery, the component analyzes
and compares the available information regarding all the vari-
ants. The store implements different app selection heuristics.
For example, one heuristic delivers the variant that provides
better performance (i.e., less crashes) observed in similar
devices (i.e., same OS version). Another heuristic is based
on user feedback: it selects the variant with the highest user
ranking.

After delivery, the store registers the variant that delivers
to each user. The pairs user-variant allows the store to monitor
the performance of the patched apps in the crowd for, later,
deciding whether the applied patches are effective or not.

Using information from the crowd, the App monitor
component validates the generated patches and removes those
under-validation variants that continue exhibiting wrong be-
havior (not available for subsequent delivery). The component
applies similar heuristics to those ones previously presented,
for example, discarding variants whose rankings are worse than
those from the original app.

The component passes a variant from under-validation to
validated after, for instance, delivering and observing a correct
behavior for a given number of users. In this case, the Patch
validation component notifies all the users that run a different
variant of the app that a new fixed version is released and is
available for downloading.

III. PRELIMINARY RESULTS

We have implemented a prototype of the smart app store
to demonstrate the feasibility of our proposal. To illustrate
this approach, we use an Android app that contains bugs:
the PocketTool2 app downloaded from Google Play Store. The
subject app enables the personalization (i.e., download/install
textures and skins) of the popular game Minecraft3. Once the
app is launched, if the user clicks on the button “Level Editor”
then the app crashes. Figure 2 (a) shows the screenshot of the
crash thrown by the PocketTool app.

A. Implementation of the Smart App Store Components

Monitoring and Analyzing User Feedbacks. The healing
process starts when the store observes user reviews complain-
ing about bugs and crashes. To identify user reviews that
treat themes related to bugs, we extract topics discussed in
the corpus of reviews using Topic Modelling. Our system
classifies as error-related reviews the ones which are mainly
composed by topics related to bugs and failures. Then, it
flags as buggy-suspicious the apps whose ratio of error-related
reviews reaches a predefined threshold (cf. [5] for implementa-
tion details). Our system enables the identification of 10, 658
buggy-suspicious apps in our dataset (composed of 46, 644
apps) collected from Google Play Store. This system enabled
the identification of the subject app used in this experiment.

2https://play.google.com/store/apps/details?id=com.snowbound.pockettool.
free

3https://play.google.com/store/apps/details?id=com.mojang.minecraftpe

Monitoring and Analyzing Execution Traces. This step
is triggered when an app is flagged as buggy-suspicious.
Then, the App monitor component uses the Android Log-
ging system4 (logcat) to monitor exceptions raised by the
buggy-suspicious app. In Android, the system collects debug
information from apps and from the system in logs, which can
be viewed and filtered by the logcat. The logs include stack
traces when an app throws an error. We have implemented
a listener that monitors the logcat and subscribes to error
logs. The listener notifies to the store whenever an exception
is detected in an app. Figure 2 (b) shows the exception
trace (extracted from the logcat), which is thrown by the
PocketTool app. We observe that the exception is related with
a NullPointerException. The exception trace reveals
some methods implemented in the PocketTool app (lines 5–
6 in bold), and other methods defined internally by Android
libraries (lines 1–3).

Planning Alternative App Releases. First, the Patch gen-
eration component processes the exception trace and extracts
the n frames that refer to the suspicious app. In our example,
the 2 frames that start with the package name of the app
(com.snowbound.pockettool.free). From each sus-
picious frame, it extracts the name of the suspicious method
and the class that implements it. In our example there are 2 sus-
picious methods (cf. Fig. 2, lines 5 and 6): getWorldList
and onCreate, defined in the class LevelSelector.

Next, the component creates n different patches, where n
is the number of suspicious methods. In our implementation,
the patch wraps the code defined inside the suspicious methods
with a try/catch block to capture the runtime exceptions
that are not handled by the methods. We create 2 patched
versions of the defective app, where each patch wraps a
different suspicious method. To inject the patches, we have
implemented a Java program5, which instruments the bytecode
of Android apps using Dexpler [2].

Executing the Deployment of Apps. Finally, the different
patched app versions are deployed in different user devices.
First, the buggy app is uninstalled, and then the new patched
version is installed. To communicate with devices, our imple-
mentation relies on the Android Debug Bridge (adb)6. adb is
a command line tool (included in the Android SDK), which
acts as a middleman between a host and an Android device.
We use adb to remotely install/uninstall apps and to read the
logcat.

To validate the candidate patches, the App monitor com-
ponent observes if the fixed app throws the same exception
as the original app when running on devices. If the exception
still arises, then the patch is considered as invalid and the store
discards it. On the contrary, if the exception disappears after
patching, then the patch is considered as valid and the store
will deliver it in subsequent app requests.

B. Experimental Results

We observe that the patch applied in the onCreate
method (Patch2) avoids the crash, whereas the patch applied

4http://developer.android.com/tools/help/logcat.html
5Our instrumentation program is available for download: https://www.

dropbox.com/sh/u3ffy1lw85opww8/AACBLu2zcTCUNgXAFh7dpDbma
6http://developer.android.com/tools/help/adb.html

https://play.google.com/store/apps/details?id=com.snowbound.pockettool.free
https://play.google.com/store/apps/details?id=com.snowbound.pockettool.free
https://play.google.com/store/apps/details?id=com.mojang.minecraftpe
http://developer.android.com/tools/help/logcat.html
https://www.dropbox.com/sh/u3ffy1lw85opww8/AACBLu2zcTCUNgXAFh7dpDbma
https://www.dropbox.com/sh/u3ffy1lw85opww8/AACBLu2zcTCUNgXAFh7dpDbma
http://developer.android.com/tools/help/adb.html


bbbbbbbbFATALbEXCEPTION8bmain
bbbbbbbbjava(lang(RuntimeException8bUnablebtobstartbactivitybComponentInfo
bbbbbbb{com(snowbound(pockettool(free2com(snowbound(pockettool(free(LevelSelector}8
bbbbbbbjava(lang(NullPointerException
bb58bbbatbandroid(app(ActivityThread(performLaunchActivitykActivityThread(java890M7/
bbbbbbbb(((bb
bb98bbbatbcom(android(internal(os(ZygoteInit(mainkNativebMethod/
bb)8bbbatbdalvik(system(NativeStart(mainkNativebMethod/
bbZ8bbbCausedbby8bjava(lang(NullPointerException
bbM8bbbatCcom.snowbound.pockettool.free.LevelSelector.getWorldList(LevelSelector.java:78)
bb38bbbatCcom.snowbound.pockettool.free.LevelSelector.onCreate(LevelSelector.java:43)
bb48bbbatbandroid(app(Activity(performCreatekActivity(java8M006/
bbbbbbbb(((b

(a)CScreenshot (b)CExceptionCtrace

Fig. 2. (a) Screenshot of the subject app crash. (b) Exception trace raised by the subject app (in bold the methods defined in the app).

in the getWorldList method (Patch1) continues throwing
the exception. Therefore, the store learns that Patch1 is not
effective and automatically discards it.

Our proposed implementation takes as input .apk files and
works remotely with devices without requiring USB connec-
tion. We run the experiments in a rooted device Google Nexus
S with Android 4.1.2. We generated 2 patched versions of the
PocketTool app (original size 395 Kb). Each patch rewrites the
bytecode of the subject app to inject a try/catch block
that wraps the code defined in the methods getWorldList
(Patch1) and onCreate (Patch2), respectively. The size of
the two patched apps is 439 Kb, and the total time to rewrite
the bytecode and redeploy the apps in the device is 51 seconds,
which we consider is an acceptable overhead.

IV. RELATED WORK

Recent approaches have investigated different sources of
information available on app stores: AR-MINER [8], WIS-
COM [4], Harman et al. [6], Pagano and Maalej [9]. The
aforementioned approaches provide significant analysis about
the user feedbacks available on app stores. Nevertheless, none
of them provide mechanisms to exploit the user feedback by
the stores themselves.

Azim et al. [1] present a self-healing approach to auto-
matically detect failures and patch Android apps to avoid
crashes. As in our approach their patching strategy rewrites
the bytecode of apps to insert try/catch blocks to wrap
methods that throw unhandled exceptions. Nevertheless, our
approach generates different patches for a buggy app and uses
user feedbacks to evaluate the feasibility of the patches. Franz
et al. [3] define an app store which generates different versions
of an app, functionally identical, upon reception of download
requests. The goal of their work is to reduce the vulnerability
of apps. In our approach, we generate and distribute app
versions with differences in functionality. These differences
consist of candidate patches to validate. In contrast to previous
work, our goal is to engineer smart app stores that exploit
user feedbacks and incorporate repairing techniques to avoid
the distribution of defective apps among users. To the best
of our knowledge, we propose the first autonomic computing
approach to monitor and repair mobile app crashes in the wild
that continuously improves its autonomous strategies based on
crowd feedback.

V. CONCLUSION

In this paper, we have presented the vision of app stores
that exploit user feedbacks and take autonomous decisions to
improve themselves. A smart app store is able to automatically
detect defective apps and provide different patches to avoid
bugs. After deploying patches, the store learns which the
effective patches are and improves its repairing strategy. We
have presented a prototype implementation and its usage on a
real defective app from Google Play Store.

REFERENCES

[1] M. T. Azim, I. Neamtiu, and L. M. Marvel. Towards self-healing
smartphone software via automated patching. In Proceedings of
the 29th ACM/IEEE International Conference on Automated Software
Engineering, ASE ’14, pages 623–628, New York, NY, USA, 2014.
ACM.

[2] A. Bartel, J. Klein, M. Monperrus, and Y. Le Traon. Dexpler:
Converting Android Dalvik Bytecode to Jimple for Static Analysis with
Soot. In ACM Sigplan International Workshop on the State Of The Art
in Java Program Analysis, 2012.

[3] M. Franz. E unibus pluram: massive-scale software diversity as a
defense mechanism. In Proceedings of the 2010 workshop on New
security paradigms, pages 7–16. ACM, 2010.

[4] B. Fu, J. Lin, L. Li, C. Faloutsos, J. Hong, and N. Sadeh. Why people
hate your app: Making sense of user feedback in a mobile app store.
In Proceedings of the 19th ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining, KDD ’13, pages 1276–1284,
New York, NY, USA, 2013. ACM.

[5] M. Gomez, R. Rouvoy, M. Monperrus, and L. Seinturier. A Recom-
mender System of Buggy App Checkers for App Store Moderators.
Research Report 8626, Inria Lille, Oct. 2014.

[6] M. Harman, Y. Jia, and Y. Zhang. App store mining and analysis: MSR
for app stores. In Mining Software Repositories (MSR), 2012 9th IEEE
Working Conference on, pages 108–111, 2012.

[7] J. O. Kephart and D. M. Chess. The vision of autonomic computing.
Computer, 36(1):41–50, 2003.

[8] Ning Chen, Jialiu Lin, Steven C. H. Hoi, Xiaokui Xiao, and Boshen
Zhang. AR-miner: Mining informative reviews for developers from
mobile app marketplace. 2014.

[9] D. Pagano and W. Maalej. User feedback in the appstore: An empirical
study. In Requirements Engineering Conference (RE), 2013 21st IEEE
International, pages 125–134, July 2013.

[10] E. Schulte, S. Forrest, and W. Weimer. Automated program repair
through the evolution of assembly code. In Proceedings of the
IEEE/ACM International Conference on Automated Software Engineer-
ing, ASE ’10, pages 313–316, New York, NY, USA, 2010. ACM.

[11] W. Weimer, T. Nguyen, C. Le Goues, and S. Forrest. Automatically
finding patches using genetic programming. In Proceedings of the 31st
International Conference on Software Engineering, ICSE ’09, pages
364–374, Washington, DC, USA, 2009. IEEE Computer Society.


