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ABSTRACT

In diffusion MRI, the accurate description of the entire diffu-
sion signal from sparse measurements is essential to enable
the recovery of microstructural information of the white mat-
ter. The recent Mean Apparent Propagator (MAP)-MRI basis
is especially well suited for this task, but the basis fitting be-
comes unreliable in the presence of noise. As a solution we
propose a fast and robust analytic Laplacian regularization for
MAP-MRI. Using both synthetic diffusion data and human
data from the Human Connectome Project we show that (1)
MAP-MRI has more accurate microstructure recovery com-
pared to classical techniques, (2) regularized MAP-MRI has
lower signal fitting errors compared to the unregularized ap-
proach and a positivity constraint on the EAP and (3) that our
regularization improves axon radius recovery on human data.

Index Terms— Diffusion MRI, MAP-MRI, Laplacian
Regularization, Corpus Callosum, Axon Radius Recovery

1. INTRODUCTION

In diffusion MRI (dMRI), the reconstruction of the diffusion
signal in q-space allows for the estimation of the water dis-
placement probability, known as the Ensemble Average Prop-
agator (EAP) [1]. This EAP describes the probability density
that a particle will move along a certain direction in a given
diffusion time ∆. The EAP, or P (r), is related to the diffusion
signal by a Fourier transform P (r) =

∫
R3 E(q)e−2iπq·rdq.

Here r is a real displacement vector in r-space and E(q)
is the normalized diffusion signal where wave vector q =
(γδG)/2π related to the applied magnetic field gradient mag-
nitude, direction and duration [1]. The clinically used b-value
is related to q as b = 4π2q2(∆− δ/3) mm/s2 for rectangular
pulses.

Historically, the diffusion tensor [2] was the first model
to describe the EAP by assuming it lies within the family of
Gaussian distributions. However, this assumption limits its
ability to describe complex tissue structures [3].

We can reconstruct the EAP without prior assumptions
by using an inverse Fourier transform on dense acquisition
schemes such as Diffusion Spectrum Imaging (DSI) [4].
However, DSI’s dense sampling of q-space limits its clinical
applicability. As a solution, analytical bases whose functions

are eigenvectors of the Fourier transform have been proposed
which provide compact representation of the 3D q-space sig-
nal. These bases capture the radial and angular properties
of the diffusion signal by fitting a linear combination of or-
thogonal basis functions as E(q) =

∑N
i ciΦ(q). They then

describe the EAP as P (r) = ciΨ(r) where Ψ(r) is the inverse
Fourier transform of Φ(q). In particular, the recent Mean Ap-
parent Propagator (MAP)-MRI basis [5], which is related
to the preceding 3D Simple Harmonic Oscillator based Re-
construction and Estimation (3D-SHORE) basis [5], fits the
signal extremely well by using anisotropic basis functions.

However, without proper regularization the basis fitting
becomes highly unreliable in the presence of noise, making
accurate EAP estimation impossible. As a solution we pro-
pose a fast and robust Laplacian regularization for the MAP-
MRI basis. We derive the Laplacian regularization functional
analytically and from now on refer to our regularized MAP-
MRI as LMAP-MRI. We show that (1) MAP-MRI has more
accurate microstructure recovery compared to classical tech-
niques, (2) LMAP-MRI has lower signal fitting errors com-
pared to regular MAP-MRI and a positivity constraint on the
EAP [5], and (3) that LMAP-MRI has improved axon radius
recovery on human data of the MGH Human Connectome
Project [6].

2. MATERIALS AND METHODS

2.1. Laplacian Regularization of MAP-MRI

We propose to regularize MAP-MRI’s basis fitting by mini-
mizing the norm of its Laplacian. The MAP-MRI basis func-
tions are given as a product of three 1D functions

ΦNi
(A,q) =φnx(i)

(ux, qx)φny(i)
(uy, qy)φnz(i)

(uz, qz) (1)

with

{
φn(u, q) = i−n

√
2nn!

e−2π
2q2u2

Hn(2πuq)

A = Diag(u2x, u
2
y, u

2
z)

with basis order Ni = (nx(i), ny(i), nz(i)). We find the diag-
onalized scaling factors A = RA′ RT by fitting a tensor A′,
where R contains the tensor eigenvectors. We then rotate the
data into the frame of reference using R and scale the basis
functions using A along each direction. The anisotropic ba-
sis functions is what makes MAP-MRI quickly fit anisotropic



data found in white matter tissue. MAP-MRI’s zeroth order
basis function is in fact a DTI tensor [2], while setting scaling
factors (ux, uy, uz) to an isotropic u0 makes the MAP-MRI
basis equivalent to the 3D-SHORE basis [5].

We fit the MAP-MRI coefficients c to the data y = E(q)
using regularized least-squares as c = argminc‖y − Qc‖2 +
λR(c) where design matrix Q ∈ RNdata×Ncoef has elements
Qij = ΦNi

(A,qj), with qj the q-space positions of the data.
Parameter λ weights the regularization functional R(c) =∫
R3 ‖∆Ec(q)‖2dq with ∆Ec(q) =

∑
i ci∆ΦNi

(A,q) the
Laplacian of the reconstructed signal. We then rewrite
R(c) = cTRc in quadratic form as

Rik =

∫
R3

∆ΦNi
(q,A) ·∆ΦNk

(q,A)dq. (2)

We solve this integral using the orthogonality of Hermite
polynomials with respect to the weight function e−x

2

. This
allows us to describe every entry in Rij as a function of
the anisotropic scaling factors (ux, uy, uz) and basis orders
(xi, yi, zi) = (nx(i), ny(i), nz(i)) as

Rik =
u3x
uyuz

Sxk
xi

Uyk
yi Uzk

zi +2
uxuy
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zi

+
u3y
uzux
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with functions Smn , Tmn and Um
n given as

Smn = 2(−1)nπ7/2

(
δmn 3(2n2 + 2n+ 1)

+ δmn+2 (6 + 4n)
√
m!/n! + δmn+4

√
m!/n!

+ δm+2
n (6 + 4m)

√
n!/m! + δm+4

n

√
n!/m!

)
(4)

Tmn = (−1)n+1π3/2

(
δmn (1 + 2n)

+ δm+2
n

√
n(n− 1) + δmn+2

√
m(m− 1)

)
(5)

Um
n = δmn (−1)n/(2π1/2) (6)

with δmn the Kronecker delta. We finally obtain the MAP-MRI
coefficients through c = (QTQ+λR)−1QTy. We used gener-
alized cross-validation [7] to find an optimal value of λ = 0.2
in noisy data and set this value for all our experiments.

2.2. Estimation of Axon Radii

From the MAP-MRI coefficients c we can describe axon radii
distributions using the Return-To-Axis Probability (RTAP)
[5]. RTAP is defined directionally, representing the integrated

probability that a spin diffuses along the axis of the axons,
here defined as the main tensor eigenvector R‖.

The RTAP is only related to the axon radius if (1) axons
are represented as parallel cylinders, (2) only the intra-axonal
signal is considered and (3) the acquisition has short gradient
pulses (δ ≈ 0) and gradient separation time long enough for
restricted diffusion (∆ � δ). If these conditions are met we
compute the axon radii as

〈R〉 =
√

1/(RTAP π) with RTAP =

∫
R
P (R‖r)dr (7)

Deviation from these criteria will cause misestimation of the
axon radius [8], which we quantify in Section 3.1.

3. RESULTS

We validate our MAP-MRI regularization on synthetic data
using Camino [9] and on the MGH Human Connectome
project (HCP) data set [6].

3.1. Synthetic Validation and Microstructure Recovery

We use the Camino diffusion MRI toolkit [9] to simulate the
diffusion signal in voxels with parallel cylindrical axons with
radii ranging from 0.3µm to 6µm. We generate both data re-
specting all the conditions stated in Section 2.2 (δ ≈ 0, ∆�
δ) (I) and data using HCP settings (δ/∆ = 12.9/21.8ms)
(II). We simulate according to the HCP parameters at b-values
{0; 1,000; 3,000; 5,000; 10,000}mm/s2 with {40; 64; 64;
128; 256} gradient directions, and sample (I) such that we
sample the same q-space positions of (II) by inversely scaling
the diffusion gradient strength with δ.

We first consider the noiseless case of the optimal data
and compute the axon radii with MAP-MRI, SHORE and
DTI (Figure 1a). It is clear that MAP-MRI is able to distin-
guish smaller axon radii than the other techniques thanks to
its anisotropic basis functions. We then take one axon radius
of 1.8µm and apply noise 300 different times at a realistic
SNR = 15. We compute the axon radius with increasing ra-
dial order using either the positivity constraint, our Laplacian
or both. We find that both methods come close to the ground
truth but our Laplacian, in blue, has significantly lower stan-
dard deviations at higher radial orders (Figures 1b and 1c).
We then compare the different methods based on the Mean
Squared Error (MSE) of the noisy signal reconstruction com-
pared to the ground truth. We used radial order 4 and trun-
cated the outer two shells such that bmax=3000 mm/s2. We
show this experiment in Figures 1d and 1e: our Laplacian
regularization, again in blue, has lower MSE values and stan-
dard deviations. Finally, we observe the effect of truncating
the outer shells on the noiseless HCP simulated data on axon
radius estimation (Figure 1f). In the full data we find that
the suboptimal HCP parameters lead to underestimated axon
radii until a plateau is reached at around 1.3µm. Truncation
of the outer shells leads to higher axon radii estimates.
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(a) Axon Radius Estimation Optimal Settings
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æ

æ æ

æ

æ

à

à à

à

à

ì
ì

ì ì ì

æ Positivity

à Positivity + Laplacian

ì Laplacian

0 2 4 6 8

0.0

0.2

0.4

0.6

0.8

Radial Order

S
ta

n
d

a
r
d

D
e
v

ia
ti

o
n

HΜ
m

L

(c) MAP-MRI standard deviation bmax=10,000
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(d) MAP-MRI signal fitting bmax=3,000
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(f) MAP-MRI effect of truncation HCP settings

Fig. 1: Results on synthetic Camino experiments. (a) shows a comparison of axon estimations between MAP-MRI, SHORE
and DTI on optimal data. (b) compares the average MAP-MRI axon radius estimate for different radial orders and methods with
known ground truth. (c) shows the standard deviation. (d) quantifies the average MAP-MRI signal reconstruction for different
SNR levels based on MSE. (e) gives the standard deviations. (f) shows the effect truncating the outer sampling shells on the
axon radius estimation in HCP simulated data.

Fig. 2: Segmentation of the splenium, midbody and genu
(red, green and blue) of the corpus callosum.

3.2. Microstructure on the Human Connectome Project

In our second experiment we estimate axon radii in the corpus
callosum data in a subject of the MGH Human Connectome
Project data [6]. In this area the white matter is known to
be highly coherent, and that axon radii are larger in the mid-
body than in the genu and splenium [10]. We segment these
areas (Figure 2) and compute the axon radii in each of these
areas using our Laplacian or the positivity constraint (Figure
3). For both methods we find larger axon radii in the mid-
body (green) than in the genu in splenium (red and blue),
though we always overestimate compared to the real radius
of around 0.1µm − 1µm [10]. When we truncate the outer

shells we find higher axon radius estimates, but both methods
remain able to distinguish between axon populations.

4. DISCUSSION AND CONCLUSION

In this paper we proposed a new regularization method for
the recent MAP-MRI basis. We derived the Laplacian func-
tional analytically, and showed on synthetic Camino data that
a Laplacian-regularized MAP-MRI basis (LMAP-MRI) has
more robust and accurate signal reconstruction and axon ra-
dius recovery than using a positivity constraint on the EAP.
We find that this effect is more distinct when dealing with
noisy, more undersampled acquisition data. Even combining
the two methods does not decrease the reconstruction error
further. Our regularization method is also fast, having the
same speed as ordinary least squares fitting. We also show
that MAP-MRI is able to retrieve axon radii on synthetic data
until significantly smaller axon radii compared to 3D-SHORE
and DTI. We finally validate our method on human data from
the HCP project. We find that LMAP-MRI can actually dis-
tinguish axon populations in the corpus callosum, even in
truncated data. However, overall we see axon radii are over-
estimated.

In closing, we find in both our synthetic and human ex-
periments that MAP-MRI is superior to classical techniques



Fig. 3: Axon radius estimation in the corpus callosum using either Laplacian regularization or unregularized with a positivity
constraint. We correctly find larger axon radii in the midbody (green) than in the genu and splenium (blue and red). The
laplacian generally estimates populations with smaller standard deviations and finds slightly smaller radii in the b=10,000 data
but larger for b=3,000 data. In terms of computation time our Laplacian approach is 4 times faster than the positivity contraint.

in terms of axon radius recovery, and our LMAP-MRI pro-
vides both faster and more robust signal fitting and axon ra-
dius recovery compared to both regular MAP-MRI and using
a positivity constraint when facing noisy, undersampled data.

Acknowledgments
Data used in the preparation of this work were obtained from
the Human Connectome Project (HCP) database
(https://ida.loni.usc.edu/login.jsp). The HCP project is sup-
ported by the National Institute of Dental and Craniofacial
Research (NIDCR), the National Institute of Mental Health
(NIMH) and the National Institute of Neurological Disorders
and Stroke (NINDS). This work was partly supported by the
French ANR ”MOSIFAH” under ANR-13-MONU-0009-01.

5. REFERENCES

[1] Stejskal. ”Use of Spin Echoes in a Pulsed Magnetic-Field
Gradient Study Anisotropic Restricted Diffusion Flow.” J
CHEM PHYS 43.10, pp. 3597-3603, 1965.

[2] Basser et al. ”Estimation of the Effective Self-Diffusion
Tensor from the NMR Spin Echo.” J MAGN RESON, Se-
ries B 103.3, pp. 247-254, 1994.

[3] Assaf Yaniv and Ofer Pasternak. ”Diffusion tensor imag-

ing (DTI)-based white matter mapping in brain research:
a review.” J Mol NEUROSCI 34.1, pp. 51-61, 2008.

[4] Wedeen et al. ”Mapping Complex Tissue Architecture
with Diffusion Spectrum Magnetic Resonance Imaging.”
MAGNET RESON MED 54.6, pp. 1377-1386, 2005.
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