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Optimal Geographic Caching In Cellular Networks

Bartłomiej Błaszczyszyn† and Anastasios Giovanidis∗

Abstract—In this work we consider the problem of an optimal
geographic placement of content in wireless cellular networks
modelled by Poisson point processes. Specifically, for the typical
user requesting some particular content and whose popularity
follows a given law (e.g. Zipf), we calculate the probability of
finding the content cached in one of the base stations. Wireless
coverage follows the usual signal-to-interference-and noise ratio
(SINR) model, or some variants of it. We formulate and solve
the problem of an optimal randomized content placement policy,
to maximize the user’s hit probability. The result dictates that
it is not always optimal to follow the standard policy ”cache
the most popular content, everywhere”. In fact, our numerical
results regarding three different coverage scenarios, show that
the optimal policy significantly increases the chances of hit under
high-coverage regime, i.e., when the probabilities of coverage by
more than just one station are high enough.

Keywords—wireless cache; Poisson cellular network; SINR k-
coverage; hit probability; content popularity; optimization

I. INTRODUCTION

Today’s cellular networks provide additionally to tra-
ditional telephony and messaging services, a considerable
amount of multimedia content. Multimedia traffic demand is
expected to show exponential increase in the years to come.
Recent suggestions to densify the network via multi-tier het-
erogeneous equipment or to apply cooperation techniques [1],
will locally improve wireless throughput but will eventually
push the network’s backhaul and its available bandwidth to its
limit.

Considering the fact that the great volume of traffic consists
of multiple demands for the same content by various users, a
solution to relieve the overloaded network is to cache popular
content at intermediate nodes. In the case of cellular networks,
this practically translates in adding physical memory at the
central base station (BS) and the smaller scale (pico, nano,
etc.) stations. Wired architectures consider caching on routers
of the core network. All these ideas follow the novel concept
of Information Centric Networks (see [2] and also [3]), which
challenges the existing host-centric Internet architecture and
puts the emphasis on the content itself.

There are several benefits from doing so: (a) The most
evident is the reduction of backhaul traffic load. (b) Another
one is the reduction of multimedia (audio/video) playback
latencies. When the content is cached at a node close to the
user, it is delivered with less delay than fetching it from the
core network. (c) Caching can give the opportunity to adapt
the multimedia quality to the actual end-users’ channel, and
consequently improve Quality-of-Experience [4].

In the literature there are already considerable works deal-
ing with the problem of cellular caching. Among these, the
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paper by Shanmugam et al [5] treats the problem of optimal
association of content to wireless caches, given BS-user topol-
ogy. Bastug et al in [6] provide stochastic geometry results
on the user outage probability and average delay experienced.
The optimal storage allocation related to user mobility is
addressed by Poularakis and Tassiulas in [7]. Further benefits
and challenges from the application of caching in 5G networks
are presented in the work by Wang et al [8]. In all the
above, it is common to consider a fixed content library and
a popularity distribution which is known a priori and follows
the Zipf distribution. The latter was proposed and verified to
well approximate the hit distribution of Internet content by
Newman [9].

The great difference of caching in cellular networks as
compared to wired ones, is that there can appear planar regions
with overlapping coverage by more than one BS [10]. When a
user finds him/herself in such areas, he/she can choose service
by any of the covering stations. Such observation has indeed
been taken into consideration in the works of [5], [4], [7],
but the discrete problem formulations suggested fail to give
solutions with global validity, because they are based on a
priori known BS-user topologies. A novel related work is [11].

In our work we will revisit the problem of optimal content
placement in cellular caches by assuming a known distribution
of the coverage number, i.e. the number of BSs simultaneously
covering a user. We will see different expressions for this
distribution based on different coverage models, like the SINR
model in [10] where the network topology was modelled by a
Poisson point process. As a main result, we will provide the
optimal probabilistic placement policy, which guarantees max-
imal total hit probability for random network topologies. To
achieve optimality, the policy exploits multi-coverage regions
and delivers considerable performance improvement compared
to the standard ”cache the most popular content, everywhere”
strategy. We argue that the latter is not optimal in general
networks but only either for an isolated cache [12] or when
there is no coverage overlap in the network.

The model under study is presented in Section II, where the
probabilistic caching policy is introduced and three coverage
model examples are given. In Section III we state and solve
the content placement optimization problem. Evaluation of
the optimal strategy for three different coverage models is
presented in Section IV. We conclude the paper in Section V.

II. MODEL UNDER STUDY

We consider a cellular network where the positions of Base
Stations (BSs) coincide with the atoms from the realization of a
two dimensional (2D) Poisson Point Process (PPP) Φ = {xi}.
The PPP is homogeneous and has intensity λ > 0. The
performance of the network is evaluated at the Cartesian origin
(0, 0), which we denote as the typical user o. Due to the
Slivnyak-Mecke theorem and the stationarity and isotropy of



the PPP, the results for the typical user apply to any user
randomly located on the 2D plane [13].

A. Network Coverage Number

In cellular networks a user at a random location may be
covered by more than one BS, or may not be covered at all.
A user may also be covered by multiple networks. The so
called coverage number N is a random variable (r.v.) [10]
that depends on the features of the communications scheme
and the network parameters. It has a mass function

pm := P [N = m] , m = 0, 1, . . . (1)

The maximum number of covering BSs is M ∈ N+ ∪ {∞},
where we let the coverage number be unlimited in the general
case. Later in the section, we will give specific expressions for
the pm, which depend on the network evaluated. Obviously, it
holds

M∑
m=0

pm = 1. (2)

Specific coverage models are presented in Section IV-A.

B. Content and its Popularity

Each user has a request for a specific content (say video
file) that he/she wants to receive. In our model the set (li-
brary) of available content is finite. It is denoted by C :=
{c1, c2, . . . , cJ}, where an element cj is an entire file. The
cardinality of the set is J . We consider that all content has the
same size, normalised to 1. Cases of unequal size will not be
treated in this work, but we can always assume that each file
can be divided into chunks of equal size, so the same analysis
can still be applied. Furthermore, each content is related to
its popularity, which we assume known a priori. We order
the content by popularity: c1 is the most popular content, c2
the second most popular and so on. The popularity follows a
distribution {aj}. To be consistent with the above ordering,
a1 ≥ a2 ≥ . . . ≥ aJ . Without losing in generality, we will
often consider that the distribution has a Zipf probability mass
function and consequently the probability that a user (hence
the typical one) will ask for content cj is equal to

aj = A−1j−γ . (3)

Here, γ is the Zipf exponent, often (but not necessarily) chosen
as γ < 1, so that a1/a2 = 2γ < 2. It holds

J∑
j=1

aj = 1, (4)

and this explains the normalisation factor A :=
∑J
j=1 j

−γ .

C. Content Placement to Caches

We assume that a cache memory of size K ≥ 1 is installed
and available on each BS. The memory inventory of BS xi ∈ Φ
is denoted by Ξ(i), which is a subset of C, with the number
of elements not larger than K; i.e., |Ξ(i)| ≤ K for all i.

We consider a probabilistic model, where the content is
independently, placed in the cache memories of different BSs,
according to the same distribution. In other words, Ξ(i) are

Fig. 1. A realization of the probabilistic placement policy for the case of
J = 9 contents and K = 4 memory slots. We first draw uniformly a random
number (0.42). The vertical line at this point intersects with each of the 4
memory intervals at a specific content. We conclude from the figure that the
subset {c1, c2, c4, c7} will be cached.

assumed independent identically distributed (random) subsets
of C. Denote by

bj := P
(
cj ∈ Ξ(i)

)
the probability that the content cj is stored at a given base
station. (The model is homogeneous, hence the values of bj
are common for all BSs xi; and the superscript ·(i) can be
omitted when considering a generic base station.)

As we shall see, the probability that a typical user finds
the content he/she is looking for in the inventory of a base
station covering him/her (which is the performance metric we
want to maximize) depends on the distribution of the (random)
set Ξ only through the one-set-coverage probabilities bj , j =
1, . . . , J . And these probabilities do not define the distribution
of the random set Ξ — hence the content placement policy —
uniquely.

When looking for the optimal values bj , j = 1, . . . , J , we
shall consider the following constraints

J∑
j=1

bj ≤ K, (5)

0 ≤ bj ≤ 1, ∀j. (6)

The second condition is obvious (bj is a probability). Regard-
ing the first one we have the following result.

Fact 1. Assuming (6), the condition (5) is necessary and
sufficient for the existence of a distribution of Ξ satisfying
|Ξ| ≤ K almost surely, i.e. existence of a random content
placement policy requiring no more than K slots of memory
at each base station.

Proof: The necessity follows from the observation that
the right-hand side of (5) is equal to the expected number of
content items in the base station inventory. Indeed

E

 J∑
j=1

1(cj ∈ Ξ)

 =

J∑
j=1

P (cj ∈ Ξ) =

J∑
j=1

bj .

We prove the sufficiency by constructing (in what follows)
some particular content placement policy satisfying |Ξ| ≤ K.



The following policy having one-set-coverage probabilities
bj satisfying (5) and (6) respects the cache size constraint K.

Probabilistic placement policy: Given the cache memory
of size K ≥ 1, and the values bj , j = 1, . . . , J satisfying (5)
and (6), we divide it into K continuous memory intervals of
unit length and place them one under the other, as shown in the
example considered on Fig. 1 (the example assumes equality
in (5)). The J contents of the library are picked one after the
other without replacement and their values bj fill the memory.
If not enough space is available in one unitary memory slot, the
content fills the slot underneath. In order to randomly choose a
set of contents, we pick uniformly a number within [0, 1] and
draw a vertical line which intersects the memory space covered
by no more than K distinct contents, (It intersects exactly
K contents if the equality is observed in (5).) The contents
are distinct because bj ∈ [0, 1]. Moreover, the probability of
appearance of content j in a memory of size K is exactly
equal to bj .

III. OPTIMAL CONTENT PLACEMENT — PROBLEM
STATEMENT AND SOLUTION

The performance metric of interest is the total hit probabil-
ity, i.e. the probability that the typical user will find the content
he/she is asking for in one of the BSs he/she is covered from.
This is 1-minus the probability that the user does not find its
content. This happens when the user is covered by m = 0 BSs
(i.e. no coverage), or by some number m > 0 but the content
has not been saved in the cache memory space of any of these
BSs. The performance metric is equal to

f (b1, . . . , bJ) := 1−
J∑
j=1

aj

∞∑
m=0

pm (1− bj)m . (7)

To better understand the above expression, m is the number
of BSs that the user is covered by. The probability (1− bj)m
is the probability that none of the cache memory slots of these
stations contains the desired content. Hence, the expression in
(7) is the probability that the content requested by the user
should be fetched from the backhaul network.

We can control the hit probability, by varying the content
placement probabilities bj . In the following we will find
the optimal vector (b1, . . . , bJ), that maximises the objective
function f in (7). The constraint set of our problem is

F1 := {(b1, . . . , bJ)| b1 + . . .+ bJ ≤ K,
& bj ∈ [0, 1] , ∀j} (8)

The parameters that influence the objective function but cannot
be used as actions are (a) the size of memory K, (b) the
probability of content popularity aj , j = 1, . . . , J and (c)
the probability of coverage by m BSs pm, m = 0, 1, . . ..
Altogether, we summarize the optimisation problem below,
which we call GCP (Geographic Caching Problem) and in the
following we will try to find its solution.

max f (b1, . . . , bJ) [GCP]
s.t. (b1, . . . , bJ) ∈ F1

.

We first give two Lemmas that facilitate the solution.

Lemma 1. The objective function of [GCP] has the following
two properties:

• P.1: It is separable w.r.t. b1, . . . , bJ .

• P.2: It is increasing and concave in bj , ∀j. Conse-
quently, it is a concave function of (b1, . . . , bJ).

Proof: P.1 results by rewriting the objective function after
replacing (4), 1 =

∑J
j=1 aj . Then f(b) =

∑J
j=1 g (aj , bj ,p)

=
∑J
j=1 aj(1−

∑M
m=0 pm(1− bj)m). P.2 becomes trivial due

to the separability property. We only need to show that the
first derivative of g(bj) is ≥ 0 and the second ≤ 0, ∀bj .
Lemma 2. At the optimal solution, the sum constraint inequal-
ity (5) is active, i.e. the optimal solution satisfies

b∗1 + . . .+ b∗J = K. (9)

Proof: Suppose that the inequality is inactive, i.e. strictly
< K for the optimal solution. But then, for any l ≤ J , we can
increase b∗l → b∗l + ε, so that the constraint is satisfied with
equality. Substituting in the objective function b∗l + ε instead
of b∗l the value of the function will increase, because f is
increasing over bl, by P.2. Hence the primal optimal solution
cannot leave the constraint inactive and (9) is true.

Since the objective function is concave by P.2 and the
constraint set is linear (affine inequalities), the optimisation
problem can be solved as a convex program. We will make
use of the Lagrangian relaxation method (see [14]). Let us
relate the dual price µ ≥ 0 to the sum constraint inequality
(5). The Lagrangian function is

L (b1, . . . , bJ , µ) =

J∑
j=1

aj

(
1−

∞∑
m=0

pm (1− bj)m
)

+

+ µ

K − J∑
j=1

bj

 , (10)

and the remaining constraint set is F2 :=
{bj ∈ [0, 1] , ∀j = 1, . . . , J}. We can systematically find
the optimal primal (b∗j ) and dual (µ∗) variables by solving a
min-max problem. Additionally, in our case where we deal
with a convex program, the optimal value of the min-max
problem (f∗) is equal to the optimal value of the original
problem [GCP] with objective function f , that is
f∗ := max

F1

f (b1, . . . , bJ) = min
µ≥0

max
F2

L (b1, . . . , bJ , µ) .

= f (b∗1, . . . , b
∗
J) . (11)

We then say that the duality gap between the original [GCP]
problem and the min-max problem is zero.

Theorem 1. The optimal primary variables, that maximise
the [GCP] objective, given the optimal dual variable µ∗ is
b∗j = bj (µ∗) with the expression

bj (µ∗) =

{
1, if ajp1 > µ∗

ω (µ∗), if ajp1 ≤ µ∗ ≤ ajE [N ]
0, if ajE [N ] < µ∗

. (12)

In the above, E [N ] =
∑∞
m=1mpm and ω (µ∗) is the solution

over bj of the equation

aj

M∑
m=1

pmm(1− bj)m−1 = µ∗. (13)

The optimal dual variable µ∗ satisfies the equality
b1 (µ∗) + . . .+ bJ (µ∗) = K. (14)



Proof: Sketch. Given any dual price µ ≥ 0, we first
solve the relaxed primary problem maxF2 L (b1, . . . , bJ , µ)
over the bjs as shown in (11). From Lemma 1 and the affinity
of the relaxed constraint, the primal problem is separable in
J subproblems, each one having as constraint bj ∈ [0, 1].
The solution for each µ, hence also for µ∗ is given in
(12) and (13). We further need to minimize the function
q (µ) = maxF2

L (b1, . . . , bJ , µ) over µ. The standard way
to do this is by use of a subgradient method. However, in
our problem we need not proceed this way due to Lemma
2, which states that the optimal primal solution satisfies the
relaxed constraint with equality. To find µ∗, we thus have to
replace the solution (12) in the equation

∑J
j=1 bj (µ) = K and

solve over µ. The solution is unique since we can prove that
the sum of bjs is a decreasing function in µ within an interval
that is guaranteed to contain the solution.

Algorithm. The solution is found numerically as follows.
We start by an interval of µ that contains the optimal solution,
i.e. µ(0) ∈

[
µ(0,min), µ(0,max)

]
= [aKp1, a1E [N ]]. Then we

use the bisection method, according to which
∑J
j=1 bj

(
µ(l+1)

)
is evaluated for l = 0, 1, . . . at the dual price µ(l+1) :=
µ(l,min) + (µ(l,max) − µ(l,min))/2. If the value of the sum
is < K then the search continues to the left interval and
µ(l+1,max) := µ(l+1), else if the sum is > K, the search
continues to the right interval and µ(l+1,min) := µ(l+1). The
algorithm stops when the change in µ for some step l is smaller
than a chosen ε > 0. The difficulty in the implementation lies
in the fact that we need to solve also the polynomial equalities
of the form (13), which do not give a closed form solution
when M is large. We also solve these over bj by use of the
bisection method.

To provide some intuition, we consider in what follows a
simple example assuming J = 2,K = 1.

Example 1 (2CP). Consider the case of one-slot cache mem-
ory K = 1 and the content library of size J = 2 with
a1+a2 = 1 and maximum M = 2 BSs covering a user. We call
this problem the [2CP]. It has the following explicit solution.
The optimal pair (b∗1, b

∗
2) that solves the [2CP] problem is

b∗2 = 1− b∗1 where

b∗1 =

{
2a1(p1+p2)−p1

2p2
, if 0 ≤ a1 ≤ 1− p1

2(p1+p2) .
1, otherwise

(15)

IV. PERFORMANCE EVALUATION

We will now evaluate the performance of the placement
policy given in Theorem 1 for some three different coverage
models, which we present first.

A. Coverage Models

We overview three specific network models that give dif-
ferent expressions to the coverage number probability pm.

1) SINR Model: The quality of coverage at the origin is
described by the SINRo (from now on SINR). SINR(xi) is
the SINR at the reception, when user o is connected to BS
xi ∈ Φ and is defined as

SINR(xi) :=
Si/`(ri)

W + I − Si/`(ri)
. (16)

In the above, Si is the shadowing experienced between the
typical user and the BS at xi. The constant W is the noise

power, I =
∑
xi∈Φ Si/`(ri) is the total received power from

the network, ri = |xi| is the distance of xi from o, and `(r) =
(Br)

β is the path-loss function, with constants B > 0, β > 2.
We say that the typical user is covered when SINR(xi) > T ,
where T is a predefined positive threshold.

The coverage number N (T ) indicates how many BSs
cover the typical user simultaneously and is the r.v.

N (T ) =
∑
xi∈Φ

1[SINR(xi) > T ]. (17)

For the coverage of a user who can choose to be served by
different BSs in some realization of Φ, we make use of a basic
result from [13, Proposition 6.2], analysed further in [10]. It
is shown that if m stations cover a user at SINR level T , then
the following inequality holds

M =

⌈
1

T

⌉
⇔ m < 1 + 1/T. (18)

For example, when T ≥ 1 then necessarily m < 1 + 1
T < 2

which implies that m ∈ {0, 1} and M = 1. Similarly, when
1 > T ≥ 1/2, m ∈ {0, 1, 2} and M = 2, etc. Based on this
model, the authors in [10] have given explicit expressions for
the probability that the typical user is covered by exactly m
BSs in the SINR model without frequency reuse. For general
shadowing, they have calculated the probability

pSINR
m := P [N (T ) = m] (19)

=

∞∑
n=k

(−1)n−k
(
n

k

)
Sn(T ) ,

where

Sn(T ) =
(

T
1−(n−1)T

)−2n/β

In,β(Wa−β/2)Jn,β
(

T
1−(n−1)T

)
for 0 < T < 1/(n − 1) and Sn(T ) = 0 otherwise, with
a = λπE[S

2
β ]/B2, λ is the intensity of base stations and

In,β(x) =
2n
∫∞

0
u2n−1e−u

2−uβxΓ(1−2/β)−β/2du

βn−1(C ′(β))n(n− 1)!
(20)

where

C ′(β) =
2π

β sin(2π/β)
= Γ(1− 2/β)Γ(1 + 2/β). (21)

Jn,β(x) =

∫
[0,1]n−1

n−1∏
i=1

v
i(2/β+1)−1
i (1− vi)2/β

n−1∏
i=1

(x+ ηi)

dv1 . . . dvn−1

(22)
where ηi := (1 − vi)

∏n−1
k=i+1 vk. The software developed for

MATLAB is available in [15] to get the numerical values of
pSINR
m .

In the interference limited network (W = 0) some results
regarding the Poisson-Dirichlet model can be used to calculate
equivalently the above coverage probabilities, cf [16, Prop, 6].

2) Boolean Model: For the noise-limited case, where the
interference is small compared to noise, we can use the
Boolean model to calculate the probability of coverage by m
BSs. This is a germ-grain model, where the atoms of the PPP
are the germs. Centered on each atom is a grain, i.e. a 2D
sphere B (xi, Rb) which describes the area of coverage. Rb is
a fixed radius that can be expressed by communications quan-
tities. Specifically, if we only consider path-loss and no fading,



the received signal at the boundary should be larger than the
threshold, in order to guarantee coverage, i.e. (B̃Rb)

−β ≥ T
⇒ Rb = T−1/βB̃−1. It is shown in [13, Lemma 3.1] that
the number of BSs covering the typical user follows a Poisson

distribution with parameter ν = λπ
(
T−1/βB̃−1

)2

and we get

pBm =
νm

m!
e−ν . (23)

3) Overlaid 2-Network Model: Very often in practice,
it occurs that 2 (or more) networks of the same provider
operate in parallel over an area, using different infrastructure
(nodes) and orthogonal resources (bandwidth). It is typical, for
example, for operators to have one network of base stations
for 3G/4G technology and numerous WiFi hotspots within
a city. Given that a user may chose between the two to
connect to the Internet with his/her cellphone (and assuming
for simplicity mathematically independent models of these
two networks), the coverage number at the typical user is
distributed as the convolution of the coverage probability
vectors of the two individual networks p(1) =

[
p

(1)
1 , . . . , p

(1)
M

]
and p(2) =

[
p

(2)
1 , . . . , p

(2)
M

]
, that is (with p(·)

m := 0 for m < 0)

p2NET = p(1) ∗ p(2) ⇒ p2NET
m =

M∑
n=0

p(1)
n p

(2)
m−n. (24)

B. Performance of the Content Placement Policies

In this section we show the performance benefits of our
scheme compared to a standard policy, the one that places in
the cache memory of size K, always K Most Popular Contents
[MPC]. For the [MPC] policy, b1 = . . . = bK = 1 & bK+1 =
. . . = bJ = 0 and the objective function is always equal to
f (MPC) = (1−p0)

∑K
j=1 aj . As shown in the following plots,

when the user has significant probability to access more than
one cache, the [MPC] is suboptimal. This result is intuitive,
because a user covered by m > 1 BSs, can search in mK
memory slots instead of K.

1) Simple Scenario [2CP]: We start by the solution of the
[2CP] provided in Example 1. In the simulated example, we
assume p0 = 0.05 to be the probability that the typical user
is not covered by any BS. Hence p1 + p2 = 0.95. A general
picture of the way the optimal caching policy (b∗1, b

∗
2) varies

w.r.t. the coverage ratio p1/p2 and for different values of the
popularity a1, is given in Fig. 2(a). Here, the ratio p1/p2 varies
from 10−2 → 102 and we find for each value the optimal b∗1,
given a1 = {0.5, 0.6, 0.7, 0.8, 0.9}. We can deduce from the
figure, that when each location is covered with high probability
by 2 BSs, it is optimal to cache with probability b∗1 ≈ a1. When
each location is covered with high probability by a single BS,
it is optimal to cache with [MPC], i.e. b∗1 ≈ 1.

In Fig. 2(b) we plot the objective function f∗ of [2CP],
given the solution (b∗1, b

∗
2) and for different values of a1. We

compare the solution to the value of the objective function
under the [MPC], which is always equal to f (MPC) = a1(1−
p0), irrespective of the values of p1, p2. From the figure we
can observe a considerable performance improvement in the
total hit probability, which is especially large when a1/a2 is
small (comparable popularities) and when p1/p2 is small.

Fig. 2. Case [2PC]: (a) The optimal caching policy b∗1 and (b) The maximum
hit probability f∗ (objective function), with respect to the coverage ratio
p1/p2. The evaluation is done for different values of a1. In (b) the optimal
hit probability value is compared with the one when [MPC] policy is applied.

2) Boolean, SINR and Overlaid 2-Network Coverage:
We further evaluate the general problem [GCP] for the three
coverage models suggested in Section II. We consider a content
library of size J = 25 and cache memories of size K = 5.
Since in all three models coverage depends on the threshold
ratio T , we use the latter as the variable on the x-axis.
In all cases, increasing the service threshold T reduces the
probability of coverage by m > 0 BSs, and consequently
increases p0. Another important aspect is the relation of T
with the transmission rate R. These two are related through
the Shannon formula R = BW

1
2 log2 (1 + T ), where the

transmission bandwidth is considered here equal to BW = 5
MHz for typical applications.

In Fig. 3(a) we evaluate the total hit probability under the
Boolean model, for which the values of pBm are calculated as in
(23). We choose M = 10. The evaluation spans the threshold
values T = 10−2 → 2 · 103. Compared to [MPC], we observe
considerable gains in hit probability until T ≤ 10, which
corresponds to rate service of R ≤ 8650 Kbits/sec. Given that
8000 Kbits/sec is a very high video quality from YouTube [17],
our approach can realistically improve the backhaul cellular
network traffic under this model.

In Fig. 3(b) the same performance evaluation is done for
the SINR model, where the probability of coverage is found



(a) Hit probability (Boolean). (b) Hit probability (SINR). (c) Hit probability (2NET).

Fig. 3. Evaluation of the optimal policy [GCP] and comparison with the [MPC] policy for the three different coverage models. Note that GCP ≈MPC for
higher values of the threshold T , when multi-coverage is scarce.

in closed form in [10]. We use the software developed for
MATLAB and available in [15] to get the numerical values of
pSINR
m . These are used as input to solve the [GCP]. We chose

to evaluate the interference-limited case, i.e. W = 0, thus we
consider SIR. For numerical integration reasons, the minimum
threshold is taken to be 5 · 10−2, which from (18) refers to at
most 25 BSs covering a planar point. The maximum threshold
value is 2 because due to (18) at most 1 BS can cover a planar
point when T ≥ 1. From the figure we see that the benefits are
not very important and appear until T ≤ 0.2, or equivalently
R ≤ 650 Kbits/sec. This rate refers to audio files rather than
video files, given that the a high quality encoded audio file
has a rate of 512 Kbits/sec. The main reason for the poor
performance is the generally low probability of coverage by
more than one BS (around 20% at best). We conclude that in
the SINR model without frequency reuse, it is optimal to use
[GCP] for low bit rate content (audio) and [MPC] for high bit
rate content (video).

Finally, Fig. 3(c) illustrates the performance gains when
the [GCP] is applied to the case of coverage by 2 independent
overlaid networks (2NET). The coverage probability p2NET

m is
given in (24). For both vectors of the convolution, we use the
same numerical values from pSINR

m as calculated in the single
SINR network above. Due to the convolution, the coverage
probability for m > 1 is now increased, since most planar
areas will be covered by at least two BSs. In such case the
[GCP] policy has impressive benefits in the entire domain of
T , compared to the [MPC]. More than any other, this case
emphasises the great potentials of optimal geographic caching
of content.

V. CONCLUSIONS

In this work, we have revisited the problem of optimal
content placement in caches within a cellular network. We
exploited the fact that certain areas are covered by multiple
BSs. An optimal policy is derived which suggests that when
multi-coverage areas are significant, it is not optimal to cache
the most popular contents everywhere. The total hit probability
of the policy is evaluated in plots for three different coverage

models (Boolean, SINR, Overlaid 2-Network) and the results
are highly in favour of our approach.

REFERENCES

[1] F. Baccelli and A. Giovanidis. Coverage by pairwise base station
cooperation under adaptive geometric policies. Proc. of 47th Asilomar
Conference on Signals, Systems and Computers, 2013.

[2] G. Xylomenos, C.N. Ververidis, V.A. Siris, N. Fotiou, C. Tsilopoulos,
X. Vasilakos, K.V. Katsaros, and G.C. Polyzos. A survey of Information-
Centric Networking. IEEE Communications Surveys & Tutorials, vol.16,
no.2, pp.1024,1049, Second Quarter, 2014.

[3] G. Rossini and D. Rossi. A dive into the caching performance of content
centric networking. IEEE 17th CAMAD, 2012.

[4] K. Poularakis, G. Iosifidis, A. Argyriou, and L. Tassiulas. Video delivery
over heterogeneous cellular networks: Optimizing cost and performance.
INFOCOM, Toronto, Canada, 2014.

[5] K. Shanmugam, N. Golrezaei, A. G. Dimakis, A. F. Molisch, and
G. Caire. FemtoCaching: Wireless content delivery through distributed
caching helpers. IEEE Trans. IT, Vol:59, Iss: 12, 2013.

[6] E. Bastug, M. Bennis, and M. Debbah. Cache-enabled Small Cell
Networks: Modeling and Tradeoffs. 11th ISWCS, Aug. 2014.

[7] K. Poularakis and L. Tassiulas. Exploiting user mobility for wireless
content delivery. ISIT, Istanbul, Turkey, 2013.

[8] X. Wang, M. Chen, T. Taleb, A. Ksentini, and V. Leung. Cache in the
Air: Exploiting content caching and delivery techniques for 5G systems.
IEEE Comm. Mag., Vol:52, Iss:2, 2014.

[9] M. E. J. Newman. Power laws, Pareto distributions and Zipf’s law.
Contemporary Physics 46, pp. 323351, 2005.

[10] H. P. Keeler, B. Błaszczyszyn, and M. K. Karray. SINR-based k-coverage
probability in cellular networks with arbitrary shadowing. In In Proc. of
IEEE ISIT, 2013.

[11] Eitan Altman, Konstantin Avrachenkov, and Jasper Goseling. Distributed
Storage in the Plane. In IFIP Networking, 2014.

[12] V. Martina, M. Garetto, and E. Leonardi. A unified approach to the
performance analysis of caching systems,. Proc. INFOCOM, Toronto,
Canada, 2014.

[13] F. Baccelli and B. Błaszczyszyn. Stochastic Geometry and Wireless
Networks, Volume I — Theory, volume 3, No 3–4 of Foundations and
Trends in Networking. NoW Publishers, 2009.

[14] S. Boyd and L. Vandenberghe. Convex Optimization. Cambridge
University Press, 2004.

[15] H. P. Keeler. SINR-based k-coverage probability in cellular networks.
MATLAB Central http://www.mathworks.fr/matlabcentral/fileexchange/
40087-sinr-based-k-coverage-probability-in-cellular-networks. accessd
on 2014.09.19.

[16] H. P. Keeler and B. Błaszczyszyn. SINR in wireless networks and the
two-parameter Poisson-Dirichlet process. IEEE Wireless Comm. Letters,
2014.

[17] YouTube. Advanced encoding settings [online].


