
HAL Id: hal-01087442
https://hal.inria.fr/hal-01087442

Submitted on 9 Apr 2015

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Towards a Meta-Language for the Concurrency Concern
in DSLs

Julien Deantoni, Papa Issa Diallo, Ciprian Teodorov, Joël Champeau, Benoit
Combemale

To cite this version:
Julien Deantoni, Papa Issa Diallo, Ciprian Teodorov, Joël Champeau, Benoit Combemale. Towards
a Meta-Language for the Concurrency Concern in DSLs. Design, Automation and Test in Europe
Conference and Exhibition (DATE), Mar 2015, Grenoble, France. �hal-01087442�

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by INRIA a CCSD electronic archive server

https://core.ac.uk/display/49533688?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://hal.inria.fr/hal-01087442
https://hal.archives-ouvertes.fr

Towards a Meta-Language for the Concurrency
Concern in DSLs

Julien Deantoni‡, Issa Papa Diallo∗, Ciprian Teodorov∗, Joel Champeau∗, Benoit Combemale†
∗ Lab-STICC - ENSTA Bretagne, France

{papa_issa.diallo, ciprian.teodorov, joel.champeau}@ensta-bretagne.fr
† University of Rennes 1 / INRIA, France

{benoit.combemale}@irisa.fr
‡ University of Nice Sophia Antipolis, France

{julien.deantoni}@polytech.unice.fr

Abstract—Concurrency is of primary interest in the devel-
opment of complex software-intensive systems, as well as the
deployment on modern platforms. Furthermore, Domain-Specific
Languages (DSLs) are increasingly used in industrial processes to
separate and abstract the various concerns of complex systems.
However, reifying the definition of the DSL concurrency remains
a challenge. This not only prevents leveraging the concurrency
concern of a particular domain or platform, but it also hinders:
a) the development of a complete understanding of the DSL
semantics; b) the effectiveness of concurrency-aware analysis
techniques; c) the analysis of the deployment on parallel
architectures. In this paper, we introduce the key ideas lead-
ing toward MoCCML, a dedicated meta-language for formally
specifying the concurrency concern within the definition of a
DSL. The concurrency constraints can reflect the knowledge in
a particular domain, but also the constraints of a particular
platform. MoCCML comes with a complete language workbench
to help a DSL designer in the definition of the concurrency
directly within the concepts of the DSL itself, and a generic
workbench to simulate and analyze any model conforming to this
DSL. MoCCML is illustrated on the definition of an lightweight
extension of SDF (Synchronous Data Flow [1]).

I. INTRODUCTION

Concurrency is at the heart of modern software-intensive
systems and platforms. Complex systems such as the Internet
of things and cyber-physical systems are highly concurrent
systems per se. Moreover, modern platforms like many-
core, GPGPU and distributed platforms are providing more
and more parallelism. In the development of such complex
software-intensive systems, the correct specification of con-
currency is central for leveraging the unique characteristics of
these systems and their deployment on the platforms.

In the last decades, dedicated languages like π-calculus [2],
CCS [3] or even data-flow languages were developed to
express the concurrency of a given system. These languages
provide interesting features like verification and validation
facilities. However, there is a gap between the concepts offered
by these languages and the concepts needed by designers to
capture their domain-specific problems.

To bridge this gap, Domain-Specific Languages (DSLs)
are increasingly used in industrial processes. They provide
concepts and expressiveness tailored to the domain, usually
making the designer more efficient [4]. However, the specifi-
cation and reification of the concurrency constraints remains

difficult within the definition of a DSL. Most of the time the
concurrency model remains implicit and ad-hoc, embedded in
the underlying execution environment. The lack of an explicit
concurrency model prevents: 1) the complete understanding
of the DSL’s semantics, 2) the effective usage of concurrency-
aware analysis techniques, and 3) the exploitation of the
concurrency model during the system refinement (e.g., during
its allocation on a specific platform).

There exist state of the art approaches like [5]–[7], which
propose to explicit the model of concurrency and commu-
nication (MoCC1) of a language. Making a MoCC explicit
enables fine tuning of the computational semantics and usu-
ally offers simulations facilities. However, these approaches
provide either the capacity to adapt to a DSL (Ptolemy [5]
or Modhel’X [6]) or the capacity to drive formal refinement
and reasoning on the system (Forsyde [7]). Hence, forcing the
designer to choose between domain adequacy and analysis
power. To the best of our knowledge there is no approach
providing a formal and explicit concurrency model that can be
embedded in the definition of a the domain specific concepts
to create an executable DSL.

In this paper, we present MoCCML, a dedicated declar-
ative meta-language for formally and explicitly specifying
the concurrency concern within the definition of a DSL.
In the same way BNF [8] or MOF [9] are meta-languages
dedicated to the specification of the syntax, MoCCML is a
meta-language dedicated to the definition of the concurrency
concern (i.e.,the MoCC). Moreover, MoCCML can take into
account the unavoidable impacts introduced by the choice of a
deployment platform on concurrency and timing. Based on its
formal semantics, MoCCML and the associated tooling offer
a generic workbench for simulation and exploration of any
model conforming to a DSL and whose concurrency semantics
is defined in MoCCML.

The overall description of MoCCML is given in Section
II. To highlight our approach, we define in Section III the
MoCC of a lightweight extension of the Synchronous Data
Flow Llanguage (SDF [1]).

1In the context of this paper, a MoCC is a focused vision of the model of
computation (MoC), which defines the concurrency, the synchronizations and
the possibly timed way the element of a program interact during an execution.

Fig. 1. Big Picture of MoCCML

II. CONCURRENCY MODELING WITH MOCCML

The meta-language MoCCML tends to crystallize the best
practices from the concurrency theory and the model-driven
engineering. It leverages experiences on the explicit definition
of the valid scheduling of an application through a clock
constraint language [10] and an automata-based language [11].
It also reifies the appropriate concepts to enable automated
reasoning.

A. MoCCML Overview

MoCCML is a declarative meta-language specifying con-
straints between the events of a MoCC. At any moment during
a run, an event that does not violate the constraints can occurs.
The constraints are grouped in libraries that specify MoCC
specific constraints (named MoCC on Figure 1 and conforming
to MoCCML). These constraints can also be of a different kinds,
for instance to express a deadline, a minimal throughput or
an hardware deployment. They are eventually instantiated to
define the execution model of a specific model (see Figure 1).
The execution model is a symbolic representation of all the
acceptable schedules for a particular model.

To enable the automatic generation of the execution model,
the MoCC is weaved into the context of specific concepts from
the abstract syntax of a DSL. This contextualization is defined
by a mapping between the elements of the abstract syntax and
the constraints of the MoCC (achieved by the box named Map-
ping in Figure 1). The mapping defined in MoCCML is based
on the notion of event, inspired by ECL [12], an extension
of the Object Constraint Language [13]. The separation of the
mapping from the MoCC makes the MoCC independent of the
DSL so that it can be reused. From such description, for any
instance of the abstract syntax it is possible to automatically
generate a dedicated execution model (see "executable model"
in Figure 1).

In our approach, this execution model is acting as the config-
uration of a generic execution engine (see "generic execution
engine" in Figure 1), which can be used for simulation or
analysis of any model conforming to the abstract syntax of
the DSL.

RelationLibrary ConstraintDeclaration

ConstraintDefinition
ConstraintAutomataDefinition

Event Variable

DeclarativeDefinition

DeclarationBlock

Guard

TransitionTrigger

BooleanExpression

Action
State

declarations
0..*

definitions 0..*

constrainedEvents

0..*

declaration
1

declBlock
0..1

variables
0..*

transitions

0..*

states1..*

finalStates1..*

initialState1

trigger0..1

value
0..1

source
0..*

target

0..*

trueTriggers0..*falseTriggers

0..*

guard0..1

actions0..*

Fig. 2. Excerpt of the MoCCML Metamodel

MoCCML is defined by a metamodel (i.e.,the abstract syntax)
associated to a formal Structural Operational Semantics [14].
MoCCML comes with a model editor combining textual and
graphical notations, as well as analysis tools based on the
formal semantics for simulation and exhaustive exploration.

In the remainder of this section, we present the concepts of
MoCCML (i.e.,the MoCCML metamodel), its concrete syntax
and the semantics behind these concepts.

B. MoCCML Syntax

1) Abstract Syntax: MoCCML is based on the principle of
defining constraints on events. In the abstract syntax, there are
two categories of constraint definitions: the Declarative Def-
initions and the Constraint Automata Definitions (see Figure
2). Each constraint definition has an associated Constraint-
Declaration that define the prototype of the constraint. These
definitions constraint some Events.

A declarative definition is defined as a set of constraint
instances. For more details, we refer the reader to [15] that de-
scribed the declarative part inspired from the CCSL language.

As illustrated in Figure 2, a Constraint Automata Definition
contains a set of States with a single initial state and one
or more final states. It also contains DeclarationBlocks where
local Variables can be declared. To ease exhaustive simulations
we restricted the types of the variables (and parameters to be
Event or Integer).

The constraint automata definition introduces the concept
of Transition which links a source state and a target state.
It contains a Trigger that defines two sets of events (namely
trueTriggers and falseTriggers). The transition is fired if the
events in the trueTriggers set are present and the ones in the
falseTriggers set are absent. A transition can define a Guard.
A guard is a boolean expression over the local variables or
the parameters of the definition. Finally, during the firing of a
transition, actions such as integer assignments (possibly with
a value resulting from an expression such as the increment of
a counter) can operate on the local variables.

2) Concrete Syntax: The concrete syntax of MoCCML is im-
plemented as a combination of graphical and textual syntaxes
to provide the most appropriate representation for each part of
a MoCC conforming to the aforementioned abstract syntax.

SimpleSDFRelationLibrary

PlaceConstraintDef

PlaceConstraint

write: event

read: event

pushRate: int

popRate: int

itsDelay: int

itsCapacity: int

definesdefines

{write}{read}
[size < itsCapacity-pushRate]
/ size +=pushRate

{read}{write}
[size > popRate]
/ size -=popRate

S1

S0
/ size =itsDelay

Fig. 3. Screenshot of the MoCCML graphical editor

The graphical model shown in Figure 3 defines a MoCC
Constraint Library (SimpleSDFRelationLibrary), which con-
tains a constraint declaration named PlaceConstraint. The
constraint declaration is associated to a constraint automata
definition (PlaceConstraintDef). In this library, we define a
constraint between the read and write events. The automaton
operates on 5 integer parameters (one variable: size ; and
4 constants: itsCapacity, itsDelay, pushRate, popRate),
which are set during the instantiation process.

C. MoCCML Semantics

This section overviews the operational semantics of
MoCCML, which allows the effective construction of the ac-
ceptable schedules. The interested reader can refer to [15] for
a full definition of the operational semantics. An execution
model consists in a finite set of discrete events, constrained
by a set of constraints. A schedule σ over a set of events
E is a possibly infinite sequence of Steps, where a step is a
set of occurring events. σ : N → 2E . For each step, one or
several event(s) can occur. The goal of the semantics rules is
to specify how to construct the acceptable schedules.

The semantics of a specification expressed in MoCCML is
given as a Boolean expression on E , where E is a set of
Boolean variables in bijection with E. For any e ∈ E , if e is
valued to true then the corresponding event occurs; if valued
to false then it does not occur. If no constraints are defined,
each boolean variable can be either true or false and there are
2n possible futures for all steps, where n is the number of
events. Consequently, in this case the number of acceptable
schedules is infinite.

Each time a constraint is added to the specification, it adds
boolean constraints on E . The boolean constraints depends
on the definition of the MoCCML constraint and its internal
state. When several MoCCML constraints are defined, their
boolean expressions are put in conjunction so that each
added constraint reduces the set of acceptable schedules. For
instance, if the sub-event declarative constraint is defined
between two events e1 and e2 (i.e.,e1 sub-event of e2), then
the corresponding boolean expression is e1 ⇒ e2.

The same principle applies to the constraint automata def-
initions. The boolean expression associated to a specific con-
straint automata is obtained according to: 1) the value of the

automata local variables; 2) the current state; 3) the evaluation
of boolean guards on the output transition of the current state
and 4) the triggers (trueTriggers and falseTriggers) on the
output transitions of the current state.

The semantics of a constraint automata is defined as a
logical disjunction of the boolean expressions associated to
the output transitions of the current state. For a transition t,
if its guard is valued to true, the resulting boolean expression
is the conjunction of all the events in the trueTrigger set
in conjunction with the conjunction of the negation of all the
events in the falseTrigger set. For instance, in the constraint
automata depicted in Figure 3, the boolean expression when
size is lesser than itsCapacity minus pushRate is: write∧
¬read. In the case where size is also greater than popRate
the automata semantics is (write∧¬read)∨(read∧¬write).
If the new computed step is such that the boolean equation of
one transition is valued to true, then the transition is fired,
meaning that the current state evolves to the target of the fired
transition and the actions of this transition are executed.

At this step, we introduced the syntax and the semantics of
MoCCML. In the next section we illustrate the use of MoCCML
to define a MoCC and its mapping to an illustrative DSL.

III. MOCC DEFINITION OF A SIGNAL PROCESSING DSL

In our extension of the SDF syntax, an application is
described as a set of Agents. Upon activation, each agent
uses the data on its Input Ports, executes N processing cycles
and produces computed results on its Output Ports. Data in
transition between Agents are stored in Places with limited
capacity.

A. SDF MoCC

Before explicitly introducing the MoCC constraints, the set
of relevant SDF events have to be identified. In the context of
an Agent the relevant events are: start, stop and isExecuting
(see Listing 1). Moreover, the ports have also the read (input
port) and write (output ports) events.

The events are part of the mapping since they are defined in
the context of a concept of the DSL and are used as parameters
by MoCCML constraints (see line 7 listing 1).

1 c o n t e x t Agent
2 def : s t a r t : Event
3 def : s t o p : Event
4 def : i s E x e c u t i n g : Event
5 c o n t e x t P l a c e
6 inv P l a c e L i m i t a t i o n :
7 R e l a t i o n P l a c e C o n s t r a i n t (s e l f . o u t p u t P o r t . w r i t e , s e l f

. i n p u t P o r t . read , s e l f . o u t p u t P o r t . r a t e , s e l f .
i n p u t P o r t . r a t e , s e l f . de l ay , s e l f . c a p a c i t y)

Listing 1. Part of the event and constraint mapping in the context of the
SDF concepts

With such a mapping, for a specific model, any instance
of the meta class Agent is associated to the three events.
These events have to be constrained to provide the adequate
semantics. For instance in line 6 of Listing 1 the events
are used in a constraint (i.e. PlaceConstraint) defined in the
context of a Place. The PlaceConstraint automata is shown on
Figure 2. It defines a constraint between the read of an input

port and the write event of an output port linked by a place.
This automata imposes that read does not occur if there is not
enough data in the place and write does not occur if there is
not enough room in the place. This constraint is instantiated
for each instance of Place in a SigPML model.

The reader should note that this automata could be modified
to provide variants of the semantics. For instance, one could
add a transition to specify that read and write can be done
simultaneously (as supported by multiport memories).

Another constraint automata, not represented in this paper,
has been defined in the context of an Agent. It defines that:
1) read is simultaneous to start, 2) isExecuting occurs
only between start and stop 3) stop occurs at the N th

occurrences of isExecuting that follows start, and 4) stop is
simultaneous to a write. In the case where N equals 0 (i.e.,the
SDF abstraction), then the read, the start, the stop and the
write are simultaneous. However, an execution time can be
specified, for example according to a deployment on a specific
platform.

These two constraint automata reproduce the SDF seman-
tics and they are explicitly defined on the concepts of the
metamodel.

At this point we note two important characteristics of our
approach:

• It offers the ability to define (and to vary) the MoCC of a
dedicated modeling language, much as Ptolemy or Mod-
hel’X. However, instead of doing so by implementing a
specific API in a general purpose language, we rely on a
formal model suitable for analysis;

• We do not enforce the designer to use a propri-
etary DSML, as opposed to formal framework such as
ForSyDe. Instead, we are injecting the MoCC into the
designer appropriate language.

IV. CONCLUSION

In the current state of the art we identified a lack in the
possibility to formally define the concurrency concern in the
definition of a Domain Specific Language (DSL), i.e.,based on
the definition of the domain specific concepts. We proposed
to fill this lack by defining a dedicated meta-language with a
formal semantics. By doing so we enrich the DSL syntax with
an explicit MoCC, mapped onto the domain specific concepts.
MoCCML is illustrated with the definition of a lightweight
extension to SDF. Such an explicit MoCC can be used by a
generic execution engine to drive simulation and analysis on
any model conforming to the DSL.

We also extended SDF (i.e.,the syntax and the MoCC) to
define a deployment on a simple platform. Due to place re-
striction, this is not described in this paper but on a companion
website2. As preliminary results, we have shown the possibility
to extend the SDF MoCC to specify both application and
platform constraints. In this context, the SDF extension is used
to model and validate an application from the Passive Acoustic
Monitoring (PAM) domain. We first model a PAM system

2http://gemoc.org/date15/

under an infinite resource assumption before studying three
different deployments on different platforms. The extended
MoCC has been used to evaluate, through simulation traces and
exhaustive exploration, the impact of the different allocations
on the valid scheduling of the application. These experiments
shown the ability to understand the impact of the deployment
on the actual parallelism of a given system. It also validated
the configuration of the generic execution engine by an exe-
cution model to offer the possibility to simulate the different
models and to obtain by exploration quantitative results on the
scheduling state-space.

MoCCML paves the way to various usages of an explicit
concurrency model in a DSL specification. While we focused
on the use of the concurrency model for validation and
verification purposes, it opens the way for, among others,
design space exploration, optimizing compiler and adaptation
at runtime.

ACKNOWLEDGMENT

This work is partially supported by the ANR INS Project
GEMOC (ANR-12-INSE-0011).

REFERENCES

[1] E. A. Lee and D. G. Messerschmitt, “Synchronous data flow,” Proc. of
the IEEE, vol. 75, no. 9, pp. 1235–1245, 1987.

[2] R. Milner, Communicating and mobile systems: the pi calculus. Cam-
bridge university press, 1999.

[3] ——, “A calculus of communicating systems,” 1980.
[4] J. Hutchinson, J. Whittle, M. Rouncefield, and S. Kristoffersen, “Empir-

ical assessment of mde in industry,” in ICSE. ACM, 2011, pp. 471–480.
[5] J. Eker, J. W. Janneck, E. A. Lee, J. Liu, X. Liu, J. Ludvig, S. Neuen-

dorffer, S. Sachs, and Y. Xiong, “Taming heterogeneity – the Ptolemy
approach,” Proc. of the IEEE, vol. 91, no. 1, pp. 127–144, 2003.

[6] C. Hardebolle and F. Boulanger, “Modhel’x: A component-oriented
approach to multi-formalism modeling,” in Models in Software Engi-
neering. Springer, 2008, pp. 247–258.

[7] I. Sander and A. Jantsch, “System modeling and transformational design
refinement in ForSyDe [formal system design],” Computer-Aided Design
of Integrated Circuits and Systems, IEEE Transactions on, vol. 23, no. 1,
pp. 17–32, 2004.

[8] D. D. McCracken and E. D. Reilly, “Backus-naur form (bnf),” in
Encyclopedia of Computer Science. John Wiley and Sons Ltd., 2003,
pp. 129–131.

[9] OMG, Meta Object Facility (MOF), 2014, Version 2.4.2.
[10] F. Mallet, J. DeAntoni, C. André, and R. de Simone, “The clock

constraint specification language for building timed causality models
- application to synchronous data flow graphs,” ISSE, vol. 6, no. 1-2,
pp. 99–106, 2010.

[11] P. I. Diallo, J. Champeau, and V. Leilde, “Model based engineering for
the support of models of computation: The cometa approach,” in MPM,
2011.

[12] J. Deantoni and F. Mallet, “ECL: the Event Constraint Language, an
Extension of OCL with Events,” INRIA, Tech. Rep. RR-8031, 2012.

[13] OMG, Object Constraint Language, 2014, Version 2.4.
[14] G. D. Plotkin, “A structural approach to operational semantics,” Journal

of Logic and Algebraic Programming, 1981.
[15] J. Deantoni, P. Issa Diallo, C. Teodorov, J. Champeau, and B. Combe-

male, “Operational Semantics of the Model of Concurrency and Com-
munication Language,” Tech. Rep.

