Line Drawing Interpretation in a Multi-View Context (Supplementary Material)

Jean-Dominique FAVREAU Florent LAFARGE Adrien BOUSSEAU
INRIA Sophia-Antipolis, France

firstname.lastname@inria.fr

Details on the computation of $\mathcal{M}(l)$

We detail here the resolution of the quadratic minimization problem under linear constraints formulated in Section 4.3. We want to minimize the function ϵ

$$
\begin{equation*}
\epsilon=\sum_{i \in \mathcal{V}}\left\|R P_{i}-S P_{i} p_{i}\right\|^{2} \tag{1}
\end{equation*}
$$

under the following linear constraints

$$
\begin{equation*}
(\forall i \in \mathcal{F}) \sum_{j \in \mathcal{E}} c_{i j} \lambda_{j} v_{j}=0 \tag{2}
\end{equation*}
$$

Each vertex P_{i} is defined in homogeneous coordinates using

$$
\begin{equation*}
P_{i}=P_{0}+\sum_{j \in \mathcal{E}} \delta_{i j} \lambda_{j} v_{j} \tag{3}
\end{equation*}
$$

where P_{0} is the reference vertex expressed in the camera frame as

$$
\begin{equation*}
P_{0}=\binom{\alpha \widehat{n}+\beta \widehat{u}+\gamma \widehat{v}}{0}+\binom{0_{3}}{1} \tag{4}
\end{equation*}
$$

where \widehat{n} is the camera direction. P_{0} is rewritten in a more compact form as

$$
P_{0}=\omega+\sum_{k=1}^{2} \eta_{k} \widehat{n}_{k} \quad \text { with }\left\{\begin{array}{l}
\eta_{1} \widehat{n}_{1}=\left(\begin{array}{c}
\beta \widehat{u} \\
0 \\
\widehat{v} \\
0
\end{array}\right) \tag{5}\\
\eta_{2} \widehat{n}_{2}=\binom{\alpha \widehat{n}}{1} \\
\omega=\left(\begin{array}{c}
\end{array}\right)
\end{array}\right.
$$

By first replacing the expression of P_{0} from Eq. 5 into Eq. 3, and then replacing the expression of P_{i} into Eq. 1, we can formulate ϵ as

$$
\begin{equation*}
\epsilon=\sum_{i \in \mathcal{V}}\left\|R \omega-S \omega p_{i}+\sum_{k=1}^{2} \eta_{k}\left(R \widehat{n}_{k}-S \widehat{n}_{k} p_{i}\right)+\sum_{j \in \mathcal{E}} \delta_{i j} \lambda_{j}\left(R v_{j}-S v_{j} p_{i}\right)\right\|^{2} \tag{6}
\end{equation*}
$$

This can also be formulated as

$$
\begin{equation*}
\epsilon=\lambda^{T} A_{0} \lambda+\lambda^{T} B_{2} \eta+\eta^{T} J \eta+K^{T} \eta+C+B_{1}^{T} \lambda \tag{7}
\end{equation*}
$$

where $A_{0}, B_{1}, B_{2}, J, K$ and C are matrices defined by

$$
\left\{\begin{array}{l}
\left(\forall(j, k) \in \llbracket 1,|\mathcal{E}| \rrbracket^{2}\right) A_{0}^{j k}=\sum_{i \in \mathcal{V}}<\delta_{i j}\left(R v_{j}-S v_{j} p_{i}\right), \delta_{i k}\left(R v_{k}-S v_{k} p_{i}\right)> \\
(\forall(j, k) \in \llbracket 1,|\mathcal{E}| \rrbracket \times \llbracket 1,2 \rrbracket) B_{2}^{j k}=\sum_{i \in \mathcal{V}} 2 \delta_{i j}<R v_{j}-S v_{j} p_{i}, R \widehat{n}_{k}-S \widehat{n}_{k} p_{i}> \\
\left(\forall(j, k) \in \llbracket 1,2 \rrbracket^{2}\right) J_{j k}=\sum_{i \in \mathcal{V}}<R \widehat{n}_{j}-S \widehat{n}_{j} p_{i}, R \widehat{n}_{k}-S \widehat{n}_{k} p_{i}> \tag{8}\\
(\forall j \in \llbracket 1,2 \rrbracket) K_{j}=\sum_{i \in \mathcal{V}} 2<R \widehat{n}_{j}-S \widehat{n}_{j} p_{i}, R \omega-S \omega p_{i}> \\
C=\sum_{i \in \mathcal{V}}<R \omega-S \omega p_{i}, R \omega-S \omega p_{i}> \\
(\forall j \in \llbracket 1,|\mathcal{E}| \rrbracket) B_{1}^{j}=\sum_{i \in \mathcal{V}} 2 \delta_{i j}<R v_{j}-S v_{j} p_{i}, R \omega-S \omega p_{i}>
\end{array}\right.
$$

Eq. 7 can be rewritten as

$$
\epsilon=\left(\begin{array}{ll}
\lambda^{T} & \eta^{T}
\end{array}\right)\left(\begin{array}{cc}
A_{0} & B_{3} \tag{9}\\
B_{3}^{T} & J
\end{array}\right)\binom{\lambda}{\eta}+\left(\begin{array}{cc}
B_{1}^{T} & K^{T}
\end{array}\right)\binom{\lambda}{\eta}+C
$$

where $B_{3}=\frac{1}{2} B_{2}$. We have indeed $\lambda^{T} B_{2} \eta=\lambda^{T} B_{3} \eta+\eta^{T} B_{3}^{T} \lambda$.
This is also equivalent to

$$
\begin{equation*}
\epsilon=X^{T} A X+B X+C \tag{10}
\end{equation*}
$$

where X, A and B are matrices give by

$$
X=\binom{\lambda}{\eta}, A=\left(\begin{array}{cc}
A_{0} & B_{3} \tag{11}\\
B_{3}^{T} & J
\end{array}\right), B=\left(\begin{array}{cc}
B_{1}^{T} & K^{T}
\end{array}\right)
$$

The equation (12) is the constraints defined in (2) rewritting in matrix mode using (13) and (14).

$$
\begin{gather*}
D X=0 \tag{12}\\
D=\left(\begin{array}{cc}
D_{1} & 0 \\
D_{2} & 0 \\
D_{3} & 0
\end{array}\right) \tag{13}\\
\left\{\begin{array}{c}
(\forall(i, j) \in \llbracket 1,|\mathcal{F}| \rrbracket \times \llbracket 1,|\mathcal{E}| \rrbracket) D_{1}^{i j}=c_{i j} v_{j}^{x} \\
(\forall(i, j) \in \llbracket 1,|\mathcal{F}| \rrbracket \times \llbracket 1,|\mathcal{E}| \rrbracket) D_{2}^{i j}=c_{i j} v_{j}^{y} \\
(\forall(i, j) \in \llbracket 1,|\mathcal{F}| \rrbracket \times \llbracket 1,|\mathcal{E}| \rrbracket) D_{3}^{i j}=c_{i j} v_{j}^{z}
\end{array}\right. \tag{14}
\end{gather*}
$$

The new formulation of the problem is to find \widehat{X} such that the equation (15) is respected.

$$
\begin{equation*}
\widehat{X}=\underset{X \in \operatorname{Ker}(D)}{\operatorname{argmin}}\left(X^{T} A X+B X+C\right) \tag{15}
\end{equation*}
$$

We solve Eq. (15) by Lagrange multipliers.

