
HAL Id: hal-01119490
https://hal.inria.fr/hal-01119490

Submitted on 12 Apr 2015

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Adaptive Exchange of Distributed Partial
Models@run.time for Highly Dynamic Systems

Sebastian Gotz, Ilias Gerostathopoulos, Filip Krikava, Adnan Shahzada,
Romina Spalazzese

To cite this version:
Sebastian Gotz, Ilias Gerostathopoulos, Filip Krikava, Adnan Shahzada, Romina Spalazzese. Adaptive
Exchange of Distributed Partial Models@run.time for Highly Dynamic Systems. Proceedings of 10th
International Symposium on Software Engineering for Adaptive and Self-Managing Systems, May
2015, Firenze, Italy. �hal-01119490�

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by INRIA a CCSD electronic archive server

https://core.ac.uk/display/49533031?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://hal.inria.fr/hal-01119490
https://hal.archives-ouvertes.fr


Adaptive Exchange of Distributed Partial
Models@run.time for Highly Dynamic Systems
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Abstract—Future software systems are characterized by their
high dynamicity. For example, we are experiencing a world where
Cyber-Physical Systems (CPSs) play a more and more crucial
role. CPSs integrate computational, physical, and networking
elements; they comprise a number of subsystems, or entities, that
are connected and work together. The open and highly distributed
nature of the resulting system gives rise to unanticipated runtime
management issues such as the organization of subsystems and
resource optimization.

In this paper, we focus on the problem of knowledge sharing
among cooperating entities of a highly distributed and self-
adaptive CPS. Specifically, the research question we address is
how to minimize the knowledge that needs to be shared among the
entities of a CPS. If all entities share all their knowledge with each
other, the performance, energy and memory consumption as well
as privacy are unnecessarily negatively impacted. To reduce the
amount of knowledge to share between CPS entities, we envision
a role-based adaptive knowledge exchange technique working on
partial runtime models, i.e., models reflecting only part of the state
of the CPS. Our approach supports two adaptation dimensions:
the runtime type of and conditions over the knowledge. We illus-
trate the feasibility of our technique by discussing its realization
based on two state-of-the-art approaches.

I. INTRODUCTION

Currently, we are experiencing an increasingly open world
where more and more distributed, highly dynamic systems,
as for example Cyber-Physical Systems (CPSs) [1], [2], [3],
play a key role. CPSs integrate computational, physical, and
networking elements that might perform many different tasks
within disparate contexts as for instance smart living spaces.
CPSs are composed of multiple subsystems or entities that
have different goals and different partial views of the world.
Subsystems can communicate and form or participate in
temporary ad-hoc collaborations with one another and any
subsystem can freely arrive and leave the environment at any
time. The open and highly distributed nature of these systems
gives rise to unanticipated runtime management issues such as
the organization of subsystems and resource optimization.

A promising approach to manage these issues is to develop
such systems as self-adaptive systems [4] by using self-
organization and self-optimization techniques. Each subsys-
tem, then, becomes autonomous and makes decisions based on
its own knowledge while taking into account the invariants of
the whole system and its environment [5]. Consequently, each
subsystem has its own knowledge exchange policy and there

is no central point of coordination from which the complete
knowledge of the system would be accessible.

This work focuses on a challenging problem for distributed
self-adaptive systems: how to minimize the knowledge that
needs to be shared and synchronized among the entities of
such a system. We do not address the problem of integrating
systems not developed to interoperate with each other. Since
the subsystems hold only a partial view of the complete
system, local decision making requires them to exchange their
knowledge to synchronize their partial views, which might be
a costly operation. A simplistic and naive solution would be
that all entities share all their knowledge with each other. This
has several drawbacks, which our approach aims to overcome:

- Performance. The intense, unnecessary knowledge exchange
decreases system performance, as it leads to unnecessary
computing cycles and network saturation.

- Energy Consumption. The more knowledge is to be ex-
changed, the more energy is required for it, but the capacity
of the participating subsystems is typically restricted.

- Memory Consumption. CPSs typically comprise small de-
vices, which are limited in terms of the memory. Hence,
storing superfluous knowledge is not a viable option.

- Privacy. The subsystems do not necessarily belong to the
same owner or come from the same vendor. In such cases,
they might possess knowledge that cannot be shared without
threatening the privacy of the owner.

In this paper, we present a role-based adaptive knowledge
exchange technique working on partial runtime models of
highly dynamic systems. A partial runtime model reflects the
partial view of an entity of such a system representing only a
part of the system’s state. Our technique supports adaptation
with respect to two dimensions: the runtime type of and
conditions over the knowledge. Concretely, the contributions
of this paper are:

(i) three strategies for knowledge exchange between collabo-
rating subsystems with tradeoffs (cf. Section IV-A),

(ii) role-based runtime models to specify the partial views of
the subsystems (cf. Section IV-B),

(iii) an illustration of the role-based adaptive knowledge
exchange for the partial runtime views in ad-hoc collabo-
rations (cf. Section IV-C).



The role-based knowledge exchange allows the collaborating
subsystems to reduce the amount of knowledge they exchange.
The overall technique faces a tradeoff between the likelihood
of optimal decision making w.r.t. the individual goals and the
associated cost, which both vary in terms of the amount of
knowledge exchanged. By facilitating the exchange of the min-
imum pertinent knowledge, our technique helps to improve the
overall CPS performance, energy and memory consumption,
as well as reducing privacy threats whilst assuring good local
decision making. We discuss two possible realizations of our
approach through two different state-of-the-art technologies.

The remainder of the paper is organized as follows. Section
II describes a motivating, running example. Section III outlines
the concepts of models@run.time and role-based modeling,
which our technique is based on. Our approach to knowledge
exchange in distributed partial runtime models is presented in
Section IV. Section V discusses related work. To show the fea-
sibility of our approach, two realizations of our approach are
outlined in Section VI. Finally, Section VII draws conclusions.

II. THE CLEANING ROBOTS RUNNING EXAMPLE

A cleaning company uses cleaning robots to carry out
cleaning jobs on a variety of premises. After office hours,
the company deploys groups of cleaning robots on contracted
sites with the objective to efficiently clean the space before a
certain deadline. A site can have multiple floors with different
layouts. As the cleaning robots are often changing cleaning
sites, it would be impractical to assume that these sites have
smart space capabilities or infrastructure. Lacking the static in-
frastructure that would play the central point that could provide
the global view of the environment and coordinate the cleaning
job, the robots need to be autonomous and independent. They
are equipped only with a short-range communication device
(e.g. Bluetooth) allowing them to exchange data while being
in proximity of one another.

There are various types of robots (e.g. specialized in dry or
wet cleaning) with different specifications. During its opera-
tion, each robot maintains information about its own state (e.g.,
battery level, bin capacity) and about its environment (e.g.,
floor plan, the parts of the floor it has cleaned) in the form
of runtime models. While the robots only acquire a partial
knowledge about their environment, they can communicate
together and query each others’ runtime models in order to
extend their knowledge and therefore improve their decisions.
For example, a robot might ask for the parts of the floor
that have already been cleaned by others in order to avoid
revisiting the same places. However, it shall only require such
information in the case it is in the “cleaning” state and not
e.g. going for charging. It should also only request it from the
right robot type. Furthermore, it should limit the query based
on its available resources and skip places unreachable within
its current battery level. Finally, knowledge exchange should
be reduced as much as possible to lower the energy impact.

Essentially, the described scenario is about the exchange
of runtime models that are both distributed and partial. The
above example helps to explain that the amount of knowledge

exchanged should be adaptable at runtime depending on:
(i) which entities communicate, i.e., based on the type of the
runtime model; (ii) the state of the requester.

An adaptive knowledge exchange technique for runtime
models can therefore be regarded as a means that allows
developers to express knowledge exchange between runtime
models and automate its adaptation at runtime, based on the
runtime type of knowledge and conditions over it.

III. BACKGROUND

In this section we give a brief summary of models@run.time
and role-oriented modeling, which our approach is based on.
Models@run.time. The change from programming stationary
to mobile devices (e.g., CPSs) introduced several new chal-
lenges on software engineering techniques. Among them is
the necessity to handle contextual changes in applications. For
example, the change in brightness when a car drives through
a tunnel should lead to a color inversion of the navigation
display. In other words, software for mobile devices is required
to reflect on itself and its environment.

To enable this self- and context-awareness, the systems
have to keep the respective information. The models@run.time
paradigm proposes to use modeling techniques to capture and
process this information using runtime models, i.e., models
representing a view on the current state of the system [6], [7].

Our approach leverages models@run.time since each au-
tonomous subsystem keeps and updates its own runtime
model. Our approach extends the existing work in the mod-
els@run.time community by discussing three adaptive knowl-
edge exchange strategies to synchronize the partial runtime
models of subsystems forming ad-hoc collaborations.
Role-based Modeling. The modeling of complex, dynamic
domains has been a key challenge of software engineering for
more than 40 years. Nowadays, a huge amount of software is
developed according to the object-oriented paradigm, which is
based on concepts introduced already in 1967 [8].

Role-oriented modeling, originally introduced by Bachman
in 1973 [9], is an alternative, which provides means to capture
the contextual and relational nature of objects, i.e., allows one
to model self- and context-aware software [10].

Roles differ from objects in terms of the properties of their
types [11]. An object, being an instance of a class, is rigid
and non-founded, meaning that the object cannot change its
type and is not required to depend on any other object. A role,
being an instance of a role type, is anti-rigid and founded, i.e.,
can change its type at runtime, but has to be connected to an
object, which is playing this role. For example, Student is a
role type, because a person can stop to be a student without
ceasing to exist. It is the person which plays the role of a
student. The type Person, on the contrary, is a class. Moreover,
the focus in role-based modeling is on collaborations. Models
covering classes and role types are called role models and can
be seen as objectified collaborations.

Our approach leverages on role-based modeling by superim-
posing role models on runtime models of autonomous entities,
which allows to dynamically type the runtime information.



IV. KNOWLEDGE EXCHANGE IN DISTRIBUTED PARTIAL
RUNTIME MODELS

In this section, we present our technique for role-based
adaptive knowledge exchange between collaborating CPS.
First, we introduce three strategies for knowledge exchange
characterized by different tradeoffs (cf. Section IV-A). Then,
by exploiting our cleaning robots example, we present our
role-based runtime models (cf. Section IV-B). Finally, we il-
lustrate the role-based adaptive knowledge exchange of partial
runtime models through a query language (cf. Section IV-C).

A. Knowledge Exchange Strategies

Towards the definition of knowledge exchange strategies,
there are two aspects that are relevant: the degree of pairing
among subsystems for their communication and the amount
of knowledge to be shared among them. The first can be
either total, i.e., every subsystem communicates with each
other, or partial, i.e., only some subsystems communicate
with some others. The amount of knowledge, on the other
hand, can be either complete, i.e., a subsystem exchanges
all its knowledge, or a subset, i.e., a subsystem exchanges
only a subset of its knowledge, Consequently, we identified
the following three strategies that each subsystem can use to
exchange its knowledge with the other subsystems.

1) Total-Complete. Each subsystem exchanges its complete
knowledge with every subsystem. In this case each sub-
system maintains a complete view of the whole system.

2) Partial-Complete. Each subsystem exchanges its com-
plete knowledge, but only with the subsystems it directly
collaborates with.

3) Partial-Subset. Each subsystem exchanges only part of its
knowledge, and only with the subsystems it collaborates
with. The knowledge part that is being exchanged pertains
to the current collaboration.
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Fig. 1. An Ad-hoc Collaboration Among Three Subsystems.

Figure 1 depicts three subsystems (Participant 1, 2 and
3) forming an ad-hoc collaboration. The collaboration is
represented by the black filled boxes specifying the role
(Member or Leader) of each participant in the collaboration.
Leaders directly collaborate with members, but members do
not collaborate with each other directly (only through the

leader). Each subsystem has: its own knowledge, captured in
a Runtime Model (RM), its own Goals, and its own Decision
making mechanisms. A RM specifies a set of relevant aspects
of the world and they capture only a part of the whole System
Knowledge (i.e., V1, V2, V3 that are partial views). Since each
subsystem has its own RM, this shall be updated as frequently
as needed to adequately reflect the current world.

When some subsystems form a collaboration, their RMs
will overlap as they will capture some common parts of the
system knowledge. Since each subsystem potentially employs
different abstraction mechanisms (masking) on the observed
knowledge, it is highly improbable for two subsystems to have
identical partial RMs. Each RM is the result of applying an
abstraction function fi on the part of the world Vi covered by
the system: RMi = fi(Vi).

Below, we revisit and elaborate on the three identified
strategies for knowledge exchange.

First strategy (Total-Complete). In the first strategy, where all
subsystems share all their knowledge, all subsystems will base
their decisions on

⋃
i∈1..n RMi, where n is the number of

participants. This, in turn, offers the benefit that all participants
are guaranteed to have all required knowledge for their local
decision making. The downside is the negative impact on
performance, memory and energy as well as privacy, because
potentially more knowledge than necessary is exchanged.

Second strategy (Partial-Complete). For the second strategy
only directly collaborating subsystems exchange their com-
plete knowledge. Knowing the application-specific collabora-
tion, allows to reduce the knowledge exchange. Participant
1 shares its knowledge with Participant 2, but not with Par-
ticipant 3. Similarly, Participant 3 only shares its knowledge
with Participant 2. Only Participant 2 has the knowledge of all
participants as it directly collaborates with all others. Thus, the
drawbacks of the first strategy are reduced. On the contrary,
the local decisions of the participants can be suboptimal, due
to not having the complete knowledge.

Third strategy (Partial-Subset). Finally, in the third strategy,
each subsystem exchanges only part of its knowledge and only
with the subsystems it directly collaborates with. As subsys-
tems can take part in multiple collaborations, the challenge is
to identify which knowledge of which participant is actually
required for their decision making. This strategy allows the
subsystems to cherry-pick which information is exchanged in
order to further decrease the amount of knowledge that is
transferred. While it might decrease the optimality of the local
decision making, this strategy helps to improve performance,
memory and energy consumption as well as privacy.

The third strategy can therefore vary the tradeoffs between
optimality of local decision making, which can be seen as the
utility of the participants, and the respective cost. For this, the
optimal tradeoff in terms of utility and cost for local decision
making is to be identified, where both utility and cost, are
functions over the amount of knowledge to be exchanged. To
reach this goal, we propose to leverage role models, which



are objectified collaborations. The binding of roles to players
enables the identification of knowledge required for decision
making based on the runtime type of that knowledge.

B. Role-based Runtime Models

Figure 2 depicts in the upper-left the role model Cleaning
that is comprised of five role types: a cleaner, a spot, a clean
and dirty spot and a full cleaner role type. The links between
the role types are role constraints as introduced by Riehle [12].

For example, the implication constraint between the clean
spot and spot denotes the necessity of an object playing the
clean spot role to play the spot role, too (this holds similarly
for dirty spot and spot). The prohibition constraint between
the clean spot and dirty spot denotes the necessity for an
object playing one of the two roles, not to play the other
role at the same time. The solid arrow between cleaner and
spot specifies the ability of the cleaner to work on the spot
(i.e., is a role-use/association constraint). Note that each role
type can define its own attributes, as shown for the cleaner
role type. Consequently, role instances can have a state. The
binding between roles and their players is expressed using the
fills constraint between role types and classes. In the example,
fields can play spot roles and robots can play cleaner roles.
Moreover, the Cleaning role model comprises a nested role
model for rooms. Thus, rooms are modeled as a collaboration
of spots, which enables the movement of walls in office
buildings. The annotation {1+} is a multiplicity constraint on
the number of role instances required by an instance of the
role model to be valid (in the example capturing the fact that
a room consists of at least one spot).

A concrete scenario is depicted on the right side of Figure 2.
Here the world consists of three fields, where two play the
clean spot role and one the dirty spot role. In addition, one
robot exists, which is participating in the collaboration in the
role of a cleaner. The specification of when a player starts or
stops to play a role is part of the description of the role types.
For example, the cleaner role type will initiate the playership
of the full cleaner role for its associated player, when it senses
that it is full, i.e., whilst performing its cleaning behavior.

To illustrate how to distinguish collaboration-specific
knowledge, which is to be identified for the third knowledge
exchange strategy, Figure 2 additionally depicts the Disposal
role model. This additional role model specifies that robots
can play the role of being bin lorries with a filling level and
fields can play the role of bins, with their own filling level. The
bin role type denotes an empty field where the cleaning robots
are supposed to collect all the trash. If a robot is currently
seeking for a bin, it only requires the knowledge captured by
the Disposal, but not by the Cleaning role model.

In general, the specification of collaboration-specific knowl-
edge is realized by modeling multiple collaborations, where
role types can be played by the same entities of the runtime
model. If two autonomous systems approach each other and
intend to exchange knowledge, they are now enabled to query
collaboration-specific knowledge by formulating the queries
against the role models instead of the runtime model.

Disposal

Full Bin

<<playedBy>>

<<playedBy>>

Cleaning

Spot

Full
Cleaner

Dirty
Spot

Clean 
Spot

World

Field Robot

<<playedBy>><<playedBy>>

Cleaner
full : boolean

x : int
y : int

width : int
height : int

currentPos

ip : String

Bin Lorry
fill level : double

Bin
fill level : double

World

Field Robot

x : int
y : int
isBin : boolean
isDirty : boolean
fill level : double

width : int
height : int

ip : String
full : boolean
fill level : double

Room

name : String

Fig. 3. Metamodel of Runtime Model Without Role Models.

For a comparison between our proposed approach of using
role models superimposed on runtime models, Figure 3 depicts
a possible metamodel for the runtime model of the above
example without role models, i.e., comprising all knowledge–
which was extracted to the two role models in Figure 2.

C. Illustration

Imagine the scenario where two cleaning robots approach
each other and one is seeking for the next dirty spot to clean. In
the case without role models, the query could look as follows:

SELECT f.* FROM Field f WHERE f.isDirty = true

As a result, the robot will get all the field objects that the
other robot knows of being dirty. But, these objects contain
additional, superfluous knowledge, which in this case is even
known in advance: the field cannot be a bin and, hence, the fill
level is set to a default value. In contrast, the query against the
role model of Figure 2 could look, in RSQL [13], as follows:

SELECT * FROM Cleaning PLAYING DirtySpot

The PLAYING clause refines the selection based on role
types. This query will return all dirty spot role instances that
the other robots know of in its current cleaning collaboration.
These instances provide just the required knowledge to the
requesting robot: the property of the field to be dirty and its
coordinates. The knowledge about disposal is not shared.

Thus, using role models, collaborating entities can share
knowledge based on the runtime type of the data, i.e., a type
that can change at runtime.

An important benefit of using role models to reduce the
amount of knowledge to be exchanged is increased evolvabil-
ity. The restriction to receive only the coordinates of dirty spots
could be realized by explicitly naming them in the projection
of the SQL query. That is for the example above:

SELECT f.x, f.y FROM Field f
WHERE f.isDirty = true

The problem of explicitly naming the attributes of interest
arises when the system evolves and new attributes are added
to the field. For example, adding a third coordinate (z) to
the fields. Without role models, all queries restricting the
knowledge to the coordinates of the field have to be adjusted,
whereas with role models all queries can stay unchanged.

Next to this, it is of course also possible to filter the results
by conditions using the SQL language construct WHERE. For
example, a robot seeking for the next dirty spots could narrow
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Fig. 2. Combination of Role Models and Runtime Models.

the search to include only the tiles reachable before it has to
recharge (remDist is the remaining travel distance):

SELECT * FROM Cleaning PLAYING DirtySpot ds
WHERE sqrt((x-ds.x)ˆ2 + (y-ds.y)ˆ2) < remDist

Consequently, role models allow to reduce the amount of
knowledge to be shared by dynamically changing the runtime
type of the requested objects and by evaluating conditions.

V. RELATED WORK

The problem of execution and knowledge exchange via
partial models across different elements in the system has
been studied by many researchers from multi-agent systems,
component-based systems, and nature-inspired computing dis-
ciplines. The proposed approaches differ in terms of (i) how
they organize the system and coordinate the partial models to
achieve system-level goals, and (ii) the mechanisms they em-
ploy for knowledge exchange and collaboration. Hence, we limit
our discussion to these criteria.

From an organizational point of view, we find grouping
or clustering of components/agents to be a popular approach.
For instance, DEECo [14], SeSaMe [15] and ASPECS [16],
[17], form interactions and collaborations between different
entities of a system through ensembles, groups and holarchies,
respectively. DEECo is an ensemble-based component system
where an ensemble represents dynamic binding of a set
of components and thus determines their composition and
interaction. Each component has a state and corresponding
processes that are independent of the ensembles it is part of.
SeSaMe coordinates distributed components in various self-
organizing inter-composed groups based on the types of roles
they can play. ASPECS is an agent-oriented methodology
that employs holonic organization of agents to map system
capabilities to user injected goals. A holon is a general term
denoting an entity that has its own individuality, but, at the
same time, is embedded in larger wholes.

SAPERE [18], on the other hand, takes a nature-inspired
approach for component organization and binding, based on

the concept of chemical tuple spaces. Each component in the
SAPERE ecosystem has an associated semantic representation
(chemical annotation); this enables dynamic component inter-
actions in an unsupervised way. The components interact with
each other according to the so called “eco-laws” to fulfill their
own goals as well as the goals of the overall ecology.

For communication, the proposed solutions adopt different
paradigms that include direct messaging, ad-hoc collaboration
spaces, and the use of mediator models [19], [20]. Typically,
agent-based systems use direct messaging among the partic-
ipating partial models to enable negotiation and persuasion
between agents. ASPECS conforms with the FIPA protocol
[21]. SeSaMe also incorporates direct messaging among the
components. SAPERE, on the other hand, makes use of a
distributed shared space, where context and knowledge are
provided by a set of semantic representations of agents.
Another approach [22] generates a mediator model to bind
systems represented in a labeled transition system.

The amount of knowledge, exchanged at runtime between
components, each having a partial view of the system, is sig-
nificant and influences the efficiency of the underlying system.
In DEECo, the knowledge of every component is proactively
shared among all components and only used in components
of the same ensemble (the ensemble membership condition is
evaluated locally in each component) [23]. SeSaMe handles
knowledge distribution through dynamic roles that restrict
the amount of knowledge to be shared among interacting
components. SAPERE and ASPECS handle this by matching
service providers (capabilities) and consumers (goals).

VI. DISCUSSION

In this section, we provide a discussion about possible
realizations of our approach. We focus on two promising
approaches surveyed in the related work, namely DEECo and
SeSaMe, to analyze how they can employ different proposed
strategies and use the proposed role models to guide the design
process while developing highly dynamic systems.



a) Realization of First Strategy through DEECo: To deal
with extreme dynamicity coming from external uncertainty
in CPS environments (intermittent connections, physical mo-
bility of nodes, opportunistic communication schemes, etc.),
DEECo employs the first strategy (Total-Complete) from our
list of knowledge exchange strategies. DEECo provides the
component-based abstractions and corresponding machinery
for implementation and deployment of CPS applications which
fit our view of autonomous collaborating subsystems. In par-
ticular, the illustrative example from Section IV-C corresponds
to a DEECo application comprising two DEECo components:
Robot and Room. The Room contains a map of several spots.
It also comprises a dynamic collaboration group (ensemble in
DEECo terms): DirtySpotsExchange. Its goal is to exchange
the knowledge of the Room, specifically the set of the remain-
ing dirty spots in the room, with the Robot.

In particular, every node in a DEECo application periodi-
cally and proactively gossips both its own and the knowledge
of other nodes that it knows of with all other nodes1 [23]. In
our example, this means that all the knowledge of the Room is
passed to the Robot, and vice versa. Then, ensemble evaluation
is performed locally on the Robot, which results into mapping
data from its temporary knowledge base (used by the gossip
protocol) to its internal knowledge, a step that finally makes
the dirty spots (pertinent to this collaboration) accessible from
within the Robot’s processes.

Thus, the knowledge exchange approach favored by DEECo
trades having complete knowledge for local decision-making
for higher network utilization and data redundancy.

b) Realization of Second Strategy through SeSaMe:
SeSaMe employs the second strategy (Partial-Complete) as it
uses group-based coordination to form collaborations among
heterogeneous subsystems. The groups are formed on the
basis of roles that various components are capable to perform.
Therefore, the proposed role model can be used to guide
the design process in SeSaMe. A SeSaMe application of
the running example comprises two component types: Robot
and Field. Each Robot maintains its own state including
its location. The Robot component can play the Cleaner or
BinLorry role, whereas, the Field component can take one of
three possible roles: DirtySpot, CleanSpot, and Bin role. Each
of these roles has a state (data) and programmed behaviors.
Further, these components are coordinated as three dynamic
SeSaMe groups: (i) the Cleaning group which comprises
components assigned to the cleaning task, (ii) the Disposal
group consisting of components participating in the disposal
activity, and the (iii) Room grouping all Fields of a room.

In SeSaMe, a group is comprised of a component with a
supervisor role and various components with follower roles.
Therefore, in the current context, a robot can play both the
supervisor and follower roles (as a Cleaner or BinLorry)
with respect to its participation in various groups (Cleaning
or Disposal). On the other hand, a Room group may be
composed with certain Cleaning group(s) within a proximity.

1Here, gossiping takes the form of probabilistic broadcasting.

SeSaMe creates these dynamic groups at runtime, based on
the defined rules (grouping policies) [15] and, hence, allows
for the formation of ad-hoc collaborations to facilitate role-
oriented knowledge exchange among member components of
a group. In this way, SeSaMe enables various subsystems to
take part in multiple collaborations (groups) and with each
collaboration their knowledge is extended. This strategy im-
proves performance and memory consumption but potentially
results in decreasing the optimality of local decision-making
as decision making is done at group-level.

Although SeSaMe has the notion of roles, it does not
inherently support dynamic and adaptive knowledge exchange.
We believe that an approach that can make use of the adaptive
knowledge exchange and implements the third strategy, can
significantly improve the performance and memory consump-
tion of highly dynamic systems.

VII. CONCLUSION

In this paper we presented a role-based adaptive knowledge
exchange technique for partial runtime models. Our approach
supports adaptation w.r.t. the runtime type of knowledge and
conditions over it. We showed three strategies for knowledge
exchange between collaborating subsystems, introduced role-
based runtime models for partial views and illustrated their
use for role-based knowledge exchange. Our technique enables
cooperating subsystems to reduce the amount of knowledge
exchanged, which consequently helps to improve the overall
performance, to lower energy and memory consumption, as
well as to reduce privacy threats. Moreover, our approach
lowers maintenance efforts for queries between subsystems by
capturing collaboration-specific knowledge in role types. We
discussed the general technique and two possible realizations
using the DEECo and SeSaMe technologies.

As future work, we plan to build a general framework cap-
turing the protocol of interaction for highly dynamic systems
as described in the paper and will show the optimality of the
third strategy. For this, we will do prototypical implementa-
tions in DEECo and SeSaME. Next, we will investigate the
correlation of the amount of knowledge K with the corre-
sponding utility U(K) and cost C(K) by comparing the best
possible decisions a subsystem made with complete knowledge
with those it made with partial knowledge.
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[7] U. Aßmann, S. Götz, J.-M. Jézéquel, B. Morin, and M. Trapp, Mod-
els@run.time. Springer LNCS, 2014, vol. 8378, ch. A Reference
Architecture and Roadmap for Models@run.time Systems.

[8] A. C. Kay, “The early history of smalltalk,” in HOPL Preprints, 1993,
pp. 69–95.

[9] C. W. Bachman, “The programmer as navigator,” Commun. ACM,
vol. 16, no. 11, pp. 635–658, 1973.
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