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Simon Fraser University, Burnaby, British Columbia, Canada V5A 1S6;
University of Toronto, Toronto, Ontario, Canada M5S 1A7; and TRIUMF, Vancouver, British Columbia, Canada V6T 2A3

32University of Michigan, Ann Arbor, Michigan 48109, USA
33Michigan State University, East Lansing, Michigan 48824, USA

34Institution for Theoretical and Experimental Physics, ITEP, Moscow 117259, Russia
35University of New Mexico, Albuquerque, New Mexico 87131, USA

36Northwestern University, Evanston, Illinois 60208, USA
37The Ohio State University, Columbus, Ohio 43210, USA

38Okayama University, Okayama 700-8530, Japan
39Osaka City University, Osaka 588, Japan

40University of Oxford, Oxford OX1 3RH, United Kingdom
41aIstituto Nazionale di Fisica Nucleare, Sezione di Padova-Trento, I-35131 Padova, Italy

41bUniversity of Padova, I-35131 Padova, Italy
42LPNHE, Universite Pierre et Marie Curie/IN2P3-CNRS, UMR7585, Paris, F-75252 France

43University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
44aIstituto Nazionale di Fisica Nucleare Pisa, I-56127 Pisa, Italy

44bUniversity of Pisa, I-56127 Pisa, Italy
44cUniversity of Siena, I-56127 Pisa, Italy

44dScuola Normale Superiore, I-56127 Pisa, Italy
45University of Pittsburgh, Pittsburgh, Pennsylvania 15260, USA

46Purdue University, West Lafayette, Indiana 47907, USA
47University of Rochester, Rochester, New York 14627, USA

48The Rockefeller University, New York, New York 10065, USA
49aIstituto Nazionale di Fisica Nucleare, Sezione di Roma 1, I-00185 Roma, Italy
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A precision measurement of the top quark mass mt is obtained using a sample of t�t events from p �p

collisions at the Fermilab Tevatron with the CDF II detector. Selected events require an electron or muon,

large missing transverse energy, and exactly four high-energy jets, at least one of which is tagged as

coming from a b quark. A likelihood is calculated using a matrix element method with quasi-Monte Carlo

integration taking into account finite detector resolution and jet mass effects. The event likelihood is a

function of mt and a parameter �JES used to calibrate the jet energy scale in situ. Using a total of 1087

events in 5:6 fb�1 of integrated luminosity, a value of mt ¼ 173:0� 1:2 GeV=c2 is measured.

DOI: 10.1103/PhysRevLett.105.252001 PACS numbers: 14.65.Ha

The top quark is the heaviest known fundamental parti-
cle in the standard model of particle physics. Since the
1995 discovery of the top quark at the Fermilab Tevatron
[1], both the CDF and D0 experiments have been improv-
ing the measurement of its mass mt, which is a fundamen-
tal parameter in the standard model [2]. Loop corrections
in electroweak theory relate mt (along with the W boson
mass mW) to the mass of the predicted Higgs boson. Thus,

precision measurements ofmt help to constrain the value of
the Higgs boson mass [3].
This Letter describes the single most-precise measure-

ment to date of the top quark mass. It is performed on
data collected by the CDF II detector [4] during Run II of
the Fermilab Tevatron p �p collider operating at

ffiffiffi
s

p ¼
1:96 TeV with a total integrated luminosity of 5:6 fb�1.
The measurement is performed on candidate t�t events

PRL 105, 252001 (2010) P HY S I CA L R EV I EW LE T T E R S
week ending

17 DECEMBER 2010

252001-3

http://dx.doi.org/10.1103/PhysRevLett.105.252001


containing a lepton and four jets [5]. For each event
selected in this analysis, we calculate the probability of
observing that event by integrating the matrix element for
t�t production and decay over phase-space variables. We use
a neural network discriminant to distinguish between sig-
nal and background events to correct for the contribution
due to background, and employ a cut on the peak like-
lihood for a given event for additional rejection of back-
ground and poorly modeled signal events. This analysis
offers a gain of nearly 20% in statistical precision over our
previous measurement [5] given an equal number of
events; there, in order to make the likelihood integration
computationally tractable, we introduced kinematic as-
sumptions to reduce the dimensionality of the integral. In
the present analysis, we use a quasi-Monte Carlo integra-
tion technique [6], which converges more rapidly than the

typical OðN�1=2Þ convergence of standard Monte Carlo
integration. This allows us to integrate over a total of
19 dimensions in a computationally practical time, result-
ing in a more accurate modeling of the event. Furthermore,
in addition to the increased data sample available with
more integrated luminosity delivered by the Tevatron, we
have expanded our muon selection ability, which increases
the size of our data sample by nearly 30%. In total, this
measurement improves our statistical precision by a factor
of 2 over our previous analysis with 1:9 fb�1 [5].

In this measurement, the largest uncertainty is due
to the uncertainty in the jet energy scale (JES) determina-
tion. To reduce this uncertainty, we calculate the likelihood
as a two-dimensional function of mt and a second parame-
ter, �JES, which corrects the jet energies by a factor of
1þ�JES � �j, where �j is the fractional systematic un-

certainty on the energy for a given jet [7,8]. The known W
boson mass is used to constrain theW ! q �q0 decay, which
yields information on the �JES parameter. We can thus
optimally combine events to reduce the total uncertainty
on mt due to JES.

Within the standard model, the top quark decays almost
exclusively into a W boson and a b quark. We define a
‘‘leptonþ jets’’ event as an event where one of the W
bosons produced by the t�t pair decays into a charged lepton
(in this analysis, an electron or a muon) and a neutrino, and
the other into a q �q0 pair. The two b quarks and two
quarks from the W boson then produce jets in the detector
[9]. We thus require candidate events to have an electron
with ET > 20 GeV or a muon with pT > 20 GeV=c in
the central detector (j�j< 1 [10]), or a muon with pT >
20 GeV=c obtained with a trigger [4] on missing trans-
verse energy, ET [10], instead of a central muon. As the
neutrino energy is not detected, we require ET > 20 GeV
in the event. We also require exactly four jets with
ET > 20 GeV within the region j�j< 2:0, at least one of
which must be tagged as a b jet using a secondary vertex
tagging algorithm [11]. To model t�t events, we use
Monte Carlo-simulated events generated with the PYTHIA

[12] generator for 15 different mt values ranging from 162
to 184 GeV=c2.
Background events contributing to the selected sample

are: (a) events in which aW boson is produced in conjunc-
tion with heavy-flavor quarks (b �b, c �c, or c); (b) events in
which a W boson is produced along with light quarks, at
least one of which is mistagged as heavy flavor; (c) QCD
events that do not contain a trueW boson; (d) diboson (WW,
WZ, or ZZ) or Zþ jets events; (e) single top events. We
model the contribution fromW þ jets events using ALPGEN

[13], single top events using MADGRAPH [14], and diboson
events with PYTHIA. The Zþ jets contributions are not
modeled separately, but are included in theW þ light flavor
contribution. All Monte Carlo samples are processed with
the CDF II detector response simulation package [15]. The
non-W QCD background is modeled using a sideband of
data events selected to have a small contribution from heavy
boson decay. The numbers of background events are esti-
mated with the method used for the t�t cross section mea-
surement [16], and are shown in Table I.
For each event, we construct a likelihood as a function of

mt and �JES using the following integral:

Lð ~y j mt;�JESÞ ¼ 1

NðmtÞ
1

Aðmt;�JESÞ

�X24
i¼1

wiLið ~y j mt;�JESÞLið ~y j mt;�JESÞ

¼
Z fðz1Þfðz2Þ

FF
TFð ~y j ~x;�JESÞ

� jMðmt; ~xÞj2d�ð ~xÞ; (1)

where ~y are the quantities measured in the detector (the
momenta of the jets and charged lepton), ~x are the parton-
level quantities that define the kinematics of the event,
NðmtÞ is a global normalization factor, Aðmt;�JESÞ is the
event acceptance as a function of mt and �JES, fðz1Þ and
fðz2Þ are the parton distribution functions (PDFs) for
incoming parton momentum fractions z1 and z2, FF is
the relativistic flux factor, TFð ~y j ~x;�JESÞ are the transfer

TABLE I. Expected sample composition for an integrated
luminosity of 5:6 fb�1. The t�t contribution is estimated using
a cross section of 7.4 pb [17] and mt ¼ 172:5 GeV=c2.

Event Type 1b Tag � 2b Tags

W þ Heavy Flavor 129:5� 42:1 15:7� 5:5
Non-W QCD 50:1� 25:5 5:5� 3:8
W þ Light Flavor Mistag 48:5� 17:1 1:0� 0:4
Diboson (WW, WZ, ZZ) 10:5� 1:1 1:0� 0:1
Single Top 13.3 � 0.9 4.0 � 0.4

Z ! ‘‘þ jets 9:9� 1:2 0:8� 0:1
Total Background 261:8� 60:6 28:0� 9:6
t�t Signal 767:3� 97:2 276:5� 43:0
Total Expected 1029:1� 114:5 304:5� 44:1
Events Observed 1016 247
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functions that describe the measured jet-momentum dis-
tributions given the quark kinematics, d�ð ~xÞ is the phase
space for the eight particles in the t�t production and decay
process, andMðmt; ~xÞ is the matrix element for the process.
The integral is calculated for each of the 24 possible
permutations of jet-parton assignment and then summed
with weights wi determined by the probability that a b or
light parton will result in a b-tagged or untagged jet.

We use the Kleiss-Stirling matrix element [18], which is
a leading-order matrix element including both q �q ! t�t and
gg ! t�t production processes, as well as all spin correla-
tions. For the PDFs, we use the CTEQ5L functions [19] for
the incoming q �q and gluons. The normalization factor
NðmtÞ is obtained by integrating the Kleiss-Stirling matrix
element with the PDFs and the flux factor over the phase
space formed by the two initial and the six final-state
particles. The acceptance Aðmt;�JESÞ is obtained from
simulated events where the parton directions and momenta
are smeared to simulate final-state jets. The transfer
functions connect the measured jets to the partons. We
construct the transfer functions by taking simulated t�t !
leptonþ jets events in a wide range of masses and match-
ing the simulated jets to their parent partons. The transfer
functions are separated into momentum and angular terms;
both are constructed with dependence on the true jet pT

and mass from the Monte Carlo simulation. The transfer
functions are constructed separately for b and light quarks,
as well as for each of four bins of jet �. There are 32 phase
space integration variables in Eq. (1) (for the two initial
partons and six final partons). Four of these are eliminated
by energy and momentum conservation, and four more by
taking the charged lepton, neutrino, and initial parton
masses as known. In addition, we assume that the lepton
momentum is perfectly measured, and we neglect the
effects of the individual transverse momenta of the initial
partons so that we model only the transverse momentum of
the total t�t system, for which we use a prior derived from
Monte Carlo simulation. This leaves a total of 19 dimen-
sions over which the integral must be evaluated, which we
perform using a quasi-Monte Carlo technique.

The handling of background events is unchanged from
our previous publication [5]. We identify events likely to
be background using a JETNET 3.5 artificial neural network
[20] with 10 inputs. We construct distributions of the
neural network output weight u for signal, SðuÞ, and back-
ground, BðuÞ, events, normalized to their overall expected
fractions, and calculate the expected background fraction
for a given event as fbgðuÞ ¼ BðuÞ=½BðuÞ þ SðuÞ�.

We calculate the likelihood for all candidate events under
the assumption that they are signal, but the combined like-
lihood contains contributions from both signal and back-
ground events. However, only the signal events contain
information about mt, so using Monte Carlo-simulated
events we compute the average likelihood for background
events and subtract it from the total likelihood

logLadjðmt;�JESÞ ¼
X

i�events

½logLð ~yijmt;�JESÞ

� fbgðuiÞ log �Lbgðmt;�JESÞ�; (2)

where Ladj is the adjusted total likelihood for a given set of

events, Lð ~yijmt;�JESÞ is the likelihood for an individual
event from Eq. (1), fbgðuiÞ is the background fraction

for a given event with a neural network output ui, and
�Lbgðmt;�JESÞ is the average likelihood for a background

event.
Besides background events, the sample includes events

which contain a real t�t, but where one or more of the four
jets or the lepton observed in the detector do not come
directly from the t�t decay, and are not well modeled by the
signal likelihood or handled by the background subtraction
above. These events, which we refer to as ‘‘bad signal,’’
have a variety of sources (extra jets from gluon radiation,
t�t events where both W bosons decay into leptons or
hadrons, W ! �� decay, etc.) and make up 36% of the
simulated t�t events for mt ¼ 172:5 GeV=c2. We suppress
these events by requiring that the peak log-likelihood value
for an event be at least 10. This cut retains 96.3% of the
signal, while rejecting 30.8% of the bad signal and 37.3%
of the background.
We test and calibrate the method by constructing simu-

lated experiments using the Monte Carlo samples of
t�t events and background described earlier. For a given
input mt and �JES, we perform 2000 experiments using a
Poisson distribution with mean of 1089 events (the number
of events expected to pass the likelihood cut), and use these
to calibrate the measurement as a function of the input mt

and �JES. Figure 1 shows the output mass before calibra-
tion and the calibrated expected uncertainty.
In the data we find a total of 1087 events which pass all

of the selection requirements (including the likelihood
peak cut), of which 854 have 1b tag and 233 have >1b
tag. Figure 2 shows the resulting 2D likelihood contours
for 1�, 2�, and 3� after all calibration.
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FIG. 1. Simulated experiment results using Monte Carlo signal
and background events. Top: Output mt vs input mt, before
calibration is applied. Bottom: Expected uncertainty �m vs input
mt, with calibration applied. The lines are linear best fits.
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To obtain a 1D likelihood curve inmt only, we treat�JES

as a nuisance parameter and eliminate it using the profile
likelihood method [21], where we take the maximum value
of the likelihood along the�JES axis for eachmt value. The
top quark mass value extracted from the profile likelihood
after calibration ismt ¼ 173:0� 0:9 GeV=c2. We can sep-
arate this uncertainty into the statistical uncertainty on mt

and the uncertainty due to �JES by fixing the �JES value to
its maximum likelihood value. We find that the uncertainty
from the resulting 1D likelihood is 0:7 GeV=c2, so we
assign the remaining uncertainty of 0:6 GeV=c2 to �JES

and conclude mt ¼ 173:0� 0:7ðstatÞ � 0:6ðJESÞ GeV=c2.
To validate the likelihood cut procedure, we compare the

peak values of the log-likelihood curves obtained with data
to those obtained with Monte Carlo-simulated events at
mt ¼ 172:5 GeV=c2 (the nearest available mass value).
The results are shown in Fig. 3.

The systematic uncertainties onmt, given in Table II, are
derived using the methods described in Ref. [5]. In brief,
we include uncertainties coming from: the calibration
method, signal Monte Carlo modeling, evaluated by com-
paring events simulated with the PYTHIA and HERWIG [22]
generators, variations of the parameters used for initial
state radiation and final state radiation, a residual JES
uncertainty because the JES uncertainty contains several
components with different pT and � dependence, addi-
tional uncertainties on the energy scale for b jets, uncer-
tainty on the lepton pT scale, multiple hadron interactions,
to take into account uncertainty on the jet corrections as a
function of the number of interactions in the event, uncer-
tainties arising from the PDFs used in the integration, and
the background modeling. This analysis includes a system-
atic uncertainty due to color reconnection effects, not
considered in our previous analysis. We use PYTHIAversion
6.4.20, which includes a color reconnection model [23],
and measure the difference between two tunes, Tune A,
which is the tune used in this analysis, and Tune ACR,
which adds color reconnection effects to Tune A. The
individual systematic uncertainties are added in quadrature
to obtain the final total of 0:9 GeV=c2.
In conclusion, the measured top quark mass in a sample

with 5:6 fb�1 of integrated luminosity, with 1087 events
passing all cuts, is mt ¼ 173:0� 0:7ðstat:Þ � 0:6ðJESÞ �
0:9ðsyst:Þ GeV=c2, for a total uncertainty of 1:2 GeV=c2.
The improved integration techniques and increased data
sample make this the best single measurement of the top
quark mass to date, and it is comparable in precision to the
most recent combination for the top quark mass at the
Tevatron [2].
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TABLE II. List of systematic uncertainties on mt.

Systematic Source Uncertainty (GeV=c2)

Calibration 0.10

Monte Carlo Generator 0.37

Initial State Radiation
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Background Modeling 0.33
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