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Holographic currents and their associated Ward identities are derived in the framework of gravity/gauge

duality. Holographic improvements of the energy-momentum tensor and R-symmetry current which are

consistent with the Ward identities are displayed. The effects of specific string loop corrections to the bulk

action are included as four derivative effective Lagrangian terms and their contributions to the trace and

R-symmetry anomalies of the boundary theory are determined. As an example, the construction is applied

to the N ¼ 2 conformal supergravity which is taken to be dual to a boundary SUðNÞ � SUðNÞ, N ¼ 1

superconformal field theory.
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I. INTRODUCTION

Type IIB string theory on an AdS5 � Y5 background,
where Y5 is a Sasaki-Einstein manifold, for large radii and
with a stack of N-D3-branes at the tip of the conical
singularity is approximated by aN ¼ 2 conformal super-
gravity which, in turn, is dual to aN ¼ 1 superconformal
field theory on the Minkowski space-time M4 boundary of
the AdS5 space [1–3]. The values of the central charges of
the superconformal field theory (SCFT), a and c, designate
different boundary field theories dual to the bulk AdS
supergravity [3]. Indeed, the energy-momentum tensor
trace and the R-symmetry current anomalies calculated
holographically in the supergravity theory and obtained
in terms of the central charges in the boundary field theory
have been shown to match in leading order [4], while
imposing subleading order matching provides a measure
of the string loop corrections to the supergravity action
through the value of the coefficient governing the higher
derivative action terms [5–10].

The trace anomaly of the boundaryN ¼ 1 SCFT in the
presence of background gravitational and Uð1ÞR gauge
fields and in the absence of sources related to any other
global symmetries has the general form [3]

��� ¼ 1

16�2
½cW2 � aR2

GB� þ
c

6�2
F��F

��; (1)

where W����¼R����þ1=ðd�2Þ½g��R���g��R���
g��R��þg��R����1=ðd�2Þðd�1Þðg��g���g��g��ÞR
is the Weyl tensor in d-dimensional space-time with R����

the Riemann tensor and R2
GB the Einstein-Gauss-Bonnet

invariant R2
GB ¼ R2

���� � 4R2
�� þ R2 in all dimensions.

F�� is the Uð1ÞR gauge field strength tensor. Expanding

the gravitational contributions to the anomaly yields

��� ¼ 1

16�2

�
2ð2a� cÞR��R

�� þ 1

3
ðc� 3aÞR2

þ ðc� aÞR����R
����

�
þ c

6�2
F��F

��: (2)

For an R current defined so that it lies in the same N ¼ 1
supersymmetry (SUSY) supercurrent multiplet as the
energy-momentum tensor and with the trace and
R-current anomalies also appearing in their own SUSY
anomaly multiplet, then the R-symmetry current anomaly
is given in terms of the same a and c coefficients and has
the form [3]

@�ð ffiffiffiffiffiffiffi�g
p

R�Þ ¼ 1

24�2
ðc� aÞ�����R�	

��R�	��

þ 1

18�2
ð5a� 3cÞ�����F��F��: (3)

In order for these currents, along with the SUSY current, to
lie in the same N ¼ 1 supermultiplet, they must have
appropriate normalization and improvements. If the R
charges are defined differently, say by a rescaling by r,
R ! rR, then the contribution to theF ~F termwill be scaled
as r3 while the R ~R contribution to the anomaly triangle will
be scaled only linearly with r. Furthermore, if the overall
normalization of the R current is also scaled so that R� !

R�, then the two terms on the right-hand side of the
divergence Eq. (3) get modified by 
r and 
r3 factors,
respectively. These factors will be necessary in matching
the holographically defined boundary currents to the con-
ventional SCFT supercurrent components.
The field theory determination of these anomaly coef-

ficients is [3]
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a¼ 3

32
ð3TrR3�TrRÞ; c¼ 1

32
ð9TrR3� 5TrRÞ; (4)

where R is the R-symmetry charge of the fields and the
trace is over all chiral fermion fields. Inverting these
expressions yields the linear and cubic nature of their
triangle contributions Tr½R� ¼ �16ðc� aÞ and Tr½R3� ¼
16ð5a� 3cÞ=9. The leading N2 contribution to the anom-
aly coefficients implies that c ¼ a for the class of models
considered here. Hence, the gravitational field contribution
to the trace anomaly occurs only through the Ricci tensor
and scalar curvature terms and not the Riemann tensor
term, while there is no leading order gravitational contri-
bution to theR-symmetry anomaly. The subleading largeN
contributions to both anomalies are reflected not only in the
ðc� aÞ � 0 difference of the central charges but also in the
subleading corrections to each individually.

On the supergravity side, the leading order contributions
to the anomalies are given by the 2 derivative terms in the
bosonic part of the supersymmetric action

�Leading ¼
Z

d5x detE

�
1

2�
Rþ�� ZA

4
FMNF

MN

þ CEMNRSTFMNFRSAT

�
; (5)

where detEEMNRST ¼ �MNRST and EA
M is the gravitational

fünfbein. The AdS5 gravitational constant is 2� ¼ 16�G5

and the cosmological constant is� ¼ �6=�R2
5 with R5 the

AdS5 radius of curvature. The Uð1ÞR field strength tensor
FMN ¼ @MAN � @NAM while the rescaled gauge field
wave function normalization factor ZA is determined by
matching the holographic energy-momentum tensor anom-
aly to that of the boundary SCFT as given in Eq. (2). The
N ¼ 2 SUSY determines the Chern-Simons coefficient
(see the Appendix)

C ¼ ðZA2�Þ3=2
24�

ffiffiffi
3

p : (6)

The leading order trace anomaly was found in Ref. [4] in
the absence of the Uð1ÞR field strength. After its inclusion,
the trace anomaly is

��� ¼
�
1

8

R3
5

�

��
R��R

�� � 1

3
R2

�
þ

�
R5ZA

4

�
F��F

��:

(7)

Comparing this to Eq. (2) yields the leading order results
that a ¼ c and identifies the gravitational constant as
R3
5=� ¼ a=�2. Requiring consistency for the F2 contribu-

tion yields that the wave function normalization factor
satisfies ZAR5 ¼ 2a=3�2. The direct variation of the action
with respect to R-symmetry transformations, �RAM ¼
@M�, yields the divergence of the holographic R current
in leading order as

�R�Leading ¼ �C
Z
M4

d4x�ðxÞ�����F��F��: (8)

AdS=CFT duality implies that the holographic R-current
anomaly coefficient C is


r3C ¼ 1

18�2
ð5a� 3cÞ ¼ a

9�2
: (9)

Inserting the definition of C from Eq. (6) in terms of a and
c requires the normalization of the charges and current to
obey 
r3 ¼ 3 in order for the R current to belong to the
N ¼ 1 supercurrent multiplet.
The subleading contributions to the anomalies arise due

to higher order 4 derivative terms in the action coming
from string loop effects along with subleading corrections
to the coefficients of the 2 derivative terms [5–10]. The
R-symmetry anomaly arises directly from the variation of
the five-dimensional mixed Uð1ÞR gauge field and gravita-
tional field Chern-Simons term as

�RRA ¼ �D
Z

d5x detEEMNRSTRX
YMNR

Y
XRSAT; (10)

where D � �R3
5=3 and  sets the scale of the SUSY

completion of the 4 derivative contributions to the action.
In the notation of Ref. [10] 16�G5 ¼ c2=192. The Uð1ÞR
transformation, �RAT ¼ @T�, yields the gravitational con-
tribution to the R-symmetry anomaly as

�R�RRA ¼ �D
Z
M4

d4x�ðxÞ�����R�	
��R�	��: (11)

ExploitingAdS=CFT duality, the boundary SCFT result for
the gravitational contribution to the R anomaly is such that
the holographic R current and R charges must include the
rescaling by 
 and r in order for the R current to fit in the
supercurrent with the holographic energy-momentum ten-
sor, so that


rD ¼ 1

24�2
ðc� aÞ: (12)

As in leading order case, the 2-derivative pureUð1ÞR gauge
Chern-Simons term is responsible for the gauge field con-
tribution to the R anomaly. With an AdS action term of the
form [11,12],

�FFA ¼ C
Z

d5x detEEMNRSTFMNFRSAT; (13)

where C is fixed by supersymmetry [10] through sublead-
ing order (see the Appendix) to be C ¼ 2R3

5½1þ
12ð2�Þ=R2

5�=27ð2�Þ. As previously, its contribution to

the R anomaly is

�R�FFA ¼ �C
Z
M4

d4x�ðxÞ�����F��F��: (14)

AdS=CFT duality implies that the R-anomaly coefficient
C is
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r3C ¼ 1

18�2
ð5a� 3cÞ: (15)

Note that ðc� aÞ=a ¼ 8D=ð3r2Cþ 12DÞ ¼ 8D=3r2C to
subleading order.

On the other hand, the SUSY completion of the mixed
Chern-Simons term requires many more 4 derivative terms
to be added to the supergravity action [5–10] albeit with
relative coefficients determined by the supergravity trans-
formations and overall coefficient fixed by  [10]. In the
SUSY case discussed here, the Weyl tensor squared term
has been shown [10] to be the source of the corresponding

subleading pure gravitational corrections to the trace anom-
aly. The two independent gravitational tensor couplings to
the Uð1ÞR field strength bilinear along with the three field
strength covariant derivative bilinears provide the sublead-
ing field strength squared corrections as shown in the
Appendix for arbitrary coefficients. (Indeed, the coupling
of the Weyl tensor to the field strength, FMNFRSW

MNRS,
does not contribute to the anomaly while the remaining
couplings to the Ricci tensor and scalar curvature do con-
tribute.) For the conformal supergravity values of the co-
efficients [10], this action reads

�Subleading ¼ 
Z

d5x detE

�
WMNRSW

MNRS þ R5

3
EMNRSTRX

YMNR
Y
XRSAT þ 2

9
R2
5FMNF

MNR� 32

9
R2
5FMRFN

RRMN

� 16

3
R2
5FMNrNrRF

MR � 8

3
R2
5rMFNRrMFNR � 8

3
R2
5rMFNRrNFMR þ SUSY Completion

�
: (16)

The remaining SUSY completion terms do not contribute
to either anomaly. The holographic trace anomaly in the
general non-SUSY case is considered in the Appendix.
Specializing the results of the Appendix to the N ¼ 2
conformal supergravity case, the holographic trace anom-
aly has the form

��� ¼
�
� 1

24

R3
5

�
� 1

3
R5

�
R2 þ

�
1

8

R3
5

�
þ 2R5

�
R��R

��

� R5R����R
���� þ

�
R5ZA

4
� 160

9
R5

�
F��F

��:

(17)

Using AdS=CFT duality to match the trace anomaly in
the SCFT form, Eq. (2), to the holographic trace anomaly,
Eq. (17), leads to the values for the gravitational constant �
and the scale of the subleading corrections 

R3
5

�
¼ a

�2
R5 ¼ �ðc� aÞ

16�2
: (18)

Consistency also requires the value of the coefficient of the
Riemann tensor squared to be given as ðc� aÞ=16�2, in
agreement with the above results. In addition, it is in
agreement with the conformal supergravity symmetry con-
straints relating the subleading gravitational contribution
to the trace anomaly to just the Weyl tensor squared as
given in Eq. (16). The Uð1ÞR field strength contribution to
the anomaly involves only the coefficient c. This part of the
trace anomaly fixes the wave function renormalization of
the Uð1ÞR gauge field to be

ZAR5 ¼ 2

3

a

�2
þ 10

9

ðc� aÞ
�2

: (19)

The N ¼ 2 supergravity constraints require the super-
symmetric values of C and D to be given by

C ¼ 2R3
5

27ð2�Þ
�
1þ 12

ð2�Þ
R2
5

�
¼ 1

3

ð5a� 3cÞ
18�2

;

D ¼ �R5

3
¼ 1

2

ðc� aÞ
24�2

;

(20)

where the second equality employs the relationship of the
supergravity coefficients to a and c from the trace anomaly
above. Turning to the R-symmetry AdS=CFT anomaly
matching Eqs. (12) and (15), the Chern-Simons coeffi-
cients imply the need to normalize the R charges and

current so that r ¼ ffiffiffiffiffiffiffiffi
3=2

p
and 
 ¼ ffiffiffiffiffiffiffiffi

8=3
p

for the holo-
graphic R current to belong to the supercurrent.
As an example, taking the above mentioned Sasaki-

Einstein manifold to be Y5 ¼ T1;1, these anomaly match-
ing results can be applied to the large N strong ’t Hooft
coupling superconformal SUðNÞ � SUðNÞ SUSY gauge
theory with a pair of bi-fundamental ðN; �NÞ chiral matter
fields A1 and A2 and a pair of anti–bi-fundamental ð �N;NÞ
chiral matter fields B1 and B2 [12–14]. The central charges
calculated in the boundary field theory determine the two
supergravity parameters related to the gravitational con-
stant � and  which sets the scale for the four derivative
terms. The A and B chiral superfields have R ¼ 1=2, so the
~A and ~B matter fermions have R ¼ �1=2. The 2ðN2 � 1Þ
gluinos have R ¼ 1. Hence, the boundary SCFT has

a ¼ 27

64
N2 � 3

8
; c ¼ 27

64
N2 � 1

4
; (21)

with ðc� aÞ ¼ 1=8. Thus the gravitational constant is seen
to be

R3
5

�
¼ 27

64�2
N2

�
1� 8

9N2

�
; (22)

and the wave function renormalization ZA is found to be
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ZAR5 ¼ 9

32�2
N2

�
1� 32

81N2

�
; (23)

while the coefficients of the 4 derivative terms are given by
 and are found to be subleading

R5 ¼ � 1

128�2
: (24)

The anomaly matching results aside, the purpose of this
paper is to construct the energy-momentum tensor and
R-symmetry current [15] in the case that the subleading
mixed Chern-Simons term is added to the leading order
supergravity action. This truncated 4 derivative action will
provide the leading gravitational contributions to each
anomaly (leading N2 contributions with c ¼ a in the trace
anomaly case and subleading N0 contributions with c � a
in the R-anomaly case). The pure Uð1ÞR gauge field con-
tributions are leading order N2 terms for each anomaly. In
Sec. II, the near-boundary field equations are solved and
the abbreviated action is holographically renormalized
through the addition of boundary counterterms [16–18].
In Sec. III the Brown-York energy-momentum tensor [19]
and R-symmetry current are constructed via the boundary
source variational principle for the action [4,20]. The
covariant divergence of the energy-momentum tensor has
the Brown-York form and yields the diffeomorphism in-
variance of the renormalized action Ward identity [21],
thus providing its interpretation as a boundary energy-
momentum tensor. Improvements to both currents are con-
structed consistent with the Ward identities and trace and
R-symmetry anomalies. They are shown to follow from the
variation of boundary action improvement terms.

II. HOLOGRAPHIC SUPERGRAVITYACTION

The bosonic part of the bulk AdS5 N ¼ 2 conformal
supergravity action including the single 4 derivative mixed
Chern-Simons term is given by

� ¼
Z

d5x detE

�
1

2�
Rþ�� ZA

4
FMNF

MN

þ CEMNRSTFMNFRSAT

�DEMNRSTRX
YMNR

Y
XRSAT

�

þ 1

�

Z
�¼�

d4x
ffiffiffiffiffiffiffiffi�

p
KðÞ þ �Counterterms; (25)

where

ds2 ¼ R2
5

�

�
g��ðx; �Þdx�dx� � d�2

4�

�
(26)

is the Fefferman-Graham metric for the (asymptotic) AdS5
space of radius R5. Here �� ¼ ðR2

5=�Þg��ðx; �Þj�¼� is the

induced metric on the fixed � ¼ � hypersurface homeo-
morphic to theM4 boundary. The extrinsic curvature on that
surface is given by the gradient of the normal vector there
yielding K�� ¼ ð�=R5Þ@��=@�j�¼�. The counterterm

boundary action �Counter-terms ¼
R
�¼� d

4x
ffiffiffiffiffiffiffiffi�

p
BðÞ is de-

termined through holographic renormalization and normal-
ization conditions as discussed at the end of this section.
The Riemann tensor is given in terms of the Christoffel
symbol �R

MNas

RR
SMN ¼ @N�

R
SM � @M�

R
SN þ �L

SM�
R
LN � �L

SN�
R
LM; (27)

with �R
MN ¼ 1

2g
RS½@NgSM þ @MgSN � @SgMN�. The Uð1Þ

R-symmetry gauge field AM has field strength tensor
FMN ¼ rMAN �rNAM ¼ @MAN � @NAM. The world
tensor EMNRST ¼ �ABCDEE�1M

A E�1N
B E�1R

C E�1S
D E�1T

E ¼
ð1= detEÞ�MNRST with the fünfbein

EM
A ¼

R5ffiffiffi
�

p e�
aðx; �Þ 0

0 R5

2�

0
@

1
A

MA

; (28)

where g��ðx; �Þ ¼ e�
aðx; �Þ�abe�

bðx; �Þ with �ab ¼
ðþ;�;�;�Þab.
Varying the bulk action with fixed boundary conditions

for the fields yields the field equations. The Einstein equa-
tion has the form

RMN � 1
2gMNR ¼ gMN��� �TMN; (29)

with the Ricci tensor defined by RMN � RR
MNR and the

scalar curvature given by R � gMNRMN . The bulk energy-
momentum tensor TMN is obtained as

TMN ¼ TMaxwell
MN þrX�

X
MN; (30)

with the R-symmetry gauge field’s contribution to the
energy-momentum tensor given by the Maxwell symmet-
ric form

TMaxwell
MN ¼ ZAFMRF

R
N � gMN

�
�ZA

4
FRSF

RS

�
; (31)

while the mixed gauge-gravity Chern-Simons contribution
to the energy-momentum tensor is

�X
MN ¼ 2DEQRSTUFTUðgQMR

X
NRS þ gQNR

X
MRSÞ: (32)

The covariant derivative is defined according to

rMTN
R � @MTN

R � �P
MNTP

R þ �R
MPTN

P: (33)

The Maxwell equation is generalized to include the Chern-
Simons terms so that

ZArMF
ML þ 3CEMNRSLFMNFRS

¼ DEMNRSLRX
YMNR

Y
XRS: (34)
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Using the relations rMEN
B ¼ 0 ¼ rME

PQRST , this can be
written as

ZA@MðdetEFMLÞ þ 3C detEEMNRSLFMNFRS

¼ D detEEMNRSLRX
YMNR

Y
XRS: (35)

Applying the Fefferman-Graham metric, the Einstein
equations can be expanded to have the forms (here the
covariant derivative is made utilizing g��)

�½2g00�� � 2g0�
g

�g0�� þ g0��g

��g0���
þ R��ðgÞ � 2g0�� � g��g

��g0��

¼ ��T�� þ 1

2
g���g

��T��

� �g��

�
1

3�2
ð6þ R2

5��Þ þ 1

6�
�g��T�� þ 4

3
�T44

�
;

(36)

g��g00�� � 1

2
ðg��g0��g��g0��Þ

¼ 1

3�2
½6þ R2

5��� þ 1

6�
�g��T�� þ 4

3
�T44; (37)

r�ðg��g0��Þ � r�g0�� ¼ 2�T�4; (38)

where the prime indicates differentiation with respect to �,
so that, for example, g0�� � @g��=@�. Likewise the

Maxwell equations have the detailed structure (here the
permutation tensor E����ðgÞ ¼ �����=

ffiffiffiffiffiffiffi�g
p

)

2R5ZA@�½deteg��A0
�� þ 3C deteE����ðgÞF��ðAÞF��ðAÞ

�D deteE����ðgÞR�

��ðgÞR


���ðgÞ
¼ þ4�D deteE����ðgÞR
�

��ðgÞg0��g0
�
þ 2�D deteE����ðgÞðr�g

0
��

�r�g
0
��Þg�
ðr�g

0

� �r�g

0

�Þ; (39)

�
@

@�
½ZA deteg


�A0
�� � 1

4
@�½ZA deteg

��g
�F��ðAÞ� ¼ 6�

R5

C deteE���
ðgÞA0
�F��ðAÞ

� 2�

R5

D deteE���
ðgÞ
�
g��

�
� 1

�
g�� � 2�g00�� þ �g��g0��g0��

�
ðr�g

0
�� �r�g

0
��Þ:

þ
�
1

2
g��r�g

0
�� � �0�

��ðgÞ
��
R�

���ðgÞ þ 1

�
g���

�
� � g0���

�
� � 1

�
g���

�
� þ g0���

�
�

� g��g
��g0�� þ �g0��g��g0�� þ g��g

��g0�� � �g0��g��g0��
��

: (40)

The boundary currents have an expectation value in the
presence of the background gravitational and Uð1ÞR gauge
fields given in terms of the asymptotic behavior of the bulk
fields at theM4 boundary of theAdS5 space. Consequently,
the field equations need only be solved close to the bound-
ary at � ¼ 0 in order to determine these one point func-
tions. The Uð1ÞR gauge field A�ðx; �Þ has the asymptotic
form in � close to the boundary given by

A�ðx; �Þ ¼ Að0Þ
� ðxÞ þ �Að2Þ

� ðxÞ þ � lnð�=R2
5ÞB�ðxÞ: (41)

Likewise for �� 0, the gravitational field has the behavior

g��ðx; �Þ ¼ gð0Þ��ðxÞ þ �gð2Þ��ðxÞ þ �2gð4Þ��ðxÞ
þ �2 lnð�=R2

5Þh��ðxÞ: (42)

Substituting these expansions into the Maxwell equations
results in their right-hand sides vanishing as � ! 0 while
the fields B� and the covariant divergence of Að2Þ

� being
determined in terms of Að0Þ

� . The transverse part of Að2Þ
� is

undetermined. It corresponds to the other linearly indepen-
dent solution to the second order Dirichlet problem and it
appears as the subleading asymptotic behavior of A�ðx; �Þ.

A second boundary condition deeper into the bulk would
be needed for its specification. Using gð0Þ to raise and lower
indices, the Uð1ÞR gauge field has the asymptotic solution

B�ðxÞ ¼ 1
4rð0Þ

� Fð0Þ��

2R5ZArð0Þ
� Að2Þ�ðxÞ ¼ �3CE����ðgð0ÞÞFð0Þ

��F
ð0Þ
��

þDE����ðgð0ÞÞRð0Þ�

��R

ð0Þ

���:

(43)

In order to find the asymptotic solution to the Einstein
equations, the bulk energy-momentum tensor must be ex-
panded in terms of � where it is found from Eqs. (30)–(32)
that

T��ðx; �Þ ¼ �Tð2Þ
��ðxÞ þ � � � ;

T44ðx; �Þ ¼ Tð0Þ
44 ðxÞ þ � � � ;

T�4ðx; �Þ ¼ �Tð2Þ
�4ðxÞ þ � lnð�=R2

5Þ ~T�4ðxÞ þ � � � ;
(44)

with
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Tð2Þ
��ðxÞ ¼ 1

R2
5

�
ZAF

ð0Þ
��Fð0Þ�

� þ ZA

4
gð0Þ��F

ð0Þ
��Fð0Þ��

�
; Tð0Þ

44 ðxÞ ¼ � ZA

16R2
5

Fð0Þ
��Fð0Þ��;

Tð2Þ
�4ðxÞ ¼ � 1

R2
5

ZAF
ð0Þ
��gð0Þ��½Að2Þ

� þ B�� þ 1

R3
5

DEð0Þ���
Fð0Þ
�
½rð0Þ

� gð2Þ�� �rð0Þ
� gð2Þ���

� 1

R3
5

DEð0Þ���
rð0Þ
� ½Fð0Þ

�
ðRð0Þ�
��� � gð0Þ��gð0Þ��gð2Þ�� þ gð0Þ��gð0Þ��gð2Þ��Þ�;

~T�4ðxÞ ¼ � 1

R2
5

ZAF
ð0Þ
��gð0Þ��B�: (45)

Note that gð0Þ��Tð2Þ
�� ¼ 0 and rð0Þ�Tð2Þ

�� ¼ 4 ~T�4. It is useful
to consider the Maxwell contribution to Tð2Þ

�4 separately

Tð2ÞMaxwell
�4 ¼ � 1

R2
5

ZAF
ð0Þ
��gð0Þ��½Að2Þ

� þ B��; (46)

and hence the mixed Chern-Simons contribution is just
Tð2ÞD
�4 ¼ Tð2Þ

�4 � Tð2ÞMaxwell
�4 .

The metric coefficients gð2Þ and h can be determined
from the field equation expansion in terms of the boundary

metric gð0Þ and the boundary R-symmetry gauge field Að0Þ
�

while only the trace and divergence of gð4Þ is determined in

terms of gð0Þ and Að0Þ
� by the near-boundary expansion. The

remaining components of gð4Þ being fixed by a needed
second boundary condition deeper into the bulk for these
second order differential equations. From Eq. (36) and the

vanishing of the bulk energy-momentum tensor T�� as ��
0, it is found that ��R2

5 ¼ �6 and

gð2Þ�� ¼ 1

2

�
Rð0Þ
�� � 1

6
gð0Þ��Rð0Þ

�
; (47)

along with gð0Þ��gð2Þ�� ¼ ð1=6ÞRð0Þ. Expanding Eq. (37)

immediately yields gð0Þ��h�� ¼ 0 and

gð0Þ��gð4Þ�� ¼ 1

4
ðgð0Þ��gð2Þ�
g

ð0Þ
�gð2Þ��Þþ 2

3
�Tð0Þ

44

¼ 1

16
½Rð0Þ

��Rð0Þ��� 2

9
Rð0Þ2�� �ZA

24R2
5

Fð0Þ
��Fð0Þ��:

(48)

Returning to Eq. (36), h�� is obtained

h�� ¼ 1

2
gð2Þ�
g

ð0Þ
�gð2Þ�� � 1

8
gð0Þ��½gð0Þ��gð2Þ�
g

ð0Þ
�gð2Þ��� � 1

4
Rð2Þ
�� � 1

4
�Tð2Þ

�� ¼ 1

8

�
Rð0Þ
��Rð0Þ�

� � 1

3
Rð0ÞRð0Þ

�� � 1

36
gð0Þ��Rð0Þ2

�

� 1

32
gð0Þ��

�
Rð0Þ
��Rð0Þ�� � 2

9
Rð0Þ2

�
� 1

8

�
Rð0Þ
��Rð0Þ�

� � Rð0Þ��Rð0Þ
���� þ 1

6
rð0Þ

� rð0Þ
� Rð0Þ � 1

2
rð0Þ

� rð0Þ�Rð0Þ
��

þ 1

12
gð0Þ��rð0Þ

� rð0Þ�Rð0Þ
�
� 1

4R2
5

�

�
ZAF

ð0Þ
��Fð0Þ�

� þ ZA

4
gð0Þ��F

ð0Þ
��Fð0Þ��

�
; (49)

where the Ricci tensor has been expanded close to the boundary as R��ðgÞ ¼ Rð0Þ
��ðgð0ÞÞ þ �Rð2Þ

��ðgð0ÞÞ þ � � � and likewise
for the scalar curvature RðgÞ ¼ Rð0Þðgð0ÞÞ þ �Rð2Þðgð0ÞÞ þ � � � . The expansion coefficients are given by

Rð2Þ
��ðgð0ÞÞ ¼ 1

2

�
Rð0Þ
��Rð0Þ�

� � Rð0Þ��Rð0Þ
���� þ 1

6
rð0Þ

� rð0Þ
� Rð0Þ � 1

2
rð0Þ

� rð0Þ�Rð0Þ
�� þ 1

12
gð0Þ��rð0Þ

� rð0Þ�Rð0Þ
�

Rð2Þðgð0ÞÞ ¼ � 1

2

�
Rð0Þ
��Rð0Þ�� � 1

6
Rð0Þ2

�
: (50)

Note that gð0Þ��h�� ¼ 0 as found above. Finally, Eq. (38) yields the divergence of the coefficients gð2Þ, h, and gð4Þ

rð0Þ�gð2Þ�� ¼ 1

6
rð0Þ

� Rð0Þ;

rð0Þ�h�� ¼ �� ~T�4 ¼ �ZA

R2
5

Fð0Þ
��gð0Þ��B� ¼ � 1

4
rð0Þ�Tð2Þ

��

rð0Þ�gð4Þ�� ¼ � 1

2
rð0Þ�h�� þ 1

2
rð0Þ�½gð2Þ��gð0Þ�
gð2Þ
�� �

1

4
rð0Þ�½gð2Þ��ðgð0Þ��gð2Þ��Þ� þ

1

8
rð0Þ�½gð0Þ��ðgð0Þ��gð2Þ��Þ2�

� 1

8
rð0Þ�½gð0Þ��ðgð0Þ��gð2Þ��gð0Þ�
gð2Þ
�Þ� � �Tð2Þ

�4 þ
2

3
�rð0Þ

� Tð0Þ
44 : (51)
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The near-boundary analysis of the field equations allows
the boundary divergences of the action, now regulated at
the surface � ¼ �, to be determined. The regulated action
is given by

�Reg: ¼
Z

d4x
Z
�¼�

d� detE

�
1

2�
Rþ�� ZA

4
FMNF

MN

þ CEMNRSTFMNFRSAT

�DEMNRSTRX
YMNR

Y
XRSAT

�

þ 1

�

Z
�¼�

d4x
ffiffiffiffiffiffiffiffi�

p
KðÞ: (52)

Applying the Fefferman-Graham form of the metric and
employing the near-boundary solutions to the field equa-
tions the divergent terms in the action are isolated as

�Reg:¼
Z
d4x

Z
�¼�

d�
ffiffiffiffiffiffiffiffiffiffiffiffi
�gð0Þ

q �
� 1

�3

6R3
5

�
� 1

�

R3
5

16�

�
��

Rð0Þ
��Rð0Þ���1

3
Rð0Þ2

�
þ2�ZA

R2
5

Fð0Þ
��Fð0Þ��

�
þ . . .

�

¼
Z
d4x

ffiffiffiffiffiffiffiffiffiffiffiffi
�gð0Þ

q �
� 1

�2
3R3

5

�
þ lnð�=R2

5Þ
R3
5

16�

�
��

Rð0Þ
��Rð0Þ���1

3
Rð0Þ2

�
þ2�ZA

R2
5

Fð0Þ
��Fð0Þ��

��

þOð�0Þ: (53)

The holographically renormalized action is defined by cho-
osing the near-boundary counterterm action �Counterterms to
cancel the divergent terms in the regulated action and to
impose normalization conditions on the remaining finite
terms so that

�Sub: ¼ �Reg: þ �Counterterms; (54)

where, after inverting the near-boundary expansion of the
fields to write the boundary quantities in terms of the
tensors at the surface � ¼ �, the near-boundary counter-
term action is found to be

�Ct:-terms ¼ 3

�R5

Z
�¼�

d4x
ffiffiffiffiffiffiffiffi�

p �R5

4�

Z
�¼�

d4x
ffiffiffiffiffiffiffiffi�

p
RðÞ

� lnð�=R2
5Þ

R3
5

16�

Z
�¼�

d4x
ffiffiffiffiffiffiffiffi�

p �
ðR��ðÞR��ðÞ

�1

3
R2ðÞÞþ2�ZA

R2
5

F��ðAÞF��ðAÞ
�
; (55)

where the induced metric �� ¼ ðR2
5=�Þg��j�¼� on the

near-boundary surface is used in the counterterm action.
The finite holographic normalization is chosen through the
dimensionless ratio in the logarithmic counterterm as
ð�=R2

5Þ. A different normalization such as ð�=�R2
5Þ, with

� 2 Rþ, will correspond to a finite boundary term in the
action,

�Improve ¼ ln�
R3
5

16�

Z
�¼�

d4x
ffiffiffiffiffiffiffiffi�

p ��
R��ðÞR��ðÞ

� 1

3
R2ðÞ

�
þ 2�ZA

R2
5

F��ðAÞF��ðAÞ
�
; (56)

that will lead to finite holographic improvements to the
currents that do not alter the form of the scale and chiral R
anomalies and are consistent with the current Ward iden-
tities as discussed in the next section.

III. HOLOGRAPHIC CURRENTS

According to gravity/gauge duality, the expectation val-
ues of the boundary currents, the energy-momentum tensor
���ðxÞ and the R-symmetry current R�ðxÞ, in the presence

of their respective external sources gð0Þ��ðxÞ and Að0Þ
� ðxÞ are

found by varying the boundary sources in the on-shell
renormalized action as

��½gð0Þ��; A
ð0Þ
� � ¼

Z
d4x

ffiffiffiffiffiffiffiffiffiffiffiffi
�gð0Þ

q �
1

2
���ðxÞ�gð0Þ��ðxÞ

þ R�ðxÞ�Að0Þ�ðxÞ
�
: (57)

This can be accomplished by varying the sources in the
regulated near-boundary action and counterterms, then
taking the � ! 0 limit of the subtracted action. The varia-
tion of the surface � ¼ � sources  and A for the on-shell,
near-boundary regulated Einstein-Maxwell-Chern-Simons
action (i.e. the second order in derivative part of the action,
the mixed gauge-gravity Chern-Simons term has higher
order derivatives and will be treated separately) yields

��EMCS
Reg: ¼

Z
�¼�

d5x detE

�
1

2�
rRðrRgMN�g

MN �rS�g
RSÞ þ rM½�ALð�ZAF

ML þ 8CEMLRST@RASATÞ�
�

¼ � 2

�

Z
�¼�

d4x
�

R5

@

@�
½� ffiffiffiffiffiffiffiffi�
p � þ 1

2�

Z
�¼�

d4x
ffiffiffiffiffiffiffiffi�

p ½K��ðÞ � ��KðÞ����

�
Z
�¼�

d4x
ffiffiffiffiffiffiffiffi�

p
�A�

�
2ZA

�

R5

�� @

@�
A� þ 8CE����ðÞA�@�A�

�
: (58)
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In order for there to be a well-defined variational prob-
lem, the extrinsic curvature term must be added to cancel
the undetermined source variation @=@�ð���Þ terms. The
variation of the near-boundary extrinsic curvature term,
�K ¼ 1=�

R
� d

4x
ffiffiffiffiffiffiffiffi�

p
KðÞ, is found to be

��K ¼ 2

�

Z
�
d4x

�

R5

@

@�
ð� ffiffiffiffi


p Þ: (59)

In addition, the variation of the counterterms,

��Ct:�Terms ¼ � 3

2�R5

Z
�
d4x

ffiffiffiffiffiffiffiffi�
p

���
�� � R5

2�

Z
�
d4x

ffiffiffiffiffiffiffiffi�
p 1

2
½R��ðÞ � 1

2
��RðÞ����

� R5ZA ln
�

R2
5

Z
�
d4x

ffiffiffiffiffiffiffiffi�
p

���½F��F��
�� � 1

4
��F

2� þ R5ZA ln
�

R2
5

Z
�
d4x

ffiffiffiffiffiffiffiffi�
p

�A�r�F
��; (60)

are needed to provide a finite � ! 0 limit for the Einstein and Maxwell terms contributions to the currents as well as the
action (both Chern-Simons terms are finite as are their contributions to the currents).

Combining these terms, �EMCS
Sub: ¼ �EMCS

Reg: þ �K þ �Counterterms, it is found that the subtracted action is given by

��Sub: ¼ �

R2
5

Z
�
d4x

ffiffiffiffiffiffiffiffi�
p

��� 1

2

�
R2
5

��
ðK��ðÞ � KðÞ��Þ � 3R5

��
�� � R3

5

2��

�
R��ðÞ � 1

2
RðÞ��

�

� 2R5ZA ln
�

R2
5

R2
5

�

�
F��F��

�� � 1

4
��F

2

��

�
Z
�¼�

d4x
ffiffiffiffiffiffiffiffi�

p
�A�

�
2ZA

�

R5

�� @

@�
A� þ 8CE����ðÞA�@�A� � R5ZA ln

�
�

R2
5

�
r�F

��

�
: (61)

Thus the subtracted boundary energy-momentum tensor and R-symmetry current take the form

�EMCS
Sub:��ð�Þ �

R2
5

�

2ffiffiffiffiffiffiffiffi�
p ��Sub:

��� ¼ R2
5

��
ðK��ðÞ � KðÞ��Þ � 3R5

��
�� � R3

5

2��

�
R��ðÞ � 1

2
RðÞ��

�

� 2R5ZA ln
�

R2
5

R2
5

�

�
F��F��

�� � 1

4
��F

2

�

R
EMCS�
Sub: ð�Þ � 1ffiffiffiffiffiffiffiffi�

p ��Sub:

�A�

¼ �2ZA
�� �

R5

@

@�
A� þ 8CE����ðÞA�@�A� þ R5ZA ln

�
�

R2
5

�
r�F

��: (62)

Expanding these expressions as the � ¼ 0 boundary is approached gives the Einstein-Maxwell-pure Uð1ÞR gauge field
Chern-Simons contribution to the renormalized boundary currents as

�EMCS
�� ¼ �EMCS

Sub:��ð� ¼ 0Þ ¼ R3
5

�
½2gð4Þ�� þ h�� � gð2Þ��gð0Þ��gð2Þ�� � gð0Þ��ð2gð0Þ��gð4Þ�� þ gð2Þ��gð2Þ��Þ�

� R3
5

4�

�
Rð0Þ
�
R

ð0Þ

� þ Rð0Þ


���R
ð0Þ
� � 1

2
rð0Þ2Rð0Þ

�� þ 1

6
rð0Þ

� rð0Þ
� Rð0Þ þ 1

12
gð0Þ��rð0Þ2Rð0Þ2 þ 1

2
Rð0Þ
��Rð0Þ��gð0Þ��

� 1

12
gð0Þ��Rð0Þ2 � 1

2
Rð0Þ

�
Rð0Þ
�� � 1

6
gð0Þ��Rð0Þ

��

REMCS� ¼ REMCS�
Sub: ð� ¼ 0Þ ¼ �2R5ZAðAð2Þ� þ B�Þ � 4CE����ðgð0ÞÞAð0Þ

� Fð0Þ
��: (63)

These are precisely the same expressions obtained by
expanding the variation of the action terms ��EMCS ¼
lim�!0��Sub: at the boundary directly with

�EMCS
�� � 2ffiffiffiffiffiffiffiffiffiffiffiffi

�gð0Þ
q ��EMCS

�gð0Þ��

REMCS� � 1ffiffiffiffiffiffiffiffiffiffiffiffi
�gð0Þ

q ��EMCS

�Að0Þ
�

: (64)

Finally, the contribution to the currents due to the higher
derivative mixed gauge-gravity Chern-Simons term can be
determined directly from the variation of its action at the
boundary as it is finite

��RRA

¼�4D
Z

d5x@P½detEEPQRSLgQMALR
X
NRSrX�g

MN�

þ 4D
Z

d5x@X½detEEPQRSLgQM�g
MNrPðALR

X
NRSÞ�:
(65)
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The second term when expanded in terms of the Fefferman-Graham metric can be seen to vanish at the � ¼ 0 boundary:

��second term
RRA ¼ �2D

Z
d4x�g�� ffiffiffiffiffiffiffi�g

p ½E���
ðgÞF�
f�g��ð�2g00�� þ g0��g�	g0	�Þ þ �g��ð�2g00�� þ g0��g
�	g0	�Þg

þ �E���
ðgÞA0

fg��ðr�g

0
�� �r�g

0
��Þ þ g��ðr�g

0
�� �r�g

0
��Þg� ! 0; as � ! 0: (66)

The first expression for the variation of the mixed Chern-
Simons action for finite � ¼ � has an undetermined
@=@���� term in it. However, this contribution vanishes
on the � ¼ 0 boundary contrary to the extrinsic curvature
case discussed earlier

��first term
RRA ¼ �4D

Z
d4x

ffiffiffiffiffiffiffiffiffiffiffiffi
�gð0Þ

q
1

2
�gð0Þ��E���
ðgð0ÞÞ

� frð0Þ
� ½Að0Þ


 ðgð0Þ��R
ð0Þ�

��� þ gð0Þ��R
ð0Þ�

���Þ�
þ 2rð0Þ

� ½Að0Þ

 ðgð0Þ��g

ð2Þ
�� þ gð0Þ��g

ð2Þ
��Þ�

� 2Að0Þ

 ðgð0Þ��rð0Þ

� gð2Þ�� þ gð0Þ��rð0Þ
� gð2Þ��Þg: (67)

This leads to the final mixed gravitational andUð1ÞR gauge
field Chern-Simons contribution to the energy-momentum
tensor of the form

�CS�� ¼ 2ffiffiffiffiffiffiffiffiffiffiffiffi
�gð0Þ

q ��RRA

�gð0Þ��

¼ �4DE���
ðgð0ÞÞfrð0Þ
� ½Að0Þ


 ðgð0Þ��R
ð0Þ�

���

þ gð0Þ��R
ð0Þ�

���Þ� þ 2rð0Þ
� ½Að0Þ


 ðgð0Þ��g
ð2Þ
��

þ gð0Þ��g
ð2Þ
��Þ� � 2Að0Þ


 ðgð0Þ��rð0Þ
� gð2Þ�� þ gð0Þ��rð0Þ

� gð2Þ��Þg:
(68)

Thus the complete renormalized boundary energy-
momentum tensor and R-symmetry current are deter-
mined as

��� ¼ �EMCS
�� þ �CS�� ¼ R3

5

�
½2gð4Þ�� þ h�� � gð2Þ��gð0Þ��gð2Þ�� � gð0Þ��ð2gð0Þ��gð4Þ�� þ gð2Þ��gð2Þ��Þ�

� R3
5

4�
½Rð0Þ

�
R
ð0Þ


� þ Rð0Þ

���R

ð0Þ
� � 1

2
rð0Þ2Rð0Þ

�� þ 1

6
rð0Þ

� rð0Þ
� Rð0Þ þ 1

12
gð0Þ��rð0Þ2Rð0Þ2

þ 1

2
Rð0Þ
��Rð0Þ��gð0Þ�� � 1

2
Rð0ÞRð0Þ

��� � 4DE���
ðgð0ÞÞfrð0Þ
� ½Að0Þ


 ðgð0Þ��R
ð0Þ�

��� þ gð0Þ��R
ð0Þ�

���Þ�
þ 2rð0Þ

� ½Að0Þ

 ðgð0Þ��g

ð2Þ
�� þ gð0Þ��g

ð2Þ
��Þ� � 2Að0Þ


 ðgð0Þ��rð0Þ
� gð2Þ�� þ gð0Þ��rð0Þ

� gð2Þ��Þg
R� ¼ REMCS� ¼ �2R5ZAðAð2Þ� þ B�Þ � 4CE����ðgð0ÞÞAð0Þ

� Fð0Þ
��: (69)

Exploiting the near-boundary solutions to the field equa-
tions found in Sec. II the anomalous divergence of the
R-symmetry current is found to be

r�R
� ¼ CEð0Þ����Fð0Þ

��F
ð0Þ
�� þDEð0Þ����Rð0Þ�	

�� Rð0Þ
�	��:

(70)

The energy-momentum tensor has contributions from
gravity and matter flowing into the boundary of the form

r��EMCS
�� ¼ �2R3

5T
ð2Þ
�4 ¼ �2R3

5ðTð2ÞMaxwell
�4 þ Tð2ÞD

�4 Þ;
r��CS�� ¼ 2R3

5T
ð2ÞD
�4 þ Að0Þ

� AD
R; (71)

with the mixed Chern-Simons contribution to the
R-symmetry anomaly given by

A D
R ¼ DE����ðgð0ÞÞRð0Þ�	

��R
ð0Þ
���	 : (72)

From these follows theWard identity relating the diverence
of the energy-momentum tensor with that of the
R-symmetry current as

r���� ¼ Fð0Þ
��R� þ Að0Þ

� r�R
�: (73)

The trace [taken with gð0Þ��] for the various contribu-
tions to the energy-momentum tensor is found from the
field equations to be

�EMCS�
� ¼ R3

5

�

�
1

8

�
Rð0Þ
��Rð0Þ�� � 1

3
Rð0Þ2

�

þ �ZA

4R2
5

Fð0Þ
��Fð0Þ��

�
� A; (74)

while

�CS�� ¼ 0: (75)

Thus the renomalized boundary energy-momentum tensor
has the anomalous trace

��
� ¼ A: (76)

These results agree with the general diffeomorphism and
R-symmetry transformations of the action. From the defi-
nition of the boundary currents, Eq. (57), it is found that the
action is invariant under diffeomorphism transformations
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�gð0Þ�� ¼ r��� þr���;

�Að0Þ� ¼ �r���A
ð0Þ� � ��r�Að0Þ�; (77)

so that

�� ¼
Z

d4x
ffiffiffiffiffiffiffiffiffiffiffiffi
�gð0Þ

q
��½�r���� þ Fð0Þ

��R� þ Að0Þ
� r�R

��
¼ 0; (78)

as follows from Eq. (73). The anomalous R-symmetry
variation of the action follows directly from the
R-current divergence equation. For the R-symmetry
transformations

�gð0Þ�� ¼ 0; �Að0Þ� ¼ @�!; (79)

Equation (57) implies

�� ¼ �
Z

d4x
ffiffiffiffiffiffiffiffiffiffiffiffi
�gð0Þ

q
!rð0Þ�R�

¼ �
Z

d4x
ffiffiffiffiffiffiffiffiffiffiffiffi
�gð0Þ

q
!½CEð0Þ����Fð0Þ

��F
ð0Þ
��

þDEð0Þ����Rð0Þ�	
�� Rð0Þ

�	���: (80)

The energy-momentum trace anomaly Eq. (76) implies the
Weyl scale transformation,

�gð0Þ�� ¼ 2�gð0Þ��; �Að0Þ� ¼ 0; (81)

anomaly for the renormalized action

�� ¼
Z

d4x
ffiffiffiffiffiffiffiffiffiffiffiffi
�gð0Þ

q
�ðxÞ���ðxÞ

¼
Z

d4x
ffiffiffiffiffiffiffiffiffiffiffiffi
�gð0Þ

q
�ðxÞAðxÞ

¼
Z

d4x
ffiffiffiffiffiffiffiffiffiffiffiffi
�gð0Þ

q
�ðxÞR

3
5

�

�
1

8

�
Rð0Þ
��Rð0Þ�� � 1

3
Rð0Þ2

�

þ �ZA

4R2
5

Fð0Þ
��Fð0Þ��

�
: (82)

It is possible to improve the definition of the currents by
adding a finite boundary counterterm to the action given by
Eq. (56) which at the � ¼ 0 boundary becomes

�Improve ¼ ln�
R3
5

2�

Z
d4x

ffiffiffiffiffiffiffiffiffiffiffiffi
�gð0Þ

q �
1

8

�
Rð0Þ
��Rð0Þ�� � 1

3
Rð0Þ2

�

þ �ZA

4R2
5

Fð0Þ
��Fð0Þ��

�
: (83)

Its variation at the boundary is given by

��Improve ¼ ln�
R3
5

2�

Z
d4x

ffiffiffiffiffiffiffiffiffiffiffiffi
�gð0Þ

q
1

2
�gð0Þ��4h��

� ln�
R3
5

2�

Z
d4x

ffiffiffiffiffiffiffiffiffiffiffiffi
�gð0Þ

q
�Að0Þ

�
�ZA

R2
5

rð0Þ
� Fð0Þ��:

(84)

These variations lead to the energy-momentum tensor, ���,

and R-symmetry current, r�, improvement terms

��� ¼ R3
5

2�
ln�4h��;

r� ¼�R3
5

2�
ln�

�ZA

R2
5

rð0Þ
� Fð0Þ�� ¼�R3

5

2�
ln�4

�ZA

R2
5

B�: (85)

This is an improvement that is consistent with the diffeo-
morphism, R-symmetry and scale Ward identities since
these improvement terms obey

rð0Þ
� r� ¼ 0; gð0Þ����� ¼ 0; rð0Þ���� ¼ Fð0Þ

��r�:

(86)

In addition, the completely traceless and divergenceless
improvement for the energy-momentum tensor can be
obtained from the addition of the finite boundary action
term

�� ¼ �

32

Z
�¼�

d4x
ffiffiffiffiffiffiffiffi�

p �
R��ðÞR��ðÞ � 1

3
R2ðÞ

�

¼ �

32

Z
�¼0

d4x
ffiffiffiffiffiffiffiffiffiffiffiffi
�gð0Þ

q �
Rð0Þ
��Rð0Þ�� � 1

3
Rð0Þ2

�
; (87)

with � an arbitrary constant. The new improvement term
for the energy-momentum tensor becomes

�ð�Þ�� ¼ 2ffiffiffiffiffiffiffiffiffiffiffiffi
�gð0Þ

q ���

�gð0Þ��
¼ �

�
h�� þ 1

4
�Tð2Þ

��

�
: (88)

It also is consistent with the current Ward identities as

rð�Þ� ¼ 0 and

rð0Þ��ð�Þ�� ¼ 0; gð0Þ���ð�Þ�� ¼ 0: (89)

Hence the final expressions for the improved energy-
momentum tensor and R-symmetry current is obtained
from Eqs. (69), (85), and (88),
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r�Improved ¼ R� þ r� ¼ �2R5ZAðAð2Þ� þ ð1þ ln�ÞB�Þ � 4CE����ðgð0ÞÞAð0Þ
� Fð0Þ

��;

�Improved
�� ¼ ��� þ ��� þ �ð�Þ�� ¼ R3

5

� ½2gð4Þ�� þ ð1þ 2 ln�þ �Þh�� � gð2Þ��gð0Þ��gð2Þ�� � gð0Þ��ð2gð0Þ��gð4Þ�� þ gð2Þ��gð2Þ��Þ�

� R3
5

4�

�
Rð0Þ
�
R

ð0Þ

� þ Rð0Þ


���R
ð0Þ
� � 1

2
rð0Þ2Rð0Þ

�� þ 1

6
rð0Þ

� rð0Þ
� Rð0Þ þ 1

12
gð0Þ��rð0Þ2Rð0Þ2 þ 1

2
Rð0Þ
��Rð0Þ��gð0Þ��

� 1

2
Rð0ÞRð0Þ

��

�
� 4DE���
ðgð0ÞÞfrð0Þ

� ½Að0Þ

 ðgð0Þ��R

ð0Þ�
��� þ gð0Þ��R

ð0Þ�
���Þ� þ 2rð0Þ

� ½Að0Þ

 ðgð0Þ��g

ð2Þ
�� þ gð0Þ��g

ð2Þ
��Þ�

� 2Að0Þ

 ðgð0Þ��rð0Þ

� gð2Þ�� þ gð0Þ��rð0Þ
� gð2Þ��Þg þ �

4
�

1

R2
5

�
ZAF

ð0Þ
��Fð0Þ�

� þ ZA

4
gð0Þ��F

ð0Þ
��Fð0Þ��

�
: (90)

IV. CONCLUSIONS

The holographic R current and R charges require addi-
tional normalizations in order for the R current to belong to
the same N ¼ 1 SUSY multiplet as the holographic
energy-momentum tensor. In addition, a finite wave func-
tion renormalization of theUð1ÞR gauge field [c.f. Eq. (19)]
was needed in order that the holographic contribution of
the field strength to the trace anomaly Eq. (2) is consistent
with the boundary SCFT trace anomaly. The general struc-
ture of the trace anomaly including the subleading correc-
tions was reviewed in the Appendix for the generic
non-SUSY case. The Uð1Þ field strength subleading con-
tribution was obtained for generic 4 derivative terms in the
action which was used in the introduction to fix the gauge
field normalization in the supersymmetric case.

The subleading mixed gravitational field-Uð1ÞR gauge
field Chern-Simons term was added to the action as it gave
rise to subleading gravitational contributions to the R
anomaly. The modifications to the near-boundary solutions
to the field equations were then obtained along with the
boundary counterterms and normalization required by
holographic renormalization. Once the on-shell action
was obtained, the Brown-York energy-momentum tensor
and R-symmetry current were constructed. The near-
boundary solutions were used to secure the Ward identity
obeyed by the currents as

r���� ¼ Fð0Þ
��R� þ Að0Þ

� r�R
�; (91)

along with the trace and R anomalies

���¼R3
5

�

�
1

8

�
Rð0Þ
��Rð0Þ���1

3
Rð0Þ2

�
þ�ZA

4R2
5

Fð0Þ
��Fð0Þ��

�

r�R
�¼CEð0Þ����Fð0Þ

��F
ð0Þ
��þDEð0Þ����Rð0Þ�	

�� Rð0Þ
�	��: (92)

The Ward identities for diffeomorphism invariance of the
action then followed as given in Eqs. (77) and (78).
Likewise, the R-symmetry transformation of the action
was obtained in Eqs. (79) and (80) while the Weyl scaling
of the action followed in Eqs. (81) and (82). Since the
Ward identities provide the interpretation of the holo-
graphic currents as the energy-momentum tensor and
R-symmetry current, improvements to the currents were
constructed which left the Ward identities unchanged.

As explicitly demonstrated, the improvements were ex-
pressed as additional finite boundary terms in the action.
Lastly, the fermionic gravitino sector of the conformal

supergravity action can be included [22], although left here
for future work. The boundary N ¼ 1 SCFT includes the
supersymmetry current in the supercurrent multiplet and
the superconformal anomaly, given by the  trace of the
supersymmetry current, as part of the anomaly multiplet.
The central charges a and c also describe the superconfor-
mal anomaly. The holographic supersymmetry currents
can be constructed and their divergence and trace deter-
mined. The Ward identities will then include these fermi-
onic currents as well, while anomaly matching will provide
additional consistency checks for the AdS=gauge duality.
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APPENDIX: SUBLEADING
HOLOGRAPHIC ANOMALIES

The holographic calculation of the Uð1Þ and trace
anomalies for a generic Uð1Þ gauge field coupled to a
gravitational theory with a cosmological constant in five
dimensions, including four derivative terms, is considered.
The bosonic part of the gauged supergravity action relevant
for the holographic trace anomaly calculation is obtained
by imposing the appropriate SUSY relationships among
the generic parameters as presented below. The leading,
two derivative part of the action contributing to the trace
anomaly takes the form

�ð1Þ
Leading ¼

Z
d5x detE

�
1

2�
Rþ�� ZA

4
FMNF

MN

�
: (A1)

The relation between the gravitational constant, the cos-
mological constant, and the radius of AdS space follows
from the Einstein equation as
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��R2
5 ¼ �6: (A2)

Three types of four derivative terms are relevant for the
holographic calculation of the trace anomaly. The first type
includes the curvature-squared terms [5–10]

�ð1Þ
Subleading ¼

Z
d5x detE½�R2 þ �RMNR

MN

þ RMNKLRMNKL�: (A3)

Including these terms, the modified Einstein equation still
allows anti-de Sitter space as a solution, but results in an
altered relationship between the gravitational constant, the
cosmological constant, and the radius of AdS space, now
involving also the parameters �, �, and , as

6
R3
5

2�
þ 1

2
�R5

5 þ 40�R5 þ 8�R5 þ 4R5 ¼ 0: (A4)

Note that for the special values of the parameters � ¼ 1=6,
� ¼ �4=3, and  ¼ 1, the three curvature-squared terms
combine to yield the square of the Weyl tensor, and the
relationship between the gravitational constant, the cosmo-
logical constant, and the radius of AdS space is seen to
reduce to the one that is obtained in the absence of the
curvature-squared terms. A second type of four derivative
terms couples the square of the gauge field strength tensor
to the curvature tensors,

�ð2Þ
Subleading ¼

Z
d5x detE½�RFMNF

MN

þ �RMNFMKFNLg
KL þ 	WMNKLFMNFKL�;

(A5)

and a third type includes terms that involve the square of
the gauge field strength tensor and two additional deriva-
tives,

�ð3Þ
Subleading ¼

Z
d5x detE½�FMNrNrRF

MR

þ �rMFNRrMFNR þ �rMFNRrNFRM�:
(A6)

The holographic trace anomaly is determined by the log-
arithmically divergent part of the on-shell action as

�on-shell ¼ � � � þ 1

2
ln

�
�

R2
5

�Z
dx4

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
� detgð0Þ

q
Aþ � � � ;

(A7)

with the regulating near-boundary surface located at � ¼ �
and with minimal subtraction at � ¼ R2

5. For generic

values of the parameters, the holographic trace anomaly
thus obtained reads (see [5–10] for the gravitational
contribution)

��
�¼

�
1

8

R3
5

2�
þ5�R5þ�R5�1

2
R5

�
W2

þ
�
�1

8

R3
5

2�
�5�R5��R5�1

2
R5

�
R2
GB

þ
�
1

4
R5ZA�20

�

R5

�4
�

R5

þ6
�

R5

�3
�

R5

�
Fð0Þ
��Fð0Þ��;

(A8)

where the square of the Weyl tensor and the Einstein-
Gauss-Bonnet invariant are defined as

W2 ¼ Wð0Þ
���
W

ð0Þ���
 ¼ Rð0Þ
���
R

ð0Þ���


� 2Rð0Þ
��Rð0Þ�� þ 1

3
Rð0Þ2;

RGB
2 ¼ Rð0Þ

���
R
ð0Þ���
 � 4Rð0Þ

��Rð0Þ�� þ Rð0Þ2: (A9)

The anomaly in the divergence of the Uð1Þ current J� is
holographically obtained from the variation of the action
under the Uð1Þ gauge transformation �AT ¼ @T�ðxÞ. The
relevant leading, two derivative pure Chern-Simons term in
the action is

�ð2Þ
Leading ¼ C

Z
d5x detEEMNRSTFMNFRSAT; (A10)

while the subleading, four derivative mixed Chern-Simons
term takes the form

�ð4Þ
Subleading ¼ �D

Z
d5x detEEMNRSTRX

YMNR
Y
XRSAT:

(A11)

The Uð1Þ anomaly is obtained from

�� ¼ �
Z

d4x�ðxÞAR; (A12)

resulting in

ffiffiffiffiffiffiffi�g
p r�J

� ¼ C�����Fð0Þ
��F

ð0Þ
�� þD�����Rð0Þ�	

��R
ð0Þ
�	��:

(A13)

All of the above terms appear in the bosonic sector of the
five-dimensional N ¼ 2 conformal supergravity action
[23] further extended with four derivative terms [9,10],

�¼�ð1Þ
Leadingþ�ð2Þ

Leadingþ�ð1Þ
Subleadingþ���þ�ð4Þ

Subleading, with

now the gauge field A� corresponding to the gravi-photon

and the Uð1Þ current J� equal to the R current. In terms of
the gravitational constant 2�, the cosmological constant�,
the wave function renormalization factor ZA, and the pa-
rameter  that sets the scale for the subleading terms,
supersymmetry forces the remaining parameters to take
the values
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C ¼ 1

12
ffiffiffi
3

p Z3=2
A

ffiffiffiffiffiffi
2�

p �
1� 8

3
�ð2�Þ2

�
;

D ¼ � 1

2
ffiffiffi
3

p Z1=2
A

ffiffiffiffiffiffi
2�

p
;

� ¼ 1

6
;

� ¼ � 4

3
;

� ¼ 1

6
ZAð2�Þ;

� ¼ � 8

3
ZAð2�Þ;

� ¼ �4ZAð2�Þ;
� ¼ �2ZAð2�Þ;
� ¼ �2ZAð2�Þ: (A14)
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