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We investigate effects of cluster particle correlations on two- and three-particle azimuth correlator observables
sensitive to local strong parity violation. We use two-particle angular correlation measurements as inputs and
estimate the magnitudes of the effects with straightforward assumptions. We found that the measurements
of the azimuth correlator observables in the STAR experiment can be entirely accounted for by cluster particle
correlations together with a reasonable range of cluster anisotropy in nonperipheral collisions. Our result suggests
that new physics, such as local strong parity violation, may not be required to explain the correlator data.
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I. INTRODUCTION

Relativistic heavy-ion collisions at the Relativistic Heavy-
Ion Collider (RHIC) have created a hot and dense medium that
exhibits properties of a strongly coupled quark-gluon plasma
(sQGP) [1]. Approximate chiral symmetry may be restored in
the sQGP. It was recently suggested that metastable domains
may form in such sQGP states where the parity and time-
reversal symmetries are locally violated [2,3]. Such violation
would lead to separation of positive and negative particles
because of the chiral magnetic effect along the system’s orbital
angular momentum into the two hemispheres separated by the
reaction plane [2,3].

The most direct consequence of this charge separation is
a negative correlation of multiplicity asymmetry of positive
particles between the hemispheres separated by the reaction
plane and that of negative particles [2]. Such a negative
correlation is in addition to any (background) correlations
that may exist as a result of other dynamics of the collision,
the magnitude of which may be assessed by correlation of
multiplicity asymmetries between the hemispheres separated
by the plane normal to the reaction plane.

Another consequence of the charge separation is a positive
correlator 〈cos(α + β − 2ψ)〉 of unlike-sign (US) particle
pairs and a negative correlator 〈cos(α + β − 2ψ)〉 of like-sign
(LS) particle pairs, where α and β are the azimuthal angles
of the two particles and ψ is the reaction plane azimuth [4].
The reaction plane azimuthal angle is, however, not fixed but
random in heavy-ion collisions. To estimate the reaction plane
angle, a third particle, c, may be used to correlate with α and
β, correcting for the resolution effect (v2,c, the elliptic flow of
particle c) [4]. Namely,

〈cos(α + β − 2ψ)〉 ≈ 〈cos(α + β − 2c)〉/v2,c. (1)

This assumes three-particle correlation is negligible.
The three-particle azimuthal correlator 〈cos(α + β − 2c)〉

has been measured and is used to deduce the two-particle
azimuthal correlator 〈cos(α + β − 2ψ)〉 by the STAR ex-
periment [5]. The measurements show a negative correlator
〈cos(α + β − 2ψ)〉 for LS pairs and a small, close to zero,
correlator for US pairs [5]. The LS pair result is qualitatively
consistent with the expectation from local strong parity vio-
lation [2,3]. The US pair result, however, is inconsistent with
the initial expectation where the US and LS pair correlations

should be equal in magnitude and opposite in sign [2]. To
explain the preliminary version of the STAR data [6], it was
suggested that at least one of the particles from a back-to-back
US pair from local parity violation would have to traverse
and interact with the medium and that its angular correlation
with the other particle of the pair would be significantly
reduced [3]. In fact, in this medium interaction scenario,
correlations between particle pairs from local parity violation
domains formed in the interior of the collision medium would
be lost, and only those from pairs emitted from the surface
could survive. In other words, the LS pair correlation is due to
those pairs from local parity violation domains on the surface,
and the back-to-back US pair correlation is lost [3].

The three-particle correlator observable is parity-even and
is subject to background correlations that are dependent on
the reaction plane, some of which are discussed in detail in
Ref. [5]. This is easy to see in the following extreme example:
a small opening angle pair perpendicular to the reaction plane
is indistinguishable from a back-to-back pair parallel to the
reaction plane in the correlator variable cos(α + β − 2ψ),
and vice versa. More modestly, particle correlations from
clusters that themselves possess anisotropy can give rise to
observable signals in 〈cos(α + β − 2ψ)〉. Cluster correlations
can have different effects on LS and US pairs, because LS
and US contributions from clusters are likely different, such
as from jet correlations [7].

In this article, we investigate quantitatively effects of cluster
particle correlations on the azimuth correlator observables
〈cos(α + β − 2c)〉 and 〈cos(α + β − 2ψ)〉. We first present
analytical results. We then use experimental measurements of
two-particle angular correlations [5,8] as inputs to estimate
effects of cluster particle correlations on the correlator ob-
servables. Since we do not have experimental information on
cluster anisotropy, we calculate how much cluster anisotropies
are needed to fully account for the correlator measurements
[5]. We then judge the plausibility of the needed cluster
anisotropies to either confirm or disprove cluster correlations
as a possible explanation for the correlator measurements.

II. THE CLUSTER MODEL AND RESULTS

Assume events are composed of hydrodynamic-like parti-
cles plus small-angle (SA, |�φ| < π/2) clusters and back-
to-back (BB, |�φ| > π/2) clusters. We use operational
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definitions of SA cluster to be composed of one or more
SA particle pairs, and BB cluster to be composed of one
or more BB particle pairs. Note, with these operational
definitions, that a conventional BB cluster of a particles on
one side and b particles on the other side is made of two
SA clusters (with numbers of particle pairs of a2 and b2)
and one BB cluster (with number of particles 2ab). Here
we have taken a and b to be large for simplicity, and we
assume Poisson statistics for particle multiplicity in clusters.
Also note that not all SA clusters have a back-side partner.
The anisotropies of SA and BB clusters can therefore be
different.

Now consider US and LS particle pairs from clusters. They
can come from either SA clusters (i.e., SA particle pairs) or
BB clusters (i.e., BB particle pairs). The relative fractions
of particle pairs from SA clusters and BB clusters can be
different for US pairs and LS pairs. Let xUS be the fraction
of US pairs from SA clusters (and 1 − xUS the fraction from
BB clusters), and xLS be the fraction of US pairs from SA
clusters (and 1 − xLS the fraction from BB clusters). We
first obtain xUS and xLS from two-particle angular correlation
measurements.

The following two-particle correlators are measured for US
and LS pairs [5]:

〈cos(α −β)〉US = xUS〈cos(α − β)〉SA+ (1 − xUS )〈cos(α − β)〉BB

= xUSwSA − (1 − xUS )wBB , (2)

〈cos(α − β)〉LS = xLS〈cos(α − β)〉SA+ (1 − xLS )〈cos(α − β)〉BB

= xLSwSA − (1 − xLS )wBB, (3)

where

wSA ≡ 〈cos(α − β)〉SA , (4)

wBB ≡ −〈cos(α − β)〉BB (5)

are the average angular spread of particle pairs from SA and
BB clusters, respectively. In Eqs. (2) and (3), we have taken the
two-particle back-to-back correlations to be the same between
US and LS pairs. We have assumed in Eqs. (2) and (3) that the
SA two-particle azimuthal correlations to be of the same shape
for US and LS pairs. This is a reasonable assumption because
same-side correlations of US and LS pairs have similar shapes
although their magnitudes are different, for example, in jetlike
correlations [7].

Information about cluster particle pairs can be obtained
from two-particle azimuthal correlations. STAR has mea-
sured two-particle correlations integrated over transverse
momentum (pT ), in (η�, φ�), the two-particle pseudorapidity
and azimuth differences [8]. The correlation functions are
parameterized by the sum of a near-side Gaussian, a negative
dipole, and a quadrupole corresponding to elliptic flow [8]. The
sum of the two former terms is considered to be correlations
attributable to clusters. It is given by [8]

d2N

dφ�dη�

= V0√
2πσ

exp

(
− φ2

�

2σ 2

)
G(η�) − Aφ�

cos φ�. (6)

Here G(η�) is a Gaussian in η� normalized to unity that is of
no interest in our study. The first term in the right-hand side of
Eq. (6) is the near-side Gaussian, and the second term is the
negative dipole. We can obtain the SA pair azimuthal spread
as

wSA ≡ 〈cos φ�〉SA =
∫ π/2
−π/2

[
(V0/

√
2πσ ) exp

(−φ2
�

/
2σ 2

)
G(η�) − Aφ�

cos φ�

]
cos φ�dφ�A(η�)dη�∫ π/2

−π/2

[
(V0/

√
2πσ ) exp

(−φ2
�

/
2σ 2

)
G(η�) − Aφ�

cos φ�

]
dφ�A(η�)dη�

= V e−σ 2/2 − πAφ�

V − 4Aφ�

,

(7)

where A(η�) is the two-particle η� acceptance of the STAR
detector and V is the integrated volume within the acceptance
(which is not equal to V0) [8,9]. The extracted wSA ranges
from 0.58 in peripheral Au + Au collisions to 0.85 in central
collisions. For wBB we take the width of the away-side dipole:

wBB ≡ −〈cos φ�〉BB =
∫ 3π/2
π/2 (Aφ�

cos φ�) cos φ�dφ�∫ 3π/2
π/2 Aφ�

cos φ�dφ�

= π

4
.

(8)

The wBB is a fixed value because the away-side correlation
shape can be satisfactorily described by the same functional
form of a negative dipole.

It is worthwhile to note that the cluster shape quantities are
extracted from the measured angular correlations; thus, they
are immune to the underlying physics mechanisms generating
those correlations. Besides cluster correlations, a negative
dipole can be also generated, for example, by the statistical

global momentum conservation. It was estimated, however,
that the global momentum conservation effect is significantly
smaller than the measured dipole strength. On the other hand,
to estimate the cluster size that will be needed for our study,
some production mechanisms for the clusters have to be
assumed. We discuss those assumptions later.

The pair quantities in Eqs. (2) and (3) measured in
experiment are diluted by hydrolike particles (those pair
quantities are all zero for hydrolike particle pairs as well as
cross pairs of hydrolike and cluster particles):

〈cos(α − β)〉meas
US

= f2,US〈cos(α − β)〉US , (9)

〈cos(α − β)〉meas
LS

= f2,LS〈cos(α − β)〉LS . (10)

The dilution factors are

f2,US = NUS/(N2/2), (11)

f2,LS = NLS/(N2/2), (12)
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for US and LS pairs (numbers of pairs NUS and NLS ),
respectively, where we have assumed the total numbers of
US and LS pairs are equal in the event (N is total particle
multiplicity). The total number of cluster particle pairs is

NUS + NLS = NclustM
2
clust, (13)

where Nclust is the number of clusters and Mclust is the particle
multiplicity per cluster (cluster size). The numbers of US and
LS pairs from clusters are not necessarily equal. Since there
is no charge-sign difference in the back-to-back particle pair
correlations,

(1 − xUS )NUS = (1 − xLS )NLS , (14)

we obtain the dilution factors

f2,US = 1 − xLS

1 − (xUS + xLS )/2
f2, (15)

f2,LS = 1 − xUS

1 − (xUS + xLS )/2
f2, (16)

with

f2 = NclustM
2
clust

/
N2. (17)

Note NclustM
2
clust/N—the number of correlated pairs per

charged particle—is a measured quantity in two-particle cor-
relation function; it is obtained by integrating the correlation
function over the measured acceptance (which is the V in
Eq. (6), V = NclustM

2
clust/N ) [8,9]. The measured V ranges

from 0.3 in peripheral Au + Au collisions to 1.9 in central
collisions. The measured NclustM

2
clust is not affected by the

individual quantities of the cluster size Mclust or the number of
clusters Nclust that are not experimentally measured.

We can now obtain xUS and xLS from the measured 〈cos(α −
β)〉meas

US
and 〈cos(α − β)〉meas

LS
. With short notations,

tUS = 〈cos(α − β)〉meas
US

/
f2, (18)

tLS = 〈cos(α − β)〉meas
LS

/
f2, (19)

Eqs. (2) and (3) become

tUS [1 − (xUS + xLS )/2] = xUS (1 − xLS )wSA

− (1 − xUS )(1 − xLS )wBB, (20)

tLS [1 − (xUS + xLS )/2] = xLS (1 − xUS )wSA

− (1 − xUS )(1 − xLS )wBB . (21)

By simple algebra, we have

x2
US

− w2
SA

+wSA (3tUS − tLS )/2 + 2wSAwBB + wBB (tUS − tLS )

(wSA + wBB )(wSA + (tUS − tLS )/2)
xUS

+ wSAwBB + wSA t
US

+ wBB (tUS − tLS )/2

(wSA + wBB )(wSA + (tUS − tLS )/2)
= 0, (22)

x2
LS

− w2
SA

+wSA (3tLS − tUS )/2 + 2wSAwBB + wBB (tLS − tUS )

(wSA + wBB )(wSA + (tLS − tUS )/2)
xLS

+ wSAwBB + wSA tLS +wBB (tLS − tUS )/2

(wSA + wBB )(wSA + (tLS − tUS )/2)
= 0. (23)

From Eqs. (22) and (23), we can solve for xUS and xLS .
Table I shows the obtained fractions xUS and xLS given

cluster particle correlation inputs from two-particle angular
correlations [8] and two-particle correlator quantities 〈cos(α −
β)〉meas

US
and 〈cos(α − β)〉meas

LS
measured by STAR [5].

A. Effect of three-particle correlation from clusters

STAR has measured three-particle correlators for US and
LS pairs, α and β, with a third particle c regardless of
its charge sign. It is assumed that three-particle correlation
is negligible, so particle c can be used as a single-particle
estimator of the reaction plane to obtain the two-particle
correlators from the three-particle correlator measurements
by Eq. (1). One supporting evidence for the assumption
comes from the consistent results of 〈cos(α + β − 2ψ)〉 ≈
〈cos(α + β − 2c)〉/v2,c using particle c from the main time
projection chamber (TPC) or the forward TPCs while the

TABLE I. Results from cluster model calculation. The xUS is the fraction of US pairs from SA clusters; the xLS is that of LS pairs from SA
clusters; the xUS and xLS are obtained from 〈cos(α − β)〉 measurements by Eqs. (22) and (23) using inputs from two-particle angular correlation
measurements [8], assuming no charge difference in BB clusters [Eq. (14)]. Cluster 〈cos(α + β − 2c)〉clust is the calculated three-particle
correlation effect assuming independent particle emission in clusters and binary collision scaling for the number of clusters. The v2,SA and
v2,BB are the elliptic flow parameters by Eqs. (48) and (49) to reproduce the three-particle correlator results measured by STAR [5], after
cluster three-particle effect removed; errors are propagated from statistical errors on the correlator measurements [5] and the assumed 5% error
on the two-particle angular correlation measurements [8]. The last two columns list the v2,SA and v2,BB parameters needed to reproduce the
three-particle correlator results [5], assuming vanishing three-particle correlation from clusters.

Centrality xUS xLS Binary scaled clusters
Cluster three-particle

〈cos(α + β − 2c)〉clust v2,SA v2,BB correlation set to zero

US LS v2,SA v2,BB

70–60% 0.85 0.36 8.0 × 10−5 −1.2 × 10−5 −0.20 ± 0.09 0.36 ± 0.12 0.23 ± 0.02 0.79 ± 0.07
60–50% 0.78 0.42 4.4 × 10−5 −8.2 × 10−6 −0.10 ± 0.05 0.30 ± 0.07 0.22 ± 0.01 0.61 ± 0.04
50–40% 0.70 0.44 2.9 × 10−5 −6.7 × 10−6 −0.10 ± 0.04 0.11 ± 0.04 0.19 ± 0.01 0.40 ± 0.02
40–30% 0.66 0.43 1.5 × 10−5 −3.9 × 10−6 −0.05 ± 0.02 0.11 ± 0.03 0.16 ± 0.01 0.32 ± 0.02
30–20% 0.62 0.43 8.7 × 10−6 −2.6 × 10−6 −0.05 ± 0.02 0.05 ± 0.02 0.14 ± 0.01 0.24 ± 0.01
20–10% 0.61 0.42 4.7 × 10−6 −1.8 × 10−6 −0.07 ± 0.01 0.00 ± 0.02 0.10 ± 0.01 0.18 ± 0.01
10–5% 0.61 0.41 2.8 × 10−6 −1.2 × 10−6 −0.13 ± 0.02 −0.08 ± 0.02 0.07 ± 0.01 0.12 ± 0.01
5–0% 0.61 0.38 1.8 × 10−6 −8.8 × 10−7 −0.21 ± 0.03 −0.17 ± 0.03 0.03 ± 0.01 0.07 ± 0.01

064902-3



FUQIANG WANG PHYSICAL REVIEW C 81, 064902 (2010)

particle pairs (US and LS) α and β come from the main
TPC [5]. However, it is possible that the probability for a triplet
to be correlated may drop with the pseudorapidity gap between
the particle c and the other two particles in the main TPC, in a
way similar to the v2,c dependence on pseudorapidity [10].

If large clusters exist, as suggested by low-pT two-
particle angular correlation measurements [8], then finite
three-particle correlation should exist. We estimate the effect
of three-particle correlation using two-particle correlations [8].
Consider particle triplets from the same cluster, where SA and
BB still stand for a pair of α and β, and the third particle c can
be on either side:

〈cos(α + β − 2c)〉SA = 〈cos(�φα + �φβ + 2φclust − 2c)〉SA

= 〈cos(�φα + �φβ + 2�φc)〉SA , (24)

〈cos(α + β − 2c)〉BB = 〈cos(�φα + �φβ + 2φclust − 2c)〉BB

= 〈cos(�φα + �φβ + 2�φc)〉BB . (25)

Here, �φ = φ − φclust is the particle azimuth relative to the
cluster axis, φclust. In Eq. (24), which side the particle c is on
does not really matter (because the angle is 2c). In Eq. (25),
the particle c is on the same side of either α or β, and thereby
either �φα or �φβ is larger than π/2. Assuming that emission
of daughter particles in clusters is independent of each other,
we can obtain

〈cos(α + β − 2c)〉SA ≈ 〈cos �φα〉2
SA

〈cos 2�φc〉SA

≈ 〈cos(�φα − �φβ)〉SA〈cos 2�φc〉SA

= wSAw2,SA , (26)

〈cos(α + β − 2c)〉BB ≈ 〈cos �φα〉2
BB

〈cos 2�φc〉SA

≈ 〈cos(�φα − �φβ)〉BB〈cos 2�φc〉SA

= −wBBw2,SA . (27)

Here �φα − �φβ = φ� is the azimuth difference used in two-
particle correlation measurement, and w2,SA = 〈cos 2�φ〉SA is
the average azimuthal spread of SA clusters:

w2,SA ≡ 〈cos 2�φ〉SA ≈ 〈cos 2φ�〉1/2 =
(∫ π/2

−π/2

[
(V0/

√
2πσ ) exp

(−φ2
�

/
2σ 2

)
G(η�) − Aφ�

cos φ�

]
cos 2φ�dφ�A(η�)dη�∫ π/2

−π/2

[
(V0/

√
2πσ ) exp

(−φ2
�

/
2σ 2

)
G(η�) − Aφ�

cos φ�

]
dφ�A(η�)dη�

)1/2

=
(

V e−2σ 2 − 4Aφ�

/
3

V − 4Aφ�

)1/2

. (28)

Note in Eq. (27), it is the azimuthal spread of SA (not BB)
clusters as well because particle c is always on the same side
of either particle α or β.

We can estimate effects of three-particle correlations in US
and LS pairs of particles α and β by

〈cos(α + β − 2c)〉US

= xUS〈cos(α + β − 2c)〉SA + (1 − xUS )〈cos(α + β − 2c)〉BB

≈ xUSwSAw2,SA − (1 − xUS )wBBw2,SA, (29)

〈cos(α + β − 2c)〉LS

= xLS〈cos(α + β − 2c)〉SA + (1 − xLS )〈cos(α + β − 2c)〉BB

≈ xLSwSAw2,SA − (1 − xLS )wBBw2,SA . (30)

Comparing Eqs. (29) and (30) to Eqs. (2) and (3), we see that

〈cos(α + β − 2c)〉US = 〈cos(α − β)〉US · w2,SA, (31)

〈cos(α + β − 2c)〉LS = 〈cos(α − β)〉LS · w2,SA . (32)

The only assumption in arriving at Eqs. (31) and (32) is that
particle emission azimuths within a cluster are independent
of each other. This is a reasonable assumption when the
clusters consist of a relatively large number of particles.
Under this assumption, three-particle correlation is completely
determined by two-particle correlation.

These three-particle correlation effects are diluted by
hydrolike particles,

〈cos(α + β − 2c)〉meas
US

= f3,US〈cos(α + β − 2c)〉US , (33)

〈cos(α + β − 2c)〉meas
LS

= f3,LS〈cos(α + β − 2c)〉LS , (34)

by a factor of

f3,US = 1 − xLS

1 − (xUS + xLS )/2
f3, (35)

f3,LS = 1 − xUS

1 − (xUS + xLS )/2
f3, (36)

with

f3 = NclustM
3
clust

/
N3. (37)

Again, the measured three-particle correlation is determined
by the measured two-particle correlation:

〈cos(α + β − 2c)〉meas
US

= 〈cos(α − β)〉meas
US

· w2,SA · Mclust/N,

(38)

〈cos(α + β − 2c)〉meas
LS

= 〈cos(α − β)〉meas
LS

· w2,SA · Mclust/N.

(39)

The only inputs for this determination are the near-side angular
spread w2,SA by Eq. (28), which is well measured, and the
cluster size Mclust, which can be estimated. We estimate Mclust

from the measured NclustM
2
clust assuming binary scaling for the

number of clusters, Nclust.
Table I shows the effect in three-particle azimuthal cor-

relator estimated from the measured two-particle azimuthal
correlator by Eqs. (38) and (39), using cluster inputs from
two-particle correlation measurements [8]. Figure 1 shows
the estimated three-particle correlation effects in thin lines
together with the measured three-particle correlator data
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FIG. 1. (Color online) The measured three-particle correlators for US and LS particle pairs (open data points) [5], the estimated three-particle
correlation effects (thin lines) using inputs from measurements of two-particle angular correlations [8] and two-particle correlators [5], and the
remaining three-particle correlator magnitudes (solid data points), that is, difference between open points and the thin lines. The left panel shows
the three-particle correlators themselves versus centrality bin, and the right panel shows the number of participants (Npart) scaled three-particle
correlators versus Npart.

in open points [5]. The estimated three-particle correlation
effects from clusters are significantly larger than the US
measurement 〈cos(α + β − 2c)〉meas

US
[5]. This implies that

there must be some cancellation of US correlation in the data
from other effects (one candidate is two-particle correlation,
as we discuss later). Those estimated for LS pairs are smaller
than measurement 〈cos(α + β − 2c)〉meas

LS
[5] in most of the

centralities, by a factor of a few.
The three-particle correlation effects should be first re-

moved from the three-particle correlator measurements. After
removing the estimated three-particle effects, the three-particle
correlators (from physics other than three-particle correlation)
become the solid data points in Fig. 1. As seen, both the LS
and the US three-particle correlators are negative and seem
to follow a regular trend. Those remaining effects can be due
to two-particle correlation from clusters together with cluster
anisotropies, as well as any other physics.

B. Effect of two-particle correlation from clusters

We now discuss the effect of two-particle correlation.
Our approach is to assume that the only remaining effects
in the correlator measurements are the combined effects of
two-particle correlations and cluster anisotropies and to see
whether the cluster flow parameters extracted from such an
approach are reasonable. If they are unreasonable, then there
may be new physics, such as local strong parity violation.

After removing the three-particle correlation, the remaining
three-particle correlator can now be factorized by Eq. (1)
because particle c is not correlated with particle pair α and β

through clusters. However, particle c (hydrolike particle) can
be still correlated with the cluster if clusters are anisotropic.
Two-particle correlation from clusters together with cluster
anisotropy can give nonzero contribution to the measured
three-particle correlator.

We subtract the estimated three-particle correlation
effects from the measured US and LS three-particle cor-
relators, 〈cos(α + β − 2c)〉meas

US
and 〈cos(α + β − 2c)〉meas

LS
,

respectively, as shown in Fig. 1. What is left in the three-
particle correlator is two-particle correlation from clusters.

Two-particle correlations can exist between α and β (and c is
not from the cluster), or similarly between α and c or between
β and c. The former is simply

〈cos(α + β − 2c)〉αβ

= 〈cos[�φα + �φβ + 2(φclust − ψ) − 2(c − ψ)]〉αβ

= 〈cos(�φα + �φβ)〉αβ · v2,clust · v2,c, (40)

while the latter, for example, between α and c, is given by

〈cos(α + β − 2c)〉αc

= 〈cos[�φα − 2�φc − (φclust − ψ) + (β − ψ)]〉αc

= 〈cos(�φα − 2�φc)〉αc · v1,clust · v1,β . (41)

Since direct flow v1 is generally much smaller than elliptic
flow v2 at midrapidity, the latter correlations can be neglected,
and we focus only on two-particle correlation effect between
α and β. We divide the three-particle correlation corrected
results by v2,c used in Ref. [5] to obtain 〈cos(α + β − 2ψ)〉US

and 〈cos(α + β − 2ψ)〉LS . The dilution factors are properly
taken into account. Assuming the only remaining correlation
is from clusters (no new physics), then

〈cos(α + β − 2ψ)〉US = xUS〈cos(α + β − 2ψ)〉SA

+ (1 − xUS )〈cos(α + β − 2ψ)〉BB ,

(42)

〈cos(α + β − 2ψ)〉LS = xLS〈cos(α + β − 2ψ)〉SA

+ (1 − xLS )〈cos(α + β − 2ψ)〉BB ,

(43)

where

〈cos(α + β − 2ψ)〉SA = 〈cos(�φα + �φβ + 2φclust − 2ψ)〉SA

= 〈cos(α − β)〉SAv2,SA

= wSAv2,SA , (44)

〈cos(α + β − 2ψ)〉BB = 〈cos(�φα + �φβ + 2φclust − 2ψ)〉BB

= 〈cos(α − β)〉BBv2,BB

= −wBBv2,BB . (45)
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Here, v2,SA and v2,BB are the elliptic flow parameters of SA
and BB clusters weighted by the number of particle pairs per
cluster (i.e., anisotropy of clusters with each cluster counted
by the number of pairs in the cluster). In Eqs. (44) and
(45), we have assumed that the cluster two-particle azimuthal
correlation shape is independent of the cluster orientation
with respect to the reaction plane, so that we can factorize
the cluster azimuthal spread and the cluster anisotropy. If
particle azimuthal distribution in clusters depends on the
cluster orientation, then the cluster anisotropy should be taken

as an effective average anisotropy. From Eqs. (42)–(45), we
have

〈cos(α + β − 2ψ)〉US = xUSwSAv2,SA − (1 − xUS )wBBv2,BB ,

(46)

〈cos(α + β − 2ψ)〉LS = xLSwSAv2,SA − (1 − xLS )wBBv2,BB .

(47)

From Eqs. (46) and (47), we solve for v2,SA and v2,BB :

v2,SA = 1

wSA

(1 − xLS )〈cos(α + β − 2ψ)〉US − (1 − xUS )〈cos(α + β − 2ψ)〉LS

xUS (1 − xLS ) − xLS (1 − xUS )
, (48)

v2,BB = 1

wBB

xLS〈cos(α + β − 2ψ)〉US − xUS〈cos(α + β − 2ψ)〉LS

xUS (1 − xLS ) − xLS (1 − xUS )
. (49)

Our strategy now is to see what values of v2,SA and
v2,BB are needed to reproduce the correlator measurements
〈cos(α + β − 2ψ)〉US and 〈cos(α + β − 2ψ)〉LS from STAR
[5] and judge whether the required cluster anisotropies are
reasonable. Table I shows the obtained flow parameters v2,SA

and v2,BB for SA- and BB-cluster particle pairs, respectively.
The errors are propagated from statistical errors on the
three-particle correlator measurements and 5% errors on
low-pT two-particle angular correlation measurements (same-
side Gaussian amplitude, same-side Gaussian σ , and dipole
amplitude). All errors are treated as uncorrelated.

Figure 2 (upper left panel) depicts the obtained v2,SA and
v2,BB . The SA-cluster particle pair v2 is somewhat negative.
Negative SA-cluster particle pair v2 is not impossible, perhaps
even natural in the jet-quenching picture—high-pT particles
are suppressed more in the out-of-plane direction, generating
more low-pT particles, and thereby more SA-cluster particle
pairs are out of plane than in plane. Positive anisotropy for
BB-cluster particle pairs implies larger survival probability
of BB pairs in plane than out of plane, again consistent with
the jet-quenching picture. The magnitudes of the obtained v2,SA

and v2,BB seem reasonable; however, the trends toward the most
central collisions seem unreasonable. More discussions on the
extracted flow parameters can be found in Sec. III.

C. Dependence of results on model assumptions

We have made two major assumptions in our study as we
have described in Sec. II A:

(i) The number of clusters scales with binary collisions so
we may estimate the cluster size; and

(ii) particle emission azimuths within a cluster are indepen-
dent of each other so we may factorize three-particle
correlation as the product of two-particle correlations.

Assumption (i) does not affect the two-particle dilution
factor of Eqs. (15) and (16) because the number of correlated
particle pairs NclustM

2
clust is one of the measured quantities,

as we noted already. However, the assumption does have an

effect on the estimation of the number of correlated triplets
NclustM

3
clust and thereby on the three-particle dilution factor

of Eqs. (35) and (36). A larger Nclust than the binary scaling
estimate would result in a smaller cluster size Mclust and hence
a smaller three-particle correlation effect; a smaller Nclust

would result in a larger three-particle effect. With binary
scaling estimation of Nclust, the cluster size varies in the range
of Mclust ≈ 5–10 from peripheral to central Au + Au collisions,
and the fraction of particles from clusters varies from 5%
to 20% of all particles measured in the final state [8,9].
Other studies, from multiplicity correlations, indicate that
cluster size is only ∼3, whereas more particles originate
from clusters [13]. If cluster size is Mclust = 3 independent of
centrality, then the fraction of particles from clusters would be
8–70% of all particles from peripheral to central collisions and
the number of clusters would scale more strongly than binary
collisions.

Assumption (ii) affects the factorization approximation in
deriving the cluster three-particle correlation by Eqs. (24) and
(25). If independent emission of particles from clusters does
not hold, then the three-particle cluster correlation result may
not be valid. The factorization approximation also affects the
connection between the two-particle correlations 〈cos(�φα +
�φβ)〉 = 〈cos(�φα − �φβ)〉 in Eqs. (44) and (45).

To get a feeling for the effects of three-particle correlations
from smaller clusters, we repeat our analysis by fixing
the cluster size to be Mclust = 3, independent of centrality,
while keeping the measured number of cluster particle pairs
NclustM

2
clust the same. This changes the three-particle correla-

tion effects from clusters. The clusters v2,SA and v2,BB that are
needed to reproduce the measured three-particle correlators
change accordingly. Figure 2 (upper right panel) shows the
obtained v2,SA and v2,BB . Both the v2,SA and v2,BB increase from
the case in the upper left panel where binary collision scaling is
assumed for the number of clusters resulting in large clusters.
Furthermore, the values of v2,SA become mostly positive. The
magnitude of v2,SA appears reasonable. The magnitude of v2,BB

seems reasonable for most centralities except for peripheral
collisions, where it is too large.
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FIG. 2. (Color online) The v2,SA and v2,BB parameters (anisotropies of cluster population weighted by the number of particle pairs per cluster)
required to reproduce the STAR three-particle correlator measurements [5] after removing cluster three-particle correlation effects calculated
from two-particle angular correlation measurements [8] and two-particle correlator measurements [5]. The upper left panel assumes binary
scaling for the number of clusters; the upper right panel assumes fixed cluster size of three particles; the lower left panel assumes that cluster
size is a factor of 3 smaller than those in the upper left panel; and the lower right panel assumes a vanishing three-particle correlation from
clusters. The particle elliptic flow measured by the event-plane method [11] is shown in the dashed curve, and that from fit to two-particle
correlation measurement [8,12] is shown in the solid curve.

Besides the fixed cluster size, we have also tried reducing
the cluster size by a constant factor of 3 for all centralities.
The obtained v2,SA and v2,BB (which are needed to explain the
three-particle correlator measurements) are shown in Fig. 2
(lower left panel). The results are similar to the previous
results where cluster size is fixed to three.

Reducing the cluster size reduces the effect of cluster
three-particle correlation. The extreme would be to assume a
vanishing three-particle correlation from clusters, and the only
contribution to the measured three-particle correlator is the
combined effect of two-particle correlation from clusters and
cluster anisotropy. To test this extreme, we set the cluster three-
particle correlation to zero and repeat our analysis to extract
the values of v2,SA and v2,BB that are needed to fully account for
the measured three-particle correlators. The extracted v2,SA and
v2,BB are tabulated in the last two columns of Table I and are
shown in the lower right panel of Fig. 2. Both the v2,SA and v2,BB

are larger than the other cases, as expected from their trend
with reducing effect from cluster three-particle correlation.
Both v2,SA and v2,BB are positive, and v2,BB is larger than v2,SA .
The magnitude of v2,SA seems reasonable (see more discussion
on this in Sec. III). The magnitude of v2,BB seems reasonable
in central collisions but is too large in peripheral collisions.

The signs and relative magnitudes of v2,SA and v2,BB in Fig. 2
(lower right panel) can be understood as follows. The US three-

particle correlator is nearly zero. The three-particle correlators
that are due to SA- and BB-cluster correlations should cancel
each other. Because particle pairs from SA and BB clusters at
the same location relative to the reaction plane give opposite
sign three-particle correlators, the anisotropy of the SA and BB
clusters have to be of the same sign (either positive or negative).
Because more US pairs come from SA clusters than BB clus-
ters, the anisotropy of BB-cluster particle pairs has to be larger
than those of SA clusters to have the averaged three-particle
correlator be nearly zero. The sign of the LS three-particle cor-
relator is decided by BB clusters, because more LS pairs come
from BB clusters and because v2,BB is larger than v2,SA in abso-
lute magnitude. BB-cluster particle pairs in plane give negative
〈cos(α + β − 2ψ)〉, and those out-of-plane gives positive
〈cos(α + β − 2ψ)〉. For the final averaged LS pair correlator
〈cos(α + β − 2ψ)〉LS to be negative, the v2,BB has to be positive.

III. DISCUSSION ON CLUSTER PARTICLE PAIR
ANISOTROPY

The cluster anisotropies v2,SA and v2,BB obtained previously
are the magnitudes of modulation of the number of clusters
weighted by the average number of particle pairs per cluster.
One way to gauge whether the obtained v2,SA and v2,BB are
reasonable is to see how large the hydrolike particle v2,bkgd
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FIG. 3. (Color online) Hydrolike particle v2,bkgd is needed, together with the estimated v2,SA , to reproduce the fit v2{2D}. The left panel
corresponds to v2,SA in the upper left panel of Fig. 2 where the number of clusters is assumed to scale with binary collisions. The right panel
corresponds to v2,SA in the lower right panel of Fig. 2 where the three-particle correlation from clusters is set to zero. The fraction of cluster
particles is kept as same as that for the left panel.

has to be, together with cluster v2, to reproduce the observed
final-state particle vmeas

2 . Because our clusters are large, having
on average five to ten particles, the particles from BB pairs are
part of those from SA clusters. Therefore, we can consider
only SA-cluster pair v2,SA . Note this may not be accurate in
peripheral collisions where a BB cluster of a single BB particle
pair is not part of a SA-cluster pair; thus the BB v2,BB has to
be also considered. For our purpose, it is sufficient to use only
SA v2,SA to get an idea.

The hydrolike particle v2,bkgd can be obtained from the
following two scenarios.

(i) Assuming cluster size does not vary with respect to the
reaction plane, then cluster v2,SA translates directly into
cluster particle v2 by

vparticle
2,SA

= w2,SAv2,SA , (50)

where w2,SA is the angular spread of cluster particles
relative to the cluster axis by Eq. (28). The hydrolike
particle v2,bkgd is then given by

(1 − f )v2,bkgd + f w2,SAv2,SA = vmeas
2 , (51)

where f is the fraction of particles from clusters.
(ii) Assuming cluster orientation is isotropic (e.g., initial

hard-scattering products) but cluster size varies from in
plane to out of plane, then approximately half of the
cluster v2,SA translates into cluster particle v2 by

vparticle
2,SA

= w2,SAv2,SA/2. (52)

The hydrolike particle v2,bkgd is then given by

(1 − f )v2,bkgd + f w2,SAv2,SA/2 = vmeas
2 . (53)

We use the v2{2D} fit to the two-particle angular correlation
data [8] as the measured vmeas

2 , because the nonflow same-side
correlation peak (part of the cluster pair correlation) should be
excluded. In fact, if the fit model [8] used to separate elliptic
flow and nonflow correlations is accurate, then the fit v2{2D}
should be the true elliptic flow (correlation related to the reac-
tion plane) [9]. Note that the true elliptic flow may not be nec-
essarily equal to the hydrolike elliptic flow but is the net sum of

the hydrolike elliptic flow and the product of cluster correlation
and cluster elliptic flow [9], as shown in Eqs. (51) and (53).

Figure 3 shows the obtained hydrolike particle v2,bkgd from
Eqs. (51) and (53) together with the v2{2D}. The v2{EP}
measured by the event-plane method, which contains a large
contribution from nonflow, is also shown. Its difference from
v2{2D} gives a good estimate of uncertainty of all available
elliptic flow measurements. The left panel of Fig. 3 shows the
case where the number of clusters scales with binary collisions
corresponding to the upper left panel of Fig. 2. The obtained
hydrolike particle v2 is larger than the measured particle v2 to
account for the negative cluster v2,SA , but not much larger. The
v2,bkgd values seem reasonable, suggesting that the v2,SA and
v2,BB may be reasonable too.

The right panel of Fig. 3 shows the case where the three-
particle correlation from clusters is set to zero, corresponding
to the lower right panel of Fig. 2. Although the fraction of
particles from clusters does not matter for this case because
the three-particle correlation from clusters is set to zero, we
need the fraction to obtain the hydrolike particle v2,bkgd by
Eqs. (51) and (53). We use the same fraction of particles from
clusters as in the previous case (assuming binary collision
scaling for the number of clusters). The calculated hydrolike
particle v2,bkgd is smaller than the measured particle v2 for
cluster size independent of the reaction plane to offset the
larger cluster particle vparticle

2,SA
[by Eq. (50)]. For isotropic

clusters, the hydrolike particle v2,bkgd is not much different
from the measured particle v2 because the cluster particle
vparticle

2,SA
attributable to cluster anisotropy [by Eq. (52)] is

approximately equal to the measured particle v2. The hydrolike
particle v2,bkgd is reasonable for this case too, again suggesting
that the v2,SA and v2,BB required to explain the three-particle
correlator measurements are reasonable.

IV. CONCLUSIONS

Cluster model parameters are calculated by Eqs. (7), (8),
and (28) using two-particle angular correlation data [8] and
two-particle azimuth correlator 〈cos(α − β)〉 measurements
from STAR [5]. Fractions of US and LS particle pairs from
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SA and BB clusters are obtained by Eqs. (22) and (23),
assuming no charge difference in BB two-particle correlation.
Three-particle correlation effects are estimated by Eqs. (38)
and (39), assuming independent emission of particles in
clusters, and are positive for SA clusters and negative for
BB clusters. The estimated three-particle effects are removed
from the three-particle azimuth correlator 〈cos(α + β − 2c)〉
measurements [5]. The remaining correlator magnitudes of
〈cos(α + β − 2ψ)〉 = 〈cos(α + β − 2c)〉/v2,c are assumed to
come entirely from cluster two-particle correlations (i.e., no
new physics) and are used to determine elliptic flow parameters
of SA and BB clusters by Eqs. (48) and (49).

Cluster size is not measured. A wide range of assumptions
are made, ranging from binary collision scaling of cluster
abundance, resulting in large-cluster three-particle correlation,
to zero cluster size, yielding the vanishing three-particle
correlation effect. These assumptions do not affect the cluster
two-particle correlation, which is constrained by the two-
particle angular correlation measurements [8]. The magnitudes
of the obtained cluster anisotropy (azimuthal modulation in the
number of clusters weighted by the number of particle pairs
per cluster) to fully account for the three-particle correlator
measurements [5] seem reasonable, except for peripheral
collisions. The hydrolike particle flow magnitude, to make

up to the measured inclusive particle flow together with the
cluster particle flow, appears reasonable, too.

Cluster particle correlations may originate from (semi)hard
scatterings. It is therefore natural to expect that cluster effect
would increase with pT , although the pT dependence is not
studied in this article because of the lack of pT -dependent
measurements of two-particle angular correlations. It is worth
noting that the measured azimuth correlators indeed increase
with pT [5], an observation that cannot be explained by local
strong parity violation but may be expected from cluster
particle correlations.

In conclusion, our results from conventional physics of
cluster particle correlations suggest that no new physics is re-
quired to explain the two- and three-particle azimuth correlator
measurements by STAR. Our conclusion is complementary to
the experimental findings in Ref. [5] that the azimuth correlator
data alone do not allow conclusions on the local strong parity
violation.
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