
HAL Id: hal-01143861
https://hal.inria.fr/hal-01143861

Submitted on 20 Apr 2015

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Safe Motion using Viability Kernels
Bouguerra Muhammad, Thierry Fraichard, Mohamed Fezari

To cite this version:
Bouguerra Muhammad, Thierry Fraichard, Mohamed Fezari. Safe Motion using Viability Kernels.
ICRA 2015 - IEEE Int. Conf. on Robotics and Automation, May 2015, Seattle, United States.
�hal-01143861�

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by INRIA a CCSD electronic archive server

https://core.ac.uk/display/49530954?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://hal.inria.fr/hal-01143861
https://hal.archives-ouvertes.fr

Safe Motion using Viability Kernels

Mohamed A. Bouguerra, Thierry Fraichard and Mohamed Fezari

Abstract— A prerequisite to safe robot motion is to avoid
Inevitable Collision States (ICS). However, the characterization
of the ICS set is a challenge. Several approximation methods
have been proposed, most of which either are overly conser-
vative or fail to provide proper motion safety guarantees. In
order to to improve safety guarantees, we build upon Viability
Theory and adapt an algorithm designed to approximate the
Viability Kernel, a concept similar to ICS. Our algorithm is
applied first to a challenging static environment scenario. It
is then extended to handle dynamic environments. Although it
is not possible in general to ensure safety forever, we manage
nonetheless to achieve infinite motion safety in two special cases.

I. INTRODUCTION

With the growth of Service Robotics, the number of
autonomous mobile robots is increasing. They come in a
variety of types and carry out many different tasks. However,
regardless of where and why they move, the safety of their
motions remains a prime concern. In this respect, a robot
should be able to recognize and avoid not only collision
states, but also Inevitable Collision States (ICS) [1]. As the
name suggests, an ICS is a state for which no matter what the
future trajectory of the robot is, a collision will eventually
occur. Needless to say that characterizing and avoiding ICS
is crucial to motion safety.

Characterizing the set of ICS is in general intractable
since it requires in theory to check for collision the infinite
number of possible trajectories of infinite duration that the
robot could execute from a given state. Considering only a
finite subset of so-called evasive trajectories is the stance
commonly taken by ICS-based approaches. It yields an
approximation of the ICS set which is conservative but
whose quality heavily depends on the choice of the evasive
trajectories (with ill-chosen evasive trajectories, most of the
states may end up being labeled as ICS).

In static workspaces, braking trajectories [2], i.e. trajec-
tories that bring the robot to a stop, are good candidates if
the robot can stop of course. If the robot is a plane and
cannot stop mid-air, circling trajectories [3] are an obvious
choice that may not work so well if the workspace features
narrow corridors. In dynamic workspaces, things get worse.
Even assuming that knowledge about the future behavior of
the moving obstacles is available, selecting the appropriate
evasive trajectories remains an open problem.

Interestingly, a concept similar to ICS have appeared in
an other domain, namely the Viability Kernel (VK) from

M. Bouguerra and M. Fezari are with the Electrical Engi-
neering Dept., Annaba Univ., Algeria mabouguerra@gmail.com,
mouradfezari@yahoo.fr. Thierry Fraichard is with INRIA, CNRS-
LIG and Grenoble Univ., France thierry.fraichard@inria.fr

the Viability Theory [4]. Given a dynamical system, and
a subset of states satisfying a given set of constraints, the
VK is the subset of states from which the system can be
maintained within the constrained subset forever. Note that,
when the constraints are to avoid collision, the VK is actually
the complement of the ICS set. Computing VK and ICS
are therefore related and since there exist algorithms that
compute approximations of VK, it is interesting to explore
if they can be used in a collision avoidance context.

In this paper, we exploit the VK algorithm from [5] to
provide a good approximation of the ICS set (good in the
sense that it guarantees motion safety in a less conservative
manner). First, the algorithm is adapted in order to be conser-
vative in static environments. The algorithm is evaluated in
the case of an unstoppable robot navigating narrow passages.
Then, the algorithm is extended to handle dynamic envi-
ronments. Although it is in general impossible to guarantee
motion safety forever, we establish and demonstrate that it
can be achieved for two classes of dynamic environments: the
freezing class where the environment becomes static at some
point, and the periodic class where the moving obstacles have
a periodic behaviour.

II. RELATED WORKS

Although the details may vary, most of the proposed ICS
approximation methods rely on the same principle: a subset
of evasive trajectories is selected and states are labeled ICS
if none of the evasive trajectories are collision-free. In static
workspaces, braking trajectories (which drive the robot to
a stop), are an obvious choice [6], [7]. When the robot
cannot stop, e.g. it is a plane, circling trajectories have been
considered [3]. In dynamic workspaces, imitating trajectories
(which maintain zero relative velocity with the obstacle),
have been proposed in [2]. Whatever the subset of evasive
trajectories selected, it is difficult to ensure the quality of the
approximation for all situations and not end up with most
states conservatively labeled as ICS. This difficulty plus the
fact that absolute motion safety requires to reason over an
infinite time horizon [8] have led some authors to settle for
weaker motion safety guarantees. For instance, [9] introduces
passive safety; it guarantees that if a collision occurs, the
robot will be at rest.

Other methods settle to even less. They aim to improve the
chance of surviving collisions yet with no strict guarantees.
They use other types of trajectories. For instance, trajectories
that are guaranteed to be collision-free only up to a finite time
[10], [11], or trajectories that are collision-free with respect
to one obstacle at a time, instead of considering them all at
once [12], [13].

On the viability front, diverse VK approximation methods
have been proposed. The method considered in this work [5]
discretizes the system in time and space, and then it unveils
the discrete VK in an iterative manner. The method in
[14] builds upon the first one. It defines an SVM model
that can be used to find viable controls in a faster way,
but does not provably converge to the actual VK. The
algorithm [15] determines whether a given state is locally
viable i.e. viable for a limited time horizon, by minimizing
the cost to constraints using simulated annealing. In [16] the
authors made a relation between VK and maximal reachable
sets, and used the already exiting Lagrangian techniques for
computing the reachable sets to under-approximate the VK.

Closer to our work, machine learning is used in [17] and
[18] to approximate the VK for mobile robots. The purpose
was in [18] to filter out nonviable states from the search
space, to speed up motion planners, while in [17] was to
help augmenting systems safety by preventing them from
entering failure regions. A learning approach is prone to
misclassification, which may not be a problem in the first
case, but would void safety guarantees in the latter one.

III. VIABILITY IN A NUTSHELL

We recall here the basic concepts of the viability theory,
the reader is referred to [4] for more details. Viability theory
studies the evolution of dynamical systems and their capacity
to satisfy viability constraints, e.g. avoiding collisions for
a mobile robot, remaining dynamically balanced for a hu-
manoid robot. Viability constraints generally define a subset
of the state space of the system, the admissible space. A
viable state is guaranteed to have at least one sequence of
controls which, when applied from said state, will keep the
system from failure, i.e. keep it in the admissible space.
Conversely, nonviable states are those where failure is no
longer avoidable. Note that when collision avoidance is
the viability constraint then nonviable states are inevitable
collision states. The viability kernel of an admissible space
is the set of all its viable states.

These concepts can be formalized as follows. Consider the
continuous-time dynamical system:{

x′(t) = F (x(t), u(t))

u(t) ∈ U(x(t))
(1)

with x(t) ∈ X the system state at time t and u(t) the
control applied. U(x(t)) is the set of allowed controls at
time t that can be state-dependent. Viability constraints are
characterized by the compact subset A of the state space
within which the system must be kept.

Let x(·) : t → x(t) denote the evolution of the system
when the sequence of controls u(·) : t → u(t) is applied to
it. An evolution x(·) is said to be viable in the admissible
space A on an interval [0, T [(where T ≤ +∞) if for every
time t ∈ [0, T [, x(t) belongs to A. Accordingly, we call
viable states those from which starts at least one evolution
viable in A at all times i.e. on the interval [0,+∞).

The basic problem in the viability theory is to find the
viability kernel of the admissible space, the set of all its
viable states.

Def. 1 (Viability Kernel):

ViabF (A) = {x0 ∈ A | ∃x(·) : x(0) = x0 and ∀t ≥ 0, x(t) ∈ A}
(2)

The admissible space A is said to be viable under F
whenever it is equal to its viability kernel ViabF (A).

The next question is then to provide the regulation map,
the set-valued map x ∈ ViabF (A) R(x) ⊂ U(x) that
indicates at each state the viable controls that, when applied,
will keep the system inside the VK.

Def. 2 (Regulation Map): The set-valued map x R(x)
is a regulation map governing viable evolutions if the VK of
A is viable under the control system:{

x′(t) = F (x(t), u(t))

u(t) ∈ R(x(t))
(3)

In the following section, we present the viability al-
gorithm, devised by Saint-Pierre in [5], that aims to ap-
proximate the VK of an admissible space under a control
system, and also to provide the regulation map, that governs
evolutions viable in that admissible space.

IV. VIABILITY ALGORITHM

The viability algorithm operates in two stages. It first
approximates the original continuous problem by discretizing
it in time and space. Then, it computes the exact VK for the
discretized problem in an iterative way.

A. Discretization
We first discretize the problem in time. There exist more

or less sophisticated ways to transform continuous-time
models into discrete counterparts. We use for instance the
simplest, the Euler explicit discrete scheme. Let ρ be the time
discretization step, and G the discrete dynamical system:{

xn+1 = G(xn, un) = xn + ρF (xn, un)

un ∈ U(xn)
(4)

Then, we reduce the state space to a finite subset of X ,
for instance a grid of step h, denoted Xh. But since we
cannot define the above discrete system on the finite grid
Xh, because nothing guarantees that for all xn ∈ Xh, the
image G(xn, un) is in Xh, we introduce Gr the extension
of G with a ball of radius r:

Gr = G+ rB (5)

where B is the unit ball. And we choose r such that:

∀x ∈ Xh , G
r(x, u) ∩Xh 6= ∅ (6)

we can take for instance, and without loss of generality r =
h. Thus, we obtain the discrete and finite dynamical system:{

xn+1 ∈ xn + ρF (xn, un) + hB
un ∈ U(xn)

(7)

Finally, the control space is also reduced to a finite subset,
and so the set of controls that are allowed at each state xn
becomes finite and we denote it Ud(xn).

B. Construction of the Discrete and Finite Viability Kernel

In the next step, we construct the VK of Ah = A ∩ Xh

under the discrete and finite system (7) iteratively as follows:
We initialize A0 = Ah, and we define the sequence of

subsets A1, A2, A3, ..., An, ... recursively, such that:

An+1 = {x ∈ An | ∃u ∈ Ud(x) : Gr(x, u)∩An 6= ∅} (8)

This will basically refine the grid Ah iteratively, by
discarding at each iteration the states from which the system
will inevitably leave the grid in the next step.

Now if we denote A∞ =
∞⋂
n=0

An, it is provable to say

that A∞ is the largest subset of Ah such that:

{∀x ∈ A∞ , ∃u ∈ Ud(x) : Gr(x, u) ∈ A∞} (9)

or equivalently:

A∞ = ViabGr (Ah) (10)

and since Ah is finite, there exists a finite integer p such
that:

∀n ≥ p : An = Ap (11)

thus we obtain the exact VK of Ah under the discrete and
finite system (7), in a finite number of steps.

Then, we can recover the discrete regulation map Rh,ρ,
defined for every state in ViabGr (Ah) as:

Rh,ρ(x) = {u ∈ Ud(x) | Gr(x, u) ∈ ViabGr (Ah)} (12)

This regulation map provides all the viable actions that are
available at each state. Choosing actions according to Rh,ρ,
the system is ensured to stay in Ah at all times.

It is important to note that although the finite and discrete
kernel ViabGr (Ah) may consist of a good approximation
to the VK for the continuous problem ViabF (A), Saint-
Pierre proved that, and gave the conditions for which, the
approximated kernel ViabGr (Ah) converges to the actual
kernel ViabF (A) as h and ρ go to zero.

lim
h,ρ→0

ViabGr (Ah) = ViabF (A) (13)

We refer the reader to [5] for more details on the convergence
issue, as well as the proof for the result stated in (10).

V. LIMITATIONS OF THE VIABILITY ALGORITHM

The viability algorithm as described in the previous section
does not readily fit our purpose with regard to guaranteed
motion safety. It shows the following two issues:

A. Non Conservativeness

The algorithm does not provide a conservative approx-
imation. That is the approximate kernel ViabGr (Ah) is
not necessarily included in the exact one ViabF (A). Put
differently, evolutions that are viable in Ah under Gr may
not be viable in A. This is due to two reasons:

The first one is a result of working with Gr instead of
G. The algorithm could wrongly not discard a nonviable
state xn, whose all successors G(xn, un) lie outside A, just

(a) G(xn, un) lies outside
A, eventhough Gr(xn, un)∩
Ah 6= ∅

(b) The two endpoints are in
A, but the trajectory in be-
tween is not

Fig. 1: Algorithm Issues

because Gr(xn, un) ∩Ah 6= ∅. This is distinctly possible to
occur near the boundary of A (Fig. 1a).

Second, evolutions viable in Ah under Gr are only ex-
pected to satisfy the constraints at the discrete time steps.
We can have an evolution x(·) where xn and xn+1 belong
to Ah, but the trajectory in between leaves A (Fig. 1b).

B. Dynamic Environments

Most workspaces where robots are set to operate are
dynamic, they feature moving obstacles. This causes the
admissible space A to become changing i.e. time dependent.

The viability algorithm was meant, and only applied, to
approximate the VK when the admissible space A is static.
To cope with dynamic environments, an obvious suggestion
would be to move to the state-time space framework. That
is to add the absolute notion of time as an extra dimension,
denoted here τ , and to augment the dynamics to become:

(xn+1, τn+1) = H((xn, τn), un)

= (xn + ρF (xn, un), τn + ρ)

un ∈ Ud
(14)

Then, A can be defined in the state-time space as the set
of all collision-free tuples (x, τ).

Moving to the state-time space is indeed the key to deal
with dynamic environments, however, we cannot apply the
viability algorithm right away to compute the VK of the so
defined A under H , because of the following reason. As
the admissible space should be compact, the time dimension
must be bounded at some T , and so all evolutions starting
from A will have to leave it anyway, because the time
variable will keep increasing and never stop or go backward.
As a result, the algorithm would return an empty set.

The way we have dealt with dynamic environments, as
well as the method to ensure a conservative approximation
are presented in the next section.

VI. EXTENDING THE LIMITS

A. Providing a Conservative Approximation

To turn over the issues presented in V-A, and set back
motion safety that we strive for, we take the following
measures.

(a) A state lattice for a one dimensional
double integrator system.

(b) An approximate state lattice
for the Dubins car.

Fig. 2: Construction of state lattices.

First, we opt for another discretization of the state space
Xh. Instead of defining a random grid, we construct a state
lattice based on the model of the system. The state lattice is
constructed as follows:
After choosing a time step ρ, and a finite subset of controls
U ′, we start from some origin state, and we grow a reach-
ability graph by applying all the possible controls in U ′ for
a fixed duration ρ, with the assumption that the control is
constant during the time step.
For fully-actuated systems, we obtain a regular lattice which
has a fixed spacing in each dimension (Fig. 2a) [19]. But we
can also construct approximate lattices for under-actuated
systems, by growing the reachability graph upon a regular
grid, and ensure that no more than one graph vertex lies on
each grid cell (Fig. 2b) [20].
By building Xh as such, we do not need to work with the
extension of G with rB, since by construction ∀x ∈ Xh :
G(x, u) ∈ Xh. Thence, we preserve the system safety.

To cope with the second issue, we make a preprocessing
step to filter the controls available at each state in Ah. We
only allow controls for which the system will stay in A until
it reaches the next state in Ah. So instead of working with
Ud, we define the map Ue : xn ∈ Ah Ud(xn) so that:

∀un ∈ Ue(xn) : G(xn, un) ∈ Ah and x(t) ∈ A, ∀t ∈ [n, n+ρ]
(15)

A collision checker such as PQP [21] can be used to fulfill
the second condition i.e. the trajectory between the two states
is collision free, or equivalently, it remains in A.

By doing these modifications, we can now ensure a
conservative approximation of the kernel, which means that
ViabG(Ah) ⊂ ViabF (A). So starting from any state in
ViabG(Ah), the system is guaranteed to remain in A.

B. Dealing with Dynamic Environments

In dynamic environments, as the time dimension has to be
bounded, it is not possible to determine states that are viable
forever. What we can do instead, is to find the states that
are viable up to the bounded time horizon T . To this end,
we formulate the problem as finding the viability kernel with
target.

If a subset C ⊂ A is regarded as a target, the viability
kernel of A with target C is the subset of states in A from

which starts at least one evolution viable in A forever or
until it reaches C in finite time. This relatively new concept
has been introduced in [4], and it can be computed using the
same viability algorithm with slight adaptations:
First, we set A0 = Ah \C, and instead of (8) we define the
sequence of subsets A1, A2, A3, ..., An, ... as follows:

An+1 = {x ∈ An | ∃u ∈ Ud(x) : Gr(x, u)∩(An∪C) 6= ∅}
(16)

In our case, if we set C = {(x, τ) ∈ A | τ = T}, the
viability kernel with target ViabH(A,C) represents the set of
states from which the system is guaranteed to stay collision-
free until time T . This is in fact all we can determine in the
general case.

Nonetheless, there are some special cases of dynamic
environments whose nature allows us to rewrite the dynamics
of the system in such a way we circumvent the problem
stated in V-B. We will then be able to compute their VK
using the viability algorithm normally, and so we guarantee
system safety forever. We distinguish two special cases that
we dub respectively: freezing world and periodic world.

1) Freezing case: In the first case, there exists a finite time
T in the future at which the admissible space A freezes, it
stops changing. Be it the obstacles stay still, or leave the
workspace never to enter it again.

A characteristic of this class of dynamic environments is
that:

∀τ > T : (x, τ) = (x, T) (17)

This allows us to rewrite the dynamics of the system as:

(xn+1, τn+1) = H((xn, τn), un)

= (xn + ρF (xn, un), τn + ρ) if τn < T

(xn+1, τn+1) = H((xn, τn), un)

= (xn + ρF (xn, un), τn) if τn ≥ T
un ∈ Ud

(18)
By doing so, the system need not to leave the admissible

space A that we bound its time dimension at T , and so we
can compute the VK of A under the system (18) using the
viability algorithm normally. Not only that, by determining
the VK of the bounded A, we can also tell whether the states
whose τ > T are viable or not, thanks to (17)

2) Periodic case: In the second case, the change of A is
periodic. There is a time T for which the obstacles return to
their initial states and repeat the same motion all over again.

This type of workspaces (aka repetitive workspaces) is
often observed in practice. The workspace may consist of
moving obstacles having a continuous periodic motion e.g.
revolving doors, sliding doors, and elevators; or having
discrete modes, changing from one another in a periodic
manner.

As with the previous case, this class of environments has
the following characteristic:

∀τ > T : (x, τ) = (x, τ mod T) (19)

which could lead us to the following dynamics:
(xn+1, τn+1) = H((xn, τn), un)

= (xn + ρF (xn, un), (τn + ρ) mod T)

un ∈ Ud
(20)

In like manner, we bound the admissible space’s time
dimension at T , and we compute its VK under (20) using the
viability algorithm as normal. Here also, the computed VK
allows us to determine the viability of states even beyond
the time horizon T , because of (19).

VII. SIMULATION RESULTS

To assess its efficiency, we have implemented the via-
bility algorithm for a simple robotic system in different
workspace scenarios. For each scenario, we have computed
the approximate VK and the corresponding regulation map.
Then, we have used this regulation map to safely navigate the
workspace. The navigation scheme is rather simple. Starting
from a state of the VK, the robot chooses at each time step, a
control to apply among the viable controls that are available
at the present state. This set of viable controls is determined
according to the regulation map. The choice of the control
depends on the objective the robot is about to achieve, and
it would maximize some defined utility function.

We present, for each of the test cases, figures illustrating
2D slices of the VK, at fixed values of velocity v, and time
t. The VK is shown in green, and ICS in red. We have also
simulated the navigation tasks using ROS and Gazebo. We
attached to the paper a video showing the simulation runs.

A. Robot Model

We consider a point mass, that we denote A, whose
acceleration a is directly controlled. It operates in a 2D
workspace W . Its state x is represented by a tuple (p, v),
where p is its position, and v is its Cartesian velocity. The
motion is governed by: {

ṗ = v

v̇ = u
(21)

where |v| ≤ vmax and |u| ≤ amax.

B. The viability Algorithm at Work

1) Unstoppable robot amidst narrow corridors: We con-
sider a static workspace as depicted in (Fig. 3a). We lower
bound the velocity of the robot to be v > vmin, and we
choose vmin so that we prevent the robot from moving
in circles, given the constraint: |u| ≤ amax. The viability
algorithm comes in most handy, whenever it is unclear how
to choose safe evasive trajectories, thanks to its brute force
nature.

The approximated kernel is depicted in (Fig. 3a) as 2D
slice at fixed value of v. Using the regulation map corre-
sponding to this approximated kernel, the robot was able to
safely navigate the workspace, as shown in the simulation. As
expected, the viability algorithm was able to find if, from any

state, a safe trajectory exists, however arbitrary this trajectory
might be.

2) The compactor scenario: In this scenario, the
workspace features two obstacles, one of which is mov-
ing towards the other at constant velocity until they meet,
resembling to a trash compactor (Fig. 3b). As simple as
this scenario might seem, none of the previously proposed
methods could give, in their respective systematic way, a
reasonably conservative approximation of its ICS set (or
equivalently the VK). The VK approximation provided by
the viability algorithm (Fig. 3b) was conservative, yet good
enough to allow the robot to safely traverse the compactor, as
shown in the simulation. Note that this example falls within
the freezing class that we discussed in VI-B.1.

3) Periodic workspace: This scenario is the other special
class of dynamic environments. We have shown in the pre-
vious section that absolute motion safety can be guaranteed
in this class of workspaces using the viability algorithm. We
consider here a simple example. It consists of two cells where
the only way to go from one another is to pass through a
revolving door in the middle (Fig. 3c).

Using the VK approximation computed with the viability
algorithm (Fig. 3c), the robot was able to safely go back and
forth between the two cells many times, and it is provable it
can continue doing so forever without entering into collision.
The simulation run as well as the 2D slice of the kernel
approximation that changes in real time, are illustrated in
the attached video.

C. Computational Efficiency

The computational complexity of the viability algorithm is
exponential in the state and the action spaces. The algorithm
was implemented on an average laptop using Python. It took
on an average of three runs, 54, 1614, and 1088 seconds, to
compute the viability kernel for the first, second, and the third
scenarios respectively. The running time gets significantly
bigger as the dimension increases i.e. as with the additional
time dimension in the case of dynamic workspaces. The
running time does also depend on the size of the admissible
space A, since it is the set that is manipulated and iterated
over. That said, the algorithm would perform better in more
cluttered workspaces. This in part justifies the difference
between the running times of the second and the third cases.
Thankfully, the VK has to be computed only once and off-
line, and then it can be used online to safely navigate the
workspace, as in the scenarios considered.

VIII. DISCUSSION AND CONCLUSION

We have used the viability algorithm as a mean to approx-
imate the VK, and thus the ICS set, to ensure motion safety
of mobile robotic systems. It needed to make some modifica-
tions to the algorithm to obtain a conservative approximation
of the VK, and also to cope with dynamic environments.

The method has shown many strengths as well as short-
comings. One advantage is that it can be used to compute the
VK for systems with any dynamics and of any dimension, at
least theoretically. Secondly, it does not require to predefine

(a) vx = 6, vy = 6, t = 16 (b) vx = 8, vy = −4, t = 8

(c) vx = 2, vy = 6, t = 10

Fig. 3: 2D slices of the VK of the test scenarios, correspond-
ing to fixed values of velocity vx, vy , and time t

a set of evasive trajectories; instead, it will brute-force search
them all, but in a way that mitigates the combinatorial explo-
sion. This is equivalent to say it is resolution-complete. At
any given state, it will find an evasive trajectory, if one exists
under that discretization. This would be particularly useful
when no clear choice of evasive trajectories is available.
Also, the algorithm not only determines whether or not a
given state is safe, but also it provides the viable controls
that will maintain the system inside the VK. Moreover, it
offers under some assumptions a convergence proof. The VK
of the discretized problem converges to the continuous one,
as the discretization steps decrease.

In dynamic environments, we have shown it not to be
possible in general to ensure absolute motion safety. This is
due to the fact that we must bound the time dimension, and
reason over a finite time horizon. Nonetheless, we were able
to obtain motion safety guarantees, for some special classes
of dynamic environments. Another interesting feature of the
algorithm is the possibility to define states to avoid of any
nature other than collision states e.g. tipping over.

On the other hand, the main drawback of the algorithm
is its computational complexity, it is exponential in the state
and the control spaces. The algorithm may not be fast enough
for real time settings, but it is sill interestingly useful in
applications where the VK is computed off-line and then is
used for safe navigation afterwards. This has been shown
to be doable with the three workspace scenarios that we
considered in our experiments.

This work can be extended in many ways. We could
evaluate the algorithm on more complex robotic systems and
in other scenarios. We could also make an experimental com-

parison with some ICS approximation techniques. Then, It
would be of interest to investigate other potential connections
between the viability theory and robots motion safety.

REFERENCES

[1] T. Fraichard and H. Asama, “Inevitable collision states. a step towards
safer robots?” Advanced Robotics, vol. 18, no. 10, pp. 1001–1024,
2004.

[2] L. Martinez-Gomez and T. Fraichard, “An efficient and generic 2d
inevitable collision state-checker,” in Intelligent Robots and Systems,
2008. IROS 2008. IEEE/RSJ International Conference on, Nice (FR),
2008.

[3] T. Schouwenaars, J. How, and E. Feron, “Receding horizon path plan-
ning with implicit safety guarantees,” in American Control Conference,
2004. Proceedings of the 2004, Bonston (US), Jun 2004.

[4] J.-P. Aubin, A. Bayen, and P. Saint-Pierre, Viability Theory: New
Directions. Springer, 2011.

[5] P. Saint-Pierre, “Approximation of the viability kernel,” Applied Math-
ematics and Optimization, vol. 29, no. 2, pp. 187–209, 1994.

[6] K. E. Bekris and L. E. Kavraki, “Greedy but safe replanning under
kinodynamic constraints,” in Robotics and Automation, 2007 IEEE
International Conference on, Roma (IT), 2007.

[7] M. Seder and I. Petrovic, “Dynamic window based approach to mobile
robot motion control in the presence of moving obstacles,” in Robotics
and Automation, 2007 IEEE International Conference on, 2007.

[8] T. Fraichard and T. Howard, “Iterative motion planning and safety
issue,” in Handbook of Intelligent Vehicles, A. Eskandarian, Ed.
Springer, 2012, pp. 1433–1458.

[9] S. Bouraine, T. Fraichard, and H. Salhi, “Provably safe navigation for
mobile robots with limited field-of-views in dynamic environments,”
Autonomous Robots, vol. 32, no. 3, pp. 267–283, 2012.

[10] E. Frazzoli, M. A. Dahleh, and E. Feron, “Real-time motion planning
for agile autonomous vehicles,” Journal of Guidance, Control, and
Dynamics, vol. 25, no. 1, pp. 116–129, 2002.

[11] D. Hsu, R. Kindel, J. C. Latombe, and S. Rock, “Randomized kino-
dynamic motion planning with moving obstacles,” The International
Journal of Robotics Research, vol. 21, no. 3, pp. 233–255, 2002.

[12] N. Chan, J. Kuffner, and M. Zucker, “Improved motion planning
speed and safety using regions of inevitable collision,” in 17th CISM-
IFToMM symposium on robot design, dynamics, and control, 2008.

[13] Z. Shiller, O. Gal, and A. Raz, “Adaptive time horizon for on-
line avoidance in dynamic environments,” in Intelligent Robots and
Systems (IROS), 2011 IEEE/RSJ International Conference on, Sept
2011.

[14] G. Deffuant, L. Chapel, and S. Martin, “Approximating viability
kernels with support vector machines,” Automatic Control, IEEE
Transactions on, vol. 52, no. 5, pp. 933–937, 2007.

[15] N. Bonneuil, “Computing the viability kernel in large state dimension,”
Journal of Mathematical Analysis and Applications, vol. 323, no. 2,
pp. 1444–1454, 2006.

[16] S. Kaynama, J. Maidens, M. Oishi, I. M. Mitchell, and G. A. Dumont,
“Computing the viability kernel using maximal reachable sets,” in
Proceedings of the 15th ACM international conference on Hybrid
Systems: Computation and Control, 2012.

[17] M. Kalisiak and M. van de Panne, “Approximate safety enforcement
using computed viability envelopes,” in Robotics and Automation,
2004. Proceedings. ICRA’04. 2004 IEEE International Conference on,
Apr. 2004.

[18] ——, “Faster motion planning using learned local viability models,”
in Robotics and Automation, 2007 IEEE International Conference on,
Roma (IT), Apr. 2007.

[19] B. Donald, P. Xavier, J. Canny, and J. Reif, “Kinodynamic motion
planning,” Journal of the ACM (JACM), vol. 40, no. 5, pp. 1048–1066,
1993.

[20] J. Barraquand and J. C. Latombe, “Nonholonomic multibody mobile
robots: Controllability and motion planning in the presence of obsta-
cles,” Algorithmica, vol. 10, no. 2-4, pp. 121–155, 1993.

[21] S. Gottschalk, M. C. Lin, and D. Manocha, “Obbtree: a hierarchical
structure for rapid interference detection,” in Proceedings of the 23rd
annual conference on Computer graphics and interactive techniques,
1996.

	Introduction
	Related Works
	Viability in a Nutshell
	Viability Algorithm
	Discretization
	Construction of the Discrete and Finite Viability Kernel

	Limitations of the Viability Algorithm
	Non Conservativeness
	Dynamic Environments

	Extending the Limits
	Providing a Conservative Approximation
	Dealing with Dynamic Environments
	Freezing case
	Periodic case

	Simulation Results
	Robot Model
	The viability Algorithm at Work
	Unstoppable robot amidst narrow corridors
	The compactor scenario
	Periodic workspace

	Computational Efficiency

	Discussion and Conclusion
	References

