
SCHOOL OF
CIVIL ENGINEERING

INDIANA

DEPARTMENT OF HIGHWAYS

JOINT HIGHWAY RESEARCH PROJECT

FHWA/IN/JHRP-88/3 -/

Final Report

AN AUTOMATIC, QUANTITATIVE IMAGE

ANALYSIS SYSTEM FOR CONSTRUCTION

MATERIALS

Dexiang Shi

&>

PURDUE UNIVERSITY





JOINT HIGHWAY RESEARCH PROJECT

FHWA/IN/JHRP-88/3 -/

Final Report

AN AUTOMATIC, QUANTITATIVE IMAGE

ANALYSIS SYSTEM FOR CONSTRUCTION

MATERIALS

Dexiang Shi



Digitized by the Internet Archive

in 2011 with funding from

LYRASIS members and Sloan Foundation; Indiana Department of Transportation

http://www.archive.org/details/automaticquantitOOshid



AN AUTOMATIC, QUANTITATIVE IMAGE ANALYSIS SYSTEM

FOR CONSTRUCTION MATERIALS

Final Report

TO: H. L. Michael, Director
Joint Highway Research Project

FROM: D. N. Winslow, Research Engineer

Joint Highway Research Project

January 26, 1988

Project: C-36-58C

File: 5-12-3

Attached is the Final Report on the HPR Part II study titled "Image

Analysis of Highway Materials." The report was written by Dexiang Shi,

Graduate Research Assistant, under my direction. The report discusses

the development of an automatic quantitative image analysis (AQIA)

software system specially designed for materials' analysis. It is

implemented on a UNIX operating system with a Tektronix graphics terminal,

as was specified in the study proposal.

The report is forwarded to IDOH and FHWA in fulfillment of the objectives

of the study.

Sincerely Ypurs

D. N. Winslow
Research Engineer

DNW/mlc

cc A.C Altschaeff

1

D.E. Hancher P.L. Owens

J.M. Bell R.A. Howden B.K. Partridge

M.E. Cantrall M.K. Hunter G.T. Satterly

W.F. Chen J. P. Isenbarger C.F. Scholer

W.L. Dolch J.F. McLaughlin K.C. Sinha

R.L. Eskew K.M. Mel linger C.A. Venable

J.D. Fricker R.D. Miles T.D.
L.E.

White
Wood



AN AUTOMATIC, QUANTITATIVE IMAGE ANALYSIS SYSTEM

FOR CONSTRUCTION MATERIALS

by

Dexiang Shi
Graduate Research Assistant

Joint Highway Research Project

Project No.: C-36-58C

File No.: 5-12-3

Prepared as Part of an Investigation

Conducted by

Joint Highway Research Project
Engineering Experiment Station

Purdue University

in cooperation with the

Indiana Department of Highways

and the

U.S. Department of Transportation
Federal Highway Administration

The contents of this report reflect the views of the authors who are
responsible for the facts and the accuracy of the data presented herein,
The contents do not necessarily reflect the official views or policies
of the Federal Highway Administration. This report does not constitute
a standard, specification, or regulation.

Purdue University
West Lafayette, Indiana

January 26, 1988



TECHNICAL REPORT STANDARD TITLE PACE
1. Kepen No.

FHWA/IN/JHRP-88/3

7 Government Acctmon No. 3. Recipient's Cotolop No.

4. Till* ond Subtitle

An Automatic, Quantitative Image Analysis
System for Construction Materials

S. Report Dolo

26 January 19?

6. Performing Orgonixolien Codo

7. Au*or|i)

Shi, Dexiang
8. Performing Orgonixotion Report No.

JHRP-88/3

Performing Organitotion Norn* ond Addrogg

Joint Highway Research Project
Civil Engineering Building
Purdue University
West LaFayette, Indiana - M79G\

10. Wort Unit No.

1 1 . Controct or Cront No.

HPR Part II

12. Sponsoring Agoncy Nomi ond Addres»

Indiana Department of Highways
State Office Building
100 North Senate Avenue
Indianapolis, Indiana - '16204

13. Typo of Report oni P. nod Covered

Final Report

'4. Sponsoring Agoncy Code

IS. Supplementory Ndiii

Conducted in cooperation with the U.S. Department of Transportation, Federal
Highway Administration.

16. Abmocl

An image analysis software system has been developed for a UNIX
operating system and a Tektronix terminal. It is designed for the
particles and/or pores in construction materials. This system provides
a means to measure many discrete fields of view, in order to obtain
statistically meaningful results. The system can process images from
either an electron or light microscope, or from an ordinary camera.
Either negatives or positives can be used. A new method based on fuzzy
probability has been developed to segment digital images into binary
images. It is more consistent than existing techniques. The accuracy
of the system has been verified with images having known geometric
properties. Measurements have an error of less than 1% with an image
of appropriate resolution. The system makes different measurements on
separate particles and cut planes through massive samples. In the
former case, the measurements are: the perimeters, areas, and maximum
chords of particles in orthogonal directions, the maximum, minimum and
mean values of these parameters, and their distributions. Also, the
area of the image, the area faction of particles and the number of
particles are measured. In the case of the cut planes, the estimated
parameters are: volume fraction of particles, surface area per unit
bulk volume, and surface area per unit particle volume. The size dis-
tribution, total number of particles and mean diameter can also be
estimated

.

17. Key fcordi

Image Analysis, Construction Material
Fuzzy Sets, Fuzzy Probability
Thresholding

16. Distribution Stotomonl

, No restrictions. This document is

available to the public through the

National Technical Information Service,
Springfield, Virginia 22161.

19. Security Cloitif. (ol this report)

Unclassified

20. Security Cloisll. (of thl I pope

Unclassified

2). No. of Poges

129

22. P'fee

Form DOT F 1700.7 le-es)



ACKNOWLEDGEMENTS

The author would like to express his appreciation for

the continual encouragement and guidance of his major pro-

fessor, Dr. Douglas N. Winslow, without which this

research would have not been possible.

Thanks are also due to the other members of the

advisory committee, Dr. James T. P. Yao, Dr. W. L. Dolch

and Dr. Terry R. West, for their assistance.

This investigation was supported by the Indiana

Department of Highway and the Federal Highway Administra-

tion through the Joint Highway Research Project at Purdue.



TABLE OF CONTENT

Page

LIST OF TABLES vi

LIST OF FIGURES vii

ABSTRACT ix

INTRODUCTION 1

DESIGN OF EXPERIMENTS IN VOLUME FRACTION ESTIMATION 10

Interval Estimation of Volume Fraction 10
Predication of Estimation Accuarcy 14
Design of Experiments 15

SEGMENTATION OF DIGITAL IMAGE 23

Currently Used Automatic Threshold Selections 24
Basic Concepts of Fuzzy Sets and Their Application 29
AQIA Approach 32
Construction of the Membership Function u (x.) 35
General Use of the Fuzzy Probability Thresholding 41

BINARY IMAGE PROCESSING 45

Imperfect Binary Images and Some Processing Twchnique s . . 4

5

Individual Selection and Object Labeling 50
Overall and Individual Processing Modes 52

BINARY IMAGE MEASUREMENT 63

Global and Individual Measurement 63
Estimation of Spatial Size Distribution 65

DEMONSTRATION AND VERIFICATION OF AQIA 73

Typical Results of Measurement on Separate Par t i c le s . . . . 7

3

Typical Results of Estimation
on 3-Dimensional Properties 84
Verification of Measurement on Separate Particles 88



Page

Comparison of the Conventional and the New Method
for Estimating the Particle Size Distribution 97

GUIDE TO THE USE OF AQIA 102

SAMPLE AND IMAGE PREPARATION TECHNIQUES 107

CONCLUSIONS 114

LIST OF REFERENCES 116

APPENDICES

Appendix A: Basic Statistical Equations 120
Appendix B: Coefficient of Variation of Area Fr ac t ions . 1 2

2

Appendix C: Coefficient of Variation of
Cross-sectional Areas 126

Appendix D: 100(1 - a/2) Percentile
of t Distribution 128

Appendix E: Questionair for Darkness
Pair by Pair Comparison 129

VITA 130



LIST OF TABLES

Table Page

1. Number of Required Images, n 21

2. Experimental Data of Relative Darkness 38

3. Degree of Membership of Gray Level in 'Dark' 39

4. Basic Measurements on Quartz 77

5. Distribution of Perimeters of Quartz 79

6. Distribution of Max. W-E Chords of Quartz 80

7. Distribution of Max. N-S Chords pf Quartz 82

8. Distribution of Areas of Quartz 83

9. Volume Fraction and Surface Area from Fig. 9 85

10. Particle Size Distribution from Fig. 9 86

11. Area Fractins of Coins 93

12. Perimeters of Coins 94

13. Areas of Coins 95

14. Max. W-E Chords of Coins 96

15. Max. N-S Chords of Coins 96

Appendix
Table

16. 100(1 - a/2) Percentile of t Distribution 128

17. Questionair for Darkness Pair by Pair Compar i son . . . . 1 2

9



Vll

LIST OF FIGURES

Figure Page

1. Illustration of Confidence Intervals 14

2. Size of Sections vs. the Number of Sections 17

3. Total Effect vs. the Number of Sections 19

4. Original Image of Quartz 25

5. Complete Histogram of Gray Level (Quartz) 26

6. Enlarged Histogram of Gray Level (Quartz) 27

7. Paint Samples 36

8. Membreship Function of Gray Levels in 'Dark' Subset. ..40

9. Binary Image of Quartz 41

10. Edge-detected Image of Quartz 43

11. Binary Image before Trimming 46

12. Overall Mode of Spot Filling 53

13. Individual Mode of Spot Filling 54

14. Overall Mode of Erosion for Noise Filtering 55

15. An Image with Noise 56

16. Individual Mode of Erosion for Noise Filtering 56

17. Overall Mode of Erosion for Object Separation 57

18. Individual Mode of Erosion for Object Separation 58

19. Part of a Labeled Image 59

20. Part of a Re-labeled Image after Separation 60



Figure Page

21. Left Part of Fig. 9 73

22. Right Part of Fig. 9 74

23. Original Image of Coins 89

24. Original Image of Coin 3 90

25. Histogram of Gray Level (Coin 3) 91

26. Binary Image of Coin 3 92

27. Part of Figure 23 98

28. Binary Image of Figure 27 99

29. Particle Size Distribution from Fig. 28 100

30. Particle Size Distribution from Fig. 26 101

31. Flow Chart 103



ABSTRACT

Shi,Dexiang. Ph.D, Purdue University, December, 1987.
An automatic quantitative image analysis system for con-
struction materials. Major Professor: Douglas N. Winslow.

An image analysis software system has been developed

for a UNIX operating system and a Tektronix terminal. It

is designed for the particles and/or pores in construction

materials. This system provides a means to measure many

discrete fields of view, in order to obtain statistically

meaningful results.

The system can process images from either an electron

or light microscope, or from an ordinary camera. Either

negatives or positives can be used. A new method based on

fuzzy probability has been developed to segment digital

images into binary images. It is more consistent than

existing techniques.

The system uses object labeling. This makes spot

filling, noise filtering, separation of touching objects,

object counting and measurement of individual objects

easier.



The accuracy of the system has been verified with

images having known geometric properties. Measurements

have an error of less than 1% with an image of appropriate

resolution.

The system makes different measurements on separate

particles and cut planes through massive samples. In the

former case, the measurements are: the perimeters, areas,

and maximum chords of particles in orthogonal directions,

the maximum, minimum and mean values of these parameters,

and their distributions. Also, the area of the image, the

area faction of particles and the number of particles are

measured.

In the case of the cut planes, the estimated parame-

ters are: volume fraction of particles, surface area per

unit bulk volume, and surface area per unit particle

volume. The size distribution, total number of particles

and mean diameter can also be estimated.

A new method based on computer simulation has been

developed to estimate size distribution of particles of

any modelable shape. Older methods have a tendency to

give too large a number of small particles, and the new

method does not.



INTRODUCTION

The goal of quantitative microscopy is to measure the

geometric properties of particles or mi cr os

t

ructure s .
In

the cement and concrete area, for example, the measurement

of particles may be to determine the size distribution of

flyash or fine aggregate. The measurement of microstruc-

tures may be to determine the air content in concrete, the

size distribution of pores in cement or concrete, the

phase distribution in cement, etc. These examinations are

performed on two dimensional images. Stereology is used

to estimate statistically the three dimensional properties

from the direct measurements made on the two dimensional

images [1,2].

Optical and electron microscopic examinations have

been used for years in quantitative microscopy. Such a

manual examination is a time consuming and tedious pro-

cess. In order to obtain statistically meaningful results,

it is usually required that many measurements be made.

This requirement has been ignored sometimes because of the

effort that would be required.



Recently, the computer image analysis technique has

been applied to quantitative microscopy [3-11]. In gen-

eral, computer image analysis can be quantitative or non-

quantitative. A robot vision system is a typical applica-

tion of non-quantitative image analysis. Its major objec-

tive is to recognize objects, or match objects to models.

Quantitative microscopy is a typical application of quan-

titative image analysis. Its objective is to measure the

sizes of the objects of interest. Because the major

advantage of a computer is its capability of processing

data, computer image analysis makes practical the measure-

ment of many objects in many images. Therefore, the sta-

tistical requirements can be satisfied with little human

effort.

The process of quantitative image analysis is as fol-

lows. The original, analog image is first transformed

into a digital image by a digitizer. A digital image is a

two dimensional array of numbers, each number representing

the light intensity, or gray level, of the corresponding

point in the original image [12]. The points are usually

called pixels. In order to display the image on a moni-

tor, the digital image must be segmented into a binary

image for monochromatic monitors, or a multiplex image for

polychromatic monitors. A binary image consists of two

types of pixels: object pixels and background pixels. A

multiplex image may have more than one type of object



pixel, each with a differing gray level. Finally, the

desired geometric properties of the objects of interest

are measured by the computer on the segmented image.

These steps in the process are roughly paralleled in

the organization of the chapters that follow. First there

is a chapter on the unique statistical situation involved

in the combined analysis of multiple images of the same

material. It allows the user to assign an accuracy to a

given measurement. The next section describes several

available methods of segmenting an image into object and

background in preparation for measurements. It includes a

unique user-independent method based on fuzzy set theory.

This is followed by a chapter on procedures that can be

invoked to improve faulty, previously segmented images so

that subsequent measurements will be more accurate. These

procedures allow the user to "edit" an image based on

his/her knowledge of the displayed objects. Finally, there

is a chapter describing the basis for the various measure-

ments that can be performed on the segmented and, if

necessary, improved image. It includes a unique method for

size distribution estimation by using computer simulation.

This is followed by a chapter that demonstrates some typi-

cal results that a user might get when analyzing a variety

of images. Lastly, a chapter is included that is a guide

to the use of the various programs that make up this

unique analysis package.



Some images are of discrete particles. In this case,

one can view the full profile of each particles. When this

is the case, the following measurements can be made on the

image

.

1. Total number of particles

2. Number of particles per unit image area

3. Projected perimeters of particles

4. Projected areas of particles

5. Projected maximum chords of particles

6. Distribution of projected perimeters

7. Distribution of projected areas

8. Distribution of projected maximum chords

9. Maximal, minimal and mean values of projected perime-
ters

10. Maximal, minimal and mean values of projected areas

11. Maximal, minimal and mean values of projected maximum
chords

Other images are of a plane cut through a solid mass

of some material. Such a plane will generally intersect

imbedded objects that are of interest. The following

parameters can be determined from measurements of these

intersected objects.

1. Volume fraction of objects

2. Surface area of objects per unit bulk volume

3. Specific surface area of objects per unit object
vo lume

4. Size distribution of objects

5. Number of objects per unit bulk volume



6. Mean size of objects

7. Mean value of the maximum dimensions of objects

Computer image analysis has another advantage over manual

examination. The volume fraction of a phase can be

estimated from the area fraction of a cut plane, using

areal analysis, or lineal traverse, or point counting

(random or systematic) [13]. For manual examinations, only

lineal traverse and point counting are practical possibil-

ities. But, it has been proven that areal analysis has a

smaller variation than lineal traverse or random point

counting [14]. Systematic point counting is more effi-

cient than areal analysis, but the validity of systematic

point counting is based on two assumptions: First, the

objects must be more or less spherical. Second, the size

distribution of the objects must not have any gaps [14].

Often these two assumptions have been ignored in practice.

Thus, areal analysis remains the most accurate, and gen-

erally applicable, procedure.

Since a digital image is composed of pixels, or image

points, the basic operation of the automatic measurements

by a computer is counting the relevant image points. Com-

puter image analysis can easily perform an areal analysis

by counting all pixels and the pixels within the objects.

Therefore, the estimation of volume fraction can be more

accurate with computer image analysis. Since the pixels

are close-packed, such an areal analysis is equivalent to



performing many close-packed lineal traverses, or even

more close-packed point countings.

Many image analyzers are not specially designed for

the quantitative microscopy of materials. Manual examina-

tion may still have its advantages over some of these

image analyzers. For example, the process of image segmen-

tation is a critical step in image analysis, because all

measurements are completely dependent on the segmentation

results. During manual examination, the process of image

segmentation is an intuitive process. Humans can instantly

recognize objects from background. Computer recognition of

objects from background has been the topic of many books.

There are several common methods for segmenting an image

that are not specially designed for quantitative image

analysis [15,16]. Quantitative image analysis requires

more accurate segmentation than non-quantitative image

analysis.

Another intuitive process in manual examination is

object selection and counting. This is also very difficult

for some automatic image analysis systems [17] because it

involves the process of individual object labeling. Some-

times geometric properties such as the areas and perime-

ters of individual objects are desired. These individual

measurements are very time consuming for manual examina-

tion. For some image analyzers which are less capable of

object selection, they are also difficult or impossible.



The current research work has developed an automatic

quantitative image analysis (AQIA) software system spe-

cially designed for materials' analysis. It is imple-

mented on an UNIX operating system with a Tektronix graph-

ics terminal as a monitor. Compared with many image

analyzers, it is almost hardware independent. With a few

changes, it can be run on any UNIX operating system with

any high resolution monochromatic monitor. With some

additional changes it can also be transported to a micro-

computer with an appropriate graphic terminal. Therefore,

it is much less expensive than the existing hardware-type

automatic image analyzers. It is specially developed for

quantitative microscopy of construction materials.

The resolution of AQIA is the resolution of the digi-

tizer divided by the magnification of microscope in use.

The high resolution digitizer that has been used in this

work can divide an image into pixels that are 25 um wide.

If the image has been magnified by 100X, then each pixel

represents 0.25 pm on the actual object. That means AQIA

can measure easily either small objects or small features

on larger objects.

This system tries to combine the advantages of manual

examination and automatic image analysis. It has some

unique features. It not only uses areal analysis to esti-

mate volume fraction, but also helps the user design

experiments for volume fraction estimation. That is, it
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helps one to select the number of images and image size to

meet a desired estimation accuracy, or predict an accuracy

associated with an affordable effort with a given number

of images of a given size.

It simulates the process of human segmentation and

object counting to make these two automatic processes more

realistic. It labels objects to make individual measure-

ments easy. With labeled objects, AQIA can process an

image more accurately and with more flexibility than can a

non-labeling analysis system. Because the reliability of

image measurement depends on the accuracy of image segmen-

tation and processing, AQIA is expected to provide more

reliable measurements.

Another unique feature of AQIA is its method of

estimating the spatial size distribution of particles in a

matrix. The estimation of the size distribution usually

needs the assumption that the particles are spheres. This

assumption is too restrictive. AQIA uses a completely

different approach to attack this problem. It can estimate

the spatial size distribution of particles of any given

shape, as long as the shape can be modeled by a computer.

AQIA can have a variety of specific applications to

cement and concrete research. Image analysis may be the

only reliable technique for some measurements such as the

distribution of big pores in concrete and the flyash size



distribution. AQIA can provide solutions to these kinds of

difficult measurements. However, the aim in the develop-

ment of the AQIA system has been to produce a package of

programs that are generally applicable to the broad spec-

trum of construction materials research. Thus, specialized

programs that produce only one result have been avoided.

It is hoped that this has produced a package that will be

broadly applicable to researchers.



10

DESIGN OF EXPERIMENTS IN VOLUME FRACTION ESTIMATION

Interval Estimation of Volume Fraction

In quantitative microscopy, the volume fraction esti-

mation is probably the most frequently performed analysis.

In AQIA, the volume fraction is estimated by using an

areal analysis performed on images of sections cut through

the material. The first step must be the experimantal

design: selecting the number of images and the size of

each image to meet a desired estimation accuracy or, cal-

culating the obtainable accuracy with a given number of

images of a given size that comprises an affordable

effort. This section describes this design process.

Areal analysis in manual examinations is exceedingly

rare because of the experimental difficulties. Further,

there are usually no discrete images, or fields of view,

during manual examination. The sample is typically in con-

tinuous motion with respect to the observer. In a computer

image analysis system, one uses one or more separate

images and examines everything lying within them. Hence,

the estimation of the accuracy of a measurement is dif-

ferent. What follows is a method specially designed for
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1

computer image analysis systems.

The coefficient of variation among area fraction

measurements can be determined by the average number of

intercepted objects per image as [14]: (See Appendix B)

o(A.)
A

o
2
(a)

+ 1

(I)
2

0.5

(1)

where M is the average number of intercepted objects per

2 — 2image and o (a)/(a) is the squared coefficient of varia-

tion of the areas of the intercepted objects. This squared

coefficient of variation can be shown to be 0.2 for

spheres and bigger for other shapes (See Appendix C). It

can be measured experimentally. A. is the mean value ofJ A

area fractions obtained from a number of equal-size

images, and o(A ) is the standard deviation among these

area fractions. Thus, o(A.)/A. is the coefficient of
A A

variation among area fractions. For the example of spher-

ical objects, a 5% coefficient of variation requires that

M = 480, while 10% requires only 120 objects per image.

If the dispersed phase is widely separated, as, for exam-

ple, the air voids in concrete, a large image is needed to

include sufficient objects for a low coefficient of varia-

tion. It is impractical to prepare and store in a computer

a large image. Even if it is possible, from the view

point of statistical estimation, Eqn. 1 only indicates the
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dispersion among area fraction measurements, it does not

directly indicate the accuracy of the volume fraction

estimation. One must use statistical interval estimation

to obtain the volume fraction accuracy.

From the view point of the statistical interval esti-

mation, a three-dimensional specimen of interest can be

considered as a population of an infinite number of sec-

tions. The volume fraction is the average of all the area

fractions from the infinite number of sections. The dis-

tribution of all these area fractions can be reasonably

considered as a normal distribution having the volume

fraction as the population mean and an unknown but finite

variance. In practice, it is impossible to obtain all

these area fractions. Therefore, the volume fraction must

be estimated from the measurements performed on a limited

number of sections.

In terms of volume fraction analysis, we specify the

volume fraction, V , as the population mean, the number of

images, n, as the sample size, the mean area fraction, A ,

as the mean of the sample distribution, the area fraction

from each image, A , as the measurement (random variable),

2
the variance among the area fractions, o (A.), as the

variance of the sample distribution, and the variance

2
among the mean area fractions, o (A ), as the variance of

the sampling distribution. According to the principles of

interval estimation [18], we have:
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o
2
(A

A
) = o

2
(A

A
)/n, (2)

and

A - half-width < V < A + half-width (3)

Because the population variance is unknown, the half-

width, or the error of estimation, is related to Student's

t -d i s

t

ribut ion , instead of a normal distribution [18]. The

half-width is given by:

half-width = t
(1 _ a/ 1}

x 0(A
A

) (4)

= t
A

(l-a/2,n-l) X
0.5

n

where 1 - a is the confidence level, and t,, ,_ , x is
( l-a/2 ,n-l )

the 100(1 - a/2) percentile of the t distribution with n -

1 degrees of freedom.

This kind of inference that we may make in terras of

confidence intervals is illustrated in Fig. 1. The hor-

izontal line represents the fixed value of the population

mean (V ). The vertical lines represent possible intervals

generated by successive random samples of size n and with

confidence level 1 - a. The middle point of each vertical

line represents the sample mean (A ). The half length of

each vertical line represents the half-width of the inter-

val, so that the upper and lower ends of each vertical

line represent the values of A A
+ half-width and A, -

A A
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half-width respectively. As Eqn. 3 and 4 show, the value

of A, and o(A.) may be different for different samples.
A A

Therefore, the half-width and the sample mean (A.) may be

different. This means that the vertical positions and the

lengths of the vertical lines are variables. Some of the

vertical lines may not intercept the horizontal line,

i.e. , the intervals may not contain the population mean.

A 1 - a confidence level means that 1 - a of all possible

vertical lines will intercept the horizontal line, i.e., 1

a of all possible intervals will contain the population

mean. In practice, of course, we never select more than

one sample from a population. Based on this one sample

mean, (A,), we establish a confidence interval.
A

Figure 1

Illustration of Confindence Intervals

Predication of Estimation Accuracy

Because the coefficient of variation is the standard

deviation divided by the mean, if the mean, A. , can be

obtained from a pilot experiment performed on a small sam-

ple, or from experience, and M is known, the standard
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deviation of the sample distribution, o(A ), can be found

from Eqn. 1. This equation can be rewritten as:

0.5

o(A
A

)
- A . x

A
(5)

2 — 2where C is 1 + o (a) / (a) . C = 1.2 for spheres and is

bigger for other shapes. Equation 5 can be substituted

into equation 2 to calculate the standard deviation of the

sampling distribution in advance of the full-scale experi-

ment with n sections, as:

0.5

o(A
A

) = A
A

x
A A

n x M
(6)

Once the standard deviation of the sampling distribu-

tion is available, the error of estimation can be found in

terms of the half-width of the interval as:

half-width = t. , ,, .* x o(A.) (7)
(

1 -a/ 2 , n- 1 ) A

: t (l-a/2,n-l) X A
A

X

0. 5

n x M

Design of Experiments

Eqn. 7 shows that the estimation accuracy at a given

confidence level, indicated by half-width, is affected not
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only by M , Che average number of the intercepted objects

per image, but also by n, the number of images. The

experimenter may know the values of n and M that arer a

fixed by experimental conditions. Therefore the estima-

tion accuracy can be calculated.

On the other hand, if we want to meet a desired esti-

mation accuracy at a given confidence level, we can select

n and M to satisfy:
a

0.5

t (l-a/2,n-l) X A
A

n x M

< half-width (8)

where A is obtained from a pilot experiment or experi'

ence. If Eqn. 8 is rewritten into:

( 1 - a/2 ,n - 1 ) half-width
0.5 t-

0.5

(9)

and if M is set, then the right side is a constant, and n
a

can be found by searching the t-table (Appendix D) to fit

Eqn. 9. For example, suppose C = 1.2, A
A

= 0.1, the

half-width is desired to be 0.01, the confidence level is

desired to be 0.95, and M = 100, n turns out to be at

least 8. Obviously, if n is set, M can also be figured

ou t .

Eqn. 8 may also be rewritten as:

t
(l - a/2,n - 1 ) half-width

0.5 A~ x C
0,5

n x M A

(10)
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Assuming that A has been obtained from a pilot experiment

and the desired values of half-width and a have been

selected, a compromise can be made between n and M , to
a

meet the desired accuracy. For example, if A = 0.1,

half-width = 0.01, and 1 - a = 0.95, then this relation

between n and M is shown in Fig. 2.
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Size of Sections vs. the Number of Sections

Fig. 2 indicates that many combinations of n and M will
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achieve the same accuracv. For instance, if M = 100,
a '

then at least 8 images are required. This combination may

be impractical. If M =20 is practical and the other

parameters remain the same, the sample size turns out to

be at least 26. This means that either 8 images with 100

intercepted objects per image, or 26 images with 20 inter-

cepted objects per image can provide the same estimation

accuracy in this case.

One might consider that the product of n and M indi-

cates the total effort for the estimation. It is found

that the total effort decreases as n increases. Eqn. 9

can also be rewritten as:

2

r,
|

(l - a/2,n - l)
X

A
n x M > —

a half-width
x C (ID

If one assumes a given half-width, that A
A

is obtained

from some pilot experiment and C = 1.2, then Eqn. 11

be come s

:

2nxM > t f
. _ / , „ n xconstant (12)

a U - a/Z,n - l

J

The factor t , ^ decreases as n increases (Seeine racLoi u

( 1
_ a / 2) n-l)

Appendix D). Fig. 2 shows that, for a given accuracy, if n

increases, M~ decreases a great deal. Therefore, for a

a

given accuracy, the product of n and M decreases as n

increases. For example, if A
A

= 0.1, half-width 0.01 ,

and 1 - a =

shown in Fig . 3

0.95 this relation between n and n x M is
' a
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Total Effect vs. the Number of Sections

It follows that, for a given accuracy, a larger

number of images will allow a smaller M , and a less total

effort. Unfortunately, during microscopic observations,

M is usually fixed by the magnification of the image.

For the example of air void measurement in concrete,

assuming the smallest air voids are 2 Um, and the resolu-

tion of the digitizer is 25 um, we need to select a mag-

nification such that the AQIA system will 'see' all the
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air voids, but not 'see' finer pores. In this case, the

resolution of the AQIA system may need to be 1 \im. The

resolution of the AQIA system is the resolution of the

digitizer divided by the magnification of the microscope,

therefore the rational choice of the magnification may be

25X. Once the magnification is given, we have almost no

choice for the field of view that fixes M . This means
a

that we have almost no choice for M . Therefore, for real
a

applications, only n, the number of images (fields of

view) can be changed.

To sum up, for microscopic measurement, the magnifi-

cation of the microscope should be selected first to pro-

vide a resolution for the AQIA system so that all objects

of interest can be 'seen', but no finer objects can. This

magnification determines M . Then using Eqn. 9, a value of

n can be found to meet the desired accuracy.

A large n means a big effort. We may need to adjust

the confidence level, or estimation accuracy, to make the

effort affordable. Table 1 is an example showing how dif-

ferent confidence levels and estimation accuracies can

affect n, for T~= 0.1 and M =10. Other values of A
A a A

and M~~ would produce other values of n for the various
a

accuracies.

This table shows that reduction of either accuracy or

confidence level can reduce the number of required images.
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Table 1

Number of Required Images, n

c onf .

\ level
a c cu . ^^

0.95 0.90

0.01 48 34

0.02 14 11

0.03 8 6

0.04 6 5

0.05 5 4

For example, if the accuracy is desired to be 0.01, i»e,

the value of the volume fraction must be known within the

range 0.09 to 0.11, then a change of the confidence level

from 0.95 to 0.90 can reduce the number of images from 48

to 34. Of course, this reduces the confidence one has in

the answer. If the confidence level is desired to be

0.95, a change of the desired accuracy from 0.01 to 0.05

can reduce the number of images from 48 to 5.

AQIA has a procedure called "design", that allows the

user to find the value of n, given the image size (M ),

the estimated mean value of the area fraction (A), the

desired estimation accuracy (half-width) and the desired

confidence level (1 - a). To use "design", the user

should obtain A , either from a pilot experiment or from

experience; and select a desired accuracy (half-width) and
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a confidence level. The user must also know the approxi-

mate value of M for the appropriate magnification and

sample. After the user enters the values of A,, half-
A

width, 1 - a and M , the program will find the value of n.

If the user is not satisfied with the result, because n is

too large, he/she can change any one of these four values.

This will usually involve compromising on the accuracy.

The new values can then be re-entered until he/she obtains

a value for n that is experimentally feasible.
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SEGMENTATION OF DIGITAL IMAGE

Before displaying or processing a digital image, fre-

quently it must be segmented into a binary image. This is

because a monochromatic monitor can only display binary

information: e.g. 'on' points and 'off points. Also,

further processing is much easier with a segmented image.

Image segmentation is the critical step in quantitative

image analysis, because all measurements are performed on

the binary image.

Gray level histogram thresholding is a widely used

tool in image segmentation. AQIA has a program called

'histo' to calculate a histogram of the occurrence of

various gray levels. A lower bound and an upper bound can

be selected from this histogram of gray levels. All the

gray levels within the bounds are then assigned gray level

= 1. All the gray levels beyond the bounds are made = 0.

This results in a binary image. The points with gray

level 1 are illuminated on the screen while gray level

points are left dark.

These bounds may be selected manually from the histo-

g ram. AQIA has a program ca lied 'bitshow', that asks the
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user to enter the selected bounds and displays the result-

ing binary image on the screen. It allows the user to

keep changing the bounds until the user is satisfied with

the image. Fig. 4 shows a photograph taken of a sample of

several particles of quartz. When it is digitized, Fig. 5

shows the resulting histogram of 256 gray levels (0 -

255). Fig. 6 is the expanded lower part of Fig. 5. The

largest values of the gray levels represent the particles

and the smallest values are the background. An upper bound

of 255 would be a logical selection. The lower bound must

lie between the two peaks at and 255. But, it is diffi-

cult to tell the exact location of the lower bound. Dif-

ferent users, or the same user at different times, might

select a different lower bound. Thus, manual thresholding

may not be consistent. Slight inconsistencies may not

affect the calculation of volume fraction significantly,

but, the surface area and the spatial size distribution of

the objects will be greatly affected. Therefore, one

needs a consistent, automatic threshold selection that is

based on some rational evaluation criteria.

Currently Used Automatic Threshold Selections

Gray level thresholding is essentially a classifica-

tion problem. A typical bimodal image contains dark

objects on a light background or vice versa. Its gray
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Figure 4

Original Image of Quartz

level histogram contains two peaks, representing the popu-

lations of objects and the background phase, separated by

a valley corresponding to the intermediate gray levels.

The object of thresholding is to classify these intermedi-

ate gray levels as having a membership in one of the two

phases. An optimal threshold should minimize the probabil-

ity of misclassifying an object point as background or

vice versa. If the object and background distributions are

known, the optimal threshold can be obtained in terms of
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35000

Figure 5

Complete Histogram of Gray Level (Quartz)

these two distributions' parameters [16, 19, 20]. Unfor-

tunately, these two distributions are usually unknown.

Therefore, generally, they can not be used to automati-

cally threshold an image.

A threshold can also be evaluated by a 'busyness'

measure performed on the digital image. 'Busyness' is the

number of adjacencies between above-threshold and below-

threshold points [16, 21, 22]. 'Busyness' is the sum of
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the absolute values of each point's Laplacian calculated

on the thresholded image. The Laplacian value at a point

( i
, j ) is:

V (i,j) = g(i + l ,j) + g(i-l,j) + (13)

g(i
, j + 1) + g(i

,
j-1 ) - 4 x g(i, j )

where g(i,j) is the gray level of point (i,j). The Lapla-

cian is proportional to the number of neighbors that have

different gray level from the point (i,j). Intuitively, a

high 'busyness' would indicate that the binary image has a
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large number of boundary points. This means a large number

of very small objects and/or jagged boundaries.

In non-quantitative image analysis cases, the very

small objects are usually considered to be noise, and the

boundaries of objects are usually assumed smooth. There-

fore, high 'busyness' usually indicates bad thresholding.

An optimal threshold should minimize the 'busyness' pro-

vided that the thresholding does not classify all the gray

levels into the same binary level. However, this method

may not work well in quantitative image analysis cases. In

quantitative image analysis, it is very likely that there

will be very small objects and objects with jagged boun-

daries in the image that are of interest. Thus, minimiza-

tion of 'busyness' can not be used.

There are also a variety of techniques that enhance

an image or modify its histogram, in order to make the

threshold selection easier [24-27], These techniques can

make two peaks more separate if they overlap, or make a

valley between peaks deeper if it is broad and/or flat.

However, they only modify the histogram. The threshold

selection is still not automatic nor necessarily con-

sistent.
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Basic Concepts of Fuzzy Sets and Their Application

Recently, the concepts of fuzzy set theory have been

applied to threshold selection. As mentioned early, the

task of thresholding is to classify the intermediate gray

levels. These intermediate gray levels come primarily from

boundary points. In any real picture, the precise boundary

between an object and the background is usually ill

defined, or 'fuzzy'. Therefore, it seems quite natural to

apply concepts of fuzzy set theory to threshold selection.

Let X = [x] denote a sample space. For example, X

could be a set of some integers between 1 and 10:

X =
[ 1, 1, 2, 3, 3, 4, 5, 5, 6, 8, 9, 9,10 ].

Let A denote a subset in X. For example A could be:

A = [ 5 ].

Subset A is an ordinary subset. Any integer is either in

subset A or it is not. No intermediate, or 'fuzzy' status

exists.

However, a subset is often ill defined. Then A is

defined as a fuzzy subset in X. A fuzzy subset is defined

by:

A = [ x/ u (x) ]

.

A

where y (x) is termed 'the degree of membership of x in
A

A'. For example, A could be 'a few'. 'A few' is a fuzzy
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definition. It is likely to mean 3 or 4 , and unlikely to

mean 8 or greater. Therefore, the fuzzy subset A might be:

A =
[ 1/0.0, 2/0.5, 3/1.0, 4/1.0, 5/0.8,

6/0.4, 7/0.2, 8/0.0, 9/0.0, 10/0.0 J.

This means, for example, that the degree of membership of

integer 5 in subset 'a few' is 0.8, or the degree of

belief that integer 5 belongs to 'a few' is 0.8.

An image can be considered as a set of points, I,

each point x being associated with a certain light inten-

sity, or gray level i, as:

I = [x.]
i

=
[ point x with gray level i ].

The gray levels normally range from to 255. Threshold-

ing will classify all the points into two subsets: the

object subset and the background subset. The boundary

between these two subsets is often ill defined, or

'fuzzy'. Thus, the object subset and the background sub-

set are fuzzy subsets in this case. Consider the object

subset as an example. It is a fuzzy subset 0:

= [ object point ]

=
[ x. / % (x.) ]

where x. is a point with gray level i and U rt
(x.) is its

l i

degree of membership in object subset 0. The basic idea

of applying fuzzy set theory to image segmentation [28-32]

is that the different gray levels have different degrees
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of membership in the object subset. Some 'standard' func-

tion with two or more parameters is used as the membership

function to give the degree of membership of the various

gray levels. A cross-over gray level is selected, located

in the valley of the histogram of gray levels. By defini-

tion, the points with a cross-over gray level have a 0.5

degree of membership in the object subset, or:

I' (x ) = 0.5cross-over

Different cross-over gray levels will give different

segmentation results. Different parameters of the member-

ship function will also affect the image segmentation dif-

ferently. The optimal threshold should minimize a 'fuzzi-

ness' measure [31]. The 'fuzziness' measure reflects the

closeness between a digital image and a binary image, or

the image ambiguity. But, this criteria has not proven to

be sufficient. If both the cross-over point and the

parameters of the membership function change, their indi-

vidual effects on the 'fuzzyness' measure may cancel each

other. In other words, different cross-over points may

give the same 'fuzzyness' measure. Also, this method has

the same trouble as many other threshold selection tech-

niques. If there is a broad and flat valley between the

peaks, there will be too many candidates for the cross-

over point.
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AQ IA Approach

In quantitative image analysis, one criterion for the

reliability of image thresholding selection might be the

accuracy of the measurements made on the thresholded

image. However, generally the "right" answer is unknown.

Hence, the accuracy can not be defined. Thus, this cri-

terion is not applicable. However, during manual examina-

tions, a human can instantly differentiate objects from

background using intuition. AQIA uses the concepts of

fuzzy probability to simulate the cognition process of a

human's segmentation to improve the reliability of the

segmentation.

First, reconsider the subset problem. If we have an

ordinary subset A = [ 5 ] of the example set of integers,

the probability of event A occuring in X is 2/13. (Two

5 ' s in the set of 13 members) But, if the subset A is the

fuzzy subset 'a few', defined as

A = [ 1/0.0, 2/0.5, 3/1.0, 4/1.0, 5/0.8,

6/0. A, 7/0.2, 8/0.0, 9/0.0, 10/0.0 ],

what is the probability that the fuzzy event A, "a few",

occurs in X? Zadeh has provided a framework to give a

probability measure of a fuzzy event [33]. In the

discrete case, the probability measure of a fuzzy event A

is expressed by:
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p(A) = E n (x. ) f (x. ) .

A 1 1
l

(14)

where n is the number of elements in set X, V.(x ) is the
A l

degree of membership of x. in A and f(x.) is the ordinary11 '

probability that x. occurs in X. For the above example,

the fuzzy probability of event A, "a few", in X is

2
p(A) = 0.0 x y| + 0.5 x yj + 1.0 x

+ 1.0 xyi + 0.8 XTf + 0.4 x •£
2 1

+ 0.2 xy^+0xj^+0x y~'

0.5 + 2.0 + 1.0 + 1.6 + 0.4

(15)

13

= 0.42

This value, 0.42, is the probability that a number in

the set X will also be in the fuzzy subset 'a few'.

Assume an image has dark objects on a light background,

and the histogram has two peaks with maximums at gray lev-

els and 255. As mentioned early, 'object' or 'dark' is

considered as a fuzzy subset 0:

= [ object point ]

= [ x. / M (x.) ]

What is the probability that the fuzzy event, 'object' or

'dark' point, appears in an image set I? Or, what is the

probability that a point in I is an object point? Or,

what is the probability that a point in I is dark? The

a nswe r is :

p(0) = E H (x.) f(x.)
i

(16)
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where n is the total number of points in the image, and

f(x ) is the relative frequency of gray level i that can

be obtained from the gray level histogram, u (x.) is the

degree of membership of gray level i in the 'dark', or

object, subset. Obtaining u (x.) will be discussed later.

Consider next the physical interpretation of p(0).

It is the area fraction of the object phase in the image,

because the probability that an object point appears in

image I is just the area fraction of objects in the whole

image . Or

:

p(0) = Area Fraction of Objects (17)

Assuming that M^(x.) is available, and that the relative
l

frequency of each gray level, f(x.), is already obtained

from the gray level histogram, the area fraction of the

object phase is readily calculable from Eqn. 16. Thus one

calculates the area fraction before thresholding. This

calculation is based on a prior knowledge of the member-

ship function, or, on a knowledge of the degree of member-

ship of a gray level in the subset 'object'. Once the

area fraction is determined, the gray level threshold on

the histogram can be located. It should divide the whole

area below the histogram curve into two parts, the area of

one part being p(0) of the whole area and the area of

another part being 1 - p(0) of the whole area.
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Construction of the Membership Function u „ ( x . )

The fuzzy approach used here is critically dependent

upon a knowledge of the degrees of membership of the gray

levels in the subset 'object'. Therefore, it is not suffi-

cient to use a 'standard' membership function. One must

be determined experimentally for this specific applica-

tion. The pairwise comparison method [34] was employed to

establish the membership function y (x ). Seven paint

samples of different gray levels from Pittsburgh Paints

were shown to the observers a pair at a time. Fig. 7

shows these seven paint samples and their manufacturing

code numbers. The darkest and lightest samples were

displayed as extremes. Five persons were used as

observers. They assessed how much one of a pair was darker

than the another one according to a specially designed

questionaire (See Appendix E). A numerical scale (1 - 7)

was used to assign a value to the relative strength of the

darkness. Comparisons were repeated for all pairs from

these seven paint samples. The averages of the five

observers' assessments for each pair were taken as the

relative strength. Since there were 7 grays, a 7 x 7

non-symmetric full matrix of relative darkness was formed.

The degrees of membership of these seven grays in the

'dark' subset are the eigenvector corresponding to the

maximum eigenvalue of the matrix.
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The seven grays range from white to black. They were pho-

tographed and the resulting negative was used to determine

the gray levels with a digitizer. The seven gray colors

have gray levels 240, 229, 214, 199, 163, 82 and 41

respectively. The digitizer assigned to an 'opaque'

(extremely dark) gray and 255 to a 'transparent'

(extremely light) gray. The transparent part on a nega-

tive should be the extremely dark part of the original

image, and the opaque part on a negative should be the
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extremely light part on the image. Therefore, if a nega-

tive is digitized, 255 corresponds to the extremely dark

part on the original image, and the extremely light

part. From now on, we assume that negatives will be digi-

tized, so that gray level 255 has 1.0 degree of membership

in 'dark' subset, and has degree of membership.

Because 240 is close to 255, it is reasonable to assume

240 as extremely dark, or gray level 255. But it is not

wise to treat 41 as because the paint sample with gray

level 41 looks far from transparent. Therefore, the meas-

ured gray levels were shifted so that 240 became 255 and

4 1 be came 56 .

Table 2 shows the 7 x 7 matrix of relative darkness

of these seven grays. The maximum eigenvalue is 7.60325,

the corresponding eigenvector is: (0.0177, 0.0298,

0.0474, 0.0843, 0.1232, 0.2021, 0.2359). These seven

values were then converted into a scale that ranges from

0.0 to 1.0. This was done by shifting them all along the

scale so that the smallest became 0.0. Then they were nor-

malized so that the largest became 1.0. The new vector

becomes: (0.0, 0.056, 0.136, 0.305, 0.484, 0.845, 1.0).

Table 3 shows the degrees of membership of these seven

grays in 'dark' subset. All the gray levels below 56 are

assumed to have a 0.0 degree of membership.

An index of consistency has been suggested to evalu-

ate experimental results in pairwise comparisons. It is
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Table 2

Experimental Data of Relative Darkness

Paint
S amp le

1 2 3 4 5 6 7

1 1 .00 3.25 4.75 5.50 6.00 7 .00 7.00

2 0. 31 1 . 25 2. 50 4. 50 5.25 5. 25 6.00

3 0.21 0.40 1 .60 3.50 3.25 4.50 5.00

4 0.18 0. 22 0. 29 1 . 25 3.00 4.00 3. 50

5 0. 17 0.19 0.31 0. 33 1 .00 3.00 3.00

6 0. 14 0.19 0. 22 0. 25 0.33 1.00 1.75

7 0. 14 0.17 0.20 0. 29 0. 33 0. 57 1 .00

defined [34] by

X - n
max
n - 1

(18)

where I is the index of consistency, A is the maximum
c max

eigenvalue, and n is the number of objects (grays). When

I =0, the assessments of each observer are completely

consistent. A larger I means less consistency. In the

current experiment, the index of consistency is 0.1. The

deviation of the diagonal values of the matrix from 1.0

also indicates the inconsistency. Among the seven values,

there are four l's, two 1.25's and one 1.60.

Fig. 8 shows a smooth curve that has been fit to the

experimental data. It is a fourth order orthogonal poly-

nomial function, and is given below with i being the gray
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Table 3

Degrees of Membership of Gray Levels in 'Dark

level

and

Gray Level i Membership M _ ( x . )
l

255 1 .000

244 0.845

229 0.483

214 0. 305

178 0.136

97 0.056

56 0.000

M (x 56<i<255 ) = -2.33694 x 10
-2

-3
- 2. 53554 x 10 i

+ 8.64525 x 10~ 5
i
2

- 7. 12423 x 10~ 7
i
3

+ 1.86732 x 10~ 9
i
4

% (X
255) " 1 '°

% (x
i<56 } = °

(19)

Using this membership function and Eqn. 16, the his-

togram in Fig. 5 was thresholded at gray level 181. (The

other bound is 255). Fig. 9 shows the corresponding binary

image. Comparing Fig. 4 and Fig. 9 shows that the thres-

holded image is a good representation of the original
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Membership Function of Gray Levels in "Dark' Subset

image

When a human tries to differentiate objects from

background, he/she must consider the relative darkness of

the image points. This method models this aspect of a

human's cognition process of classifying intermediate gray

levels into 'dark' and 'light' subsets. Therefore, this

method is expected to work at least as well as manual

threshold selection. Its big advantage over the manual

selection is that it is consistent. Different operators
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Figure 9

Binary Image of Quartz

will always threshold the same image in exactly the same

way if they use the same membership function.

General Use of the Fuzzy Probability Thresholding

Up to this point,, the histogram has been assumed to

have two peaks at and 255 respectively. In other words,

the two extremes are 'extremely dark' and 'extremely

light'. The fuzzy membership experiment is designed for

this special case. However, sometimes a peak or peaks will

appear at other points along the gray level scale. It is

impractical to obtain the membership function for each

case by experiment. A simple normalization is used in this

work to solve this problem. If two peaks have maxima at

gray levels pi and p2 ( p2 > pi) respectively, pi and p2

can be assumed as extremes. The segment between pi and p2
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can be normalized into a - 255 scale. Using Eqn. 19,

the degree of membership of each gray level between pi and

p2 can be determined. If the area between these two peaks

is considered as unity, the value of p(0) can be calcu-

lated from Eqn. 16. Then, a threshold can be found

between pi and p2. Furthermore, if an image has more than

two peaks, the degrees of membership can be determined for

each gray level between any two peaks, with these two

peaks as extremes. Then gray levels between these two

peaks can be thresholded. AQIA has a program called 'fuz-

zythr', that asks the user to enter any two peak gray lev-

els between which a threshold is to be located. Then the

program will find the location of that threshold.

A disadvantage of this method is that it can not be

applied to a unimodal image. If the histogram has only one

peak, this peak can be considered as an extreme. But,

lacking another extreme, the scale can not be normalized.

However, bimodal or multi-modal images are much more

likely to appear in quantitative image analysis than uni-

modal images. Therefore, this general method may be useful

for thresholding many images for quantitative analysis

Edge-detection
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AQIA also has an edge-detection procedure [38] that

singles out the boundaries of objects. Gray levels are

relatively consistent within each of the two phases, and

change abruptly as the border between the two phases is

crossed. AQIA measures the 45° and 135 diagonal changes

of the gray level of each pixel, and then replaces the

original gray level of each pixel by the maximum diagonal

gray level gradient of that pixel. Thus, most object and

background pixels are assigned relatively small gray

level gradient values, and edges have higher values. A

histogram of the maximum diagonal gradients can be thres-

holded with previously described methods. One peak should

represent the edges, and another the non-edges. Fig. 10

shows the edge-detected image from the original image in

Fig. 4.

Figure 10

Edge-detected Image of Quartz
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Generaly, edge-detection is used to detect the boun-

daries of objects. It might also be useful to detect

t h in-s t r i p- t y pe objects such as cracks. However, if the

user wants to measure the objects, after edge-detection,

the image needs to be filled.
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BINARY IMAGE PROCESSING

Imperfect Binary Images and Some Processing Techniques

Occasionally, the binary image produced by segmenta-

tion is adequate for measurement. More often, the original

image, or the sample itself, produces a binary image that

is not yet ready for measurement. One problem may be

that, because the original photograph has not been mounted

in the digitizer properly, the area beyond the image of

interest has also been digitized. If the resulting boun-

daries remains in the binary image, they will cause errors

during measurement because the measuring procedures will

treat them as objects. AQIA has a program called "trim"

that can remove unwanted boundaries. This program asks

the user to move the cursor to the desired upper left

corner and the lower right corner. Then it produces a new

binary image with the area outside of the points trimmed

off. Fig. 9 is a binary image with such boundaries

removed. Fig. 11 is the same binary image before trim-

ming. The user should trim all binary images before meas-

ur eme n t s .
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Figure 11

inary Image before Trimminj

Three more serious distortions or imperfections may

also occur frequently. First, an image may have 'noise'

in the background phase that has the same gray level as

the object phase. Second, some objects may be touching;

therefore, they would be incorrectly treated as one object

during measurement. Third, an object (or objects) may

have some spots within that have the same gray level as

the background phase due to reflected light. There are

techniques to correct these distortions or imperfections

in the binary image.

Imperfections in the original image photograph fre-

quently produce spots in the background phase. This

'noise' usually appears as small objects that are, in

fact, artifacts. Frequently they can be filtered by a

technique called erosion [17,36,37,39,40]. Erosion is

similar to peeling an onion. The program searches for
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points on objects' boundaries and changes these points'

gray level to that of the background phase. A boundary

point is defined as a point that has the same gray level

as that of the object phase, and at least one neighbouring

point having the gray level of the background phase. This

process can be successively repeated with each step reduc-

ing the size of the objects by one boundary layer.

Both noise and the real objects of interest shrink

during erosion, and they shrink from all sides. Usually

the noise is smaller than the objects, therefore the noise

will disappear first. If some objects are even smaller

than the noise, these fine objects will become victims of

this kind of noise filtering operation and will disappear

also.

Touching objects can be separated by a series of ero-

sion steps too [ 17 , 37 , 39 ,40] . When objects touch, the

touching part is normally narrower than the bodies, so

erosion can delete the touching part but retain the

bodies. The objects, however, are reduced in size.

The complementary operation of erosion is called

dilation. The program searches for points that have the

gray level of the background phase, and at least one

neighbouring point having the gray level of the object

phase. Then it changes these points' gray level to that of

the object phase. Dilation tends to recover the objects
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that survive erosion. If an object has disappeared, it

can not be dilated. Therefore, a series of dilation steps

can be used to recover the surviving objects after filter-

ing noise. But, if some fine objects have disappeared

along with the noise, they can not be restored.

A series of dilation steps can also be used to

recover surviving objects after separation when they were

previously touching. But dilation must be stopped before

these objects touch again. In other words, at least one

row of background points must remain between two previ-

ously touching objects. If the objects touch at more than

one place, the regions of contact may be of different

sizes. Then there must be several rows of background

points left between these objects. This will produce

erroneous measurements because the objects aren't the ori-

ginal size.

In spot removal or filling, the program searches for

points with the background's gray level that lie com-

pletely within an object. These are spot points. It then

changes these points' gray level to that of the object

phase. Spot removal is the most difficult of these opera-

tions. It needs a procedure called individual object

selection [36],

In this process, the program searches for and records

the first encountered boundary point. This is the point
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to start. Then it searches for and records the next boun-

dary point that is the nearest neighbour of the previous

one. This process will be successively repeated to trace

the boundary of the first encountered object. The tracing

will stop when the starting point is encountered again.

Finally, the area within the boundary will be filled to

create the object. Before tracing the boundary of the next

object, the previous one must be temporarily 'erased' by

treating it as the background. Obviously, this individual

object selection can be used to fill spots. However, legi-

timate holes will be filled too.

From the above introduction of the currently and

widely used image processing operations, it is evident

that they have two shortcomings. They operate on all

objects simultaneously, and they only can distinguish

objects from the background phase by different gray lev-

els, They can't distinguish individual objects from each

other. Therefore, some objects may be unnecessarily pro-

cessed. In some cases, the processing will lead to

erroneous measurements. Also, it will consume more pro-

cessing t ime .

The root cause of these disadvantages is that typical

operations can't distinguish individual objects from each

other. If individual objects could be identified, then

filling or erosion could be performed only on selected

objects which need to be filled, filtered or separated. If
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individual objects could be distinguished from each other

by some criteria other than gray level, then the eroded

objects could be dilated all the way back to the point

where they touch again. Re-touching would not make them

indistinct. Techniques for individual selection have been

developed. AQIA adapts a process called object labeling

to label individual objects so that they can be dis-

tinguished easily from each other by different labels, and

therefore correctly selected. Object labeling makes the

binary image processing more precise and safer. Therefore,

it makes image measurement more accurate and easier. It

also allows measurements to be performed on each object in

the image

.

Individual Selection and Object Labeling

AQIA adapts object labeling to distinguish individu-

als from each other. The basic algorithm is given in

reference [38]. That algorithm is improved in AQIA to

label each feature in either the object phase or the back-

ground phase. Features with the background gray level

could be legitimate holes in donut-like objects. The

algorithm assumes pixels have 4-connec t ednes s . This means

that each pixel has four neighbours: north, south, west

and east of it. Three row-by-row scans are performed on

the image. The scans are performed from west to east with



51

the northern most row being looked at first and the pro-

cess continuing to the south. Each point only needs to be

compared to its north and west neighbours, which will have

already been scanned and labeled.

During the first scan, if a point has a different

gray level from both of its north and west neighbours, it

will be assigned a new label. If it has the same gray

level as that of its north neighbour but different from

that of its west neighbour, it will be assigned the same

label as that of its north neighbour. If it has the same

gray level as that of its west neighbour but different

from that of its north neighbour, it will be assigned the

same label as that of its west neighbour. If it has the

same gray level as both of its north and west neighbours,

it will be assigned the same label as that of its west

neighbour, and the equivalence between the labels of its

north and west neighbours will be recorded. This forms an

equivalence pair.

When this scan is complete, every point has a label,

but different labels may have been assigned to points in

the same feature. The program then finds the equivalences

between the equivalence pairs indicating points in the

same feature, and puts them together in one class. This

results in a set of equivalence classes, each class con-

taining all the labels which have been assigned to the

same feature. AQIA uses integers as labels. The program
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selects the smallest label in each equivalence class as

the representative label of that class.

During the second scan, each label will be replaced

by the representative label of its class. After the

second scan, each feature in either phase has a unique

integer as its label, but these integers may not form a

continuous series. The program will then 'compress' the

integer set to make these integers continuous. The third

scan will re-label the features using continuous integers.

After labeling, the binary image processing and measure-

ment become very straightforward.

Overall and Individual Processing Modes

After features are uniquely labeled, noise filtering,

object separation and spot filling can be performed in two

modes: overall processing and individual processing. The

algorithms of either mode become much easier after label-

ing. The labeled features could be real objects of

interest, real spots to be filled, legitimate holes to be

retained, etc.

For the individual mode of all these three opera-

tions, an individual feature must be selected first as

follows. AQ1A uses a Tektronix graphics monitor. The

monitor allows one to move the cursor to any point on an
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image displayed on the screen. Then the coordinates of

that point will be automatically determined. Once the

coordinates of a point are determined, the point's label

can be found. If any point in a specified feature is

located, all the points with the label of the specified

feature can be found and the feature of interest is iden-

tified.

If there are no donut-like objects, the overall mode

can be selected for filling spots. The program searches

for points that have the labels different from that of the

background, but the same gray level as that of the back-

ground. Then it changes their labels and gray level to

those of the surrounding object. Fig. 12 is an example of

the overall filling of the binary image in Fig. 9.

Figure 12

Overall Mode of Spot Fillinj

If there are some donut-like objects, the individual mode

must be selected to fill only spots and to save real holes
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in donut-like objects. First, a spot is selected with the

cursor, and its label is found. Then the program searches

for points having the label of the selected spot. It

changes their label and gray level to those of the sur-

rounding object. Legitimate holes won't be affected,

since they are not selected with the cursor. If, in Fig.

9, only the bigger object on the left has a spot to be

filled, then Fig. 13 shows the image after this individual

filling.

Figure 13

Individual Mode of Spot Fillinj

The user must remember that once the overall mode has been

called, the individual mode won't be useful any more.

Therefore, the user should be careful when calling the

overall mode. On the other hand, sometimes, the spots

might be too small to be recognized on the screen. If the

user calls the individual mode, these tiny spots may be

missed. However, the overall mode will find and fill



55

them. Therefore, it may be wise to ask for overall spot

filling even when an image without legitimate holes

appears to have no spots in its objects.

If there are no objects smaller than some noise that

may be present, the overall mode can be selected for

filtering the noise. The filtering is done by a suffi-

cient number of erosion steps. Assume that the object in

the upper left corner of Fig. 12 is noise. Fig. 14 shows

the image filtered by overall erosion until this object is

gone .

\

Figure 14

Overall Mode of Erosion for Noise Filterinj

If there are objects smaller than the noise, the indivi-

dual mode must be selected to filter only the real noise

and retain the fine objects of interest. First, the noise

is located with the cursor, and its label is found. The

program erodes only the selected noise. The fine objects

of interest won't be disturbed. Fig. 15 is copied from
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Fig. 12, and one object is assumed to be a noise. Fig. 16

shows the image with that noise filtered by this indivi-

dual erosion process.

F
/

Figure 15

An Image with Noise

F *

%?A*
Figure 16

Individual Mode of Erosion for Noise Filtering
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If no fine objects of interest will be deleted during

erosion, the overall mode may be selected for separation

of touching objects. The program erodes all the objects

until the touching ones are separated. Fig. 17 shows the

overall erosion of the filled image in Fig. 12, with the

three touching objects separated.

Figure 17

Overall Mode of Erosion for Object Separation

In the individual mode of separation, first, the touching

objects are selected and their label is found. The touch-

ing aggregation has only one label. Then the program only

erodes this label until separation. Fig. 18 shows indivi-

dual erosion with the three touching objects separated and

the other objects untouched.

The processes of noise filtering and object separa-

tion have left some objects in Fig. 14, 17 and 18 in a

shrunken state. These must be dilated before they are
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Figure 18

Individual Mode of Erosion for Object Separation

measured. After separation, the eroded image needs to be

re-labeled so that the previously touching objects will

have different labels. Then dilation may restore thera

until the previously touching objects touch again. Fig. 19

shows part of a labeled image with two objects touching

and both being labeled 8. Fig. 20 shows the re-labeled

image after separation and restoration, where these two

objects now are labeled 8 and 9 respectively. They still

touch, but now they can be distinguished by the different

labels.

A difference between overall and individual erosion

is that the depth of erosion and dilation is the same for

all objects in the overall mode, while in the individual

mode, the depth of erosion and dilation may be different

for different objects, depending on the size of the touch-

ing regions. A bigger touching region will need more
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Figure 19

Part of a Labeled Image

erosion steps to separate the bodies, and therefore more

dilation steps to recover the bodies. Therefore, the

individual mode allows the surviving objects (bodies) to

be recovered as precisely as possible.

If an object has some narrow 'peninsulas', these nar-

row parts might not be able to survive the erosion neces-

sary to separate a touching region. Therefore, the

recovered objects might be the 'continent' with the 'pen-

insulas' removed. This is a common shortcoming of any
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Figure 20

Part of a Re-labeled Image after Separation

dilation-type recovery. What labeling can contribute is

to recover the 'continent' as completely as possible.

In practice, some combination of these two modes may

be applied. For example, if there are some aggregations

of touching objects, it may be more effective to first use

the overall mode to 'thin' the touching parts. Then the

individual mode can completely separate the remaining

touching objects in each aggregation.

The adaptation of object labeling in AQIA can provide

more precise and safer binary image processing than non-
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labeling image analysis systems. Because the precision of

image processing determines the reliability of the image

measurement, AQIA is expected to provide more accurate and

easier image measurement.

AQIA has two procedures called 'bitshow' and

'erod.calc'. The first, 'bitshow' asks the user to enter

the lower and upper bounds from the gray level histogram

or the fuzzy thresholding program. It then displays the

thresholded image on the screen. It allows the user to

change the bounds until he/she is satisfied with the

binary image. If there are some spots to be filled,

'bitshow' allows the user to choose either the overall or

individual filling mode, or the individual followed by the

overall mode. The image is labeled before either mode is

called, because labeling makes the filling algorithm much

easier. 'Bitshow' will output the spot-free binary image.

If no more binary image processing is needed, the

spot-free binary image can be measured by AQIA's measuring

procedures that include 'sep.calc' for measuring the pro-

jections of separated particles, 'cut.calc' for estimating

3-diraensional properties of mi c r os t rue t u r e s from 2-

dimensional measurements on the cut plane, and 'all.clac'

for both.

If erosion is needed, the procedure 'erod.calc' must

be called following 'bitshow'. It allows the user to
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choose either the overall or individual mode of erosion,

or the overall followed by the individual mode. After ero-

sion, the image will be re-labeled, and the appropriate

dilation will be performed. After that, the measurements

will be performed on the processed binary image. Within

'erod.calc' the user will find measurement options similar

to 'sep.calc' , 'cut.calc' and 'all.calc'. 'Erod.calc' will

output the final results of the measurements and the

binary image that is free of spots and noise.

No labeled image will be output by either 'bitshow'

or 'erod.calc', because a labeled image requires a great

deal more disk space for storage than does a binary image.

'Erod.calc' combines some of the image processing with the

measurements since this avoids the necessity of relabeling

the image if a subsequent measuring program were to be

called.
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BINARY IMAGE MEASUREMENT

Global and Individual Measurement

There are two classes of image measurements that can

be performed by many image analysis systems: global meas-

urements and individual measurements [37]. The more

important global measurements include the area fraction of

intercepted objects by a test plane, A , and the number of

intersections with the boundaries of objects by a test

line, N . The algorithms for a global measurement are

straightforward because no individual object selection is

i nvo 1 ve d .

For measuring A , the program only needs to count the

pixels with the gray level of the object phase, because

the object phase has a different gray level from that of

the background. The number of these pixels divided by the

total number of pixels is the area fraction of the object

phase, A .

For measuring N , a test line across an image may

intercept object boundaries. A boundary point is charac-
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terized by having at least one of its neighbouring s that

have a different label. The number of the boundary points

on the test line is N . Note that using labels, instead of

gray levels, to characterize the boundary points makes

AQIA also applicable to boundary points where two objects

touch.

A and N are properties of two dimensional images

that are directly measurable. Three dimensional proper-

ties of mi c r os t r uc t u r e s such as the volume fraction of

objects and the surface area of objects per unit bulk

volume can be estimated from these two dimensional proper-

ties. The volume fraction of the objects, V , can be

est ima ted by

:

V
V = A

A
(20)

where A. is the mean value of A, [1, 2, 131.
A A ' '

The surface area of the objects per unit bulk volume

can be estimated by:

S
V = 2 N

L
(21)

where N is the mean value of N [1, 2, 41). The spatial

size distribution of objects can also be estimated from

the distribution of intercepted chord lengths and will be

discussed later.

Object counting is an easy process for manual exami'
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nation, but, without labeling, one of the most difficult

processes in automatic image analysis. In AQIA, because

the objects are separately labeled by integers, the total

number of objects becomes the immediate result of the

labeling process. This is an advantage of AQIA over image

analysis systems without a labeling facility.

The measurements of individual objects include the

perimeters, areas, and dimensions of these objects. After

individual objects are uniquely labeled, the perimeter of

a specific object is the number of boundary points with

that object's label. The area of a specific object is the

total number of points with that object's label. The

dimension can be expressed by the maximum chord length of

the specified object in some direction. Labeling makes

individual measurements as straightforward as global ones.

AQIA not only measures the perimeters, areas, maximum

north-south and west-east chord lengths of all individual

objects, but also calculates the means, maximums, minimums

and distributions of these parameters.

Estimation of Spatial Size Distribution

The extrapolation from two to three dimensional space

can give estimations of the volume fraction, surface area

of objects per unit bulk volume, and the spatial size dis-

tribution of objects. For the former two estimations, the
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only assumption needed is the randomness of the objects'

distribution. For the estimation of size distribution,

conventional methods need one more assumption: the objects

must be spherical [1, 2, 42]. This must be assumed even if

it is known that the objects are not spheres. Among these

methods, Spektor's method is very simple [42]: In this

method, the distances between pairs of boundary points

that are on a test line, and have the same label, are

defined as intercepted chord lengths. If the intercepted

chord lengths are grouped into i groups, where i = 1, 2,

with chord length increment A between groups, the

spatial size distribution can be estimated by:

N
v
(i)

TtA'

N
L
(i) N

L
(i+l)

2i - 1 2i + 1
(22)

where N (i) is the number of particles (per unit bulk

volume) with diameter in the interval iA - A/2 to iA +

A/2. N (i) and N (i+1) are the number of intercepted

chords per unit length of a test line in ith and (i + l)th

classes respectively.

AQIA uses Spektor's method to estimate the spatial

size distribution of particles. Procedures 'cut.calc',

'all.calc' and 'erod.calc' ask the user to enter the chord

length increment, A, and calculate the size distribution,

N(i). However, the assumption that the particles are

spherical is a severe restriction for most real applica-

tions. Also, this method has a tendency to pick up a
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false number of small chords, especially from particles

having less regular shape [1,42], AQ1A has available a

different approach to attack this problem. With this dif-

ferent approach, it can estimate the spatial size distri-

bution of objects of any given shape, as long as the shape

can be modeled. The algorithm is as follows.

p(x|V.) is the conditional probabil-

The following factors are first defined. p(V ) is

the relative frequency of objects of volume V. with

respect to total number of objects in three dimensional

space. p(x) is the relative frequency of intercepted

chords with length x with respect to the total number of

intercepted chords

ity (See Appendix A) that an intercepted chord with length

x is from an object of volume V.. Each chord of length x

could be from any object that has a maximum dimension

greater than x. According to the concepts of conditional

probability [43], we can have (See Appendix A, Eqn. A.

6

A. 8) :

p(x) = I p(x|V.) p(V.) (23)

where p(V ) is to be estimated; and p(x) is obtained from
i

measurements on cut planes through the volume. If there

are n classes of the intercepted chords, Eqn. 23 will

expand into n linear simultaneous equations. If all the

p(x|V.) can be obtained in some way, all the p(V
±

) can be

lculated by solving the linear equation!



AQIA uses computer simulation to obtain p ( x | V . ) . We

define p(x) as the distribution of all measured chord

lengths, and p(x|V.) as the distribution of simulated

chord lengths from objects of volume V.. Consider a par-

ticle of volume V. and with a surface defined by f(x,y,z)

= 0, and having maximum dimension d .. Assuming themax , 1
b

function f(x,y,z) = can be modeled, a pair of points,

(xl,yl,zl) and (x2,y2,z2), can be picked randomly on the

surface f(x,y,z) = 0. (The two points can't be on the same

plane surface because a line between them does not inter-

cept the particle.) The distance between these two points

is the length of an intercepted chord.

A sufficient number of chords, collected randomly

with a computer program, will result in a distribution of

simulated chord lengths, p(x|v.) vs. x, where x ranges

from to the maximum dimension, d .. The ratio
max , l

x/d . instead of x is used as the independent variable
max , l

so that the range of the independent variable, x/d
ma x , l

is from to 1. Thus, the value of V. or d . alone
i max ,

l

doesn't affect the results. Only the ratio of the randomly

intercepted chord length to the maximum chord, x/d .,max , l

determines the distribution of simulated chord lengths.

In other words, for any volume V, the distribution of

simulated chord lengths could be expressed as:

p(x|v) = pC^-21-)
max

(24)
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The subscript i is omitted, because the equation holds for

any volume. In references [44-46], this computer simula-

tion method was used to model the chord length distribu-

tion of particles of the same size.

After the simulated chord length distribution,

p(x|V.) is obtained by a computer program, and the meas-

ured chord length distribution, p(x) , is measured, all the

p ( V . ) can be calculated by solving the linear equations in

Eqn. 23. If the number of classes into which the volumes

of objects are desired to be grouped is chosen to be n, in

order to obtain finite solutions for n linear equations,

the measured chord lengths must also be grouped into n

classes, and the following relation must hold:

x .

l
< 1 (25)

where x. is the measured chord length of ith class, and

d is the maximum dimension of objects in ith class,
ma x , i

Obviously, if x./d . > 1, then p(x/d .) = 0, and no
3 ' i max ,

l

max,i

solution exists for p ( V . ) .

l

Suppose n is selected as 3. The measured chord

lengths should also be grouped into 3 classes. We have 3

linear equations:

p( Xl ) = p(x
1

|v
1

)p(V
1

)+p(x
1

|V
2
)p(V

2
)+p(x

1

|V
3
)p(V

3
) (26)

p(x
2

) = p(x
2
|V

1
)p(V

1

)+p(x
2
|V

2
)p(V

2
)+p(x

2
|V

3
)p(V

3
)

p(x
3

) = p(x
3
|V

1
)p(V

1

)+p(x
3
|V

2
)p(V

2
)+p(x

3
|V

3
)p(V

3
)



70

iecause of Eqn. 2 4, the linear equations can be rewritten

x x x

p(x
1

)= p(- )p(V
1
)+p(^ )p(V

2
) + p(^

l
- )p(V

3
)(27)

max , 1 max,

2

max , 3XXX
p(x

2
)= P (-—-

—

)p(v
1
)+p (^
—-

—

)p(v
9
)+ p (-
—-

—

)p(V^)
max , 1 max , 2 max , 3

p(x
3
)= p(-j

max , 1

)p(v
1
)+p(^

max , 2

)p(v
2
)+p(j

max , 3

)p(v
3

)

All p(x ) are obtained from the actual measurements on cut
i

surface of the system, and all p(x./d .) are obtained
' i max , j

from the computer simulation. With these, we can solve

for all p(V . ) .

The conventional methods require that the particles

be spherical, no matter that the shape is known or

unknown. The AQIA method does not require a particular

shape. As long as the shape is known and can be modeled,

this method is applicable. In real applications, the shape

is sometimes unknown. A database could be developed that

would contain the distributions of simulated chord

lengths, p ( x
|
V . ) , of many modelable shapes. Then a

software system could be used that would allow the user to

assume a shape, then find the corresponding p(x|v.) from

the database, and check the shape assumption.

The checking algorithm would be as follows. The

specific surface area per unit particle volume can be

estimated in two ways. First, it equals the surface area
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of the particles per unit bulk volume, S , divided by the

volume fraction, V. The estimations of V and S need

not to assume a shape, therefore, the measurement of the

specific surface area based on V and S is independent of

shuape. This value of the specific surface area is called

S ,. Secondly, if the shape of the particles is
s pe . 1

assumed, and the size distribution is obtained, then the

specific surface area can also be obtained based on the

size distribution and the assumed shape. This value of the

specific surface is called S -. If s
spe 2

is close

enough to S , , the shape assumption may be considered
b

s pe . 1

valid. If S „ is not close to S ., another shape
s pe .

2

spe .

1

can be tried. The values of the specific surface areas

from two different shape assumptions might be equally

close to S , . But, increasing the number of the classes
s pe . 1

will show a tendency that only the S of the 'right'

shape will approach S , while that of another shape
r spe.i

will deviate from S
s pe . 1

A software system along this line could be developed.

It would allow the user to change the shape assumption

until the user is satisfied. This system would estimate

both the size distribution and the shape of the particles.

This development is beyond the scope of the present work.

Thus, it is presently only implemented for spherical par-

ticles.
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In AQIA, there is a program called 'newpsd' that uses

this new method to estimate the particle size distribu-

tion. At present, it has only the distribution of simu-

lated chord lengths, p(x/d ), for spherical particles inmax

its database. The distribution of measured chord lengths,

p(x), is automatically collected from the outputs of the

measuring procedures. "Newpsd' will give the size distri-

bution p(V).
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DEMONSTRATION AND VERIFICATION OF AQIA

Typical Results of Measurement

on Separate Particles

Fig. 4 shows a projection of several particles of

quartz. As Fig. 9 shows, its binary image is a good

representation of the original image. Thus, it is ready to

be processed and measured with AQIA. Figures 21 and 22

show the left part and the right part of the Fig. 9 . These

images will be used to demonstrate the typical results of

using AQIA to measure separate particles.

'V
Figure 21

Left Part of Fig. 9
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Fi gu re 22

Right Part of Fig. 9

These two parts are labeled Sample 1 and Sample 2 of

Quartz. After using the 'bitshow' program, the

'erod. calc' program is needed to separate the touching

particles. Then, each part was measured using the separate

particle option of 'erod.calc'. Since these two parts are

from the same material, the mean values of the measure-

ments from separate images were also calculated by

'erod.calc'. The length unit that is used in all the

results was entered by the user when the 'dscrb' program

was called. The typical, numeric results that are direct

outputs from the 'erod.calc' program, are shown in Tables

h to 8. In these tables, the notation "x en" means that

the value is multiplied by 10 .

Table 4 shows the basic individual measurements that

include perimeters, areas, and maximum chords in orthogo-

nal directions. ("Extent" means maximum chord). Note that

label 1 has been assigned to the background so that there
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is no object labeled 1 listed in the table. Table 4 also

gives the size (area) of the whole image, the area frac-

tion of objects (intersections), the total number of

objects, the number of objects per unit image area, and

the maximum, minimum and mean values of the individual

measurements. Sample 1 was processed first. Therefore,

the mean values given in parentheses are the same as the

Sample 1 values. When Sample 2 was processed next, the

values in the parentheses were updated to reflect the

means of both samples.

Table 5 shows the distribution of the perimeters.

The number frequency, the relative frequency and the cumu-

lative frequency are included. The interval between

classes is 300 microns. Taking the data for the 4th

interval as an example, the results show that, in Sample

1, there are 2 particles, or 25% of the total particles

that have perimeters between 90 and 120 microns, and that

50% of the total particles have the perimeters less than

120 microns. The data for the 4th interval for Sample 2

show that the average number of particles in the two

images, with perimeters between 90 and 120 microns, is

1.5, the average percentage of particles with perimeters

between 90 and 120 microns is 17.05%, and the average per-

centage of particles with perimeters less than 120 microns

is 43.18%. Note that the number of classes in Sample 2 is

greater than that in Sample 1 because the biggest perime-
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ter in Sample 2 is greater than that in Sample 1

Tables 6 to 8 show the distributions of maximum

chords and areas. Again, the number frequency, the rela-

tive frequency and the cumulative frequency are included.

The structure of these tables is similar to Table 4. In

the distribution of west-east maximum chords, the interval

between classes is 50 microns. In the distribution of

north-south maximum chords, the interval is 100 microns.

4
In the distribution of areas, the interval is 4 x 10

square microns.
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Table 4

asic Measurements on Quartz

Sample 1 of Quartz

The length unit is microns
In the () is the mean value for all the samples above.

Image size (x e8):
Area fraction of intersections:

Total Number of intersections:
// of intersection/unit area (x e-8):

Max. perimeter of intersections (x e4
Min. perimeter of intersections:
Mean perimeter of intersections:

Maximun area of intersections (x
Minimun area of intersections:
Mean area of intersections:

):

)

Max.w-e extent of intersections (x e4
Min.w-e extent of intersections:
Mean w-e extent of intersections:

Max.n-s extent of intersections (x e4

Min.n-s extent of intersections:
Mean n-s extent of intersections:

0.0355
0. 3057
0.3057)

8

225.51
225.51)
0. 1860

0670
1220
1220)
0026
0003

0.0014
0.0014)
0.0590

0110
0371
0371 )

0770
0180
0426
0426)

Labels
Pe r ime t e r

Area W-E Extent N-S Extent
(x e4) (x e8) (x e4)

0. 0750 0.0003 0.0110
2 0.0670 0.0004 0.0250
3 0.1160 0.0010 0.0380
4 0. 1240 0.0016 0.0450
5 0. 1860 0.0026 0.0420
6 0. 1600 0.0026 0.0590
7 0. 1360 0.0014 0.0410
8 0. 1120 0.0010 0.0360

(x e4)
0.0330
0.0180
0.0320

0480
0770
0570
0420

0.0340



Table 4 (continued)

Sample 2 of Quartz

The length unit is microns
In the () is the mean value for all the samples above

Image size (x e8):
Area fraction of intersections:

Total Number of intersections:
// of intersection/unit area (x e-8)

Max. perimeter of intersections (x
Min. perimeter of intersections:
Mean perimeter of intersections:

Maximun area of intersections (x e8
Minimun area of intersections:
Mean area of intersections:

Max.w-e extent of intersections (x
Min.w-e extent of intersections:
Mean w-e extent of intersections:

Max.n-s extent of intersections (x
Min.n-s extent of intersections:
Mean n-s extent of intersections:

0.0355
0.4798

( 0.3927)
1 1

: 309.56
( 267.54)

e4) : 0.2580
0.0680
0. 1328

( 0. 1274)
): 0.0041

0.0002
0.0015

( 0.0015)
e4) : 0.0600

0.0120
0.0425

( 0.0398)
e4) : 0. 1020

0.0130
0.0448

( 0.0437)

Labels
Perimeter
Area W-E Extent N-S Extent

(x e4) (x e8) (x e4)
0.0730 0.0004 0.0180

2 0. 1240 0.0008 0.0600
3 0. 1300 0.0011 0.0510
4 0. 1140 0.0012 0.0360
5 0. 1200 0.0014 0.0470
6 0. 2580 0.0041 0.0510
7 0.1910 0.0034 0.0580
8 0. 1410 0.0017 0.0410
9 0. 1610 0.0023 0.0540

10 0.0680 0.0002 0.0120
1 1 0.0810 0.0004 0.0400

(x e4)
0.0280

0160
0270
0380
0390
1020
0740
0570
0660
0330
0130
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Table 5

Distribution of Perimeters of Quart

The length unit is microns.
In the () are the mean values for all the samples above.

Sample # Start-with Frequency Rel.Freq. Cum.Freq
(x e4)

0.000 0.0000 0.0000
0) ( 0.0000) ( 0.0000)

0.030 0.0000 0.0000
0) < 0.0000) ( 0.0000)

0.060 2 0.2500 0.2500
: 2) < 0.2500) ( 0.2500)

0.090 2 0. 2500 0.5000
: 2) < 0.2500) ( 0.5000)

0.120 2 0. 2500 0.7500
: 2) i ; 0.2500) ( 0.7500)

0. 150 i 0. 1250 0.8750
: Di ; 0. 1250) ( 0.8750)

0.180 i 0. 1250 1.0000
: di : 0. 1250) < ; 1.0000)

2 0.000 0.0000 0.0000
; o.oooo) ; 0.0000) ( : 0.0000)

2 0.030 0.0000 0.0000
: 0.0000) : 0.0000) ( : 0.0000)

2 0.060 3 0.2727 0.2727
; 2.5000) ; 0.2614) ; 0.2614)

2 0.090 1 0.0909 0. 3636
; 1.5000) ; 0. 1705) ; 0.4318)

2 0.120 4 0. 3636 0.7273
; 3.0000) ; 0.3068) ; 0.7386)

2 0. 150 1 0.0909 0.8182
( 1.0000) ; 0. 1080) ; 0.8466)

2 0. 180 1 0.0909 0.9091
{ 1.0000) ; 0. 1080) ; 0.9545)

2 0.210 0.0000 0.9091
( 0.0000) ; o.oooo) : 0.9545)

2 0.240 1 0.0909 1.0000
( 0.5000) [ 0.0455) : i.oooo)



80

Table 6

Distribution of Max. W-E Chords of Quart:

The length unit is microns.
In the () are the mean values for all the samples above.

S amp 1

e

// Start -with
(x e4)

Frequency Rel . Freq

.

Cum. Freq.

0.000 0.0000 0.0000
0) ( 0.0000) ( 0.0000)

0.005 0.0000 0.0000
0) ( 0.0000) ( 0.0000)

L 0.010 1 0. 1250 0. 1250

:
i) <

' 0. 1250) < 0. 1250)
1 0.015 0.0000 0. 1250

: o) i ; 0.0000) < 0. 1250)
L 0.020 0.0000 0. 1250

: o) i : 0.0000) ( ; 0. 1250)
t 0.025 i 0. 1250 0.2500

: i) •; 0. 1250) (; 0.2500)
L 0.030 0.0000 0.2500

: o) ; 0.0000) (; 0.2500)
L 0.035 2 0. 2500 0.5000

: 2) ; 0.2500) 0.5000)
L 0.040 2 0. 2500 0.7500

: 2) ; 0.2500) ; 0.7500)
L 0.045 i 0. 1250 0.8750

: i) ; 0. 1250) ; 0.8750)
L 0.050 0.0000 0.8750

: o) ; 0.0000) ; 0.8750)
I 0.055 i 0. 1250 1.0000

C i) [ 0. 1250) ; 1.0000)



81

Table 6 (continued)

Sample // Star t-wi th
(x e4)

Frequency Rel . Freq

.

Cum

.

Freq .

2 0.000 0.0000 0.0000
0.0000) ( 0.0000) ( 0.0000)

2 0.005 0.0000 0.0000
0.0000) ( 0.0000) ( 0.0000)

2 0.010 1 0.0909 0.0909
1.0000) ( 0.1080) ( 0. 1080)

2 0.015 1 0.0909 0. 1818
0.5000) ( 0.0455) ( 0. 1534)

2 0.020 0.0000 0.1818
0.0000) 1 : 0.0000) < ; 0.1534)

2 0.025 0.0000 0.1818
0.5000) 1 : 0.0625) ( ; 0.2159)

2 0.030 0.0000 0. 1818
; o.oooo) < : 0.0000) ( ; 0.2159)

2 0.035 1 0.0909 0.2727
; 1.5000) 1 ; 0.1705) ; 0.3864)

2 0.040 2 0.1818 0.4545
; 2.0000) ; 0.2159) v

' 0.6023)
2 0.045 1 0.0909 0.5455

: i.oooo) ; 0.1080) ; 0.7102)
2 0.050 3 0. 2727 0.8182

; i.5ooo) ( 0.1364) I 0.8466)
2 0.055 1 0.0909 0.9091

: i.oooo) { 0.1080) : 0.9545)
2 0.060 1 0.0909 1.0000

( 0.5000) ( 0.0455) : 1.0000)
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Table 7

Distribution of Max. N-S Chords of Quartz

The length unit is microns.
In the () are the mean values for all the samples above.

Sample # Start-with Frequency Rel.Freq. Cum.Freq.
(x e4)

0.000 0.0000 0.0000
0) ( 0.0000) ( 0.0000)

0.010 1 0. 1250 0. 1250
1) ( 0. 1250) ( 0. 1250)

0.020 0.0000 0. 1250
0) ( 0.0000) ( 0. 1250)

0.030 3 0. 3750 0.5000
3) ( 0. 3750) ( 0. 5000)

0.040 2 0. 2500 0.7500
2) < 0.2500) ( 0.7500)

0.050 1 0. 1250 0.8750
:

i) < 0. 1250) ( 0.8750)
0.060 0.0000 0.8750

: o) i ; 0.0000) < 0.8750)
0.070 i 0. 1250 1 .0000

:
i)i ; 0. 1250) ( 1.0000)

2 0.000 0.0000 0.0000
; 0.0000) 1 ; o.oooo) ; 0.0000)

2 0.010 2 0.1818 0. 1818
; 1.5000) ; 0. 1534) ; 0.1534)

2 0.020 2 0.1818 0.3636
: i.oooo) ; 0.0909) ; 0.2443)

2 0.030 3 0.2727 0.6364
; 3.0000) ; 0. 3239) ; 0.5682)

2 0.040 0.0000 0.6364
( 1.0000) ; 0.1250) ; 0.6932)

2 0.050 1 0.0909 0.7273
[ 1.0000) { 0.1080) ; 0.8011 )

2 0.060 1 0.0909 0.8182
( 0.5000) C 0.0455) C 0.8466)

2 0.070 1 0.0909 0.9091
( 1.0000) ( 0.1080) C 0.9545)

2 0.080 0.0000 0.9091
( 0.0000) ( 0.0000) [ 0.9545)

2 0.090 0.0000 0.9091
( 0.0000) ( 0.0000) { 0.9545)

2 0. 100 1 0.0909 1 .0000
( 0.5000) ( 0.0455) C i.oooo)
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Distribution of Areas of Quartz

The length unit is microns.
In the () are the mean values for all the samples above.

Sample // Start -wi t h

(x e6)
Frequency Rel . Freq

.

Cum. Freq .

0.000 2 0. 2500 0.2500
2) ( 0.2500) ( 0.2500)

0.040 0.0000 0.2500
0) < 0.0000) ( 0.2500)

0.080 2 0. 2500 0.5000
2) ( 0.2500) < 0.5000)

0.120 2 0. 2500 0.7500
2) ( 0.2500) ( 0.7500)

0. 160 0.0000 0.7500
0) ( 0.0000) ( ; 0.7500)

0. 200 0.0000 0.7500
0) ( ; o.oooo) ; 0.7500)

0. 240 2 0.2500 1 .0000
: 2) i ; 0.2500) ; 1.0000)

2 0.000 3 0.2727 0.2727
; 2.5000) 1 ; 0.2614) ; 0.2614)

2 0.040 1 0.0909 0. 3636
; 0.5000) 1 ; 0.0455) ; 0.3068)

2 0.080 2 0.1818 0.5455
; 2.0000) 1 ; 0.2159) ; 0. 5227)

2 0. 120 1 0.0909 0.6364
; 1.5000) 1; 0. 1705) ; 0.6932)

2 0.160 1 0.0909 0. 7273
; 0.5000) ; 0.0455) ; 0.7386)

2 0. 200 1 0.0909 0.8182
; 0.5000) I 0.0455) ; 0.7841)

2 0. 240 0.0000 0.8182
: i.oooo) 0.1250) I 0.9091)

2 0.280 0.0000 0.8182
: 0.0000) : 0.0000) ; 0.9091)

2 0. 320 1 0.0909 0.9091
; o.5ooo) ; 0.0455) ; 0.9545)

2 0.360 0.0000 0.9091
C 0.0000) ; o.oooo) ( 0.9545)

2 0.400 1 0.0909 1 .0000
( 0.5000) ( 0.0455) { 1.0000)
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Typical Results of Estimation on

3-Dime n s

i

ona 1 Properties

If Fig. 4 were a cut plane through a solid sample,

the results in Tables 4 to 8 could be used to obtain esti-

mates of the properties of the solid. In what follows, it

will be assumed that Fig. 4 is such a cut plane. This

ruse is used to circumvent the need for preparing a spe-

cial sample merely to demonstrate the AQIA package. The

3-d imens i ona 1 properties that can be estimated by AQIA are

shown in Tables 9 and 10. These two tables also show the

length unit used in the estimations and the mean values

from the two separate images.

Table 9 shows the volume fraction, the surface area

of objects per unit bulk volume, and the specific surface

area of objects per unit object volume (based on the

former two values). The total number of objects per unit

bulk volume is given and is calculated from the size dis-

tribution based on the conventional method. Table 9 also

shows the mean diameter of the objects, assuming that the

objects are spheres.

Table 10 shows the size distribution based on the

conventional method. The number frequency, the relative

frequency and the cumulative frequency are included. The

interval between classes is 100 microns. The conventional

method derives the size distribution from the distribution
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Table 9

Volume Fraction and Surface Areas from Fig. 9

VFA is volume fraction.
SV is surface area per unit bulk volume.
SSA is specific surface area per unit object volume.
TN is the total number of particles per unit bulk volume
MD is the mean diameter of particles
The length unit is microns
In the () are the mean values for all the samples above.

Sample // VFA SV(x e-4) SSA(x e-4) TN(x e-10) MD(x e4)

1 0.3057 29.9366 97.9280 44.8639 0.0367
(0.3057) ( 29.9366) ( 97.9280) ( 44.8639) (0.0367)

2 0.4798 46.2093 96.3094 116.1319 0.0278
(0.3927) ( 38.0729) ( 97.1187) ( 80.4979) (0.0322)

of the intercepted chords of objects by a random test

line. The mean lengths of the intercepted chords in each

class are used as the mean diameters of objects in that

class. Table 10 also includes the number frequency of

intersected chords' lengths. For example, the data for

the 4th interval for Sample 1 show that there are 109

intercepted chords with mean length 350 microns, or 8.6025

x 10 particles with mean diameter 350 microns per cubic

micron bulk volume, and the percentage of particles with

mean diameter 350 microns is 19.17%, the percentage of

particles with diameter less than 400 microns is 56.89%.

The comparison between the conventional method and

the new method for estimating the size distribution will

be presented later.
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Verification of Measurement on Separate Particles

Fig. 23 shows an image of 36 coins. Among these 36

coins there are 4 quarters, 6 nickles, 9 pennies and 17

dimes. The numbers of each coin were selected to give a

reasonably uniform coin distribution in the space. These

36 coins were placed on a light table and photographed.

The whole area taken in this image is 358mm x 278mm.

This image was divided into four parts of approxi-

mately equal areas. These four parts were digitized at a

resolution that made one pixel approximately 0.41 mm. The

four parts of the whole image were labeled Coin 1, Coin 2,

Coin 3 and Coin 4 in the clockwise order from the upper

right quadrant to the upper left one. Each part was meas-

ured using the "sep.calc' program in AQIA. In addition,

the mean values of the measurements from separate images

were calculated to get the overall measurements that one

would get if the entire image had been measured at once.

These results were compared with the true values that

could be calculated from the known sizes of the coins.

Image Coin 3 (the lower left part) will be used as an

example of the process used on each of the four parts.

Fig. 24 shows the original image of this part. Fig. 25 is

the corresponding histogram of gray levels. Gray level

159 represents the population of the 'white' coins. Using

the peak gray levels 89 and 159 as two extremes, the
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Figure 23

Original Image of Coins

'fuzzthr' program suggested gray level 143 as the dividing

level between these two extreme gray levels. Taking gray

level 143 and 255 as the thresholding bounds results in

Fig. 26 as the binary image.

The original image, Fig. 24 is not uniformly

illuminated. This results in the confused histogram in

Fig. 25. In cases such as this, some judgement must be

exercised by the user in selecting extremes for the

'fuzzthr' program. If other peaks that have gray levels

less than 89 were used as the left extreme, the 'fuzzthr'

program would give a thresholding bound that would produce

a binary image with obviously spurious objects in it.
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Thus level 89 is the only lowest extreme that results in a

sensible image .

Figure 24

Original Image of Coin 3
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Histogram of Gray level (Coin 3)



92

ay w
P' 1ij|jp

Figure 26

inary Image of Coin 3
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Table 11 shows the area fractions of each separate

image and the mean area fraction that was calculated from

these. These are compared with the true area factions

that were directly calculated from coin and image sizes.

The relative error between the mean area fraction of these

four parts and the true value is satisfactorily low. This

verifies both the validity of the new, fuzzy probability

based method of image segmentation introduced in this

work, and the accuracy of AQIA's area fraction measure-

ment.

Table 11

Area Fractions of Coins

Images AQIA Measurement
%

True Va lue
%

Re 1 . Error
%

Coin 1 10.48 10.33 1 .5

Coin 2 10.46 10. 58 1 . 1

Coin 3 11.34 11.13 1 .9

Coin 4 11.73 11.79 0.5

Mean of

Combined
1 1 .00 10.96 0.4

Tables 12 to 15 show the results of measurements on

individual coins. All the measurements are the mean

values from the 4 separate images. The accuracy of indi-

vidual measurements is more dependent on the resolution of

the digitizer and how the relevant pixels are counted.

The resolution can always be improved, but high resolution
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image needs more computation time.

Table 12 shows the perimeters of the different coins

from AQIA measurements compared with the true values that

were calculated. The AQIA measurements are all less than

the true values and the relative errors are much higher

than that of the area fractions. This is because, in the

digitized image, a circle is represented by a polygon com-

posed of pixels that are small squares. The side of one of

these small squares is used as the length of one pixel.

The centers of perimeter pixels must be near the coin's

perimeter. Thus, the actual trace of a coin's perimeter

through a square pixel will usually be greater than a

pixel's edge. If the image were digitized at a higher

resolution, the underestimation problem would be improved.

Table 12

Perimeters of Coins

Coins AQIA measurement
mm

True Value
mm

Re 1 . error
%

Quarter 70.08 75.40 7. 1

Ni ckl

e

61.93 65.97 6. 2

Dime 52.25 55. 76 6.3

Penny 54.64 59.69 8.5

Table 13 shows the areas of the different coins from

AQIA measurements compared with the true values. The AQIA

values are all greater than the true ones. The centers of
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border pixels must be near the true border of a coin.

Thus, these on-border pixels have some area beyond the

real border that is also counted when the areas are calcu-

lated. However, the relative errors are less than those

for perimeters because on-border pixels are a smaller por-

tion of total object pixels than they are of the perime-

ter. Again, this situation could be improved with a

higher resolution.

Table 13

Areas of Coins

Coins AQIA measurement
mm

True Value
mm

Re 1 . error
%

Quarter 470. 21 452. 39 4.0

Ni ckle 364. 14 346.36 4.9

Dime 252. 56 247.45 2. 1

Penny 292. 77 283. 53 3.3

Tables 14 and 15 show the maximum chords from AQIA

measurements compared with the true values. The AQIA

measurements are a little greater than the true values

because each chord has two on-border pixels at its ends

that slightly extend the chord. However, the relative

errors are lower because the two on-border pixels are a

small portion of the total chord pixels.

Tables 12 to 15 all show that the measurements on

dimes have the least error because there were more dimes
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Table 14

Max. W-E Chords of Coins

Coins

....

AQIA measurement
mm

True Value
mm

Re 1 . error
%

Quarter 24. 34 24.00 1.4

Ni ckle 21.93 21 .00 4.4

Dime 17.88 17.75 0.73

Penny 19.29 19.00 1 .5

Table 15

Max. N-S Chords of Coins

Coins AQIA measurement
mm

True Value
mm

Re 1 . error
%

Quarter 24.69 24.00 2.9

Nickle 21.40 21 .00 1 .9

Dime 17.93 17.75 1 .0

Penny 19.23 19.00 1 .2

in the images. This demonstrates the obvious point that

increasing the number of objects of a type improves the

accuracy of the individual measurements of that type.
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Conparison of the Conventional Method and the New Method

for Estimating the Particle Size Distribution

Fig. 27 shows a random part of the whole coin image

that was taken from Fig. 23. Fig. 28 is the corresponding

binary image segmented with the 'fuzzthr' program. This

image was used to demonstrate the calculation of the par-

ticle size distribution of objects in a matrix by imagin-

ing that this image was a cut plane through a solid con-

taining spherical inclusions. Calculations were made with

the conventional method using the 'cut.calc' program and

the new method using the 'newpsd' program. Fig. 29 shows

the comparison between these two methods. This comparison

was also made on the image Coin 3 and Fig. 30 shows the

results.

Both methods find peaks roughly corresponding to the

larger and smaller coins in the images. In addition, Fig.

29 has a peak at a small particle size that comes from the

coins that were cut at the image boundaries. This

emphasizes the importance of measuring enough objects so

that edge effects are minimized.

As mentioned earlier, the conventional method has a

tendency to calculate a false number of small chords. Fig-

ures 29 and 30 show this and that the new method does not

have this tendency. Unfortunately, there is no true value

of the size distribution available for verification. It
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Figure 2 7

Part of Figure 23

would be necessary to prepare, cut, and measure a special,

bulk sample containing spherical particles of a kn ow n size

distribution to further check the accuracy. However, both

figures show that, except the smallest diameter part, the

two methods give similar curves of size distributions and

that the new method is free of the sma 1 1 -d i ame t e r problem

that affects the conventional method.
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Figure 28

Binary Image of Figure 27
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GUIDE TO THE USE OF AQIA

The AQIA system is a package of 13 major programs and

6 auxiliary programs. The following flow chart shows the

functions and order of use of the 13 major programs.

First, DSCRB initiates the package. It creates a file

to hold the processed image. In the file, the initiation

time will be recorded automatically. DSCRB also allows

the user to briefly describe the sample from which the

image has been taken, and to enter the length of one

pixel. The binary image and other relevant information

will be appended to this file.

REDUCE extracts the image gray level data from the

raw image file produced by a digitizer. It also allows

the user to reduce the image size and/or the number of

gray levels. REDUCE produces a reduced image. After

REDUCE, the user must select the method of segmentation.

AQIA has two ways to segment a digital image:

straight gray level histogram and edge-detection histogram

thresholding. If straight histograming is selected, HISTO

will be called next. It compiles a histogram of the
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Figure 31

Flow Chart

occurrency of various gray levels. If edge-detection is

selected, EGEHIS will be called instead. It singles out



104

the boundaries of objects, and compiles a histogram of the

occurrency of gray level gradients.

Then, the user must decide if he/she wants automatic

selection of thresholds from either histogram. If the

user chooses the automatic method. FUZZTHR must be called

next. FUZZTHR will suggest thresholding bounds.

With or without automatic thresholding, BITSHOW must

be called next. BITSHOW asks the user to enter the lower

and upper bounds for thresholding. It then displays the

binary image on the screen with pixels between the bounds

being illuminated. It allows the user to change the bounds

until he/she is satisfied with the binary image. If there

are some spots in the objects that need to be filled,

'bitshow' allows the user to choose either the overall or

individual filling mode, or the individual followed by the

overall mode. It outputs the spot-free binary image to the

file created by DSCRB.

Next, the user must decide if he/she needs to trim

the borders from the binary image. If the user needs

this, TRIM will be called next. If there is more than one

image of the same sample, the user may call EQUAL to cut

these images to the same size, in order to make statisti-

cal calculations meaningful.

After this, the user must decide if he/she needs ero-

sion on the binary image before measurement. If erosion is
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desired, EROD.CALC will be called next. It allows the

user to choose either the overall or individual mode of

erosion, or the overall followed by the individual mode.

After erosion, the appropriate dilation will be performed.

Then, the desired measurements will be performed on the

processed binary image. EROD.CALC can perform measurements

on projections of separate particles or sections cut

through a solid sample. EROD.CALC will output the final

results of the measurements, and the eroded/dilated image.

If no erosion is needed, the binary image can be

directly measured by the following three programs.

SEP.CALC measures the projections of separated particles.

CUT.CALC estimates 3-d i mens i ona 1 properties of microstruc-

tures from 2-dimensional measurements on cut planes.

ALL.CALC does both. NEWPSD can be used to estimate the

size distribution of particles by using the new method,

after EROD.CALC, or SEP.CALC, or CUT.CALC, or ALL.CALC.

For the user's convenience, AQIA also provides 6 aux-

iliary programs. These are:

1. DESIGN 4. HARDCP

2. SHOVJ 5. RESULTS

3. INF 6. PLOTPREP

DESIGN allows the user to find the number of required

images for volume fraction estimation, given the image

size, the estimated mean value of the area fraction, the
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desired estimation accuracy (half-width) and the desired

confidence level.

SHOW simply displays a binary image on the screen,

but does not allow processing. INF gives the relevant

information on an image such as the size of the binary

image, the size reduction factor, the number of gray lev-

els, the percentages of 1 and pixels, the thresholding

bounds, etc.. HARDCP gives the user a hard copy of the

binary image if the user is working on a Tektronix 4014

terminal equipped with a hardcopy unit.

RESULTS either displays the numeric results of the

measuring programs on the screen or prints them on a

specified printer. PLOTPREP collects the results of meas-

urements from EROD.CALC, or SEP.CALC, or CUT.CALC, or

ALL.CALC, to provide input for plotting by UNIX Qplot pro-

grams .

For more details on the execution of the programs and

naming files, the user should refer to the separate AQIA

User Manual.
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SAMPLE AND IMAGE PREPARATION TECHNIQUES

The AQIA system can be generally applied to a broad

spectrum of construction materials. But, it requires that

the sample and image be properly prepared so that the

digital image can be segmented into a good binary image

that can be measured with the software package. It is

impossible to develop a general image and sample prepara-

tion technique for various materials. Therefore, different

image and sample preparation techniques have to be

developed for various materials.

Any photograph can be digitized, processed and meas-

ured. A photograph can be taken with an ordinary camera,

or through a light microscope, or in an electron micro-

scope. This depends on the magnification that is needed

for measuring the objects of interest. The magnification

issue will be discussed later.

Either negatives or positives can be digitized. Some

digitizers are good for both. Some are only good for one

of them. Negatives are recommended if an appropriate

digitizer is available, because positives will need addi-

tional film processing that will reduce the image quality.
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The maximum image size is limited by the memory space

of the computer and the resolution of the monitor. In

this work, a Tektronix terminal was used as the monitor.

It has a 780 x 1024 pixel display area. AQIA allows an

image as big as 680 x 1000 pixels. (A 100 pixel high space

is left for user-program interaction.) Since AQIA is

implemented on the UNIX operating system at Purdue, the

memory of the available computers is more than enough for

an image of this size. If a digital image is greater than

this size, the 'reduce' program can be used to reduce the

image size by multiples of two. 'Reduce' also automati-

cally cuts an image's size to 680 x 1000 pixels even if no

reduction factor is used. The user must be aware of the

monitor display limitation before he/she makes the origi-

nal image in order that no objects of interest will be cut

off by 'reduce'. The bigger the image is, the more compu-

tational time it needs. Therefore, it is recommended that

the image size be minimized to only include necessary

information.

In this work, an ISI Super III-A SEM and an Olympus

light microscope were used. Both have a pho t orai cr os copy

attachment that uses 35mm film. Although a large format

film such as 4 x 5 could also be used, it would pro-

duce a huge image relative to the resolution of most digi-

tizers. Such an image would need to be reduced. There-

fore, 35mm film Is recommended.
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After the size of the whole image is determined, the

resolution that the AQIA will work with has to be chosen.

The resolution of the AQIA system is the resolution of the

digitizer divided by the magnification of the microscope

(if the microscope is used). It is not true that an inde-

finitely higher resolution necessarily leads to a better

image. Too high resolution will often produce spurious

objects in the binary image. The user must choose such a

resolution that the AQIA system can 'see' the objects of

interest and avoid 'seeing' finer objects that are of no

interest.

The resolution of a digitizer is the length of one

pixel. This information is available from the manufac-

turer. Sometimes, the resolution is specified as the

number of pixels in the orthogonal directions. A simple

way to calibrate the lengths of one pixel in these orthog-

onal directions is to measure the lengths of the sides of

the real image and compare them with the numbers of rows

and columns of the digital image that are given by the

'reduce' program. Some digitizer do not produce square

pixels. The above comparison will indicate if this is the

case. The AQIA system assumes that the pixels are square

and will give erroneous results if this is not true.

If a light microscope with a pho t orai c r os copy attach-

ment is used, it should be noted that the magnification on

the film plane may be different from that on the human's
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vision plane. When the user chooses the magnification, it

must be the magnification on the film plane.

In summary, the process of obtaining and digitizing a

useful image is as follows. First, one decides on the

size of the smallest features that is of interest. Then,

with a knowledge of the resolution of the digitizer that

will be used, one selects a magnification. Finally, one

takes a picture of a size that, when digitized at the

selected resolution, will be displayable on the monitor.

If a photograph is improperly mounted in a digitizer,

the area beyond the image of interest will also be digi-

tized. Although the 'trim' program can remove this area,

this wastes file space and processing time. Therefore, the

user should be careful when mounting the photograph in the

digitizer. Also, the photograph must be parallel to the

lens plane of the digitizer to avoid the distortion that

will produce pixels with different scales in orthogonal

directions.

Segmentation quality heavily depends on the contrast

of the original image. The more contrast the original

image has, the easier, and more accurate, the segmentation

will be. If the image is taken with an ordinary camera,

or a light microscope, appropriate lighting and background

are needed to strengthen the contrast. If the scanning

electron microscope is used, edges and elevated points on
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the objects will be brighter. Therefore, a flat surface

must be used. The brightness is also affected by the

atomic number of the elements present, assuming no coating

is used. Therefore, special materials might be used to,

for example, fill cracks or voids, to brighten these

features.

SEM has another special problem. The scan line moves

continuously so that there is no still field of view.

Therefore, it is difficult to focus the image. The user

must pay more attention and patience to focusing in order

to avoid fuzzy images. In SEM, the sample is illuminated

only when it is scanned. Therefore, exposure time is

fixed, and only the aperture can be changed.

Non-uniform illumination will produce images that

are difficult to segment. The images of coins that have

been used in this work are an example of non-uniform

illumination. This problem can be especially severe in a

light microscope at low magnification and extra lighting

is needed to increase the uniformity of the illumination.

The current AQIA system only uses gray levels, or

their gradients, to differentiate the objects from the

background. It can not analyze the texture of a surface.

Therefore, if the mi c r os t r u c t u r e s in a matrix need to be

measured, the sample may need to be polished so that sur-

face texture will not artificially affect the gray levels.
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Images that contain pore space such as air voids and

cracks can present a special problem if these pores are

the objects of interest. The sample must be well pol-

ished. However, the digital image may still be difficult

to segment. It is suggested that the pores be filled with

a contrasting fine powder or a dye, or impregnated with

polymers, that will make the pores much lighter or darker

than the background. Another approach might be to

illuminate the surface at an extremely flat angle so that

they would be in deep shadow.

Images of collections of fine particles such as

flyash present another problem. The fine particles tend

to agglomerate. The 'erod.calc' program can't separate

objects that are above one another. And, erosion to

separate many particles in the same plane uses consider-

able computation time. Therefore, fine particles should be

separated as much as possible before the image is made.

It has been found helpful to disperse such particles in a

clear liquid that contains a small amount of a detergent.

However, the detergent also introduces air bubbles that

may appear in the segmented image. A more effective

dispersent may be needed that does not produce air bub-

bles.

Much of the above advice concerning sample prepara-

tion may be summarized as follows. A human viewer of an

image brings a broad variety of knowledge to the problem
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of segmenting what he/she sees. The AQIA system must

depend solely on gray level differences. Thus, the exper-

imenter must keep this in mind, and must arrange for the

objects of interest to have a clearly unique gray level

that is uniform across the field of view.
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CONCLUSIONS

1

.

An automatic, quantitative image analysis (AQIA)

system has been developed for construction materials.

2. A special statistical procedure has been developed

that yields the estimation accuracy of a volume frac-

tion analysis for a given number of images of a given

size.

3. A special technique of image segmentation, based on

the concepts of fuzzy probability, has been

developed. It models the cognition process of humans,

and produces consistent binary images.

4. The system uses object labeling to process the binary

images more accurately and safely than non-labeling

image analysis systems.

5. Object labeling makes the processes of object count-

ing and measurement of individual objects as

straightforward as the overall measurements.

6. The system can be expected to make measurements with

an error of less than 1% with an image of appropriate

resolution.
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7. In the case of discrete particles, the system can

measure the perimeters, areas, maximum chords of the

particles, the maximum, minimum and mean values of

these parameters, the distributions of these parame-

ters, the area fraction of the particles and the

total number of particles.

8. In the case of a cut surface through a massive sam-

ple, the system can estimate the volume fraction of

objects, the surface area of objects per unit bulk

volume, and the surface area of objects per unit

object volume. Assuming that the objects are spheres,

the particle size distribution of objects in a mas-

sive sample, the total number of objects per unit

bulk. volume and the mean diameter can also be

est iraa ted.

9. A computer simulation method has been developed to

estimate the size distribution of particles of any

modelable shape in a massive sample. This does not

have the tendency to artificially inflate the number

of small particles as does the conventional pro-

cedure.

10. A new software system could be developed to allow the

user to assume different shapes for particles in a

massive sample and find the most reasonable

assumption if the shape of the particles is unknown.
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Appendix A

Basic Statistical Equations

This appendix will give some basic statistical equa-

tions used in the thesis and the appendices.

1 . If x is a discrete random variable, the mean of k x's

x = T. x . p ( x )
(A.l)

where p(x.) is the probability function

The variance with respect to x i;

a
2
(x) = I (x. - x)p(x.)

k.

2 _2
2 x .

p(x . ) - x

i

(A. 2)

or

The va

o 9

o
2
(x) + x = I x. p(x.)

i

riance with respect to some constant c is:

(A. 3)

o
2
(x) = E (x. - c) p(x )

c .
i

l

= n(x) + (x - c)

(A. 4)

2 . If y is a linear function of x as

y = I C. X
£
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the variance of y is:

o ( y ) = I c . o ( x . ).1 i
l

(A. 5)

where c.'s are constants.
l

3. Given event y, the probability that the event x

occurs is p(xjy). So the probability that x accurs

i s :

p(x) = P (x|y) p(y) (A. 6)

If x also occurs when event z occurs, the total pro-

bability that x occurs is:

p(x) = p(x|y) p(y) + p(xjz) p(z)

In general,

(A. 7)

p(x) = I p(x
j y

i
) p(y

j

. ) (A. 8)

This means that x occurs when any y. occurs
l
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Appendix B

Coefficient of Variation of Area Fractions

Suppose there are n sections (planes cut through the

material), each with the same area A, and an area fraction

....n). On each section,

the cross sectional areas of intercepted features are

grouped into k classes of size a. (i = 1,2, k).

(m.). is the number of intercepted features with cross
i J

area a. on section i. The area fraction on section i is
l

the average over k classes, with class i having m. inter-

cepted features of cross area a.:

of features (A ). (j = 1,2,A J

(A
A ). = E (m. ) . y±
A J . l j A

(B.l)

The mean area fraction from n sections is the average over

n area fraction measurements:

z <Vj

1

n

n k

(B.2)

Z E ( ra . ) . a .

nA . . l J i

J i

1
n

£ a . £ ( m . ) .

nA . l . i J
i J

1
k n < ra

i
)

j= |l a, I —1
A . l . n

i J

— E a . m .

A . l i
l
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Since the features are assumed to be randomly distri-

buted in the matrix, m. is a random variable that is the
1

number of intercepted features with cross area a. appear-

ing within a given area A. m. will follow a Poisson dis-

tribution. For Poisson distributions, the variance and the

mean of the random variable are equal to each other, as:

(m . ) = m ( B. 3 )
l l

The following applies to each section, therefore the sub-

script j can be omitted and Eqn. B.l can be written as:

k a .

A = E m .

—
A l A

l

Applying Eqn. A. 5 results in:

a (A. ) = — E a . o (m . )
A . 2 . l l

A l

(B.4)

(B.5a)

or, in view of Eqn, B.3

a ( A ) = —- E a . m .

A .2.1 l
A l

Deviding (B.5b) through by M gives:

(B.5b)

° <v . k m

.

1 v 2 l—77 E a .
—

a
2 • i T7

-
A l M

a

(B.6a)

If p(a.) is defined as the probability that a intercepted

feature with cross area a. is observed within the total M
l a

intercepted features, then

P(a.) =
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and

°"
(V 1

I 2 . .
= —

~

E a . p(a.)
TT
-

a
2 • ii

M A i

(B.6b)

Since Eqn. A. 3 may be written in the present nomen-

clature as:

o(a)+a = E a . p(a.)ii
l

(B.7)

Eqn. B.6b becomes:

(A.)
A 1 / 2. , -2

N
-y (o (a) + a ) (B.8)

Squaring Eqn. B.2 and then deviding it through by Mtt-2

\A_ = _1_

-2
==

A
2

k m

.

v 1
a .

i
X

M
a

(B.9)

E a . p ( a . )
i i

l

Since Eqn. A.l may be written in the present nomenclature

a = £ a. p(a.)
l l

(B.10)

Eqn. B.9 becomes

% 2
- 2

A a

^2
=

A
2

(B.ll)

Combining Eqn. B.8 and B.ll gives Equation 1 in the main
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Appendix C

Coefficient of Variation of Cross-sectional Areas

2 —2
The value of o (a)/a depends on the shape of the

intercepted feature. The simplest case is a sphere with

diameter 2r. The following figure shows a circular disc

formed by the intersection of the sphere with a plane of

thickness dh. The disc has a radius r cos(8), where

indicates the orientation of the disc.

The area of the disc, a
fl

, is

2 2
a„ = Tr cos (9 )

,

The thickness of the disc, dh, is
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dh = (r dtheta) [cos(8) ]

The probability that a disc with oreintation

dh

this is

:

occurs is

2 dh— or TIT'

rd6 cos(6)

Applying Eqn. A.l results in the mean cross sectional area

2

7 « /(7Tr
2
cos

2
8)

rd9 cos '

TT

= nr /cos 8 d0

2 T 2=
T7rr

(CI)

Applying Eqn. A. 2 results in the variance of the cross

sectional areas as:

2 „ 2 M 2 rd8 cos8 -2- aa^ (a) = / (wr^cos z
0)

4 2 4
= 41" r

Dividing Eqn. C.2 by the square of a gives

(C2)

Q
2
(a)

-2
a

= 0.2 (C.3)

For a less regular shape, a bigger value is expected [2].
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Appendix D

100(1 - a/2) Percentile of t Distribution

Table 16

100( 1 a/2) Percentile of t Distribution [43]

Samp le Size - 1

1

2

3

4

5

6

7

8

9

10
1 1

12

13
14

15
16
17

18

19
20
21
22
23
24
25
26
27
28
29
30

>30

Conf . Level

0.95 0.90

12,

4,

3,

2,

2,

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

706
303
182
776
571
447
365
306
262
228
201
179
160
145
131

, 120
110

. 101
,093
,086
,080
,074
,069
,064
.060
.056
.052
.048
.045
.042
.000

314
920
353
132
015
943
895
860
833
812
,796
,786
,771
,761
,753
, 746
,740
.734
.729
.725
. 721
.717
.714
.711
.708
.706
.703
.701
.699
.697
.671
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Appendix E

Questionaire for Darkness Pair by Pair Comparison

Table 17

Questionaire for Darkness Pair by Pair Comparison

Observer's

Assess men t

Numbe r

Equivalent

The squares are the same.

One square is very slightly darker than the other

One square is slightly darker than the other.

One square is somewhat darker than the other.

One square is considerably darker than the other.

One square is much darker than the other.

One square is very much darker than the other.

One black square and one white were considered as the

extremes. By definition, the black square was rated as

"very much da rke r than " the whi t e one .
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