

Eater: そ. L. Michacl, Assoclace Disector Joint Hichwas Research Project
$\begin{aligned} \text { Froject: } & 6-36-668 \\ \text { File: } & 8-7-2\end{aligned}$

The atrached cechaicai paper has been authored by Messes. A. O. Petersom and 1 . L. Binchacl of our seasx. The paper titled "An Analysts of Tratitic Acciceats on a Migh- Woluse yiginay" is a summy of the accident research on the Tasayette By-Rass. The paper was presented at the 1855 Ammal Rosd School and is schecuied for publlection in the Proceedings.

The paper is a sumaty of the reacarch repore of the same title previously zeported to the Board by Huc. Pecerson and contains rome fmorsant inforation on faccors esscciatci vith accicicats on hish-volum urban azecelal highuays.

The paper is sutwitced for the record end for approval of pubiscation. Ir wili also be subaitted to the Mighway Comassion wix the Burcau of Tubijc hosds for their revicw and approval as it resulrea erom researciz on an spa project.

Respectuily gubaitced,


Ferold L. Michacl, Secrecary
ㅆㅕㅒ: bc
Attachmeat
Copy:


AM ANGEXESS OF TRAFEIC ACGIDEMTS ON A MIGH-VOLUM MIGEWAX
by
A. O. Petezgor Greduste Assistant
and
E. H. Michas

Aesoctace Director

Joint Mighway Research Project

$$
\begin{gathered}
\text { Erojece f3o: } \mathrm{c}-36-568 \\
\text { Pise Ho: } 8-7.2
\end{gathered}
$$

Erepacer as gixe of an Investigetion
Conducted by
Jotnt Mighmay Research Project
Engixecriug Expricent Scocion Furcue Juiversity

In cooperation with
Inciana state Eighuay Commission
and the
Euresu of Public Ronds
U S Degartment of Comberce

```
Not Relcased for Publicacion
    Subject to Ghange
```


## Not Reviewed By

Indicna Stace Mighzay Comiseion or che Bureas of Bublic Roads

# Ar Anclygis of Traffic Accidencs on a inigh-Volume Highway 

## RITRCDUCITON

In the United states (1)\% and in Indians (12) the populstion, the number of vehicle miles, the number of motor vehicle regiscrations, and the muber of deaths frow traffic accidents, 1953 to 1963 , increased as shown in Rigures 1 and 2 Mowever. the death rate per 100 millon vehtic miles decreaced subasanhaily during this tan year period Although successiul steps have been taken co reduce motor vehicle accizecte, the hightay enghneer ie the firgt to admit that there is roon for much improvement. The Joint Kighway Resemrch Project in 1964 initiated a traffic exginaering dewonztration project on the w. S. 52 By-Pass at Iatayette-Weat Lafayetre, Indiam Ge of the first phases of tixis stury vae a study in depth of the traffic mectaents which occurred on thty facility to cevelop recomendetzons for trafte engincering improvertents which would reduce sccidente on this fucility and informerion of value on other high volume urben highwayt.

The Lafayette-West lasayetta $\mathbb{E y - P a s}$ was the scene of 834 acciceats batween January 1, 1961 , and December 31, 1963 . A coral of 374 injuries and ten deaths resulted frow these accidents. These are the occidents which were inveacigared in this study.

[^0]Digitized by the Internet Archive in 2011 with funding from
LYRASIS members and Sloan Foundation; Indiana Department of Transportation


POPULATION
(MILLIONS)
1963
1
$\sim$
$\frac{N}{4}$

## THL STUDX LOCATIOR

The combined population of rafayerte and Wer Rafayette is approximately 55,000 Tris cioes rot faclusie approwirately 15,000 of the Puxiue Uaiversity atudents wh live outside of the eity limits.

Traffic using chis facility is through, cerminal or local in nature. Since ehe by-pass is an a direct rouce between Chicego snd Indienspolis, comercisl vehicles represent appromimately fourteen percent of dayliche traisic aud a much higher percentage during hours of darknees. Through trips comstitute less than fifty percent of the travel.

A lasge percencage of the raffic remanaces in bafayetce, an inductrial center and che canty sest of sippecano Coumy, or in Wezt Lefaycte at Purdue Tniversity. A portion of the trafic is local, seekins accese co comsrcial and industrial establichments located on the by-pass.

The by-pass uas constrcted in 1938 in arural area around the two cities. Since then developmat has cecurced on boch sides of the facility until mach of the by-pass is on urban arcerial.

The locarion of the D. S. 52 By-Paes in relation so the two citice is chom in Pigure 3. A portion of the facility with illustration of the growth of che extensive devalopment alon it is shown in Pigure \&

## STUDY PROCEDURE

## Accident Data

A three year study period was chosen im order that an acequate semple of accidents could be obtained. The last chree years of accidem data available were 1961 - 1963. Therefore, the stedy dates were chosen co include the period of Jenuary 1, 1961 through Deceuber 31, 1963.


FIGURE 3 mAP OF LAFAYETTE AND WEST LAFAYETTE INDIANA.


FIGURE 4 DEVELOPMENT ALONG PORTION OF THE U.S. 52 BY-PASS FOR 1939,1952 AND 1964.

Most of the accident data were collected from the Accident Records Divisiou of the Indiana Scate Police. Indian state law requires that all accicenes involving a personal injury, death or pioperty damage of \$50 of acre be repored to the police. Som of the accident information Fas obtained from the files of the Lafayete police, West lafayctre police and Indisne scare police Post No 3 at Rafayetre.

The accident information repored on the investigatiag officer ${ }^{\circ}$ s accident report form was mvailable from the Accident Records Division in coded fora. The punch cards for the accidents on U. S. 52 in Fairfield and Hebash Tounshipe qace obrained. The increasiag sunual numer of these accidente is erown in Figure 5.

Informstion *itich kas desirad bus minch mas not on the punch carde as obtained inciuded wheher tha vehicle was turning right or left, the dirction of travel before the accident, the exact location of the accident and the aidresses of the drivers. This inforwation wss obtained frcm the oxiginil acctent xeports and placed on the eswe punch card along with the previously coded information. By use of the detailed 10casion on the origimal accident report, the by-pass accidencs were separated fron the other accidents occurring on 1 . S. 52 in Fiairfeld and Wabash Townhips.

Preliminary atuly indicared that of all accidents approximacely 56.7 percent happened within 100 reet of an intersection whire about 65.1 percent happenad within 200 feet of an intersection (see rigure 6). An additions 300 feet gave an increase of only 10 percent and at a



FIGURE 6 PERCENTAGE OF ALL ACCIDENTS THAT HAPPENED WITHIN 100, 200 OR 500 FEET OF AN INTERSECTION.
distance greater chan 200 feet most of the accidents were iniluenced by factors other then intersection characteristics. Therefore, all accidents thich happened within 200 feet of each intexsection on the crose streets were inclucded in the study, and accidents within 200 feet of each intersection on the by-pass and the cross arrects were analyzed as ineersection accidenta. Data on accidemts occurring on the cross gercets within 200 fect of the by-pass were obtained from local police reaords ond coded in the same mamer as the U. S. 52 By-Pass accidents. A collision diagzan was drawn for each accident.

## Highway Elewencs

The By-pask etudy sccion extendew from the northwest corner of West Lasayete to the noutheast comer of La\&ayetr. With the aid of aerial photographs and steld inspection the by-pees was divided into sections. Each section was selected sothat it wonde have stmilar physical characteristics, comercial deveiopment, and volume of eraffic throughout its length

Fourtcen incersections were considered to have large enough cross street volume to maranc coniceration as an intersection erudy gection. A few other intersections with low croos streer volumes (below 500 ADT) were considered within the section in which they occurred. By these critexia, the by-pass zas divided into twenty-four nonintersection sections and fourteen intersection study sections. These sections are illustrated in Figure 7.


FIGURE 7
U.S. 52 BY-PASS STUDY SECTIONS.

An invantory of the physical features of each section was conducted in the summer of 1984. Nay highoy characteriscica (variables) which might afect acctient rates were comidered in the analysis of each section. Fhysical conditione that changed dusing the three year period were doterwited by consultimg the Traffic Division of the Crasforisville
 Gicy Directories were used to dacermine the year each eomercial establishment ฉias developed along the by-pass.

## Volume

In may accideme studies volume has correlated well with accidents Volume has bean usually represerted by amnal average daily trafic (ADTy. In chis stucy the houtly volume at the time of the accidenc as well as the
 were not taken during all of the 1961-1963 period, these volumes were estimated so indicated in the following paragrophs.

Trafic counte taken during the sumer of 1964 were supplemented by volume data Eron the Divisiow of Planuing, Inciana Stare Mightay Comiasion (see Figuse 8 for ADT volume growth at one point on the by-pase). Factors wre determined from the combe data on the by-pass and from recoris of the Mighay Cousitsion for yearly, monchly, daily, and hourly variations in traffic volume for each study section. Therefore, by knowing the location, year, month, day, and hour of an sectent, the hourly volume wos estimated by applying the appropriate factors to wolum counts taken on or near each section during the crudy.


Figure 9 Lllustrates the 1963 ADT volume on the by-pass and the cross streeta.

Capacity

The preceical capacity for each nouintersection study section was calculated by the methot described it the Highway Capacity Manual (5). In order to decermina the practical capacities of the signallzed intergections otudy was mede co determine the effect of paved shoulders near intersecticns on che practical capacity. Posbible copacities were obtained for each approach to the interaection by countiag the aumer of vehicles mith entered from thot approsch per loaded cycle A loaded cycla was one that always had one or more wehicles witing to proceed through the tntersection. These counts were then convertew so a volume per hour of green tiwe. The councs were then adjusted by appropsiate factors from the HLghsey Capacicy Hanuel for practical capecity, left and right Eurns, comercial yehiclea, parking, and bus stops. This study indicated thet a paved shoulder near the incersection carrice approzimately onc-chird the capacity of a properly constructed sud signed turaing lane

The pracilcal capaciry for each signalized intersection wos compured using the revised esryes for the Rifhway Capacity Maual (10) for one cleven foot through lene in each direction. Then the practical capacity was calculated for an ertra turning lame if the shoulder vas paved near the intersection or if a turniag lane existed. This lane was assumed to be a left-tura-only lane if the predominat turaing movement at that approsch was left and ascumed to be a right-turn-only if the predominent turning movenent at that approach was right. If the additional lane was only a

paved shoulder，ouly one－third of the turning lane capecity was added co the through lane capaciry．The practical capacttics were thus detemimed for the condtions that existed at each oiganlized interbection

The possible capactiy for non－signalised inceraections was calculated in tha following maner．The beadwey distribution on the by－pass was ascumed to be as that ohom on poge 40 of the Mighwey Cepacicy Manual． The suerage acceptable gap at stop－controlled interrections was considered an cight seconds（16）．Each succeeding vehicle wes assumed to reguire an additiona four secomds to move to the next position in the quese ame stop（13）．Eased on these assumptions，for any given hourly Wolum a the by－pase，en sproach capacity wes determined for the⿴囗十mor screet．This relactmahip between hourly volume in the jor direction on the by－paes and hourly capacisy on the ainor sereet approach is thowe in Pigure 10.

ANALYSES OF DATA

The dota for the man variables ware analyzed by mitiple linemr regression and the technique of quality control was also epplied to each section．Accident rates were calculated for each section and collision condition diagram were prepared for each eccident．

## Multiple Linear Regression

The witiple linear regression wethod was utilized to provide a generalized analysis of the factors associated with accidents at intergections and sections of the highway end to provide an expression for predictimg accidents at each such location


FIGURE 10 POSSIBLE CAPACITY OF A STOP-CONTROLLED CROSS STREET APPROACH FOR MAJOR DIRECTION hoUrly volumes on the by-pass.

All of any variables wich cone to mind and could be measured *erc uoed in the preliminary analyois for intersection These resules were examined and certain variablea were deleted Some of the deleted variables had vexy small simple corrclations with the dependert varisble. Sone variables had very high intercorrelation cooficient In such cases one of the variobles was deleced from furcher caiculations. Table 1 coneains che variables that remained for the final anelysis.

Freaiction equations ware then obeained for each of esveral deperdert varlables. The equetion for the most popular accident rate at insersections, numer of accitents per 100 willion vehteles $\left(\mathrm{T}_{28}\right)$, was found to be:

$$
\begin{aligned}
Y_{28}= & -309.850-0.9088_{2}+0.014 X_{3}+0.025 X_{4}+4.858 X_{11}+ \\
& 4.832 X_{13}+10.585 X_{15}-0.154 X_{21}
\end{aligned}
$$

The multiple correlction coefficient of the above was 0.873 The variables explaia approztmately 76 percent $\left(r^{2}\right)$ of the variation In intereccion accident rates

Important variables in estimiting this sccident rate at intersectiont are the percentage of green time lilotted to the by-pase (100 percent area eime mean shere wes no traffic signd present) $\left(x_{2}\right)$, the by-pass daily traffic $\left(Z_{3}\right)$, the cross-atreet dally volume $\left(X_{4}\right)$, the percent of left turns from the by-pass $\left(X_{1 i}\right)$, the manimu spprock speed so the incersecton

## TAMIE 1

##  KURTHPLP \&TNOAR KEGRESSION ANATYEIS

## Hatcraccetons

Variable Nuaber Deecripetoa

2

3

4

5

11

12

13
15

16

Perceat sreers tree om by-pase, peaceat
By-pass adr, venicles per day
Cross etreet ABT, venicies per esy
Total ADT, vebicles per day
2haxinsm percent left turns from a by-pass approwch: percent

Mosimu percent left tuxas from cross street approsch, percent

Maximum approach apeed, uph
Toeal nubber of establiehwate kithin 200 feet of intersection

Total number of drivernys wichin 200 feet of intersection

Number of approsches to incersectiow
Total width of driveways, feer, Mithia 200 feet of intersection.

Haximum percenc right turas from by-pass, percent

Kaxiauk percent right turas from cross street, percent

Distance from cxtremitice of by-pasa, feet
$\left(\mathrm{K}_{13}\right)$, the number of establishoents vithin 200 feet of the intersection ( (15 $_{15}$ ): ame the cotal width of eriveways wichin 200 feet of the intersecrion $\left(8_{21}\right)$.

The variables for nominteraections listed in Table 2 are those rewiaing sfter ocher less ofguificat vexiables were removed an ta the inceraction amaysis.

The frportant varisolea found for the prediction equatlor for ${ }^{Y} 29$, accidents per 100 mililon venicie miles, were socal establishments per mile $\left(\mathrm{s}_{3}\right)$, the perceat of no-pasing distanc ( $\mathrm{X}_{15}$ ), the nuber of intersections afjacent to the study section $\left(\mathrm{X}_{18}\right.$, the gecmetric modulus (17) ( $\mathrm{F}_{19}$ ), the cotal widch of exiverrys per wile $\left(x_{25}\right)$ and the dietance from the extreatcies of the by-pass $\left(8_{26}\right)$. Theve vartables had a multiple correlation cosffcicat of 0.574 and explaiced approximety 33 percent of the veriation ha nonincerection eccidemt raten. This Percertuge is comsiderably lees than shat found for internections.

The equation fousd for $\mathrm{Y}_{29}$, accidemta per 100 million velaicie miles for che nom-intersection sections, wse:

$$
\begin{aligned}
\mathrm{Y}_{29}= & -876.300+15.678 \mathrm{X}_{3}+1.319 \mathrm{X}_{15}-13.979 \mathrm{X}_{18}+ \\
& 20.307 \mathrm{~K}_{19}-0.133 \mathrm{X}_{25}+0.010 \mathrm{X}_{26}
\end{aligned}
$$

## TABLE 2

 HMLTMES ETMEAR RRCRESSEON ANALYSIS

## foninterbections

Variable Kuwer

Descripelom

Tocel number of establistments per mile
Fotal number of exivewaye per wile
Total shoulder width, fect
Total nuber of low volume intersections per vile

Fercentege no-passime distence
Wumbr of Intersection adjacent to section
Georetric modulus
Fractical capacity, vehzicles per hour
ADT, venicles per day
Operating speed. mph
Total width of driveways per wile, feet
Distarice Irom extreaitics of by-pass, feet
length of turnimg lanes in section, feet
ADT per praceical capacicy

## Quality Control

Qualify control analysis of highway accidents has been used in several scuizes. (Harden, Orlancivy, and Jacobs, 1936 amd mindauer, 1938). The method is useful in determining sections of highway that hove a much higiver accident race because of some factor or factors unique to those sections.

Ir applying the quality control mon on analyst to biginay acctdent data, the following expressions were used:

$$
\begin{aligned}
& a_{i}=(A D T)(365)\left(10^{-6}\right) \text { for imsercections } \\
& n_{i}=(A D P)(365)(L)\left(10^{-6}\right) \text { for nomincersection sections } \\
& a_{i}=\frac{a_{i}}{i_{i}} \\
& \bar{i}=\frac{a_{i}}{n_{i}} \\
& s_{i}=\frac{\bar{p}(1-\bar{p})}{n_{i}} \text { or } \frac{\bar{p}}{n_{i}} \\
& C L_{i}=\bar{p}+3 s_{i}
\end{aligned}
$$

क्mbere
i = The number of the section considered
$n_{1}=$ The number of million vehicles posing through on intersection or the number of million vehicle miles in a section

```
    ai = The mumber of accidents per year in a section
    [- The over-all accident rate for a group of
        intersections or sections,
    8, The estrmate of the etameasc deviscion for an inter-
        gection or eection,
Cl # The upper or lower control limit for pi an any inter-
    I = Lemgth of section in milea,
ADT = Anrual average daily traffic volura.
```

The expression for fl-p/ was elimincted frow the exprestion for $\mathrm{B}_{\mathrm{i}}$ since (1-p) very nearly approwches unity.

The by-pacb bectioas vere diviled into tince classifications: sicnoirec ineerscctions, nonsignalized intersections, smd nomintersection eectiows. For each of these gronps an average accident rate, p, was calculated for the three year period. For each eection $p_{i}, n_{i}, g_{i}, s_{i}$, UCK $_{i}$, and $\mathrm{LCE}_{i}$ mere calculated and plotred. In this mancr any gection thet mas out of control was deteced by visual inspection of the conerol chast. A section out of controi wis one in which the accident rate was sbove or belok a control limit. When a section fell out of the coafiderce bance, it was asaumed ther ehere was an sosignable cause or causes that explaited the high accicat zate

ㅍxamiex of these control cherts chowing intersections or cections
 werc also analyeed further by use of collzion-condition diagrams and fielc observations.



## Accident Rates

Since the nuber of occidents per million vehicles was highy corveiveca with iacersection ADT (correlation coefficient of 0.610), volver wes used as an esposure indez in order to provide more realiscic hosis for compring difserent incersections. These accient races were coxguted in the following tamer:

Acciant rate $\frac{\text { Gumber of sccidents per year at the intersection }}{\text { Musber of vehicles going through the intersection }}$ per year from all approaches (in wilions)

Aeckemt rates for the By-pass inearsections are shent or Figure 13. The rate is nuber of accidents per one million velicles

The mccidents fer by chis method ars suct in Table 3 .

A comonly uses rate for accidewte le accidente per milliou vehicie miles and this rite was useci for evaluatiag tix relative haserd of each of the not incerection sections. The rate for each zuch section of the by-pan is zhem on Figuce 14 and the reivelve reakine of these sectione by this basmu rate is shown in mable 4.

## Collision-Condicion Diagrams

Each intersection was also malyzed for each of the chree years by using the faniliar collision-condition diagrams. The resulta of such analysts for three of the intersectiong follow:


FIGURE 13 AVERAGE ANNUAL INTERSECTION ACCIDENT RATE FOR 196I, 1962 AND 1963.


ACCIDENTS PER MILLION VEHICLE MILES


FIGURE 14 AVERAGE NONINTERSECTION ACCIDENT RATES ON THE U.S. 52 BY-PASS FOR 1961, 1962 AND 1963.

## TABLE 3

RARTRIMG OE GNTRRSECTIONS BY AVERAGE
EUMBER OF ACCIDENIS ZER MLLRION VEMICLES: 1.961-1963.

| Eank | Intersection | Accident Rate |
| :---: | :---: | :---: |
| 1 | Teal Road | 3.33 |
| 2 | State Road 26 | 2.85 |
| 3 | Scate Rosd 25 | 2.59 |
| 4 | Greenbush | 2.47 |
| 5 | Union | 2.39 |
| 6 | Frate Road 38 | 2.36 |
| 7 | Rorchuestern | 1.73 |
| 8 | Happy Hollow | 3.69 |
| 9 | Nineh St. Cutofiz | 1.53 |
| 10 | Salisbury | 2.38 |
| 11 | McCarey | . 78 |
| 12 | Undeswood | . 73 |
| 13 | Rossuth | . 73 |
| 14 | Yeager | . 33 |

TABRE 4
RAWRUNG OF NOHINTEASECTION SECTIONS GY AVERAGE MUPMER OF ACCIDENTS PER MRHITOK MRIES

| Rank | Sect. Ro. | $\frac{\text { Acc. }}{\operatorname{MVM}}$ |
| :---: | :---: | :---: |
| 1 | 4 | 9.30 |
| 2 | 19 | 6.70 |
| 3 | 21 | 5.46 |
| 4 | 18 | 5.01 |
| 5 | 17 | 4.36 |
| 6 | 14 | 3.88 |
| 7 | 7 | 3.60 |
| 8 | 12 | 3.07 |
| 9 | 23 | 2.48 |
| 10 | 9 | 2.45 |
| 12 | 13 | 2.21 |
| 12 | 10 | 2.14 |
| 13 | 15 | 2.09 |
| 14 | 6 | 1.83 |
| 15 | 1 | 1.81 |
| 26 | 22 | 1.77 |
| 17 | 11 | 1.65 |
| 18 | 8 | 1.56 |
| 19 | 3 | 1.37 |
| 20 | 16 | 1.25 |
| 21 | 20 | 1.14 |
| 22 | 5 | 1.05 |
| 23 | 24 | 0.39 |
| 24 | 2 | 0.38 |

2. S. R. 25 Norch and By-Peev

This ib the third mose hamardous intersection. Nearly one-third (18) of the accidents regutced fron improper lane usage. These accidento often reaulted from venteles trying co change traftic Lomes at the best minute. Ten of khese accients heppeacd in approach lames and aight in exit lenes. There were niue right angle collision indicstimg sone involved vehicles possibly अere going through on the zed. Of the 13 rear-end collisiom on the by-pass opprosches, nine involved southeast boun veinicies. Im che chree-year otuly period, vehicles turning lefe frow the by-pase were involved in only kwo accicents, Beth occurcing in 1961.
2. Sexte Ecas 2 and 3y-Rass

This in the second most bazaxdous intersection and has the highest 1nceracction ABT.

The bypes of rccidence aze sumarized below.
Byper of Accidenta at Scate Rosid 26
1961 19621963

| Socal accicents | 27 | 24 | 30 |
| :--- | ---: | ---: | ---: |
| Injury accicenes | 2 | 3 | 6 |
| Right angle | 2 | 0 | 2 |
| Lest turn | 6 | 8 | 10 |
| Rear-end | 18 | 16 | 15 |
| Lane change | 2 | 2 | 5 |
| Rerth bound vehicles | 21 | 10 | 18 |
| South bound vehicles | 20 | 25 | 29 |
| East bound vehicles | 4 | 7 | 4 |
| Hest bound vehicles | 8 | 6 | 4 |

At this incersection south bound vehicles had more accidents than north bound traffic. The opposite \&s true for che by-pass as a thole.
3. Teal Roac (3. S. 231).

The accideat rate indicated that this was the most hazardous of the by-pass incersections. Quality control charts also showed that thic intereection was out of control each of the three years.

The different types of accidents that occurred prior to the installation of the trafefc signal in January 1963 aud after chis change are shown below.

Types of Accidents Refore and After Traffic
Signal Installation

|  | Eefore | After | Ratiof After $)^{\text {efore }}$ |
| :--- | :---: | :---: | :---: |

All types of sccidents increased with one exception, left-turn accidcars. Left-turn lanes were constructed on the bympass when the signal was installed.

Each nonintersection accident tas analyzed by use of the collision diagram dram from the invercigating officer's report. A sumary of the results of this acalysis is show in Table 5. This rasle presents the section rated as the most hazardous. These tea sections had 74 percent of the nonintersection accidents.

Section h had a large percentage of injury accidents. Seven of the eight accidents were warginal accidents and sis of the eight accidents occurred dusing a high-voluse howr of the day.
 occurred then the pavement was wet or icy.

Seven of the elcven accideats on section 10 happened at uight. Six of the rotal accicents were on wet or icy pavament.

On secition 12, si: sccidencs heppened during the peak hours and six occurred at aight. One-inalf of the accidents on section if involved vchicles tryigg to enter the traffic screan at an access point. Threefourths of the accidents occurred during the peak hours. Section 15 hod a high percencage of iajury accidencs.

| Section Number |  |  |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 4 | 7 | 10 | 12 | 14 | 15 | 17 | 18 | 19 | 21 | Total | \% $\ddagger$ these acc |
| Accident Rate | 9.30 | 3.30 | 2.14 | 3.07 | 3.88 | 2.09 | 4.36 | 5.01 | 6.60 | 5.46 | 4.29 | -- |
| No. of Acc. | 8 | 9 | 11 | 15 | 16 | 13 | 19 | 45 | 40 | 31 | 207 | -- |
| Injuries | 7 | 6 | 3 | 5 | 10 | 12 | 14. | 18 | 28 | 12 | 115 | - |
| Pavement wet or icy | 4 | 6 | 6 | 6 | 5 | 6 | 3 | 12 | 16 | 18 | 62 | 40 |
| Type II | 0 | 0 | 1 | 1 | 0 | 2 | 6 | 15 | 9 | 2 | 36 | 18 |
| Type II | 7 | 1. | 2 | 5 | 8 | 7 | 8 | 23 | 26 | 21 | 108 | 52 |
| Type III | 1 | 3 | 4 | 3 | 7 | 1 | 2 | 2 | 3 | 1 | 27 | 13 |
| Type IV | 0 | 5 | 4 | 6 | 1 | 3 | 3 | 5 | 2 | 7 | 36 | 17 |
| $\begin{aligned} & 7-8 A M \\ & 2-8 \mathrm{PM} \end{aligned}$ | 6 | 4 | 3 | 6 | 12 | 6 | 144 | 31 | 25 | 19 | 126 | 61 |
| Hight | 1. | 3 | 7 | 6 | 1 | 0 | 1 | 4 | 4 | 6 | 33 | 16 |

Gae helf of the nonintersection accidents occurred oa sections 17
thru 21．On this 1.6 miles of hightay， 58 percent of the accidents involved mrginal friccion，two－thirds of the accidents occurred during the peak hours，and 35 percent of the accidents oceurred when che pavement was wes or iey．

## Ocher Analyses

## Hour of Day

As shom in Figurc 15，inc following hours had accident rates above 6.87 accidents fet milion ventie miles，the threc－yeaz－average accigent rate for the by－pass．

| Hour | Accident Rate |
| :---: | :---: |
| 1－2 A．${ }_{\text {M }}$ | 7.5 |
| 7－8 A．A． | 8.2 |
| 1－2 Po | 6.5 |
| 2－3 P．M． | 9.8 |
| 3－4 P．M． | 9.5 |
| 4－5 P．M． | 9.6 |
| S－6 P。碞。 | 11.4 |
| 6－7 P．${ }^{\text {R }}$ | 7.8 |
| 7－8 P．R | 8.3 |

These hours represented 37.5 percent of a doy but had 62.5 percent of the daily accidents， 59 percent of the injuries and 50 percent of the facaitics．


FIGURE 15 AVERAGE ANNUAL ACCIDENTS PER MILLION VEHICLE MILES BY HOUR OF DAY FOR 1961, 1962 AND 1963.

Accordieg to Accident Eace, 1964, (1) "During the firat few hours after midnight, facal motor-vehicle accidents reach a peak rate nearly ten eimes higher than the low rate for the day which occurs during the late mozatag houra." Thin peak, althosgh somztht amiler, wes also experienced in this study from 1-2 A.M. for accident rates racher than death rates. Those driving during this hour are probably more tired and legs alert than the daylight driver. Approzimecly 37 percent of the accidents that happened during chis hour were single-car accidents.

The hour begimaimg at $7: 00 \mathrm{~A}$. $\mathrm{H}_{\text {. }}$. is the morning rush hour and the hour beginning at 5:00 Pow. is the evening peats hour.
 with che highest rates froaz 2:00 Pow. watil 6:00 P.in. During this pericd a high fercentage of the traffic is local mile a rubctarial mumer of through-tif dxivers are aleo trying to reech their destiuntions in Chicsgo of incianapolis besore evening. Nhis comination of chrough and 10cal tines, having diffarcat flow characteristica and operating under Eraffic comgebtlon condtione, undoubtedly create a high accient potential.

## Day of Week

Monday, Tuesday, Wednesday and Thursday had aearly the same accident rater. (See Figure 16). Friday and Saturday accideat rates were about one and one-half (1-1/2) that of the weekday average and Sunday accident rates were nearly twice the weekdey aversge. Sunday had more accidents But fewer vehicle ailes oxiven than any other day of the week. The "Sumday driver" epparently is at his worst on this facilicy. One reason


FIGURE I6 AVERAGE ACCIDENT RATES BYं DAY OF THE WEEK FOR 196I, 1962 AND 1963
for this increase in accidentes on Sunday might again be due to the difFerence in flow characteristics. Some drivers are pleasure sidim with their fxalliea ard are ia no hurry while other drivers are anking intercity crips and would like to by-pass the citiee as quickly sa possible. The diferences in speeds and alertness of these drivers to other vehicles probably account for man accidants.

## Bonth of Year

At first glowce accident rates vo. the month of the year (sce Pigure 17) appear to follor mo pattorn unleas it might be one moth with a high accident rate followed by amon with a low accideme rate. However, further exomination showed cist the sever monthe with 3 i days were those with the highest accident rates while the four wonths with 30 days were the routhe with the lowest accident rates. Pebruary, with 28 days, was in betreen these two groups. Since the accident rate, cortaining volume as a factor, alreacy ratee thto mccount chat one group had more days and
 in the number of days involved (31-day-menth average accident rate was 7.8 *hile the 30 -day-mozeh ovarage was 5.3), it was belleved that this parti cular relatfomship (che mubler of days in the month) was coimeldental. Another analysis provided gome interestiag explanations.

Fous of the mafor holidays-Mesorial Day, Fourth of July, Christmas and New Yeass Day-are in these high accident months and produce high traffic volumes. These monchs also had an average of 3.0 inches of precipitation per wouth while the others had 2.3 inches per month. March wos second only


FIGURE 17 AVERAGE ACCIDENT RATES BY MONTHS OF YEAR FOR 1961, 1962 AND 1963
to July for the amorat of precipitacion per month. Sacurdayg in October with Purdue home football gemes had nearly chree times the rumber of accidemes as the average number of accidencs for Saturdays. Memorlal Day not only brings the regular holidey traffic through the by-pass but Indianspolis 500 traffic completely congesta the by-pass for severai hours. July and August hava the highest ADI's of all wonche. November with Thanicsiving has the highost aceident rate of the 30 -day-month group. In general then, high eraffic volume with a large percentage of chrough craffc ant inclemat weather are responsible for at least a pert of the high accident rates in the 31-day months.

## Weather

Precipisetion data (20) and accidenta by hour and deta by hour vere used to decermine accident rates for meather that was clear or that was rainy or snowisg. The comparsive rates are bhaz in Figure 18. These extreme difercnces in zotes clearly btate that the occurrence of precipitation and accident rate were highly correlared on che by-pass. The much higher rate on chis facility durimg precipitation than normaliy foum is urcoubtedy the result of the fact that this facility is operating far shove practical capscity for hany hours of the day.

## Severicy

The satio of factl accicents to injury, to property damage, and to total accidents was approsimately 1:25:85:111 for intersections and 1:17:38:56 for nonteterection study sections. The overall ratio for the By-pass was 1:21:61:83. The same ratio for Indiana in 1963 was 1:33:97:131.

NONINTERSECTIONS
ACCIDENTS PER MILLION VEHICLE MILES

## INTERSECTIONS <br> ACCIDENTS PER MILLION VEHICLES

62.07

## ACCIDENTS PER MILLION VEHICLES



FIGURE 18 AVERAGE ANNUAL ACCIDENT RATE FOR CLEAR AND INCLEMENT WEATHER FOR 1961, 1962 AND 1963.

## SUMMARY OF RESUGTS AND FIUDIHGS

The results and findiags of chis accident racearch study of the v. S. 52 By-Pasc at Lafaycte, Indiana, are sumarised in the folloning paragrepho:

## General

1. The number of sccidents on T. S. 52 fu PeixEteld and Eabash Townshipe increased approximacely 50 percent from 1956 to 1964.
2. Approrimarely 57 percent of the by-pasc accideats occurred within 200 fect of an intersection sibile abcut 65 porcenc happaned within 200 feet of an intersection.

## Tultiple Linesr Regrersion

1. This statiatical cechnique provided a mean of determiniog the indepandent varisbles that were 3icmificant in predicting various accident rates.
2. The developed regression model for accidencs per 100 million vehicloe sccounced for 70 percent of the vartability to the futernection accident rate on the by-pass. The model for eecideace per 200 million veluicle - illes accounted for 33 percent of the variability in the nonimersection accicent rate on the by-puss.
3. For iatersectiory, aceidemes per 100 sillioe whicles inctased whon:
a. Percent greon titw on tha by-pacs decreased
b. By-pass of cross otreet ant tactecood
c. Percent loft tures frem the by-paes increarod
d. Masimum approach speed increased
c. Whaber of intersection approaches increased
f. Toial width of driveways within 200 feet of the incersection increased
4. Tor noninersection study sections, accidents per 100 aillion vehicle miles increased vhen:
a. Total number of escablishments per mile increased
b. Total numer of driveways per mile increased
c. Tosal number of low volume intersections per mile increased
d. Gcometric modulus increased
e. ADT increased
E. Operaring speed decreazed
g. Total wicth of driveways par mile Encreased
h. Length of intersection turaing lames in the section increased

## Quality Control

1. Qualicy control salylyis ic an excellent techniqque for deeemining those sectione or intersections of a highway that are "out of control" and probably have an assignable cause for the high or low accident rate.
2. Iatersection numer 14 (Teal Roady was out of control the two years prior to the installation of a traffic aignal and also during the first year in which the signal was in use.
3. Those intersections consistently above the average accident rate were nubers 13 (S. R. 38) snd 14 (Teal Road) while those consistently belot average ware 2 (reager), 7 (indeimood), 11 (Rossuth) and 12 (ascarcy).
4. Nonintersection atudy section number 4 was out of control in both 1961 and 1962 but in 1963 hed no accidents. Sections 18 and 19 were out of control in 1963.
5. In the three year study period those sections consistently below the average were sactions numbered $2,5,6,8,10,16,20$ and 24. Those consictently above average were sections numbered $14,17,18,19$ and 21.

## Accruent Rates

2. The aumber of accidente per milion vehicles inciudes a consideration of exposure and is highly correleced with the severity sud cost of accidents on the by-pass. Thia accident rate provided a atiafactory meacure of the hazard at an intercectina and was used in comparing incersections in ofher parts of thie study.
3. The interections ranked as tha moit hazardous were 14 (Teal Road), 10 (S.R. 25), 6 (S.R. 25) and 8 (Greanbush) in decreasiag order of heeaxui.
4. Those intersections ranked as the safere intersections were 2 (Yeager), 11 (Kocsuth), 7 (Underwood), 12 (McCarty) and 5 (Winth Street Cutoff) in increasing onder of hazard.
5. Accidents per million vehicle miles, the most comonly used accident rase for sections of highsay, used to compare nonintersection study sections on the by-pass. This rate was found to be correlated with accident cost and injury accidents per million vehicle wiles.
6. The manintersection study sections ranked as the nost hazardous were $14,17,18,19$ and 21 . Those considered the safest were 2,3 , and 24 .

## Collision Diagrsms

1. There to no subatitute for the use of collicton-condicion diagrams for the deteraination of spectfic caused of accident rates at intersections ss well as nonintersection study gections.
2. The inctallation of traffic signels on the by-pase during the etudy period (ate the interacctons with Salisbury, S. R. 38 end Teal Rosd) resulted in an incresse in rear-end collisions, lane-cianging accidente, fujury accidents sul total accidents in each cera. While vehicles on the by-pass were nuolved at a meh higher rate after the signal Installations, crose street traffic involvement races remanned the gam or cecreased. Right-angle and left-cura sccidents alro decreased.
3. Following the comstuction of extre apmiowh and recovery lanes (a "pascing blister") at zinth Street Cutoff in 1962 a reduction of 50 to 80 percent of all cypes of accicents was realized.
4. A substantisl muber of accidents at intersections occurred when vehicles changed lemes or paesed ieft-tuming vehicles on the right.
5. Seversl accidents occurred when tro vehicles passing through the Intersection side-by-side were forced into the some lare when the exit lane rerminated.

The left-tuma movaenat of by-pass traffic from the by-pass to Worthnestern Avenue is dangerous one. Another hazardous moverient is the left curn on to the by-pase by US 52 traffic at Northwestern Aveaue.
7. During the three year stuly, 23 of the 31 accideats at Happy Hollow Ene fuvclved weat bound vehicles nearing the crait of chis steep hill. In addition to the lizuted sight distance, the fastert moving west Bound vehicles were also in the ram 1sa ss left-turning vehicles because of a 3lok traffic climbing lane on the right.
8. Rearly one-third (18) of the accidente at S. R, 25 (else third mort hazerdous farexsection) resulced from improper lane usage. Ten of chese accident happened in approach lanes eat exght ia enit lames.
9. Ali of the 14 aceidents at Underwod Screet curing the chree year period involvet left-rurning vehiclea. Thixceen of these accidens involved norch bouad vehicies.
10. At Greentush 今treet 211 types of accidents increased in 1963 over 1952 or 1961.
11. The Union Strect intersection accicent rate for 1962 was about onehalf chat of 1961 or 1963.
12. Souch bound rehicies had a higher involvement rate than the other directional involvement ratec at $S$. $\mathbb{R}$. 25, the second most hamardous and the busiest intersection on the by-pass. On the by pacs as a whole, north bound vehicles har the highest involvement rate.
13. Ten of the 15 accidents at Roosuth Stxeet involved left-turaing vehicles. Seven of these ten iavolved north bound trafic.
14. At ReCarty Lane four mecidente were right-angle collisione while sis ochers involved south bound vehicles changing lanes.
15. Rear-end accidents occurred four times as often after the traffic Bignal iastallation at S. R. 38 of before. The eumine of by-pase vehicles iu accidents ware than doubled aiter the chang while the מumizi of vehicles on the cross streets involved in accidents decressed by 25 percene.
16. All methods used in this study iadicaced that Teal Road was the most haserdous intersection on the by-pess. Following the installetion of the traffic sigmal in Jonumy 1963, rear-cnd and lame-change accidents increased by a factor of eight. The only type of accident to decrease was left-turn accidents. Lefe-tum lanes were coastructed on the bypass wher the aisnal was installed.
17. On the Nabasia River Mridge siz of the nine aceidents occurred when the pavenent was wet o: i.cy.
18. Sever of the 11 accidents on section 10 heppened at aight. Six of the cotel accidents were on wet or icy pavement.
19. One-half of the nomintersection accidencs occurred on sectiona 17 through 21. On this 1.6 niles of hightay, 58 percent of the accidents invoived marginal friction, two chixes of the accidento occurred during the peak accident rate houre and 35 percent of the accidente occurred when the pavenent was weic or icy.

## Other Analyses

1. Over 62 parceac of the daily accidents occurred during the hours from 1-2 A.M., 7-8 A.M. and 1-8 P.M. During theae nine houre 59 percent of the inguries and 50 percent of the fatalicies occurred.
2. Friday and S*eurdis sccident races were one and owe-half that of the weekdey racez while Suxdey accident ratee were mearly twice that for the wealday.
3. High volumes of craffic and inclement weather were factore Which coutributed to the kigh accident race in 31 -day months.
4. Inclewsat meather (rain or now ) wcident ratee were 21 and 36 times greater shen clear weacher accident ratoa for intereections and มonincereection atudy aections respactively
5. The racio of facal accidents to injury, to property damage, and to cotal sccidente ko appzosimately $1: 21: 61: 83$ for the U. S. 52 By-pase as compared with 1:33:97:131 for Indisna in 1963.
6. Weekend accident ratea were greater than weekday accident rates and day accident rates were higher than aight accideat ratea. Thase corparieons were true for intersections 88 well as monintersection etudy вections.
7. Sixcy-one percent of the accidente that occurred on the days that had three or more accidents happened while it was raining or saowing. Friday, Saturday or Sunday also had 61 percent of these eceldente.
8. The total cost of eccidents on the U. S. 52 By-Pass durias the three year study perfor was mearly ose elliton dollara.

## BIELIOGRAPEY

1. Accident Facts. Annual Publicetioa, Hational Safety Council, Chicago, 1964.
2. Anerican Assoctation of Stste tighmay Officials, Romi User Benefit Analyees for flfhay Inprovemerts, American Association of State Highway Officicls, 1960.
3. Blindawis, H. H., "A Study of Righ Accident ances on Certain Righways in Indiana, ${ }^{\text {b }}$ Thesis, Purdue University, 1958.
is. Eurcau of Puolic Roads, Accident Records Brench. Offlce of Eighway Safety, Correspondence to Evens, E.G., and Pecercon, A. O., Hov., 1964.
4. Sureau of pubitc Roais, Highway Capacity samual Bureau of Pubic Roade, 1950.
5. Burcau of Public Roads, Iacreaning the Traffic-Caryying Capability on Urban Arcertal Serecta, Bureat of Public Roede, 1962.
 Tugineers, 1950.
6. Halscy, Manseli, "Eighay Economics and Design Principles," Eullettu 67. Amarican Road buildaz Ascociation, Caicaeo, Ininois, Jan. 1940.
7. Readi, 3. A3, 'Tredicting berffic Accidents fom Roasimuy Elemente on Urian Extations of State Highteys, " Builetin 208, Eightoy Rescarch Bease 1958.
8. Highuy Research Boart, Current Intersection Capaciefes, $\begin{gathered}\text { mashingtom, }\end{gathered}$ 1958.
9. Hinow Roadsice Fentureb Affect Trafic Accident Experience," Progress Segort on the Michien Scucy, Hichigan state Mighwy Departsent, 1951.
10. Tudiana Traffic Crash racts, Indiana Office of Traffic Safetyn 1963.
11. Yatson, P. M., Saith W. S., and Murd, F. W., Traffic Engineering Nen Zork, itcGraw-Hill Book Compay, Inc., 1955.

## BIBLIOGRMPHY (comtinued)

 Traffic Wolwhe at Divided-inghway Tncerscctions," Bullectn 74 -ighway Researcis Eonrd, 1953.
15. Micisel, H. … "By-Pasocs - Their Use, Effect and Coztrol, " Purcup tivivergity Rosd School Proceeding 1953.
16. Nordon, M., Ozlensky, J. ane Jecobs, fir "Applicaeton of Sta\&tstical Quelicy-Control Techafques to Analyeis of gightay-Accidert Bata, "

17. Oppenander, J. G. and Dawson, R. F., "Griveria for Banceed Cenmetric Desiga of nwomane, Rural Eilghatys," Higindey Resensch Board, in preas
 Theais Purcue fixiversity, 195的.
 Prostan, Purulue vaiversity.
20. U. S. Heacher Burceu, Czingtological Data Ireitana 196i-1963, 3. S. Departmert of Commere, 1964.
 Ins\&itutc of Traffic Engiteers, March. 1985.
 Thesin. Purcue Thiversity. 1957.

$$
i
$$


[^0]:    * The mabers in parentheses refer to numerb in the bibliography.

