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HIGHLIGHT SUMMARY

General methods of three-dimensional slope stability analysis using

limit equilibriiJin concepts and the finite element method are proposed.

Two different computer programs based on the limit equilibrium concept,

LEMIX and BLOCK 3, are developed to analyze rotational and translational

slides, respectively. For rotational slides, the failure mass is assumed

symmetrical and divided into many vertical columns. The interslice forces

are assumed to have the same inclination throughout the mass, and the inter-

column shear forces are assumed to be parallel to the base of the column and

a function of their positions. Force and moment equilibrium are satisfied

for each column as well as for the total mass. For translational slides,

the critical failiire surface is defined according to Rankine's theory and

the factor of safety is assumed to be uniform along the total failure surface.

The analysis is illustrated for several slope angles, soil parameters, and

pore water conditions. The res^olts show that for both translational and

rotational slides, the 3-D effect is more significant for cohesive soils with

smaller failure lengths. However, a wedge type of failure may result in a

smaller factor of safety than that of the 2-D condition. A gently inclined

weak layer with lower strength may cause a higher 3-D effect. In rotational

slides, the steeper the slope, the less the 3-D effect. Pore water pressures

generally cause the 3-D effect to be even more significant.

In addition, a 3-D finite element computer program FESPON is also

(developed. It uses a hyperbolic stress-strain relationship and an incre-

mental technique to simulate the nonlinear behavior of soils. Isoparametric

incompatible elements are used to provide good bending characteristics. The



program can calculate the local factors of safety at selected points on the

failure surface as well as the mean factor of safety for a chosen failure

mass. The comparison between the limit equilibrium and finite element

methods is also conducted for embankments with the same soil conditions and

failure surfaces. The agreement is quite good, with the finite element

method predictably yielding higher factors of safety.



I. INTRODUCTION

Gravitational, seepage and surcharge loads tend to cause instabili-

ty in natural and man-made slopes. Stability analysis is an important

part of the design of embankments, cut slopes, excavations, and dams.

Ill practice, limit equilibri\jm methods are used in the analysis of slope

stability. It is considered that failure is occurring along an assumed

or a known failure surface. The shear strength required to maintain

equilbrium is compared with the available shear strength of the soil.

This gives an average factor of safety aJlong the failure surface. Most

of the stability methods available are two-dimensional and assume plane-

strain conditions.

The early limit equilibrium methods were developed for simple

failure s\irfaces such as circular or log-spiral surfaces. Since Fellenius

proposed a simple approach in 1936, more than a dozen methods of slices

have been proposed. These methods differ in the assumptions made to

render the problem determinate and in the statics used in deriving the

factor of safety equation. The methods of slices can handle complex

geometries and variable soil and water conditions. They are the most

commonly used methods of slope stability ajialysis.

Until now, only a few three-dimensional limit equilibrium methods

have been proposed to study the end-effects which occur in actual slides.

Relatively little work has been done in this area and these methods are



limited to rather simple problems with uncoraplicated geometry and soil

and water conditions. They also suffer from the same limitations as

the two-dimensional methods: (l) They do not adequately represent the

stress-strain characteristics of the soil materials; and (2) They can

not deal with progressive failiire in a rational manner.

The work presented in this dissertation is directed at providing

the engineers with a general methodology for three-dimensional slope

stability analysis. It follows aJ.ong two lines: (l) Development of

general methods of three-dimensional limit equilibrium analysis; and

(2) Generation of a finite element computer program to adeqiiately model

the stress-strain characteristics of soils.

The most important types of slides which occ\ir in embankments and

slopes are rotational and translational slides. Rotational slides occur

in slumps which rotate about an axis parallel to the slope. Transla-

tional slides are controlled by surfaces of weakness, such as faults,

joints, bedding planes, and variations in shear strength between layers

of bedded deposits. These different boundary conditions are taken into

account in the present study. Two different computer programs based on

the limit equilibrium concept, LEMIX axid BL0CK3, are developed to analyze

rotational and translational slides, respectively.

For rotational slides, a general method is proposed and the simpli-

fying assumptions used by previous investigators are relajced. The fail-

ure mass is assumed symmetrical and divided into many vertical columns.

The inclination of the interslice forces are assumed the same throughout

the whole failure mass. The intercolumn shear forces (at the two ends

of the column) are assumed parallel to the base of the column and to be



a fvinction of their positions. Force and moment equilibrium are satis-

fied for each column as well as for the total mass. For translational

slides, the critical failure surface is assumed according to the

Rankine's theory and the factor of safety is applied along the total

failure siorface. Taken together, the computer programs LEMIX and BL0CK3

can cover a wide range of geometric, soil and water conditions. Typical

analyses are presented for several combinations of slope angles, soil

parameters and pore water conditions.

In addition, a three-dimensional finite element computer program

FESPON is also developed. It uses a hyperbolic stress-strain relation-

ship and an incremental technique to simulate the nonlinear behavior of

soils. Isoparametric incompatible elements are used to provide good

bending characteristics. The hyperbolic stress-strain parameters are

obtained from conventional triaxial and 1-D consolidation test data.

This program can calculate the local factors of safety at selected

points on the failure surface as well as the mean factor of safety for

a chosen failure mass.

Several stability analyses of embankments are performed using exist-

ing two-dimensional methods and the programs LEMIX, BL0CK3 and FESPON.

The results obtained with these different methods are compared extensive-

ly and it is hoped that they will provide the engineers with a better

reference in the design and control of embankments.



II. METHODS OF SLOPE STABILITY MALYSIS

2.1 Slides

Gravitational, seepage and surchajrge loads tend to caiise instability

in natTjral or man-made slopes. Under these loads a sloping earth mass

has a tendency to move downward and outward. In stability analysis and

design of control methods to avoid instability, distinction is made be-

tween rotational and translational slides. These two types of slides are

illustrated in Figure 2.1 and are briefly described in the following

sections.

2.1.1 Rotational Slides

The most common rotational slides are little-deformed slumps along a

surface of rupture aurvingconcavely upward. In many slumps the underlying

surface of rupture, together with the exposed scarps, is spoon-shaped

(Fig. 2.1. a). If the slides extend for a considerable distance along the

slope perpendicular to the direction of movement , much of the rupture

surface may approach the shape of a cylinder with axis parallel to the

slope. In slumps the movement is more or less rotational about an axis

parallel to the slope. RotationaJ. slides occur most frequently in

fairly homogeneous materials, e.g., in constructed embankments and fills.

2.1.2 Translational Slides

In translational sliding the mass progresses out or down and out

along a more or less planar or gently undulatory surface and has little

of the rotary movement. If the moving mass of a translational slide
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consists of a single unit that is not greatly deformed or a few closely

related units it may be called a block slide (Fig. 2.1.b and Fig.

2.1.C).

The movement of translational slides is commonly controlled by

surfaces of weakness, such as bedding planes and variations in sheair

strength between layers of bedded deposits.

2.2 Two-Dimensional Slope Stability Analysis by Limit Equilibrium

Concept

The stabilities of natural slopes, cut slopes, and fill slopes are

conunonly analyzed by limit equilibrium methods. These methods taice

into account the major factors influencing the shearing resistance of a

soil.

2.2.1 The 9=0 Method

Felleni\is (I9l8) proposed what is today commonly known as the

'(J)
= 0' method of stability axialysis, a procedure widely used to ajaalyze

the short-term stability of slopes.

The shear surface is assumed to be circular. The factor of safety

F, defined as the ratio of allowable shear strength to mobilized shear

strength, can be obtained by summing moments about the center (Fig.

2.2):

c

Wx - |£^ r = (2.1)

in which W is the weight of the soil mass, x the length of the moment

arm of W about the center, Cg_ the undrained strength, l^ the length of

the shear surface and r the radius of the circle.



Fig. 2.2 Forces along a Circular Shear Surfa ce
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The factor of safety F is derived from equation (2.1):

In this method, the normal stresses all act through the center of

the circle regardless of their distribution. Tne siiear stresses all

act at the same distance from the center of the circle and therefore

their moment arm is constant and independent of their distribution.

Tnus, the use of a circular shear surface results in statical determinancy

with respect to moment equilibrium.

2.2.2 The Log Spiral Procedure

When (}) is not equal to zero, a circular shear surface is insuffi-

cient to achieve statical determinancy. However, it may be acxiicveu

by a log spiral shear siirface in the form:

tan (}) /^ ^\r = r e ^m (2.3)

where r is the radial distance from the center point to a point on the

spiral, r the reference radius, the angle between r and r , and *
o JO- o m

the mobilized friction angle for the shear surface.

This shape has the property that all the resultants of the normal

stresses and frictional components of shear strength (N tan <}) ) pass

through the center point of the spiral. Consequently, their contribu-

tions to the moments cancel out and the moment equation only involves

the weight force and the cohesive resistance of the soil.

Since a value of tan
(J)

must be assumed in equation (2.3) to de-

fine a shear surface, the mobilized cohesion which is calculated may

result in a different factor of safety with respect to cohesion than
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was assLimed in calculating cp . Thus, several trials are necessary to

obtain a balanced factor of safety which satisfies

c tan 9
K'^-'*!

m m

2.2.3 The Friction Circle Procedure

For a circular shear surface the resultants of the normal stresses

and frictional component of shear resistance will lie tangent to a

circle of radius r sin <{)', called the friction circle (Fig. 2.3). The

magnitude and location of this resultant and the factor of safety may

be obtained from the three available equilibrium conditions (Taylor,

1937, 1948).

For a reasonable distribution of normal stresses along the shear

surface, the resultant force must be less than the scalar sum of its

component (Fig. 2.k). Consequently the resultant force must lie tan-

gent to a circle of greater radius than the friction circle. This

method thus underestimates the contributions of the moment from the

resultant force and therefore the factor of safety obtained is a lower

bound solution.

2. 2. it Methods of Slices

During the past three decades approximately one dozen methods of

slices have been developed (Wright, I969) • They differ in: (l) the

assumptions used to render the problem determinate; and (2) the statics

eii5)loyed in deriving the factor of safety equation. The methods of

slices can handle complex geometric and variable soil and water condi-

tions and therefore they are the most commonly used methods. Some of

the most significant methods are presented below.
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c;\X\<V \ Friction Circle

N tan <^m

Fig. 2.3 Equivalent Force System for a Circular
Shear Surface
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Fig. 2.4 Normal and Frictional Shear Forces Acting

on a Shear Surface.
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2.2.k.l Ordinary Method

The ordinary method is the simplest of the methods of slices. In

this method the interslice forces are neglected (Fellenius, 193d)

and the equilibrium of each slice is obtained by summing forces in the

vertical and horizontal directions (Fig. 2.5):

LF =
V

^H =

W - N cos a - —= sin a = (2.5)
r

T— cos a - N sin a = (2.6)F

where W is the weight of the slice, N normal force on the base of the

slice, a angle between the tangent to the center of the base of the

slice and the horizontal, amd T the allowable shear strength.

Solving for equation (2.5) and (2.6) gives:

N = W cos a (2.7)

The factor of safety is derived from the summation of moments about a

common point, Ii*I =0:

T
.ZWx-i;-|r-ZNf = (2.6)

r

where x, r, and f are the moment arms of W, T and-N, respectively.
a

Introducing the Mohr-Coulomb failure criterion the factor of safety

can be obtained as a function of the strength parameters:

_ E{c' Z r + {U - uZ) r tan (p'} ,. _>
' ~ Z Wx - L N f

^'^•^'
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Fig. 2. 5 Forces System for the Method of Slices
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where c' is the effective cohesion intercept, 9' the effective friction

angle, u the pore water pressure, and I the area of the base.

2. 2.1*. 2 Simplified Bishop Method

The simplified Bishop method assumes the interslice forces to be

horizontal. The normal force on the base of each slice is derived by-

summing forces in a vertical direction (as in equation (2.5)). Intro-

ducing the failure criteria and solving for the normal forces give

:

,^ = (v/ . ^' \^i^ " + u I tan 9' sin a
^

F F 01

where m = cos a + (sin a tan (p')/F- The factor of safety is derived

from the summation of moments about a common point. This equation is

the same as equation (2.8) since the interslice forces cajicel out.

Therefore, the factor of safety equation is the same as in equation

(2.9), with the value of N defined in equation (2.10).

2.2.4.3 Spencer's Method

Spencer's Method assumes there is a constant relationship between

the magnitude of the interslice shear and normal forces (Spencer, I96T)

•

tan = T^ii = =^ (2.11)

where is the angle of the resultant interslice force from the

horizontal.

Spencer (1967) summed forces perpendicular- to the interslice forces

to derive the normal force. The same results can be obtained by summing

forces in a vertical and horizontal direction (Fig. 2.5):
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EF =
V

^^H = °

T
a

W + (X^ - Xj^) - N cos a - -|- sin a = (2.12J

T
(Ej^ - E^) - N sin a + -^ cos a = (2.13)

Solving equations (2.12) and (2.13):

N =(W+ (E„ -EJ tan G _ ^IMil^ + u^tany'sina
| ^^ ^^.lU)

Spencer (1967) derived two factor of safety equations. One is

based on the summation of moments about a common point and the other on

the summation of forces in a direction parallel to the interslice

forces. The moment equation is the same as equation (2.8). The factor

of safety equation is the same as equation (2.9).

Spencer's method yields two faccors of safety for each angle of

side forces. When the two factors of safety are equal for some angle

of the interslice forces, both force and moment equilibriums are

satisfied.

2.2. U.U Janbu's Simplified Method

Janbu's simplified method uses a correction factor f to account^ o

for the effect of the interslice shear forces. The correction is re-

lated to cohesion, angle of internal friction, and the shape of the

failure surface (Janbu et al, 1956).

The normal force can be obtained from equation (2.10). Tne factor

of safety equation is derived from the horizontal equilibrium (Fig. 2.5)
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T
Z(E, - E„) - E N sin a + E :r^ cos a = (2.15)L n r

Since Z(E^ - E^) =0. the factor of safety is:

F = ^Jc' ^ COS g + (N - ui,) tan ()>' cos a ] , ^

.

o Z N sin a
12. lb;

The corrected factor of safety is

F = f^ F^ (2.17)

The correction factors F have been generated by Janbu (1956) for

different failure surfaces. For a long flat slip surface the interslice

forces are not significant and consequently the correction factor

approaches unity.

2.2.U.5 Janbu' s Rigorous Method

Janbu' s rigorous method assumes that the point of application of

the interslice forces can be defined by a 'line of thrust'.

The normal force has a form similar to equation (2.1^):

N = (W . (Xj^ - XJ - £11^ .
uAtan|' sin a

y^^ ^^.iS)

The factor of safety equation is the same as equation (2.13). The

difference betveen simplified and rigorous methods is that the latter

takes into account the shear forces in the derivation of the normal

force

.

To solve for the factor of safety, the shear forces may be set to zero

for initial calculations. The factor of safety is obtained by
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iterative calculations as in the Bishop's Simplified Method so that an

assiomed value of F leads to an improved value and so on. The interslice

forces then can be computed from the sum of the moments about the mid-

point of the base of each slice (Fig. 2.6):

Z M =
m

Xj^(b/2) + Xj^(b/2) + Ejt^ - (b/2) tan aj (2.19)

- E [tj^ + (b/2) tan a - b tan a ] =

where t, , t,^ = vertical distance from the base of the slice to the

line of thrust on the left and right sides of the

slice, respectively.

a = angle between the line of thrust on the left side

of a slice and the horizontal.

After rearranging equation (2.19), several terms can be shown to be

negligible. After eliminating these terms, equation (2.19) simplifies

to:

X^ = E^ tan a^ ME^ - E^) ^ (2.20)

vith

(E^ - Ej^) = {W + (X^ - X^) ) tan a - ^^ (2.21)

The horizontaJ. interslice forces are obtained by integration from right

to left across the slope. The magnitude of the interslice shear forces

then can be obtained from equation (2.21). The factor of safety

is recalculated with these computed values of interslice forces.

Using these new values of F and interslice forces a new position of



'^0

Fig. 2.6 Forces Acting on Each Slice for Janbu's Rigorous

Metliod
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the line of thrust is determined. The iterations are stopped when

successive values of F are nearly identical.

2.2.U.6 Morgenstern-Price Method

The Morgenstern-Price Method assumes an arbitrary mathematical

function to describe the direction of the interslice forces:

1= A f(x) (2.22)
ill

where A. is a constant to be' evaluated in solving for tne factor of

safety and f(x) is a functional variation with respect to x.

For a constant function, the Morgenstern-Price method is the same as

the Spencer's method. The normal force is derived from equation (2.18).

Two factor of safety equations are computed, one with respect to moment

equilibrium and one with respect to force equilibrium. The moment

eqxoilibrium equation is taken with respect to a common point. The

factor of safety equation is the same as the one derived for Spencer's

method. The computation of interslice shear forces is similar to the

derivation presented for Janbu's rigorous method.

2.2.5 Comparison of Factors of Safety for Example Problem

Fredlimd and Krahn (19TT) used the methods of slices to solve an

example problem in order to assess the effects of the interslice forces

assumption. The problem is shown in Fig. 2.T and the resvilts are pre-

sented in Table 2.1. The results in Table 2.1 show that the factor of

safety with respect to moment of equilibrium is relatively insensitive

to the interslice forces assumption (see also Fig. 2.8). Therefore, the
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1977)
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factors of safety obtained by the Spencer and Morgenstem-Price methods

are generally similar to those computed by the simplified Bishop method.

2.3 Three-Dimensional Slope Stability Analysis by iiimit Equilibrium

Concept

Although there are many two-dimensional methods developed, only a

few three-dimensional limit equilibrium methods are available. Until

now, the developed 3-D methods are limited to rather simple pro-

blems, i.e., simple geometry, uncomplicated soil and water con-

ditions. These methods are summarized below.

2.3.1 Weighted Average Procedure

In Fig. 2.9 consider several parallel cross sections through the

slope. For these let A,, Ap, A-,, etc. be the areas and F, , F^, F^, etc,

be the limit equilibrium factors of safety calculated for each cross

section, respectively (Fig. 2.10). The overall factor of safety may

be defined as follows (Sherard et al. 19d3; Lambe and Whitman, I969)

:

F^A^ + FpA^ + F^A- + ...

This weighted average factor of safety will be less than that by the

method considering the end resistance.

2.3.2 Inclusion of End Effects Procedure

When the failure mass is long and the cross-sectional area of the

potential failure mass is nearly uniform at various sections along its

ajcis, end effects may be directly included in a 2-D analysis. Consider

the (j) = type of analysis for example. In Fig. 2.11, let the failure
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Weighted Average Procedure

B^ A ^ C*,

B ^ A^ C —

'

F -
F| A, iF^Ag ^FgAg

A.+Ag + A,*....

Figure 2 .9 Plan View of Landslide
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Figure 2.10 Factor of Safety for Different Cross Sections
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Figure 2.11 Inclusion of End Effects for <^«0
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length be L. The resistance will include: (l) that along the cylindri-

cal surface of sliding of length L and radius r ,
giving a resisting

moment of c r L; and (2) that at two ends giving a combined resisting

moment of 2M . Considering a small element area dA at a distance r from
o

the center of the circle, M will be equal to EZ cdAr, where c is the
' o '

undrained strength. Therefore the new factor of safety is given

by:

c r^ L + 2ZZ CdAr
F = 2 (2.2U)

When L is very large in comparison to M , equation (2.2^+) reduces to the

two-dimensional form. In a similar manner end effects can be taken

into account in other problems where c and <}> are included in the analysis

or the slip surface cross section is wedge shaped or of arbitrary shape.

Baligh and Azzouz (1975) studied three-dimensional effects on the

stability of slopes in cohesive soils. The failure mass was taken as a

surface of revolution extending along the ground surface for a finite

length 2L (Fig, 2.12). Different geometries and shapes were considered

to analyze the 'end effects' by attaching either an ellipsoid or a cone

at each end of the finite cylinder. Consider the surface of revolution

shown in Figure 2.12 which is symmetrical with respect to the plane

z = and has a generator defined by its radial distance r from the

Z-axis according to:

r = g(z) (2.25)

The factor of safety is defined as:

M
F = / (2.26)
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in which the resisting moment M is
r

Mr =
I

M° (g) ds (2.27)

with

dz

and the driving moment M, is:

M^ = M° _dz (2.29)

o

o o
M ajid M are the resisting and driving moments computed in plane strain

problems and are f\mctions of the coordinate z.

In general, it is found that F increases from its two-

dimensional value. For long shallow failures (in which the ratio of

length along axis of slope to depth of failure is greater than eight)

the increase is of the order of 5^ and can be disregarded. For short

deep failures in which this ratio is less than 2 to U, the increase in

factor of safety can exceed 20)% - 30^o and three-dimensional effects must

therefore be considered. Baligh and Azzouz also found that the length

of failure is difficult to predict since it is very sensitive to slope

and material parameters. FinaJLly, the slope angle has little effect on

the increase in the factor of safety due to end effects.

2.3.3 General Method

Previous methods are limited to cohesive soils and specific cases.

Hovlemd (19TT) proposed a general approach for three-dimensional slope
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stability analysis by defining the factor of safety as the ratio of the

total available resistance along a failure surface to the total mobil-

ized stress along it. In order to simplify the analysis, the ordinary

method of slices was used. Thus the inter-column forces can be ignored

and both normal and shear stresses on the base of each column are ob-

tained simply as the component of the weight of the column.

In tvro-dimensional case, the factor of safety is:

i;(c Ap + Wp cos a tan <p)

F„ =
2 E W^ sin a

^(C.AiL_ +Z( '^— + p z Ay cos a tan 6)
"°^"

, -, : (2.30)
Z p z Ay sin a

If cohesion c, friction angle cp, and density p are constants, then:

r. _ c^N Z sec g ^ -/ , ,v E z cos a /^ _t »

F„ = (—) = : + (tan 6) •= : (2.31a)
2 ^p' Zz sin a ^ Z z sm a \ ^ /

^2 =
^W^ %2 -^ ^^ * V ^2. 31b)

The G p and G, terms are only functions of geometry and H is the

height of the slope.

In three-dimensional case, the factor of safety may be presented

in a similar form by dividing the soil mass above the failure surface

into a number of vertical soil columns. Assume the XY plane to be hori-

zontal, the Z axis to be vertical, and the Y axis to be in the

direction of downslope movement (Fig. 2.13). Let Ax and Ay define the
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Section

Shear Surface

«-X

Section

Normal View of Sliear

Surface

Figure 2.13 Plan, Section, and Tlnree- Dimensional Views

of One Soil Column
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cross-sectional area of vertical soil columns on the XY plane and

assume that both Ax and Ay are constant for all columns . Then :

Z Z f c Ax Ay sin
. „ a a / r.T-n\ 4. a,^1 •' + p z Ax Ay cos(DIP) tan 61

X y I cos a cos a ^ ^ t r

F =- ^ ^ (2.32)

p z AxAy sin a
X y

'^ •' yz

in which a and a are the dip angles in the XZ and YZ planes re-
xz yz J:- D

spectively, and:

cos (DIP) = (1 + tan a + tan a )

'

(2.33)
, xz yz

sin e = (1 - sin^ a sin^ a )^^^ (2.3^+)
xz yz

If c, <}), p, Ax, and Ay are constant:

sec a sec a sin z cos(DIP)

^
z sin a z sin a

X y yz X y yz

or

^= ^h^ ^c3"^^'^°4>3 ^"-25)

Hovland reported that every c - (|) soil may have its own criticaJ.

shear surface and geometry. His studies also suggest that the F^/F^

ratio is quite sensitive to the soil parameters c and 9, and to the

basic shape of the shear surface. However, Lhree-dimensional factors

of safety are generally much higher thaji two-dimensional factors of

safety, although in some sitxiations it is not so. His studies also

indicated that landslides in cohesive soils may follow a wide shear
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surface geometry, approaching a 2-D case. On the other nana slides in

cohesionless soil may follow a 3-D wedge type surface.

2.k Finite Element Method

Although limit equilibrium methods are widely used, they are

subjected to criticism for three main reasons (Wright, 1973): (l) These

methods do not consider the stress-strain characteristics of the soil;

(2) the factor of safety assumed is the same for every slice, even

though there is no reason to expect this to be true except at failure;

(3) some of the equilibrium methods do not satisfy all the conditions

of equilibrium. However, Wright (1973) concluded that the nonaal stress

distributions determined by linear elastic finite element analyses are

very nearly the same as those determined by Bishop's Simplified Method

for flat slopes and large values of dimensionless parameters X

, YHtaniv
(= -•

^J . The average factors of safety determined by the two methods

are very nearly the same , varying only by Qi% to 8^ . However , the ma-

terial was assumed to have linear elastic behavior which may not be true.

In his discussion Resendiz (197^) used hyperbolic stress-strain relation-

ships proposed by Kondner (1963) to analyze fourteen embankments under

end-of-construction conditions . The potential failure line was deter-

mined as the locus of £ , the maximum principal strain, and the factor
max ^ -^

of safety was determined as the meaxi value of the ratio o Jo^ along

the potential failure line

:

the principal stress difference at failure (a,-)
F =

; r-^ (2.36)
the acting principal stress difference (a )

It was shown that the conventional factors of safety are always lower
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than the ones obtained from this method. The difference may be as

large as 30ii» depending on the magnitude of the factor of safety and on

the slope angle. In three-dimensional problems, Lefebre & Duncan (1973)

used the finite element method to analyze three dams in V-shapsa

valleys with three different valley wall slopes equal to l/l, 3/1,

and 6/1. The material was assumed linear elastic. They concluded that:

(l) for dams in valleys with wall slope as steep as 1/1 the results

will be significantly less accurate, as a result of cross-valley arch-

ing; and (2) plane stress analysis of the maximum longitudinal section

does not provide accurate results.

2.5 Other Methods of Slope Stability Analysis

An alternative method of slope stability analysis is to investi-

gate the shear stresses by using the theory of elasticity (Perloff and

Baron (1976), Romani (1970), Romani , Lovell and Harr (1972)). The

factor of safety is defined as the shear strength divided by the shear

stress at the point where this ratio is the least, hence it gives the

safety at the most critical point.

The method may be useful when dealing with soils where progress-

ive failure is likely to occur. However, it does not take into account

the redistribution of stress which occurs when the stress level at a

point approaches the strength.

2.6 Summary

1. In dealing with a slope stability problem, the choice of suit-

able methods shoiiLd be dependent on the type of failure

considered. In this chapter, two kinds of slides, rotational

and traxislational, were defined. '



37

2. Several commonly used two-dimensional slope stability analyses

were briefly presented. The derivations are similar. Some

methods satisfy determinancy, some do not. Of all the rigorous

methods Spencer's method is the simplest and can produce

qxiite accurate results.

3. Three-dimensional limit equilibrium methods developed so far

are limited to simple geometry of failure mass, simple soil

conditions, ajid cannot take into account the water conditions.

More research on 3-D analysis is worthwhile.

h. Finite element methods are superior to limit equilibrium

methods because of -their power to handle complicated geometry,

many soil parameters, water conditions, and to consider the

stress-strain relationships of soils. However, they are

much more complicated to use than limit equilibrium methods.

5. Although the results from both limit equilibrium and finite

element methods iiave been compared for 2-D cases, comparisons

for 3-D cases are not available.
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III. LlffiT EQUILIBRIUM METHODS

3.1 Introduction

At a time when sophisticated approaches had yet to be developed

and little was known about the mechanical behavior of earth masses, the

limit equilibrium concept played an important role to make possible the

use of simple theoretical approaches in solving many problems. In re-

cent years, remarkable progress has been made in the area of stress

analysis of continua and discontinua. Development of sophisticated

numerical techniques and fast computers have facilitated this progress.

However, the limit equilibrium concept has survived and is still con-

sidered to be reliable by most practitioners.

In Chapter II, two types of slides (rotational and translational)

were defined and, as we mentioned previously, most of the equilibrium

methods deal with plane strain conditions. In this Chapter, both types

of failxjre mechanism are considered and three-dimensional . solutions are

derived. The assumptions in solving these problems and the derivations

of equations are presented.

3.2 Block Type of Failure

When there is a very soft or loose material beneath a slope, the

failure surface usually occurs along this soft or loose layer. The

examples may be a slope underlain by a weak contact between colluvium

and sloping bedrock, or between sidehill fill and sloping foundation.
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The failure is perceived to be that of a relatively intact mass moving

above a relatively well defined failiire surface.

Mendez (1972) developed a quite general computer program to analyze

the stability of a three-plane surface, but the profile was limited to

two kinds of soils, i.e., a strong one over a weak one. Mohan (1972)

also made simplifying assumptions with respect to the shape of the

sliding surface, but his solution is quite versatile with respect to the

potential complexity of the subsurface. The 2-D computer program BLOCK

or BL0CK2 (Boutrup, 1977) can select the critical surface of very com-

plicated soil conditions and apply the same factor of safety throughout

the whole failure surface.

In order to study the 3-D block type of failure, a 3-D computer pro-

gram BL0CK3 is developed. The assumptions and the derivation of the

factor of safety are presented in the following sections.

3.2.1 Ass\imptions

Fig. 3...1 shows the free body diagram of a block type of failure

in three-dimensional sapce. Boutrup (1977) analyzed the block type of

failure by using the method of slices and applied the same factor of

safety throughout the most critical failure surface. It was found

that the most critical failure surface was close to that selected from

Rankine theory, i.e., the shear surface makes (^5 + <)'/2) and (^5 - 4'/2)

angles with the horizontal in active and passive zones, respectively.

Therefore, in this study the ends of the most critical surface will be

chosen as that from Rankine theory just for simplicity and convenience

in comparison of res\ilts.
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The assumptions of the method are listed below.

1. The problem is three-dimensional and symmetrical.

2. The ground surface is defined by three slopes ^JJ^d well-

defined toe and crest.

3. The soil strata are laterally continuous.

h. The sliding surfaces are plane.

5. The boundaries between (l) active and central blocks, (2)

passive and central blocks sire vertical. Ho shear forces

along these boxjudaries.

6. The bottom surfaces are at (U5 + (})/2) and (U5 - 4)/2) angles

with the horizontal for active and passive zones, respect-

ively.

7. The factor of safety is the same throughout the whole failure

surface

.

8. The water surface is far below the ground surface.

9. The forces acting at the ends of blocks may be computed by

assuming K^ conditions and linear lateral stress distribution.

3.2.2 Derivation of Equations

The analysis is divided into three parts, namely:

(1) Calculation of the total force acting on the central block

from the active block. This force is a function of the

factor of safety.

(2) Calculation of the total force acting on the central block

fron the passive block. This force is also a function of

the factor of safety.
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(3) Calculation of base, side, and end forces on the

central block and of tne factor of safety against

failure

.

3.2.2.1 Active Force

Fig. 3.2 shows the free body diagram of the active block. In

Fig. 3.3, consider the force polygon and sum all forces in X and Y

coordinate axes:

LF =
X

P + 2F sin (j) cosC sin (^5 - <^/2) + c (A , + 2A cos E,)
a asm ^m \ ^ n

/ m ab as

sin (i+5 - <t>/2) - F^, cos (1+5 - (p/2 + 4) ) = (3.1)ao m

EF =
y

- W + 2F sin d) cos ? cos (i+5 - 4)/2) + c (A ^ + 2A cos t;)
a asm ^m \ • t' / m ab as

cos (U5 - 4'/2) + F , sin (45 - <})/2 + (j) ) = (3.2)
ao m

where P^^ = the active force

W = the weight of tne active block
a

F = the mobilized force acting on the end of the active
asm

block

(b = the mobilized frictional angle
^m

E, = the angle, on the bottom of the active block, of the

intersection of the inclined end with i^ne vertical plane

c = the mobilized cohesion intercept

A^^ = the area of the bottom of the active block
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Figure 3.2 Free Body Diagram in Active Case



kk

45ti. + c^

I) Cn,-Aa5 2) Z-Cn^-Aas-cos^ 3) Z-F^^^sinc^^-cose

Figure 3.3 Force Polygon in Active Case
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\q - the area of the end of the active block.

Fg^^ = the mobilized force acting on the bottom of the active

block

Rearranging equation (3.2):

^ab
" ''^'^ (^5 - <t>/2 +

<i>J
{W^ - 2F^^^ sin <p^ cos ? cos (U5 - <^/2)

"
""n ^\b * 2A^s ^°^ ^^ ''°^ ^^5 - ({)/2)} (3.3)

The active force is obtainea by substituting equation (3-3) into equa-

tion (3.1) and combining the. similar terms:

P = W tan (1+5 + (i)/2 -
(J) ) - {c (A , + 2A cos ?)a a mm ab as

+ 2F^sm ^^ K '^°^ ^^ '^^^ ^^5 - <)>/2) {tan (i+5 - <^/2)

+ tan (1+5 + (()/2 - 4) )} (3.U)

3.2.2.2 Passive Force

Fig. 3.^ shows the free body diagram of the passive block. In Fig.

3.5, consider the force polygon and sum all forces along X and Y coordinate

EF =
X

- Pp + (2c^ A^^ cos n + c A , + 2F sin <p cos-n)r m Ts m pb psm m

cos (1+5 - W2) + F , cos (1+5 + (()/2 -
(J) ) = (3.5)po m

EF =
y

- Wp - (2c A cos n + c A , + 2F sin 4 cos n)r m ps m pb . psm ^m
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Figure 3.4 Free Body Diagram in Passive Case
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Figure 3.5 Force Polygon in Passive Case
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sin (1*5 - (|)/2) + F sin (i+5 + <t>/2 -
<i>J

= (3.6)

where P = the passive force

W -- the weight of passive block

F = the mobilized force acting on the end of the passivepsm ^

block

F , = the mobilized force acting on the bottom of the passive

block

A , = the area of the bottom of the passive block

A = the area of the end of the passive block

ri = the angle, on the bottom of the active block, of the

intersection of the inclined end with vertical plane

Rearranging equation (3.6):

F ^ = esc (45 + (b/2 - * ) {W + (2c A cos n + c A , +
pb ^ ^ Y/ ^m p m ps m pb

2F sin 4 cos n) sin (1+5 - <^/2)} (3.7)psm m

The passive force is obtained by substituting equation (3.7) into equa-

tion (3.5) » and combining the similar terms:

P„ = W tan (1*5 - 4>/2 + (j) ) + Ic (2A cos n + A ^)
'

P p \ -' -ri -r^/ m ps pb

+ 2F sin (() cos n) cos (1*5 - <j)/2) {l + tan (1+5 - (|)/2)

tan (1+5 - <i)/2 + (() )} (3.8)
m
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3.2.2.3 Equilibrium of the Central Block and Factor of Safety-

Fig. 3.6 shows the free body diagram of the central block. In

Fig. 3.7» consider the force polygon ajid sum all forces along B and

n coordinate axes.

£F„ =

{(2c A^ + 2F sin
(J) ) cos a + c^ A + F, sin (p }m s sm m bm b ^ "i

+ {P-o-Pj cos 3 - W sin 3 = (3.9)
ST a.

ZF =
n

- W cos 3 - Pp sin 6 + F cos (p + P sin = (3.10)

where W = the weight of the central block

F = the mobilized force acting on the end of the central
sm ^

block

F, = the normal force acting on the bottom of the central

block

A = the area of the end of the central block
s

A, = the area of the bottom of the central block

c, = the mobilized cohesion intercept of the weak soil

a = the angle, on the bottom of central block, of the inter-

section of the inclined end with vertical plane

& = the angle of inclination of the weak layer

n = the direction normal to 3

Rearranging equation (3.10) :
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Figure 3.6 Free Body Diagram of Central Blocl<
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'^ Cbrn^b 2) 2C^.A3Cosa 3) ZF^^sin <^ -cos a

Figure 3.7 Force Polygon of Central Block
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F^ = sec (J)^^ {W cos 3 + (Pp - Pj sin 3} (3-11)

Substituting equation (3.11) into equation (3.9), and combining the

similar terms leads to

:

bm
{(2c A + 2F sin (j) ) cos a + c^ A^ + tan (b,m s sm ^m bm b H

(W cos B + (P_ - P ) sin e)} + (P^ - P ) cos 3

- W sin 3 = (3.12)

Equation (3.12) is in terms of the factor of safety F. After sub-

stituting the known values listed below, the factor of safety can

be calculated by the secant's method (.Wolfe, 1959):

+ nn (h^ ^lo ^ A \ - tan {h5 - 4'/2) + tan (j)/F
tan (li5 - q./2 + <t>J -

i _ ^an {kl - <})/2) tan 4./F

^-=r, (h^ + A/o A ^ - tan {k^ + <t>/2} - tan 4)/F
tan (1*5 + */2 - <i>J - 1 ^ tan {kl + 4./2) tan 4./F

sin d) = 1/{1 + (F/tan (})) )^
m

tan 5 = sin (i+5 + 4)/2)/tanY

cos 5 = 1/{1 + (sin (45 + (j)/2)/tan y)^}-^^^

tan r]
= sin (45 - (j>/2)/taji y

cos n = 1/(1 + (sin (45 - (|)/2)/tan y)^}''"'^^

tan a = cos 3 {L (1 - a)/2 - (H^ - H^)/tan y}/B

cos a = 1/{1 + (cos 3 (L (1 - a)/2 - (H2 - H^)/tan y)/B)^}^^^

W = p B (3^ + B2 + /b^)/3
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vrtiere B = H^ (L - H cot y)

Bg = H^ (a L - H^ cot y)

A^ = {0.5 (1 + a) L - cot Y i'A^ + H^)} B sec 3

Ag = B (H-j^ + li^)/{2 cos a sin y)

Fg sin 4) = k^ p B tan (}) (H^^ + U.^^ + E^ }i^)/{6 sin Y cos a cos B)

W^ = p E^^ tan (li5 - 'i>/2) {0.5 L - H^/CS tan y)]

\s " "2^ '^^^ ^^^ " */^^/^2 sin y)

ab

F„ sin (Ji = k p H^^ tan (p tan (U5 - (l)/2)/(6 sin y)
a. o c

W = p H^^ tan (i+5 + ({'/S) (0.5 a L - H^/(3 tan y) >

A = -d^ tan (U5 + (})/2)/(2 sin y)

F sin
(j)

= k p H tan (p tan (U5 4- <p/2)/{G sin y)

A ^ = (a L - H^/tan y) H^ sec (45 + ({)/2)

where y - the inclination of the end of the central block

L = the length on the crest of the central block

a = the ratio between the length of the central b^^ock at

the toe to that at the crest

B = the width of the central block

H^ = the vertical height of the passive block

Hp = the vertical height of the active block

k = the ratio of horizontal principal stress to vertical

principal stress at rest

p = the density of soil in the fill or foundation
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3.3 Rotational Type of Failure

The Hovland's method to analyze rotational slides has been present-

ed in Chapter II, In this method the failure mass is divided into many

vertical columns and the factor of safety is defined simply as the ratio

of total available strength over total mobilized stress. Several im-

portant simplifying assumptions were employed: (l) forces on the

vertical sides of each soil column were assumed to be zero; (2) direction

of movement is along the X-Y plane only; (3) the bottom forces act at

the center of the bottom area; and {h) equilibrium of forces and moments

in each column are satisfied. The following method will relax some of

these assumptions and present a general approach to the analysis of ro-

tational failures.

3.3.1 General Description

Fig. 3.3 shows the free body diagram of a vertical column taken

out from the failure mass. The parameters included are the normal and

shear forces acting on four vertical sides and the bottom, the points of

application of these forces, and the overall factor of safety F. Table

3.1 presents a comparison of the number of parajneters needed in the two-

dimensional and three-dimensional analyses. Making the necessary assump-

tions to reduce the number of these parameters and make the problem deter-

minate is not an easy task. For the two-dimensional case, the number of

unknowns is relatively limited and many different assumptions have been

proposed to solve the problem (Chapter II). But, if a three-dimensional

problem is dealt with, many more parameters are included and the task

of making the problem determinate is much more complicated.
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Figure 3.8 Free Body Diagram of a Column
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TABLE 3.1 LIST OF UNKNOWNS IN 2-D AND 3-D CASES

Parameters

^i.J-l

1-1,

J

R. .
T

R. .

i,J

Vl,j

S. . ,

s. .

1.0

E. , .

1-1,

J

"21

Hi

Si

\i

N.
3

F

ext

ext

ij

3-D

Unknowns

ra+l)n

n-l)m

m-l)n

n-l)m

m-l)n

n-l)m

m+-l)n

n-l)ni

m+l)n

n-l)in

mn

mn

1

2n

2n

Reduce to

12inn-5m+5n+l

(bmn)

2-D
Unknowns

n-1

n-1

n-1

n-1

n

1

5n-3

(3n)
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If the mass is divided into 600 vertical columns (m = 20, n = 30),

and the geometry is assumed to be symmetrical, the number of the un-

knowns remaining are

0.5 • 6 • m • n = 0.5 • 6 • 20 • 30 = l800

which is twenty times that in two-dimensional case ( 3n = 90). This

large number of equations will not only require tremendous

storage in the computer but also long computing times. It is therefore

necessary to make more assumptions, as listed below, to simplify the

problem.

3-3.2 Assumptions

(1) The failure mass is symmetrical

(2) Direction of movement is along the X-Y plane only (no movement

in Z-direction ) , therefore at the instant of failure the

shear stresses ailong the Y-Z plane are assumed to be zero

(Fig. 3.8). This assumption makes:

P = P =0

(3) The length and width of the column is small enough so that it

can be assiimed that each side force acts along the central

vertical line of its side:

\j = ^J = ^/^

^2i = \i = ^/2
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(U) Intercolumn shear forces are assumed to be parallel to the

bottom (Fig. 3-9) • The cohesion part of the mobilized shear

force acts at h/2 from the bottom (resultant of the cohesion

acts at the center of the side). The cohesionless part of

the mobilized shear force acts at h/3 from the bottom (the

intercolumn normal stress distribution is assumed to be

linear)

.

The intercolumn shear forces (at the two ends of the

column) are assumed to be a function of their positions; they

take the largest' value at the outmost point smd decrease to

zero at the central section because of no relative movement

in the middle. The outmost shear forces, R ajid S , can

be obtained from the following equations, assuming that the

K condition prevails. These assumptions make:

R ,
= (0.5 K p h tan (}> + c) b h cos a

ext o

S , = R . tan a
ext ext

«i.J
= \xt '^-^ ^3.13)

\ = h/2

h, = h/3
9

(5) The interslice forces (on two sides of the column) are assumed

to have the same inclination throughout each section ( z =

constant), then:
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Fig. 3.9 The Force System of a Column in Side View
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E. , E.
, ,

tan e. = -^-J- = -i:iuL

The resultant of the two interslice forces can be presented

as Q.

Table 3.2 lists the unknowns remaining after the above assumptions have

been made. The number of the unknowns is reduced from (l2mn - 5m + 5n + 1)

to {2mn +1). It is still necessary to have the same number of equations

in order to solve for these remaining unknowns. The following procedure

will show that the forces, X's and N's (Table 3.2), will not remain in

the equations and only the factor of safety F amd the inclined angles

0's are left.

In the following sections, three types of failure geometries are

discussed: (l) roller type; (2) spoon shape; and (3) the mixed shape

of (1) and (2).

3.3-3 Roller Type Failure

In the roller type of failure, the failure mass is of cylindrical

shape with two vertical ends. This problem is very similax to the 2-D

problem except that the length of the failure mass is not infinitely

long. Consequently the intercolumn shesir forces should be taken into

consideration.

Fig. 3.10 shows the force polygon of a column. The summation of

all forces along the a. and n coordinate axes results in:

ZF =
a

c'

N' tan (p
' + ~- Jl b sec a + -=• - W sin a - Q cos (a - 0) = (3.15)m f f
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TABLE 3.2 LIST OF UNKNOWNS IN 3-D CASE AFTER ASSUMPTIONS

Parajneters 3-D Unknowns

1,J

X

X^"-^"^ (n-Dm
i,J

R. . ,

x-l,J

i,J

S. . ,

E. ,

h, .

:"

41

\i

«J

F 1

«ext
°

^ext
°

Total 2iiin + 1
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Figure 3.10 Force Polygon of a Column In Roller Type

Failure Mass
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ZF =
n

N' + u A b sec a - W cos a + Q sin (a - 0) =0 (3.l6)

where N' = effective normal force acting on the bottom of the

column

W = the weight of the column

u = the water pressure acting on the bottom of the column

Q = the resultant of two interslice forces T and T .,

n n+1

Ar = the net intercolumn shear force

c' = the effective cohesion intercept of the soil beneath

the bottom of the colimm

<!>„'= the mobilized effective friction anglem "

i = the length of the column

b = the width of the column

a = the inclination of the bottom of the column

Q = the inclination of Q

F = the factor of safety

Rearranging equations (3.15) and (3-16) leads to:

c'

Q cos (a - 0) = N' tan 4)^ + -y Jl b sec a + ^ - W sin a (3.1?)

and:

N' = - u A b sec a + W cos a - Q sin (a - 0) (3.l8)

Substituting equation (3.l8) into equation (3.17) a^id. combining similar

terms result in:
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—=rSL'b sec a + r^ (W cos a - u £ b sec a) - W sin a + —
Q = J. 1

J

F

cos(a - e) a + ^^^J' tan (a - 0)} ^3.19;
r

Taking moment at the middle of the base (Fig. 3.9)

AR
h ^^

Q cos h^ - -^ cos a - - -=r- cosa J
= (3.20)

h cos a (2 AR + 3 AR )

\= 6 F Q cos (3.21)

If the whole failure mass is divided into m sections and if each sec-

tion is in the state of equilibrium, the sum of all forces in each

section must be equal to zero:

Z Q cos 0=0 (3.22)

and Z Q sin 0=0 (3.23)

Since is constant, equations (3.22) and (3.23) can be reduced to a

linique equation:

2 Q = (3.21+)

The whole system is also in equilibrium with respect to moment

equilibrium. Thus the overall moment about any point much be equal

to zero (Fig. 3.11):

2 M =
o

Z Q cos (0 - a) (r - h^ cos a) = (3.25)
<4
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V^qCO^^

Fig. 3. 1 I Moment Induced by the Resultant Force
about a Point
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Substituting h from equation (3.21):

h cos^a (2AR + 3AR )

Z r cos (0 - a) (Q -
6r F Js G

—^ = ° (3.26)

If the radius r is constant, then equation (3.26) becomes:

2
h cos a cos (0 - a) (2AR + 3AR )

L {Q cos (0 - a) -
6r F cos

^ ^> = ° ^3.27)

For m sections, m equations from the force equilibrium are available

(equation (3.2U)). One additional equation comes from the overall

moment equilibrium (equation (3.26)). The unknowns are 0,, 0^, ...12 m

for each section respectively, and the factor of safety F. Because

there are (m + 1) equations for (m + 1) unknowns, the problem is ren-

dered determinate and can be solved by using the secant's metnou for

nonlinear equations

.

3. 3. it Spoon Shape Failure

In most cases, the shape of the failure mass in the embankment is

not a roller type failure, but approaches a spoon shape. In this sec-

tion, the more realistic spoon shape is discussed. The failure mass is

assvuned to be symmetrical and has an axis of rotation 0-0' (Fig.

3.12). The "spoon" shape is mathematically expressed by an ellipsoid:

2 2 2

% + ^ + % = 1 (3.26)
a b c

For simplicity, each cross section in the X-Y plane is assumed

circular (Fig. 3.13), and:

a = b = r
o
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b«

(a) 3-D View of Spoon Shape

(b) 2-D View of Spoon Shape

Fig. 3.13 2-D and 3-D Views of Spoon Shape
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Thus, the eqioation becomes;

2 2

-2 + 2 " ~2 " ^ (3.29a)

or:

r r
o z

2 2 2 2 2x+y+mz=r (3.29b)

where

:

m = r /r
o z

Fig. 3.1^ shows the free body diagram of a column. The method

allows for different material in the embankment and foundation. The

subscript E represent embankment aind F represents foundation soil.

Fig. 3-15 shows the force system projected on the central plane (j(-Y

plane) of a column provided that dz is very small. The resultant

AR „ represents the net svmi of two end shear forces R -,, and R -,^, in
cii

'^ cEl cE2

which the subscripts c, E, 1, 2 stand for cohesion, embajakment, end 1,

and end 2, respectively.

As previously the failure mp.ss is assimied symmetrical, and there is

no movement in the Z-direction. However, all the interslice forces will

have the same inclination throughout the whole failure mass. This as-

siimption is different from that assiomed in the roller type of failure in

which each section had its own inclination of interslice force. For-

tunately for the spoon shape of failure, the factor of safety obtained

under one assumption makes hardly any difference with that under
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Fig. 3.14. Free Body Diagram of a Column in Spoon

Shape Failure
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yp
(mhg.+ l/3hp)hp

in which m
2mhg + hp n

Fig. 3.15 The Force System of a Column Presented

in a 2-D View
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variable 0's assvimption. Consequently a unique value of can be used

throughout the whole failure mass.

Fig. 3.l6 shows the force polygon of a column. Considering all

forces and suimning them in a and H coordinate axes , lead to :

ZF =
a

N' tan
(J)'

+ % A, - Q cos (a - 0) _ w sin a + R^
^m F b xy xy 2

cos (ttg - a^) - R^ cos (a^ - a^) - F^ cos "^ = ^3-30)

IF =
n

N' + u A, + Q sin (a - 0) - W cos a + R„ sin (a^ - a )

+ R, sin (a - aj + F sin a =0 (3-31)
1 xy 1 . w xy '

where c' = effective cohesion intercept of soil at the base of

the column

A, = the base area of the column

a = the inclination of the intersection between the central
xy

section (X-Y plane) and the base

R. ,Rp = the shear forces acting on two ends 1 and 2

a, »a_ = the inclination of the intersection between two ends

(end 1 and 2) and the base

F = the water force existing (if tension crack is considered)
w

All other symbols N', <p', F, Q, and W have the same definition as

before. From equation (3.31):
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. Q F^ only appears in the tension zone

Fig. 3.16 Force Polygon of a Column in Spoon
Shape Failure
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N' = - u A, - Q sin (a - 0) + W cos a - R„ sin (a^ - a )

b xy xy 2 ^2 xy

- Rt sin (a - aj - F sin a (3.32)
1 xy 1 w xy

After siobstituting equation (3.32) into equation (3.30):

Q = {-=• A, - u A, tan 4)
' + W cos a (tan i ' - tan a )Ft) torn xy ^m xy

+ R- cos (a_ - a ) {l - tan 9 ' tan (a_ - a )}
c ei xy m d xy

- R^ cos (a - a. ) {1 + tam 4 'tan (a -a,)}
1 xy 1' ^m ^ xy 1

- F cos a (1 + tan * ' tsm a ) }/w xy '

^m xy

{cos (a_ - 0) (l + ^^^ tan (a_ - 0)]} (3.33)
xy r xy

If the whole system is in equilibrium, then the sum of all forces

in the system must be eq;ial to zero:

Z Q = (3.31+)

The sum of all moment about any point (Fig. 3.11) must be

equal to zero:

Z Q cos (Q - a) (r - h^ cos a) = • (3.3^a)

Z {Q r cos (0 - a) - Q t^n <^°s a cos (0 - a)} = (3.3i+b)

where the value of Q h_. can be obtained by summing all moments in a

column at the center of the base of that column (Fig. 3.1^). This

yields

:
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Q cos h^ ^ -^- {R^^^ (hp^ - -4- - i ^^ "y.^

+ R ^, (-4^ - ^ tan a ) + R ,,, (h^^ + -|i _ d| ^^ )cFl 2 2 yz (pEl Fl 3 2 yz

dz ^°^ "2
* Vl ^^Fl-— ^^ V^^ -—F-

/o /'v ^ "^2 ^ dz ^ ^ ^ ,^F2 ^ dz ^
,

^cE2 ^^F2
-^ 1-^ T ^^ ^yz^ " ^cF2 (— ^ T ^^ ^z^

*
^<t,E2 (^F2 + ^ + ^ tan a^J + R^^^

^yF2 ' T "^^ "yz^^ = °

(3.35)
I

after rearranging the equation:

^ ^ = 6 cos^ F ^<=°^ ^^2 ^3ReE2 ^^^,,2 " ^2 " ^^ ^^ "yz^

+ 3R,F2 (hF2 ^ '^^ ^^^ "yz^ "^ %E2 ^^^F2 ^ -^42 ^ ^dz tan a^^)

^ 3R^F2 (2yF2 + ^^ t^ %^^] - ^°= \ [3R^£i (2hp^ -. h_,^

- ^-^ ^^ <^yz^ ^ 3R^F1 ^^Fl - ^" *^ "yz^ ^ ^({.El

(6hp^ + 2h^^ - 3az tan a^J + SR^^^ {2y^-^ - dz tan a^^)] } (3.36)

The parameters appearing in equation (3-36) are defined in Appendix A.

In these equations the only two unltnowns are, (l) the inclination

of interslice force and (2) the factor of safety F. Consequently the

system of equations can be solved by the secant's method for nonlinear

equations

.
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3.3.5 The Mixed Type Failure

This type of failure is a combination of two kinds of geometry;

(l) cylinder in the central portion attached by two cones at two ends

(Fig. 2.12a) and (2) cylinder in the central portion attached by two

semi-ellipsoids at two ends (Fig. 2.12b). Baligh and Azzouz (1975)

examined both cases and found that case (2) is more critical than case

(l). In the present study, case (2) is considered and the derivation is

the same as those discussed in Sections 3.3.3 and 3.3.^. The computer

program is written basically for this mixed type geometry.

3 . U Summary

1. A methodology has been developed to study the block type of

failure. The critical failure surface is assumed to make

(i+5 + <l'/2) and {k^ - ^/2) angles with the horizontal in active '

and passive zones, respectively. The factor of safety is the

same along the total failure surface. The active and passive

forces are therefore functions of the factor of safety.

2. Similarly a general approach has been proposed to analyze

the rotational type of failure. The following assumptions

have been made: (l) the failure mass is symmetrical; (2) no

movement in the Z-direction; (3) the intercolumn shear forces

are parallel to the base; {k) the intercolumn normal stress

distribution is linear; (5) the intercolumn shear forces are

functions of their positions; and (6) a unique value of 0, the

inclination of the intercolumn shear forces, for the spoon

shape of failure or various values of for the roller type

of failure.
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3. The mixed type of failure Is composed of either two semi-

ellipsoids or two cones attached at the two ends of the

central cylinder. The roller type of failure or spoon shape

of failure is just a special case of the mixed type of failure.
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IV. FINITE ELEMENT METHOD

^.1 Introduction

The limit equilibrium methods cannot determine strains and deforma-

tions within a potential sliding mass. Though it is possible to deter-

miiie an approximate stress distribution on an ass\amed slip surface,

each method is based on a different set of assumptions and the stress

distributions differ considerably from one method to another. Often

the limit equilibrium problem is statically indeterminate and different

statically admissible solutions may be found for the stress distribution

on the failure surface. Consequently ^ significantly different values

of the factor of safety may result from different assumptions of stress

distribution on a given slip surface (Lambe and Whitman, 1969). Thus,

the factor of safety depends not only on the method of analysis but also

on the assumed or implied stress distribution on the failure surface.

Besides, the limit equilibrium methods allow little or no considera-

tion to be given to the history of slope formation, and the consequent in-

itial stresses. In view of these limitations,^ it is desirable to supplement
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the conventional stability analyses by stress-deformation studies. In

this chapter a three-dimensional finite element computer program is

developed to analyze the stability of slopes and embaxikments . This

program, FESPON, uses hyperbolic stress-strain relationship and iso-

parametric elements with incompatible displacement modes,

I4..2 Basis of the Method

Fig. U.l shows a continuum divided into discrete parts called

'elements'. These elements are separated from each other by imaginary

surfaces and are assumed to be interconnected only at a finite number

of nodal points situated on their boundaries. In geotechnical appli-

cations the most convenient formulation of the finite element method

is for a compatible model in which nodaJ. point displacements are

assumed to be the only unknowns. This is generally known as the dis-

placement formulation.

The relationship between generalized displacements {f } and nodal

displacements {6} may be expressed as:

{f} = U) {6} (l+.l)

in which the matrix (n] depends only on the shapes and sizes of ele-

ments. The strains {e} are related to the displacements as follows,

assianing deformations to be small:

fe} = (3) {6} (U.2)

in which the matrix (b) depends only on the nodal point coordinates.

The stresses sure related to the strains by an appropriate matrix (D):
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{o} = (d) k} U.3)

Fcr isotropic elastic materials, (DJ is dependent only on the modulus

of elasticity E and the Poisson's ratio v. In geotechnical problems

it is often desirable to express [d) in terms of shear modulus G and

bulk modulus K which are functions of E and v.

Considering the applied nodal forces and distributed loads, the

total potential energy of the system comprising the assemblage of ele-

ments and the external loads must be a minimum (from the principle of

minimum potential energy).' This requirement leads to a relationship

between the nodal forces and displacements for each element. Since

each node may be common to several elements, these relationships re-

quire assembly in an appropriate manner and the complete system of

equations may be written as follows

:

(k) {6} = {F} ik.k)

in which {6} = the nodal displacement matrix

{p} = the resultant nodal forces

(k) = the combined stiffness matrix for the assemblage of

elements which approximate the continuum

The stiffness matrix (k) is assembled from individual element

stiffness matrices [k ) which depend on matrices [b) ana CdJ a-s follows:

(kg) = / B^ D B dV (U.5)

in which the integration is over the volume of each element in a X, Y,

Z-coordinate system. The assemblage and solution of this system of



32

equations is performed by computer. The finite element computer pro-

gram solves the simultaneous equations to obtain the displacements at

each point and subsequently computes the strains ajid stresses. The

details of formulation, assembly, and solution are discussed in many

references (Zienkiewicz, 1971; Cook, 1973; and Desai and Abel, 1972).

k.3 Hyperbolic Strain-Strain Relationship

Konder and his co-workers (1963) have shown that the stress-strain

curves for a number of remolded cohesive soils, tested in consolidated-

undrained triaxial compression, could be approximated by hyperbolas

like the one shown in Fig. k.2. The equation of this hyperbola is:

(0^-03) =
,^

^
, (U.6)

^i ^V^i^ult

where E. is the initial tangent modulus or the initial slope of the

stress-strain curve and {a -a ) is the asymptotic value of stress

difference which is closely related to the strength of the soil. The

value of (a -O-) is always greater than the stress difference at failure

for the soil. When triaxial test data are plotted on the transformed plot

as in the lower part of Fig. h.2, the points frequently are found to

deviate from the ideal linear relationship. Experience indicates that

a good match is usually achievea by selecting straight lines passing

throiigh the points where 10% and 95% of the strength are mobilized

(Duncan and Chang, 1970; Kiilhawy, Duncan, and Seed, 1969; Hansen, 19^3;

Daniel and Olson, 197^)- Thus, in practice, only two points, the 70^

and 95% mobilization points, are plotted on the transformed diagram.
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Fig. 4.2 Hyperbolic Representation of a Stress -Strain Curve



81+

In order to take into account the increase in strength or a

steeper stress-strain curve due to the increase in confining pressure

a-,, Janbu (1970) suggested the following equations (Fig. U.3):

E, = KP&'' ik.l)
1 a p^

in which K is the modulus number, and n is the modulus exponent. Both

are dimensionless numbers. P is the atmospheric pressure which is in-

troduced to make conversion from one system of units to another more

convenient. The variation of {o -a^) , with a^ is accounted for in

Fig. k.k by relating {o-,-0'-^) -, ^ to the stress difference at failure13 ult

(a-,-ao)f>» aJid. then iising the Mohr-Coulomb strength equation to relate

(a,-ao)f to a-3- The values of ioy-o^) ,. and {a -a )^ are related by:

in which R„ is the failure ratio. The value of R„ is always smaller

than vinity, and varies from 0.5 to 0.9 for most soils (Wong and

Duncan, 19Tl^)- The variation of (a-a^)^ with o is represented by the

Mohr-Coulomb strength relationship, which can be expressed as follows:

2c cos 9 + 2a^ sin({)

in which c and (|) are the cohesion intercept and the friction angle, as

shown in Fig . U . U

.

The tangent modulus E^ is obtained by differentiating equation

(4,6) with respect to e:

E. =
I

3 = E. (1 -
J ^ TT—)

^^-^^^
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Also, after rearranging equation (U.6):

0-0
E.e = i^^ (U.ii)

1 ^^O-
^V^3^ult

Substituting equations (i+.ll), {k.6}, {k.9), and (4.7) in equo-tion (i*.10)

leads to

:

E =E.[l -
,

^ ^ f
* ^^ ^V^3^ult^

-Ed !£!!i:!i^'w- (0^-03),.
(i*.12)

R io -O ) (l-sin())) 2

= E. (1 - —

=

^^r-^ ]
il 2c cosq) + 2a^ sin4) '

a R (a -a ) (l-sin(i))^2
-) { 1 - ^ i—^

g^
I 2c cos^i + 2aa^P„ I 2c cos* + 2a^ since

^^

If a triaxial specimen is unloaded at some stage during the test,

the stress-strain curve followed during unloading is steeper than the

c\irve followed during primary loading, as shown in Fig. U.5. During

subsequent reloading, the stress-strain curve is also steeper than the

curve for primary loading and is quite similar in shape to the unloading

curve. It is usually reasonably accurate to assijme the same vaJ.ue of

unloading-reloading modulxis E for both xmloading and reloading.

Similar to E. , K is expressed as:
1 ur -^

a_
E = K Pj^)'' (U.13)
ur ur s.^p X J/

The unloading-reloading modulias number K may be 20^ greater than

the primary loading modulus number K for stiff soil such as dense

sands. For soft soils, such as loose sand, K may be three times as
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Fig. 4.5 Unloading -Reloading Modulus
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large as K. The value of the exponent n is assumed to be the same for

both primary loading and unloading.

If the axial and volumetric strains are measured during the

triaxial test, it is convenient to calculate the radial strain e
r

using:

in which £ and e are the volumetric and axial strains, respectively.

Taking compressive strains as positive, the value of c is positive and
a

the value of e is negative, the value of £ may be either positive or

negative

.

If the variation of £ with £ is plotted as shown in Fig. k.6,

the resiJ-ting curve can be reasonably represented by a hyperbolic

equation of the form:

- £
£ =
a V. - d £

1 r

^=V. -d£^ (ii.15)

a

in which v. is the initial Poisson's ratio (at zero strain) and d is a

parameter representing the change in the value of Poisson's ratio with

radial strain. For saturated soils under undrained conditions, there is

no volume change smd V. is equal to 0.5 for any value of confining

pressvire. For most other soils the value of v. decreases with confin-

ing pressures as shown in Fig. U.7, and. this variation of V. with a

may be expressed by the equation:
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Fig. 4.7 Variation of Initial Tangent Poisson's Ratio

with Confining Pressure
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V^ = G - F log^Q (^) (1+.16)

a

in which G is the value of v. at a confining pressure of one atmosphere,

and F is the reduction in v. for a ten-fold increase in o^.
1 3

The slope of the curve representing the variation of e with e
a r

is - V . This tangent value of Poisson's ratio is expressed in terms

of the stresses as follows (Kulhawy, Duncan, and Seed, 1969) '

G - F log (^)

^-
d (o^-g,)

" '^-^T)

"^"1 a_ ^y R„(a -a )(1 - sincp) ^
i

a^P I 2c cos()) + 2a sine})
'^

a J

The nine parameters of the hyperbolic stress-strain relationships and

their functions are summarized in Table ii.l.

Frequently, it is impractical to perform drained triaxial tests

on soils of low permeability because of the length of time required.

In such cases it is possible to determine the values of K and n from

consolidation data if the values of c', <p' , and R^ are known. The

effective stress parameters c' and (()' may be determined from the re-

sults of CU tests, and the value of R„ may be estimated on the basis of

values determined for similar soils. Values of E. may be calculated

using the following equation (Clough and Duncan, I969)

:
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Parameter Name Function

K, K Modulus number
ur

n Modulus exponent

Relate E. and E to a^
1 ur 3

Cohesion intercept

4) Friction angle

Relate (^-,-^Jf "to 0^

Failure ratio Relates (c^^-c^o)^^ ^°
^''^l"'^3^f

Poisson's ratio parameter Value of v. at a^ = p
1 3 a

_ . , ^. ^ Decrease m v,- for ten-fold
Poisson's ratio parameter . .

i
mcrease in a-.

„ . , , . ^ Rate of increase of \)+ with
Poisson's ratio parameter , .

^
strain
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Ae ' ^ (1 + K ) )

^^- = P(1-K^)R, °
^2

(^-IS)

' I-
K p(tan^(it5 + 9'/2) - l) + 2c' tan(U5 + 4)72)

in which E. = initiaJL tangent modulus, as defined previously

Ap = increment of pressure in consolidation test

e = void ratio at beginning of pressure increment

Ae = decrease in void ratio due to ap

K = coefficient of eairth pressure at rest
o

p = average pressure during increment

c' = cohesion intercept

4ii = angle of internal friction

R_ = failure ratio

The value of K may be estimated from the test results of Brooker and
o

Ireland (I965), which are shown in Fig. k.o. When values of E. have

been determined for several different load increments , they aj-e plotted

against the corresponding values of a^ to determine the value of K and

n for the soil. The average value of a^ during each increment is

calculated using the equation:

a, = Kp (U.19)
J o

The values of the uiiLoading-reloading modulus number can be deter-

mined from the rebound curve in the consolidation test, using the

following equation adapted from Clough and Duncan (1969)

:
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Ap(l + e ) ,
2(K ^)^

E ^il-- °-j-\ (1..2C)^
(1 -^ K ")

o

in which K is the ratio of change in lateral stress to change in

vertical stress during unloading in a consolidation test. Values of

K were derived from the data of Brooker and Ireland (1965), and the
o

variation of K with the plasticity index I is shown in Fig. U.9.
o P

Clough and Dimcan (1969) recommended that E be determined at the

p-jint on the curve where the pressure has been reduced to half of its

value before unloading. On9e a value of E has been defined, the

value of K for the soil may be calculated casing the equation:

K = y^ (4.21)

a^P '

a

with the value of n determined from the primary loading data, and the

value of a determined from equation (U.19).

k.k Three-Dimensional Finite Eleuent Computer Program - FESPON

The three-dimensional finite element computer program, FESPON,

developed for the present study has been generated from the two-

dimensional program ISBILD (Ozawa, 1973). The program ISBILD itself

is an improved version of the older program LSBUILD developed by

Kulhawy, Duncan, and Seed (1969). These two programs employed the same

hyperbolic stress-strain relationship amd accommodated the nonlinear

behavior of soil by an incremental procedure. The program ISBILD used

isoparametric elements with incompatible displacement modes and a more

accurate procedure to assign initial stresses to elements. The program
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Fig. 4.9 Correlation Between Ko and Ipfor Various Values

of Overconsolidation Ratios (after Clough and Duncan)



FESPON keeps the main features of these two-dir_cnsicnal prorr^oms but

is ahle to perform three-dimensional analyses.

U.i+.l Nonlinear Incremental Finite Element Method

The nonlinear behavior of soil can be simulated by the successive

increments procedure, in which the loading is assumed to be linear with-

in each increment. The modulus values for each element are reevaluated

during each increment in accordance with the stresses in the element.

The incremental stress-strain relationship for an isotropic

materiaJ. may be expressed in the form:

Aa„

Aa

.-

AT
xy

At

:i+v^)(i-2v^)

' (1-v^)
^t ^t

^t
(1-V^)

^t

^t
(1-v^)

2
(1-2V^)

;i-2V^)

2

(U.22)

Ae \X

Ae

Ae

Ay
>

Ay

xy

yz

Ay

in which Aa and At are stress increments, Ae and Ay strain increments,

E the tangent modulus, and V the tangent Poisson's ratio. These two

parameters are obtained from equations (i+.12) and (l+.lj), respectively.

In order to represent post-failure behavior of soils more accurately,

Clough and Woodward (196?) suggested the stress-strain relationship

in an alternate form:
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i^A
ba

tc

At >
=

xy

AT,
yz

AT ,

' %^% ^-^D '"3-% o'

%-% %'% ^-'^D

%-% \-^D %'%

^
%

. %

/Ae

Ae

\AYxy

yz

^Y

(U.23)

in which M^ = E^/2(l+v^) (l-2v^) and M^^ = E^/2(l+v^). The fact that

soils have high resistance to volumetric compression after fc.ilure but

very low resistance to shearing may be represented by reducing the

value of NL to zero after failure , while M^ is maintained

at the value it had in the increment before failure.

It has been found that one of the most effective methods of

simulating fill placement is the "average stress" procediore (Ozawa

and Duncan, 1973), in which the average stresses during an increment

are used for evaluating the modulus and Poisson's ratio. Each increment

is analyzed twice, the first time using tangent modulus and Poisson's

ratio values based on the stresses at the beginning of the increment,

and the second time using tangent modulus and Poisson's ratio vailues

based on the average stresses during the increment. If the stress

level decreases during the increment, the unloading-reloading modulus

E is used in the second evaluation.
ur

k.k.2 Isoparametric Elements

The simplest isoparametric elements are the compatible iso-

parametric elements which use the same interpolation functions for both

the element geometry and the element displacement fields. The geometry
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y\=Z 4) (C,n,C) y.

i=l ^
*

(U.2U)

and

i=l
^1

(i*.25)

in which 9. are interpolation functions in terms of local coordinate

5, ri, and Z, (x.,y.,z.) global nodal point coordinates, and (u^. »Uy.
,

u^.) nodal point displacements. It has been shown that compatible

isoparametric elements possess poor bending characteristics (Wilson,

et al, 1971; Wilson, 1971)- Incompatible isoparametric elements use

a higher order approximation for the displacements than for the geometry.

The additional extra degrees of freedom within the element produce a

parabolic incompatibility along the element boundaries. However, the

resulting element has good bending characteristics. The displacement

functions for the incompatible modes are of the form:

z '

= Z (i)^(C,n,?) Juy. I + Z i|; (^,n,^) lay.
i=l J=l

{h.26]

in which >|; are interpolation functions for the displacement ampli-
J

tudes 0.^,, Qy., and cx^., which are additional degrees of freedom. For
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the eight-node element the displacement approximation may be of the

following form:

X •=! 1 i ^ ^1 2 x2 ^3 x3

^ =
.1^ h ^i ^ '^Al -^ Vy2 -^ ^3"y3 ^'^"^'^^

z . ,
^1 ^1 ^1 zl ^2 z2 ^3 2,3

1=1

where *^ = ^ (1+5) (l+n) (l+^) % " I (l+5)(l+n)(l-C)

4)^ = I (i-C)(i+n)(i+C) ^6 =
i"

(i-C)(i+ri)(i-d

4.2 = ^ (i-C)(i-n)(i+0 *7 = I (i-C)(i-n)(i-?)

({.j^
= i- (i+5)(i-n)(i+?) *8 " I (i+^)(i-n)(i-i;)

1^1 = 1-?

p

,2

2
4^2 = 1-n

The functions ijJ , ij^ , and 4^ must be zero at the eight nodes. There-

fore, the resulting element stiffness matrix will be 33x33. However,

if the strain energy within the element is minimized with respect to

a. , the additional displacements can be eliminated and a reduced 2Ux2U

stiffness matrix developed. This is identical to the standard static

condensation procedure.

U.U.3 Initial Stresses and Procedure of Analysis

For accurate estimation of stresses and displacements, the

analyses are performed by dividing the placement of fill into eight
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or more construction layers. The stresses in each layer due to its own

weight immediately after placement are assigned rather than calculated.

For elements under a horizontal surface the initial vertical stresses

are taken to be equal to the overburden pressure. The initial hori-

zontal stresses are taken as v/(l-v) times the overburden pressure,

where V is the Poisson's ratio. The shear stresses on horizontal and

vertical planes are assumed to be equal to zero. For elements under a

sloping surface, estimation of initial stresses is more difficult. The

assxmptions made by Ozawa and Dioncan (1973) in the program ISBILD are

used in the present analysis':

O = a = r-^ p h (U.28)
X z 1-v

Oy = p h .
(i+.29)

V = 0-5 P h sin a^ (it. 30)

T = 0.5 P h sin a (i^.3l)
yz ^ yz

T =0 (U,32)
xz

in which p h is the overburden pressure at the center of the element,

V the Poisson's ratio, and a the angle of slope of the surface

above the element.

The layer being placed is assigned veiy small modulus values to

simvilate the fact that a newly added layer of fill on an embankment has

very low stiffness. The nodal points at the top of the newly placed

layer are assigned zero displacement, i.e., the positions of these no-

dal points immediately after placement are taJcen as the reference
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positions for measuring movemerits due to subsequent loading. The

strains in the newly placed elements are set equal to zero also, thus

taking the condition immediately after placement as the reference state

for strains.

Each increment of loading is analyzed twice. The changes in

stress, strain and displacement during each increment are added to the

stresses, strains and displacements existing at the beginning of the

increment. These resulting veLLues are then used in the next

increment

.

The program is capable of handling embankments on rigid or com-

pressible foundations. For a compressible foundation, the initial

stresses are set as:

a = p h
y

a = a = K p h
X z o

T^, = T = T =0
xy yz xz

For more details about the subroutines and their functions, refer

to Appendix B.

It. 5 Summary

A three-dimensional computer program FESPON is generated from the

two-dimensional program ISBILD. The hyperbolic stress-strain relation-

ship is combined with an incremental technique to simulate the nonlinear

behavior of soils. Isoparametric incompatible elements are used in order

to provide good bending characteristics. The parameters necessary to

the analysis can be obtained from triaxial and consolidation test data.
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If such data are not available, these parameters can be estimated from

values and relationships determined for similar soils by previous

investigators. The next chapter will present practical applications

of the computer program FESPON.
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V. RESULTS MB APPLICATIONS

5.1 Introduction

In the previous chapters, several models were developed to analyze

the stability of embankments. In Chapter III, three-dimensional limit

equilibrium methods were proposed to study both translational and

rotational slides. These methods were implemented in the computer

programs BL0CK3 and LEMIX for translational and rotational failures

,

respectively. In Chapter IV, a three-dimensional finite element com-

puter program FESPON was developed to simulate the construction of

embankment. This program makes allowance for the nonlinear stress-

strain behavior of soils.

This chapter describes typical applications of these three-

dimensional models. The factors of safety obtained with the three-

dimensional models are compared with the ones obtained with the

two-dimensional models. Results obtained with the three-dimensional

finite element computer program are also presented and compaj-ed to

the results obtained with the limit equilibri\im methods.

5.2 Analysis of Translational Slides

In this section the computer program BL0CK3 is used to analyze

the stability of highway embankments. This program was developed to

study three-dimensional translational slides; the derivation of
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eqxiilibrium equations and the solution techniques have been discussed

in Section 3.2.2,

Translational slides can occur in an embankment when a weaik soil

layer is present in the foundation soil. This is the problem studied

herein. Table 5.1 lists all the geometric and soil parameters

necessary to such an analysis. In the following application the ground

surface is horizontal and the embankment geometry is assumed as:

height of 6.1 m (20 ft), crown width of 12.2 m (i+0 ft), and slope of

1.5/1. These dimensions are typical for highway embankments in Indiana.

The embankment and foundation soils are the same with average density

p of 1930 kg/m (120 pcf). The frictional angle of the weak soil (j)

is taken as equal to zero. These assumptions are not necessary to the

program BL0CK3, but they are made to simplify the discussion of the

results. The other parameters used in the study are listed in Table

5.2. Several of these parameters are varied in order to assess tneir

effects on the factor of safety against translational sliding. In

particular different values were given to: (l) the strength parameters

of the embankment and foundation soils i (2) the strength parameters of

the weak layer; (3) the inclination of the weak layer; (4) the depth to

weak, layer; (5) the inclination of the ends of the central block; and

(6) the length ratio (a). Factors of safety of the embankment against

sliding are computed for several combinations of these parameters,

using the program BL0CK3. In all these analyses the stability is

investigated to the side of the down-dipping weak seam, which is the

most critical case (Boutrup, 1977).
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TABLE 5.1 VARIABLES AND SYMBOLS

Variables Symbols*

Height and width of an embankment H, B

The upper and lower length at the top of the
central block L, aL

Depth to weak layer, measured from the toe D

Inclination of ground s\irface i

Inclination of weak soil layer 3

Inclination of left and right slope of embamunent ^ , 3dL K

Inclination of the ends of the block Y

Strength of embankment soil (c, (j))

£.

Strength of foundation soil (c, (J))„
r

Strength of weak soil (c, (J))

* Refer to Fig. 3.1



TABLE 5.2 SYMBOLS AND RANGE OF VARIABLES FOR AN EMBAi-IKIvIENT BUILT
ON A FOUNDATION SOIL WITH A WEAK SOIL LAYER
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Variables

1. Height of embankment

2. Width of embankment

3. The upper length at the top
of the central block

k. The ratio of the lower length
to upper length at the top of
the central block

Symbols Value or Range

H 6.1 m (20 ft)

B 12.2 m (UO ft)

L 6.1 - 97.5 m
(20-320 ft)

- 1.0

5. Depth to weak layer, measured D
from the toe

6. Inclination of ground surface i

7. Inclination of weak soil layer 3

8. Inclination of left and right By/Bp
slope of embankment

9- Inclination of the ends of y
the block

10. Average density of soil p

11. Strength of embankment soil '^v'I'f

12. Strength of foundation soil
'^f»'1'f

13. Strength of weak soil c

1.5 - 12.2 m
(5 - itO ft)

0° - 11.3° (0 - 5/1)

33.7° (1.5/1)

70° - 90°

1930 kg/m^ (120 pcf)

U7.9 kPa (1000 psf), 0°

2U.O kPa (500 psf), 10°

CP, 35°

same as 11

9.6 - 28.7 kPa
(200 - 600 psf)
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The most significant results of these analyses are presented in

Figs. 5-1 to 5-5 and aj-e discussed below. The reader can refer to

Appendix C (Tables C.l to C.9), to obtain a complete description of all

the results developed in this study.

In Fig. 5-1 the ratio F /F of the 3-D factor of safety to the

2-D factor of safety is plotted versus the length ratio of the embank-

ment L/H, for several values of the depth ratio D/H. The length ratio

L/H is the ratio of the length of the embankment L to the height of the

embankment H, while the depth ratio D/H is the ratio of the depth to the

weak layer D to the height of the embankment H. In these analyses, the

weak layer is horizontal (3=0) and has a cohesion intercept c of

9.6 kPa. This combination of 3 and c gives the highest F-/F^ ratiosW J c:

(Tables C.l to C.3). Two sets of strength parameters are considered

for the embankment and foundation soil: (l) c = U7.9 kPa, (p = 0°

(solid lines); and (2) c = 0, (}) = 35 (dotted lines). The following

conclusions can be drawn from Fig. 5.1:

- The ratio Fo/^o i^^^reases with decreasing length ratio L/H.

This three-dimensional effect is more important for cohesive

soils than for cohesionless soils.

- For cohesive soils the ratio F /F decreases with the depth

ratio D/H. On the contrary, for cohesionless soils, the ratio

F^/F^ increases with decreasing depth ratio D/H.

It is obvious that as the length L gets smaller, the end resistances

play a more important role, and consequently a higher factor of safety

is obtained with the 3-D method.
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u.

24

2.2
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i.e

1.6

1.4-

1.2

1.0

c=479kp„

c=0

r^^ 35<

I : D/H = 0.25

2: D/H = 0.5

3: D/H = I .0

4: D/H = 2.0

8 10 12 14 16 18

L/H

Fig. 5. 1 F3/F2 vs. L/H for Various D/H and Soil Parameters

(at a = I, ^=0", ^ = 90**, and Cv^,=9.6kPa)
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Fig. 5-2 illustrates the effect of the strength parameter of the

weak soil c on the F-,/F ratio. The solid lines are for a cohesion in-

tercept c of 9.6 kPa and the dotted lines for c of 28.8 kPa. Forw w

two kinds of foundation soil studied, a lower c value results inw

higher F^/F ratios.

Fig. 5.3 presents the effect of the inclination of the weak soil

layer 3 on the Fo/^p ^^"^io- This figure shows that, for any combina-

tions of depth ratio D/H and soil strength, a steeply inclined weak soil

layer always yields smaller F /Y^ ratios.

When the end of the block tilts from an angle Y of 90 (vertical

ends) to a smaller value (inclined ends), the end area will increase.

Hence, the end resistance gets larger and higher ?JY ratios are ob-

tained. This phenomenon is shown in Fig. 5-^ in which L/H is set to

unity. As the ratio L/H increases, this increase in the F^/F ratio

with decreasing inclination y will certainly be less significant.

It is also predicable that as the front area of the central block

gets smaller, which is close to a wedge type of failure, both the passive

resistance and the bottom resistance will be reduced. However, the ends

area will increase and produce more resistance along the ends of the

block. In Fig. 5.5» when L/H ratio is small, the increase of ends re-

sistance may be, larger than the decrease of the resistance both from

the passive force and the bottom resistance. Therefore, the net re-

sistance is positive and higher Y^/Y ratios obtained. As L/H ratio

approaches a critical value, the net resistance will be negative, and

the 3-D factor of safety F-, will be less than the 2-D factor of safety

Fo9 i.e., the F-/F ratio is less than unity.
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c„= 9.6 kpg

— Cvy=28.8 kPg

I : D/H = 0.25

2: D/H = 2.0

c = 47.9kDg
A<(^=0

Fig. 5.2 F3/F2 vs. L/H for Various Cy, and D/H

(at a= U )9 = 0% and ^ =90°)



113

CM

aL\\

-:;^

\-^-
!>-

1: 0/H = 0.2 5
V<

2:D/H = 2.0

— /3=0»

---- /3= 11.3"

L/H

Fig. 5.3 F3/F2 vs. L/H for Various /3 and D/H
Cat a- I, y -90% and c^ = g.skPa)
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c = 47.9 kpQ
(^=0-

I : D/H = 0.25
2: D/H = 2.0

Fig. 5.5 F3/F2 vs. L/H for Various D/H and Soil Parameters

(at a = 0.8, )9=0°, y =90% and c^ = 9.6kPa)
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In summary, the most important results obtained from this study

aj:e as follows:

1. For translational sliding, the Fo/Fp ratio is usually greater than

unity. At small values of L/H, this 3-D effect is more signifi-

cant for cohesive soils than for cohesionless soils.

2. The depth ratio has some effect on the F-,/F ratio as shown in

Fig. 5.1.

3. For all soils, cohesive or cohesionless, a lower strength of the

weak layer may cause a higher three-d imensional effect.

k. A steep weaJc soil layer always yields smaller F-/F ratios than

a gently inclined layer.

5. Reducing the inclination of the ends of the central block ca\ise a

higher factor of safety due to the increase in end areas.

6. Wedge type of failure will result in the value of F^/F less

than unity, and therefore the stability of a slope needs to be

examined carefully when there is potential for such a failure.

5.3 Analysis of Rotational Slides

In this section, the rotational slide will be studied. The soil

is assumed to be homogeneous. The 3-D failure surface is composed of

a central cylinder attached by two semi-ellipsoids at the two ends. The

cross-section of the central cylinder is the most critical circle

searched by the 2-D computer program STABL2. After the 2-D critical

circle has been determined, the 3-D failure surface then can be

generated. The cylinder has a length 21 aind the minor axis of the

semi-ellipsoids has a length £ as shown in Fig. 5.6.
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Fig. 5.6 Front View of a Mixed Type of Failure Surface
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Five combinations of the strength parameters are considered:

(1) c' = 0, <{)• = itO°; (2) c' = 7.2 kPa (15O psf ) , <t>'
= 30°; (3) C =

ik.k kPa (300 psf), <()' = 25°; {h) c' = 21.6 kPa (U50 psf), <}>' = 20°;

and (5) C = 28.7 kPa (6OO psf), cp' = 15°. The height of the slope is

6.1 m (20 ft) with three different angles, 33-7° (1-5/1), 21.8°

(2.5/1), and 16° (3.5/1). Cases with water (r = O.5) and without

water (r =0) conditions are studied. Here, the pore .>fater pressure

parameter r^^ is defined as:

I

where u is the mean pore water pressure at the base of the column, p the

density of soil, and h the mean height of the column.

5.3.1 Pore Water Pressure Parameter r =

For each combination of strength parameters and slope angle, the

coordinates of the centers and the radii of the critical circles are

listed in Table 5.3. The last two col-omns in the table list the 2-D

factors of safety both from STABL2 and Spencer's method. It can be

seen from this table that the 2-D factors of safety obtained by STABL2

are always less than those obtained by Spencer's method. STABL2 is

generally conservative (Boutrup, 1977). The most critical circles for

different combinations of strength parameters and different slopes are

plotted in Fig. 5.7. For low cohesion intercept c and high friction

angle <j) , the critical circle tends to be shallow and likely to pass

through the toe of the slope. On the other hand, for high cohesion

intercept c and low frictionaJ. angle (j) , the critical circle tends to

be a deep one and extends beyond the toe.
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TABLE 5.3 THE COORDINATES OF THE CENTERS AND RADII OF THE MOST
CRITICAL 2-D FAILURE CIRCLES AND THE 2-D FACTORS OF
SAFETY (r =0)

u

Slope c 9 Xo Yo Radius F2 F2

Angle (kPa) (degrees) (m) (m) (m) ( STABL2

)

(SPENCER)

ko 10.1 6. it 12.9 1.557 i.-jok

7.2 30 7.3 1.2 8.3 1.755 1.936
33.7° Ik.k 25 7.0 k.6 11.9 2.I2U 2.301

21.6 20 7.0 k.6 11.9 2.370 2.537
28.7 15 5.6 5.0 13.1 2.611 2.776

i+O 11.3 6.1 12.8 2.33^ 2.619

7.2 30 11.3 7.6 li+.7 2.315 2.529
21.8° 1I+.4 25 $.3 k.6 12.7 2.566 2.803

21.6 20 9.3 k.6 12.7 2.750 2.927
28.7 15 10.2 k.9 Ik.

5

2.935 3.21+5

ko 19.8 30.5 36.6 3.011 3.075

7.2 30 15.8 13.7 21.3 2.986 3.22U
16° IU.I+ 25 13.

U

7.8 17.2 3.109 3.515

21.6 20 13. i| 7.8 17.2 3.222 3.592

28.7 15 12.8 7.6 12.7 3.252 3.511

HOTE: Xq is the horizontal distance between the center and the crest;

positive value means the center is on the left side of the crest.

Yq is the vertical distance between the center and the crest;

positive value means the center is above the crest.
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I : c = 0, ^=»40

2: c = 7.2kPa, (^=30

3! c = I 4.4kPa, </>=25

4: c = 2 I .6kPa, (p=2

5: c = 28.7kPa, <^ = l

Fig. 5.7 The Most Critical Surfaces for Different Combinations

of Strength Parameters in Different Slopes C^^^= 0)
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Different I /H ratios, 0.5, 1, 2, and k, with different Z /H

ratios, 0.5» 1, 2, and k are studied. Tables D.l to U. i show the

F_/F^ ratios at various I /H and i /H ratios. The results are obtained
3 "^ c s

by both LEMIX and the Ordinary Method of Colimns (OMC). The following

conclusions caji be drawn from this study:

- As the I /'A ratio increases, the F /F^ ratio generally decreases
s ^ d

as shown in Fig- '^.Q. The reason is that when the width of

the failure surface increases the end effects are less in

general

.

- In certain cases (Figs. D.lb, c, d, e, etc.) there is a

minimum FVF'o ratio. This means that, theoretically, the

failure will most likely occur for the ratio I /H corres-

ponding to the minimum F_/F ratio. However, these curves

are very smooth and it is difficult to predict the exact

length of the failure mass. This resiolt was also noted by

Baligh and Azzouz (1975).

_ For cohesive soils, F is always greater than Fp. However,

for cohesionless soils, F-, may be less than Fp (Fig. 5.8a).

- When the H /H ratio increases, F^ is closer to F^. A larger
c J ^

i /H ratio meauis that the problem is closer to the plane strain

condition. Hence, the curves corresponding to large i /H

ratio are closer to the line F_/F = 1 (See the difference

between Fig. 5- 8a and 5-8e).

- The steeper the slope, the less the ¥ /Y ratio as shown in

Fig. 5 '9. This is probably because the vol^mie of the failure
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Fjg. 5.9 F3/F2 vs. Ig/H for Various Slope Angles
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mass is larger in a gentle slope, as shown in Fig. 5.7, and

therefore more end effect is produced.

5.3.2 Pore <^ater Pressure Parameter r =0.5

In order to assess the effect of the pore water condition, the

analyses presented in the previous section are repeated with a pore

pressure coefficient r of 0.5. The combinations of strength

parameters and slope angles previously described also apply to the

fo3_lowing results.

The coordinates of the centers and the radii of the most critical

2-D circles are listed in Table 5.U. The last two columns show the

2-D factors of safety from both STABL2 and Spencer's methods, respect-

ively. Fig. 5.10 shows the most critical fail lire surfaces for different

combinations of strength parameters and slope angles. As mentioned

previously for the case with no pore water pressure, deep failure

circles are obtained for cohesive soils. On the contrary, failure

siT'faces are shallow for cohesionless soils. Comparing Figs. 5.7 and

5.10 indicates that the failure circles go deeper into the foundation

when pore water pressures are present.

Tne results of these studies are plotted in Figs. D3 to D5 . The

conclusions drawn are the same as those obtained with no pore water

pressure. In addition, the comparison between Figs. 5-9 and 5-11 shows

that pore water pressure can cause the 3-D effect to be even more

significant.
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TABLE 5, it THE COORDINATES OF THE CENTERS AND RADII OF THE MOST
CRITICAL 2-D FAILURE CIRCLES Al\ID THE 2-D FACTORS OF
SAFETY (r =0.5)

Slope

Angle

c'

(kPa) (degrees)

A
O

(m)

1
o

(m)

Radius

(m)

F F

(stabl2) (spencer)

ko 11.9 15.2 21.6 0.679 I.OI+I+

7.2 30 8.7 6.1 Ik.^ 0.8U8 1.093

1.5/1 lU.H 25 8.7 6.1 lh.5 1.227 1.575

21.6 20 8.7 6.1 li|.5 1.657 1.998

28.7 15 8.7 5.5 17.7 1.999 2.272

ko 9.1 18.9 25.0 0.771 1.206

7.2 30 ' 8.1 5.8 12.1 1.157 I.6UI

2.5/1 lU.H 25 6.k 2.1 9.9 1.505 1.933

21.6 20 5.3 k.Q 13.0 1.877 2.251

28.7 15 5.3 k.Q 13.0 2.163 2.586

no 19.2 28.3 3U.5 0.968 l.Ui+0

7.2 30 13.6 8.2 17.5 1.396 1.970

3.5/1 Ik.k 25 11.3 h.9 IU.9 I.7U9 1.006

21.6 20 13.3 6.7 18.7 2.053 2.253

28.7 15 12.2 7.9 21. i+ 2.316 2.813

Note: X is the horizontal distance between the center and the

crest; positive value means the center is on the left

side of the crest.

Y is the vertical distance between the center and the crest;

positive values mean the center is above the crest.
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1: C = 0. <^' = 40

2: c' = 7.2kPa, <^' =30

3: c' = I 4.4kPa, ^'=25

4: c' •= 2 I .6kPa,

5: c' - 28.7kPa,
<f>'

Fig. 5.10 The Most Critical Surfaces for Different Combinations

of Strength Parameters in Different Slopes (ry= 0.5)



129

1.5

1.3

1.2

l.i

1.0

^^
lc/H = 0.5
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Fig. 5. 1 I F3/F2 vs. I3/H for Various Slope Angles
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5-3.3 Comparison of Interslice Angles between 2-D and 3-D Cases

This section compares the 2-D interslice angle 9 with the

3-D interslice single 9 . This study is of interest becaiise the inter-

slice angle represents the magnitude of the interslice shear forces

which are related to the factor of safety.

The 2-D interslice inclinations corresponding to the critical shear

surfaces analyzed by the Spencer's method are shown in Table 5.5 for

values of r equal to and 0.5, respectively. Although the interslice

inclinations are slightly flatter for ru equal to 0.5, the variations

are similar, regardless of the value of r . For soils of low cohesion

intercept, high frictional angle, and steep slope, the side forces are

inclined more steeply.

The comparison between 9^ and 9_ is presented in Tables 5.6 ajid

5.7 and in Fig. 5.12. Several conclusions can be drawn from these

results:

- For soil of high cohesion intercept and low frictional angle,

9- is less than 9p. This phenomenon is more significant

at smaller i /H ratio (See Table 5.6 and the lower psirt of

Fig. 5.12}. Therefore, the F_/F ratio is higher than unity

as stated in Sections 5-3.1 and 5.3.2.

- For soil of low cohesion intercept and high frictional angle,

9_ is larger than 9^, and consequently F^ is less than Fp

(See Table 5.7 and the upper part of Fig. 5.12).

- For soils of high cohesion intercept and low friction angle,

the interslice angles obtained with a pore pressure parameter of
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TABLE 5.5 2-D INTERSLICE ANGLES FOri r =0 Ai^D r =0.5
u u

Slope c' (p' Inclination

Angle (kPa) (degrees) (degrees)

^ = r = 0.5u u

kO 2k.

k

19.7

7.2 30 21.0 20.9

1.5/1 Ik.k 25 15.2 13.2

21.6 20 13.3 8.7

28.7 15 9.7 7.2

i+0 19.3 17.6

7.2 ' 30 16.

h

12.6

2.5/1 ih.k 25 lU.o 11.3

21.6 20 12.7 10.1

28.7 15 8.6 5.5

ito 15.5 15.^

7.2 30 12.6 10.9

3.5/1 Ik.k 25 10.5 8.9

21.6 20 9.7 8.9

28.7 15 7.9 5.3
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TABLE 5.6 THE RATIO OF TANe3/TAlNl62 FOR SOIL OF c' = 2d,7 kPa Ai^ID

<j)' = 15° IN SLOPE OF 1.5/1 (82 = 9.7° AND 9^ = 7-2°)

i /H
c

TANe-ZTAWSg
0.5

Q ^
a* o.an o.87it 0.927 0.958

0.916 0.956 0.980 0.986

1
a 0.833 0.906 0.958 0.979

I
s

b 0.888 0.972 1.000 l.OlU

H
2

a 0.885 0.937 0.979 0.989

b o'.9l6 0.972 l.OlU 1.026

u
a 0.916 O.9U8 0.979 0.990

b 0.9iti+ 0.972 I.OII+ 1.028

TABLE 5.7 THE RATIO OF TAN93/TAN62 FOR SOIL OF c ' =0 AND <{)' = kO^

IN SLOPE OF 1.5/1 (62 = 2l+.U° AND 9^ = 19-7°)

I /H
c

TAlieyTAN92
0.5

0.5
a 1.037 1.023 1.009 1.004

b 1.033 1.017 1.011 1.006

1
a 1.056 1.033 1.019 1.009

I
s

b 1.039 1.028 1.017 1.011

H
2

a 1.075 1.052 1.033 1.019

b 1.050 1.033 1.022 1.016

k
a 1.099 1.075 1.052 1.033

b 1.055 l.OUU 1.033 1.022

»a: r^=0. b: r^ = 0.5
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0.5 are larger than those obtained with no pore pressure. The

effect is opposite for soil of low cohesion intercept and

high friction angle.

- As the a /H ratio increases, the tan9^/taji9„ ratio gets closer

to unity (Fig. 5-12). This corresponds to the plane strain

condition

.

- Steeper slopes show higher tan 9 /tan 9p ratios. This can

also be explained by the smaller values of F-,/Fp for steep

slopes (Sections 5-3.1 cuid 5.3.2).

5.3.^ CompaLrison of Results (LEMIX and Ordinary Method of Columns)

In the 2-D case, the ordinary method of slices (OMS) usually

produces lower values of factor of safety than other more rigorous

methods of slices. Therefore, the OMS is generally considered as a

more conservative method. In the 3-D case, the results from both LEMIX

and the Ordinairy Method of Columns (OMC) for no water condition are

presented in Tables D.l to D.3. The results for r equal to 0.5 are

in Tables B.k to D.6. The conclusions are as follows:

- For no water condition, the OMC usi^ally produces lower factors

of safety. The differences are less than 10^ in most cases.

- When pore water pressures exist , the OMC gives higher values

of factor of safety for steep slope (Table D.k). For gentle

slope, the OMC may produce both higher or lower values of

factor of safety (Table D.5 and D.6). Similarly, the differ-

ence in results between the two methods is less than 10^.

It is therefore concluded that the OMC also produces satisfactory

results for homogeneous soils.
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5.^ Finite Element Analysis

In this section the finite element computer program FESPOK is used

to analyze spoon shape failure surfaces. The results are compared to

those obtained with the limit equilibrium method. The hyperbolic

parameters used in FESPON are generated from the results of convention-

al triaxial and consolidation tests on highly plastic Saint Croix clay.

5.^.1 Evaluation of the Values of Hyperbolic Parameters

The values of the hyperbolic parameters can be determined using

data from conventional triaxial tests. Weitzel (1979) studied the

'short-term' or as-compacted laboratory strength of a highly plastic

Saint Croix clay. The 'short term' refers to the fill material

immediately after compaction and before environmental factors have an

opportunity to alter the as-compacted condition of the soil. Weitzel

measured the as-compacted strength in unconsolidated-undrained triaxial

tests. The samples were prepared by kneading compaction to densities

thj.t fit on three impact energy curves: low energy, standard, and

modified Proctor, with four water contents on each. The samples were

then sheared at four levels of confining pressiire to simulate a variety

of embankment depths.

Johnson (1979) evaluated the effective stress strength parameters

for analysis of long term stability. These pajrameters were evaluated

for various compaction conditions thi'ough consolidated undrained

triaxial tests with pore water pressure measurements. These were run

at a constant rate of strain on kneading compacted s.amples of the same

highly plastic clay used by Weitzel. The long term environmental effects
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were approximated by back pressure saturation and consolidation under

states of stress representing the body forces at different positions

in the embankment

.

The results both from Weitzel's and Johnson's study are used to

generate the values of hyperbolic parameters. These hyperbolic para-

meters then can be used in the computer program FESPON to examine the

stability of an embankment of the highly plastic St. Croix clay, both

for short-term and long-term conditions.

5.^.1.1 Parameters for Short-Term Condition

The procedure to determine the hyperbolic parameters has been

presented in Section U.3. Wong (197^) developed a computer program

SP-1 to evaluate the hyperbolic parameters c, cj), K, n, and R^ using

stress-strain data. Value of G,- F, and d were obtained using volumetric

strain data from conventional triaxial compression tests. Least-square

ciirve-fitting procediores are used in determining the parameters. The

data required for the program are confining pressure a_, stress dif-

ference at failure (a,-a^)-, axial strains at J0% and 95^ stress levels,

and volumetric strains at J0% and 95% stress levels.

These data can be obtained from Appendix C of Weitzel

(1979). The hyperbolic parameters are computed for each energy level

(or dry density p,) and water content w. Equations of tnese parameters

as functions of energy level and water content can then be generated

using regression techniques. The resvilting equations are listed below:

c = _ 71*0 + 0.755 P^ - lit. 5 w (5.2)

<f)
= 63. U - 0.00180 w p, + 0.023^ w^ (5.3)

d.
I

K = 870 - 0.157 w p^ + U.3OO w^ + 0.00108 p^^ (5 A)
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n = - U.3T + 0.00226 p + 0.03i+8 w (5.5)

G = - 1.63 + 0.000798 p^ + 0.0305 w (5.6)

d = llt.8 - O.OOO38U w p + 0,002lU v^ (5.7)

F = 0.916 - 0.0000363 w p^ + 0.00085 w^ (5.8)

where c is in kPa, p in kg/m , and w in per cent. The contours of each

parameter are plotted in Fig. 5.13. It is necessary to note that these

contours may be inappropriate for Modified Proctor energy level because

the stress-strain curve of this energy level behaves differently from

a hyperbola.

5.^.1.2 Parameters for Long-Term Condition

As we mentioned in Section U,3, if the long-term stability needs

to be examined, the hyperbolic parameters may be obtained from drained

triaxial test aata. However, it is very often too time consuming to

run the drained triaxial tests. Clough and Dimcaji (1969) developed an

approach which used data from ordinary 1-D consolidation tests. The

details of this approach was presented in Section U.3. In the follow-

ing, the generation of the effective hyperbolic parameters from both

Johnson's (1979) CU and DiBemardo's (1979) consolidation data for

St. Croix clay is explained.

Johnson (1979) found that the effective stress friction angles

ranged only from I8.9 to 21. U degrees. This measured variation of 2.5

degrees (21. U - I8.9 = 2.5) was not statistically significant.

Therefore, for the range of compaction and consolidation conditions

investigated, the effective stress friction angle could be taken as a

constant value of 20 degrees. Johnson also generated an equation

for the effective stress cohesion intercept c' as follows:
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c' = 1.71 - 3.83 w log e^ (5.9)

in which c' = the estimated value of the effective stress

intercept (kPa)

w = compaction moisture content {%)

e = initial void ratio
o

With the effective strength parameters c' and <i>' available, and

assuming the failure ratio equal to 0.8 (as obtained from the similar

soils), the initial elastic modulus constants, K and n, can be estimated

from the consolidation test ,data. The following example will present

the procedure to obtain K and n from the aata of DiBemardo's (1979):

Example

For sample number LOA, w = 25.63/J and e = O.8206, c' is obtained

from equation (5-8) as follows:

c' = 1.71 - 3.83 (0.2568) log (0.3206) = 10.2 (kPa)

From Table B2 (DiBemardo, 1979), and considering the normal consolida-

tion range. Table 5-8 is developed.

Let R- be equal to 0.8, (f' equal to 20 degrees, and *^q to 0.6 (as

obtained from Fig. 4.8 for OCR equal to one). Take the atmospheric

pressure P equal to 101.4 kPa, the values in columns ±2 and ik are drawn

in the log-log plot of Fig. 5-l4. The slope of the curve is n and the

intercept at 0-/?q_ equals to one is K. From the figure the values of

n = 0.53 and K = 95 are obtained.

If all samples are used to get the mean values of K and n of these

samples, the resiilts are as presented in Table 5.9- These data are from



TABLE 5.8 PROCEDURE TO OBTAIN K AI^D n FOR SAiMPLE LOA

li*3

1
Applied Load

Pi (kPa)

2

e

3

Mean Load

p (kPa)

k

Increment
AP (kPa)

5

^3
6

Ap (1 + e )Ae

171.52

257.30

386.10

579.10

0.7761

0.7533

0.7228

0.68UT

2ll|,

321,

1*82,

.kl

.10

.60

85.78

128.30

193.0 0,

.0228

.0305

.0381

6682

Ihok

8727

7
p(l-K )R

X

P
8

K P(tan'='(U5 + (t)72)-l)

9
2c' tan(U5 + <{>'/2)

^°2

-,

68.6

102.9

i5U.it

133

200

301

.7

.7

.0

29.1

29.1

29.1

0.55

0.55

0.55

11
E^ (kPa)

12

^i/^a

13
a^ (kPa)

lU

10970

13351

16961

108.2

131.7

167.3

128.7

193.0

289.6

1.269

1.90U

2.856
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TABLE 5.9 VALUES OF K AND n

„ T Average Water Content Average Dry Density
^^P"-" ^ {%) P. (kg/m3)
Group cL

LD 20.51

LO 2k . 2k

LW 25.68

SD 18. T^

SO 22. U5

SW 2it
. 5^

MD 13.96

MO 15.66

MW 18.36

1U56.8 lid 0.6k

1513.0 95 0.53

15U0.5 126 0.58

1532.it 3k 1.11

1636.5 13? 0.62

1603.8 160 0.50

1796.8 95 0.87

l8U5.d 215 0.65

1776. i+ 113 0.81+
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DiBernardo (1979) • In this table water content w and dry density .

p, are mean values; K and n are in terms of these mean values. The

results are also plotted in Fig. 5-15 j in which the first number in

parenthesis is the value of K amd the second number is the value

of n.

5.1*. 2 Finite Element Method Results

In Section '^.k.l the hyperbolic stress-strain parameters were

evaluated. These parameters are plotted in Figs. 5.13 and 5.15. They

are now introduced in the finite element computer program FESPON to

analyze the stability of an embankment under as-compacted and long-term

conditions .

5.1*. 2.1 As-Con^jacted Condition

The soil parameters for the as-compacted condition are shown in

Table 5.10. These parameters are obtained from Fig. 5-13 for a water

content w of 26.8% and a dry density p^ of 15UO kg/m-^(low energy level).

The soil is assumed homogeneous in both embankment and foimdation.

The contours of major and minor principal stresses (CJ and o
)

generated by FESPON are presented in Figs. 5.16 and Fig. 5-17. The O

valiies are related to the overburden pressiire (ph). These contours have

similar shape and are parallel to each other. Figs. 5.I8 and 5.19 gives

the contours of maximvim shear stress T and stress levels ((a, - O^)/
max 1 J

(o- - o-a)^.). These contours have similar shape; high values of maximum

sheaj" stresses correspond to high values of stress levels. These

figures can be compared to Fig. 5-20 which shows the critical failure

circle as searched by the program STABL2. This critical circle has the
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TABLE 5.10 HYPERBOLIC PARAMETERS FOR AS-COMPACTED CONDITION

c(kPa) 4)( degrees) K
'^ur

n G d F
^f

K
o

3U.5 6 36 no 0.0U3 0.1+2 0.52 0,028 0.8 0.8

Note: G = 2.79, w = 26.8^, p^ = 15^0 kg/m^

TABLE 5-11 HYPERBOLIC PARAIffiTERS FOR LONG-TERM CONDITION

c-CkPa) <j)' (degrees) K K
ur

n G d F R^ K
f o

10.5 20 1^5 3T5 0.55 0.U2 0.0 0.0 0.8 0.6

Note: p = 1990 kg/m^

TABLE 5.12 COMPARISON OF F2 AND F3 FOR AS-COMPACTED CONDITION
(R^ = 12.2 m)

F2 F3/F2

LEM

FEM

FEM-LEM
FEM

1.59

1.62

X 100^ 1.8^

1.90

2.01

5-5%

1.20

I.2U

TABLE 5.13 COMPARISON OF F2 AND F3 FOR LONG-TERM CONDITION (R = 12.2 m)

^2 Fo/F3/^2

LEM 0.778

0.877FEM

s&ai,ioo« 11.3*

0.893

0.981

9.0^

1.15

1.12
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maximum value of radius of the spoon shape failure mass (Fig. 3.12).

It is obvious that the critical failure surface follows the zone of

highest maximum shear stress.

The contours of horizontal (u^) and vertical (uy) movements are shown in

Figs. 5.21 and 5-22. The maximum horizontal displacements occur close

to the toe. The maximum vertical displacements occur about one third of

the height (H/3), from the top of the embankment and near the center

line. These values of displacements are relative displacements to the

top of the embankment. Near the toe, the soil may have positi /e (or

upward) vertical movements.

Local factors of safety are computed along a spoon shape failure

surface defined by the critical circle obtained by STABL2 and a minor

axis of length 12.2 m (40 ft). The local factor of safety F is defined

as:

c + a tai:(j) a
Fjj = T =^+:^tan* (5.10)

where a^ is normal stress and T„ the shear stress. The normal stress,

shear stress, and local factor of safety are given in Fig. 5.23 for

different sections of the failure surface (as a function of the Z-

coordinate). The arrow in Fig. 5.23 shows the position of the toe.

These figures show that the normal stress is higher in the central por-

tion of the embankment and is very small at the two ends. The shear

stress distribution is similar to the normal stress distribution. The

maximtmi shear stresses are only about 20J? of the maximum normal

stresses. As the section is farther away from the center line, both

the normal and shear stresses decrease at the same rate and the local

factor of safety increases.
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5.U.2.2 Long-Term Condition

In this section an effective stress analysis of the embankment is

performed for long-term condition. The time effects on the long-term

behavior of an embajikment are very complex. A more versatile- soil model

than the one used in the present work wo\ild be needed to take into

account these effects. Such a model is not available and consequently

effects such as change in pore pressure, creep, etc. are disregarded

in this analysis.

The soil parameters are lifted in Table 5.11- The cohesion inter-

cept is obtained from equat^-on (5.9) with the initial water content and

initial void ratio known. The hyperbolic parameters K and n are ob-

tained from consolidation tests on the same soil at the same initial

water content (refer to Fig. 5-15) • The unloading value of K (K ) is

taken as three times K. The density of soil may change with time due

to saturation, settlement, etc. In this example, the final density of

3

soil is taken as 1990 kg/m . The pore pressure parameter r is equal

to Q.5.

Fig. 5.2U shows the contoiors of stress level obtained with FESPON.

The highest stress level is in a zone close to the toe. The critical

2-D circle given by STABL2 is shown in Fig. 5-25. The circle passes

throu^ the zone of the highest stress level and indicates that a toe

failure may happen in the long-term condition. The curves of normal

stress, shear stress, pore water press\ire, and local factor of safety

along the section of Z-coordinate equal to 2.5 m are shown in Fig.

5.26. The smaller local factors of safety occur in the zone of highest

pore water pressure. Conversely, the higher local factors of safety

occur near the toe and crest due to low pore water pressure.
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5.^.3 Comparison between Finite Element Method and Limit Equilibrium
Method

Although comparisons of the results between finite element and

limit equilibrium methods are given in a few papers (Wright, 1973,

Resendiz, 1972) for 2-D cases, there is no comparison for 3-D cases.

In this section, comparisons of the results for as-compacted and long-

term conditions aj:e presented.

The mean factor of safety used in the comparison is defined as

I(c + a^ tancj)) dA

^^-^ ^ =—li^ ^5.11)

where the summation Z is over the whole failure surface and dA is the

bottom area of a vertical coliimn.

The results for the as-compacted condition are presented in Table

5.12. The limit equilibrium methods, Spencer's methoa -nd LEMIX, yield

factors of safety Fp and F_ of 1.59 and 1.90, respectively. The two-

dimensional finite element computer program ISBILD (Ozawa, 197^) gives

a mean factor of safety F^ of 1.62, while FESPON leads to a mean factor

of safety F^ of 2.01. The ratio F-/F2 is 1.20 for the limit equili-

brium methods. It is 1.21+ for the finite element solutions. The

factors of safety obtained from limit equilibrium analysis are smaller

than those from finite element analysis. The agreement is quite good

in this case with differences of l,d% and 5.5^ in 2-D and 3-D cases,

respectively.

Table 5.13 shows the comparison of Fp and F_ for the long-term

condition. The 3-D factor of safety obtained with the finite element

method is 9.0^ larger than the one given by the limit equilibrium

method. The F^/Fp ratios are very close, 1.15 and 1.12 for the limit
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equilibrium and finite element methods, respectively. Comparing

Tables 5-12 and 5-13 indicates that the long-term stability is more

critical than the as-compacted stability.

Finally it should be recognized that the strength parameters se-

lected in these examples are for low energy level (wet side). The

strength parameters of actual embankments are higher than the ones

selected. It is only for the purpose of illustrating that the factors

of safety are of the order of 1.5 for the as-compacted condition. This

results in low factor of safety for the long-term condition. Actual

embankments will show much Tnigher factors of safety than those computed

for this example.

5.^.4 Other Applications

The discussion of the results obtained in the previous section was

simplified by assuming the embankment and foundation soils to be the

same . In fact the finite element computer program FESPON can handle

problems with complex soil conditions and/or geometries. This will be

illustrated by the following applications.

5.'+.^.l Stability of a Non-homogeneous Embankment

The construction of an embankment in rolled lifts frequently

resvilts in non-homogeneous soil properties. The strength characteristics

may vary from layer to layer and be different from the foundation soil

strength characteristics. Such an embankment is shown in Fig. 5-27.

The fo\mdation and compacted fill are composed of two and eiglit dif-

ferent layers, respectively. The hyperbolic strength parameters of each

layer are listed in Table 5.l'+' Using these data the ' finite element
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analysis of the embankment is performed similarly to the analyses de-

scribed in the previous section.

The 3-D limit equilibrium program LEMIX can also be used to analyze

the stability of this problem. In this case, since the program LEiMIX

can only handle one material in the foundation and one in the embankment

,

it is necessary to use mean values of strength parameters for the found-

ation and embankment soils. These mean values are given in Fig. 5.28.

The contours of stress level generated by the finite element analy-

sis are shown in Fig. 5.29. Table 5.15 gives the 2-D and 3-i) factors

of safety obtained with the limit equilibrium and finite element methods.

The mean factors of safety obtained by the finite element method on 2-D

and 3-D failure surfaces are almost identical to the factor of safety

obtained by the limit equilibrium method on the same surfaces (difference

of the order of 2%), The methods also result in very consistent F^Fp

ratios, 1.31 for the limit equilibrium method and 1.33 for the finite

element method.

TABLE 5-15 COMPARISON OF Fg AND F3 FOR COMPACTED FILL ON A FOUNDATION
IN TOTAL STRESS AimLYSIS (R = 12.2 m)

z

Mean F3 F3/F2

LEM 1.527 2.00 1.31

FEM 1.532 2.01* _ 1.33

FEM-LEM
FEM

X 100^ 0.k% 2.(
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5.U.U.2 A Pavement Analysis

Since the program FESPON can simulate the construction of an em-

bankment, it is also capable of analyzing similar problems such as the

construction of a pavement. The profile of a pavement section is shown

in Fig. 5.30. This problem was studied by Palmerton (1972) who used the

3-D finite element computer program SOLSAP to study the deflection of

the pavement. SOI^AP also uses hyperbolic stress-strain relationships,

but employs compatible modes for element displacements. This pavement

i;i analyzed using FESPON, and the results are compared to those

obtained with the program SOI^AP.

The pavement section is composed of O.O76 m (3 in) of asphaltic

pavement, 0.53 m (21 in) of crush.ed limestone base, and 2.7^ m (9 ft)

of selected clays. The values of hyperbolic parameters for each layer

are given in Figure 5.31. A lateral earth press-ore coefficient of O.5 is

assumed. It is also assumed that the stress-strain behavior of the

asphaltic pavement is linear; thus the Young's modulus E and Poisson's

ratio V are constant values. This pavement is subjected to a 12-wheel

load. Each wheel produces a 113 Mi (30 k) vertical force.

The finite element mesh used for the analysis is shown in Fig.

5-32. It is only necessary to grid one-half of the problem since the

problem is symmetrical with respect to the center line of the loading.

The system is composed of four layers of elements. The wheel loads are

applied as point loads, acting at the nodal points. The load is applied

in one step for simplicity. Vertical deflections along the section A,

B, and C are shown in Figs. 5^33 to 5 • 35

•
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FESPON
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a. Deflections at Surface

1.6 3.3 49 6.9 8.8 10.4 12.1 13.8

b. Deflections at 0-6 I m Depth

'0 1.6 3? 49 6.9 8.8 104 12.1 13.8

Distance from Left Boundary, Cm)

c. Deflections at I .52m Depth

f

Fig. 5.33 Vertical Deflections-Section A
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Fig. 5.34 Vertical Deflections-Section B
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The dotted lines are results from SOLSAP, while the solid lines

are results from FESPON. Field deflections measured at the surface are

also given in these figures. Larger deflections are computed by FESPON

than by SOLSAP. The comparison between computed values and measured

data shows that the program FESPON with incompatible displacement mode

produced better agreement with the measured values than the program

SOLSAP.

Fig. 5-36 shows similar results in the transverse direction,

section D. Again FESPON produces larger vertical deflections and

closer agreement with the measured values.

5 . 5 Summary

Several slope stability analyses were performed using two-

dimensional limit equilibrium methods and the three-dimensional pro-

grams BL0CK3, LEMIX and FESPON. The main findings of these analyses

are as follows

:

1. For both translational and rotational slides, the three-

dimensional effect is most significant for cohesive soils

and small failure lengths

,

2. In the case of translational slides, the 3-D effect will

increase with decreasing inclination of the weak layer

and with lower strength of weak layer.

3. Wedge types of failure should be given particular attention

because, in this case, the 3-D factor of safety may be

less than the 2-D factor of safety.

k. It is difficiilt to predict the failure length of a

rotational slide.
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5. The steeper the slopes, the less important the 3-D

effect.

6. Pore water pressures may cause the 3-D effect to be more

significant.

7. The agreement between the finite element and limit

equilibrium methods is quite good. The average factor

of safety given by FESPON on a given failure surface

is close to the factor of safety obtained by limit

equilibrium on the same failure surface.
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VI. CONCLUSIONS

This study is directed at developing techniques of three-

dimensional slope stability analysis and comparing the results obtained

with these techniques to those given by conventional two-dimensional

methods. Computer programs based upon the limit equilibrium method are

developed to assess the stability of both translational and rotational

slides. A finite element technique is also proposed to perform the

analysis of rotational slides

.

In studying the stability of translational slides, attention is

focused upon the most important controlling factor, the existence of a

ve&k. soil layer. The computer program BLOCKS is generated to perform

such an analysis. The ends of the critical surface is assumed according

to Rankine's theory and the factory of safety is applied along the total

failure svirface. The study of translational slides yields several con-

clusions as follow:

(1) The 3-D factor of safety is usually greater than that of 2-D.

However, a wedge type of failure may produce a ?^/Y^ ratio less

than unity, and therefore should be examined carefully.

(2) The 3-D effect is more significant for cohesive soils than

for cohesionless soils . This is also true for rotational

slides.
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(3) The lower the strength in the weak soil stratum, the more

profound the 3-D effect.

{k) A steeply dipping weak soil always yields smaller ratios

of F-o/^p than gently dipping layers.

A methodology is developed to study rotational slides, and a

computer program LEMIX using the limit equilibrium method is generated.

The failure mass is assumed symmetrical and divided into many vertical

columns. The inclinations of the interslice forces is assumed the same

tnroughout the whole failure mass. The intercolumn shear forces are

assumed parallel to the base of the columii and to be a function of their

positions. Force and moment equilibrium are satisfied for each column

as well as for the total mass. This method can handle different slopes,

soil parameters, and pore water conditions and is considered a rather

general method. The main conclusions of the analyses of rotational

failures are summarized below:

(1) The 3-D effects are more significant at smaller lengths of

the failure mass.

(2) For gentle slopes, the 3-D effects are most significant for

soils of high cohesion intercept and low friction angle.

(3) For soils of low cohesion intercept and high friction angle,

the 3-D factor of safety may be slightly less than that for

the 2-D case. Pending more research, the 3-D stability

analysis on this type of soil should be examined carefully.

{k) Pore water pressures may cause the 3-D effects to be even

greater.
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(5) The interslice angle influences the factor of safety. For

soils of high cohesion intercept and low friction angle,

6^ is less than 0p and thus F-, is higher than Fp. The inter-

slice angles 6_ obtained with a pore pressure parameter of

0.5 are larger than those obtained with no pore pressure

(r = O). On the contrary, for soils of low cohesion inter-

cept and high friction angle, 63 may be higher than 8p and

hence F^ is less than Fp. In this case, 6^ for r equal to

0.5 is less than 6^ for r equal to 0.
i u

(6) It is difficult to predict the length of the failure mass.

A finite element computer program FESPON is developed to perform

the analysis of spoon shape failures. It uses a hyperbolic stress-

strain relationship and an incremental technique to simulate the non-

linear behavior of soils. Isoparametric incompatible elements are used

to provide good bending characteristics. The comparison of the results

from both limit equilibrium method and finite element method are made

for highly plastic St. Croix clay for which the stress-strain relation-

ship is assumed to be hyperbolic. The hyperbolic parameters can be

generated from conventional traixial test data or consolidation test

data. Both the as-compacted condition and long-term condition are

studied. The soil conditions and failure surface are assumed to be the

same for both limit equilibrium and finite element methods. The results

are quite similar, with the finite element method predictably yielding

slightly higher factors of safety.

Though the proposed methods provide better techniques to analyze the

3-D slope stability, they still have shortcomings and in particular it

is recommended to devote more research to the following points:
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1. Development of searching techniques to find 3-D failure

surfaces is worthwhile.

2. The assumptions of the angles of inclination and the distri-

bution of the ends shear stress should be carefully studied.

This is especially important when the soil conditions are

complex,

3. More research on translational slides considering more com-

plicated soil conditions (such as joints, faults, and

anisotropy) and water conditions is needed.

k. The 3-D models presented in this dissertation should be

applied to actual case studies in order to assess their

prediction capabilities.
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APPENDIX A

End Shear Forces of a Column

The end shear forces can be calcxilated using the following

equations:

^cEl = = <^ ^El (A.l)

^cFl =
"^F

"^ ^Fl
,

^^-2)

Vl " 2 ^o^P - Pw^ \l^ ^ ^^"*E (A- 3)

Vl ^ ^o^^Pf - Pw^ ^1^1 * |<Pf-Pw^^1^> ^ ^^"*F
^^'^^

Similarly,

^cE2 " •= <^ ^E2 ^^-5)

RcP2 = ^F ^ ^F2
^^'^^

V2 = 2 ^o^P
.

- Pw) ^2^ '^ ^^"*E
^^•'^)

V2 = ^O^^PP - Pw^ ^2 ^2 •"
2 ^PP - Pw^ ^F2^^ ^ ^^*F ^^'^^

where h^ and kp, are shown in Fig. A.l. The resultant of horizontal forces

acting in the fotuidations part, F„, and its position, y„, can be cal-

culated using the following equations

,

h = Pe' ^E ^ -^
2 Pp' ^F^ ^^-9^

2 Pe' ^ ^^ -^ g- Pp' ^^ (mh^-^^h^) hp

yp = ————1

—

—2- = "Sih—nr

—

(A.IO)

Pe^ ^ * 2 PP^ ^ ^

where m = P^'/Pp'
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Fig. A.I Linear Distribution of Horizontal Stress Acting

on the End of a Column
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APPENDIX B

Program FESPON

This Appendix describes the subroutines of the computer program

FESPON and their functions (see Fig. B.l):

(a) Subroutine SETUP reads and prints input data, calculates

the equation nvmber according to the nodal points- degrees of

freedom, calculates the band width, and computes and prints

the initial stresses and the initial values of modulus and

Poisson's ratio for the elements.

(b) Subroutine RSEIG calculates the principal stresses and their

directions in three-dimensional space.

(c) Subroutine CONTPAR looks for the major principle stresses and

strains, and the minor principal stresses and strains.

(d) Subroutine MODU calculates the modulus values for the

elements in accordance with the magnitudes of the stresses

in the elements.

(e) Subroutine FOMING calls subroutine RELATE to establish

strain-displacement matrices for elements.

(f) Subroutine RELATE forms the strain-displacement matrix.

(g) Subroutine CALNEQ determines the number of elements and

nodal points for the problem to be analyzed, the number of

equations, the number of equations in each bloclt, and the n\jmber

of blocks for each construction layer increment or load increment.
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IT = 2

m = LN+l
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'
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FOMING RELATE
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3_

CALHEQ

I
FORCE

I
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3Z
BILDUP

I
ADDSTF

SYMBAN

RESULT

RSEIG

COMPAR

MODU
LN

IT
NUMLD

Increment Number
Iteration Number
Number of Load

Increments

FACTXY or FACTYZ END

Fig. B. I The Flow Chart of Computer Program-FESPON
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(h) Subroutine FORCE calculates nodal point forces due to weights

of added elements (each node takes one-eighth of the weight

of the element), reads concentrated load data, prints

nodal points forces, sets up a force vector.

(i) Subroutine BILDUP formvilates the constitutive equations, forms

the element stiffness matrix axid the strain-displacement

matrix for each element.

(j) Subroutine ADDSTF forms the total stiffness matrix, two

blocks at a time, by making a pass through the element

stiffness matrices and adding the appropriate coefficients.

(k) Subroutine SYMBM solves the simultaneous equations repre-

senting the structural matrix and the structural load vector

for nodal point displacements using the Ga;issian elimination

technique

.

(l) Subroutine RESULT calcxilates stress increments and average

stresses and evaluates the modulus for each element after

the first iteration. After the second iteration it calciilates

the incremental and cumulative displacements for each nodal

point, incremental and cumulative stresses and strains for

each element, and modulus values for each element to be used

in the next increment.

(m) Subroutine FACTXY, assuming the axis of rotation is parallel

to the Z-axis and the movement is along the X-Y plane only,

selects points on a well defined critical surface, and calcu-

lates the six components of stresses at these points.

Thus, the local factors of safety can be calculated. After
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the local factors of safety are obtained, the mean factor of

safety may be calculated subsequently.

(n) Subroutine FACTYZ assuming the axis of rotation is parallel

to X-axis and the movement is along Y-Z plame only. The

functions of FACTX2C and FACTYZ are the same.
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APPENDIX C

TABLES RELATED TO TRANSLATIONAL SLIDES
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TABLE C.l F3/F2 FOR VARIOUS COMBINATIONS OF L, D, c^, AND 3, AT
c = 47.9 kPa (1000 psf), (j) = 0°, a = 1 AND Y = 90°

Length Depth c
y

= 9.6 kPa % " 19.2 kPa =w
= 28. 8 kPa

Ratio Ratio
D
H

L
H

0° 5.7° 11.3° 5.7° 11.3° 5.7° 11.3°

0.25 2.36 2.27 2.18 2.26 2.15 2.06 2.17 2.06 1.96

1
0.5 2.51 2.1+2 2.3I+ 2.1+2 2.32 2.23 2.33 2.2I+ 2. 11+

1.0 2.83 2.1k 2.68 2. 71+ 2.66 2.59 2.66 2.59 2.51
2.0 3.50 3. 1+2 3.36 3.1+2 3.36 3.29 3.35 3.29 3.22

0.25 1.68 1.63 1.59 1.63 1.58 1.53 1.58 1.53 1.1+8

2
0.5 1.75 1.71 1.67 1.71 1.66. 1.61 1.66 1.62 1.57
1.0 1.91 1.86 • 1.8U 1.87 1.83 1.80 1.83 1.79 1.76
2.0 2.25 2.21 2.18 2.21 2.18 2. 11+ 2.17 2.11+ 2.11

0.25 1.3i* 1.31 1.29 1.31 1.29 1.26 1.29 1.26 I.2I+

k
0.5 1.37 1.35 1.33 1.36 1.33 1.31 1.33 1.31 1.28
1.0 1.46 1.1+3 1.1+2 1.1^3 1.1+1 1.1+0 l.Ul 1.1+0 1.38
2.0 1.62 1.60 1.5i^ 1.60 1.59 1.60 1.58 1.57 1.55

0.25 1.16 1.15 1.11+ 1.16 1.11+ 1.13 1.11+ 1.13 1.12

8
0.5 1.19 1.17 1.17 1.18 1.16 1.15 1.16 1.15 1.11+

1.0 1.23 1.22 1.21 1.21 1.20 1.20 1.20 1.20 1.19
2.0 1.31 1.29 1.29 1.30 1.29 1.28 1.29 1.28 1.28

0.25 1.08 1.08 1.08 1.08 1.07 1.07 1.08 1.06 1.06

16
0.5 1.09 1.08 1.08 1.09 1.08 1.07 1.08 1.07 1.07

1.0 1.11 1.10 1.10 1.11 1.10 1.10 1.10 1.10 1.09

2.0 1.15 I.II+ 1.11+ 1.15 1.15 1.11+ l.lU 1.11+ l.lU
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TABLE C ,2 F3/F2 FOR VARIOUS COMBINATIONS OF L, D, Cy, AND B, AT
c = 2I+.O kPa (500 psf), (}) = 10°, a = 1 AND y = 90°

Length Depth c = 9.6 kPa c
w

= 19.2 kPa c
w

= 28. 8 kPa

Ratio Ratio
D
H

L
H

0° 5.7° 11.3° 0° 5.7° 11.3° 0° 5.7° 11.3°

0.25 1.98 1.9it 1.89 1.85 1.79 1.74 1.71 1.70 1.64

1
0.5 2.01 1.98 1.95 1.92 1.89 1.84 1.84 1.80 1.75

1.0 2.08 2.08 2.05 2.03 2.00 1.99 1.98 1.95 1.91

2.0 2.19 2.19 2.17 2.17 2.15 2.14 2.13 2.11 2.10

0.25 1.50 I.U7 l.i*5 l.i^3 l.UO 1.37 1.38 1.35 1.31

2
0.5 1.51 1.50 1.U8 1.1+6 1.1+5 . 1.42 1.43 1.40 1.38

1.0 1.55 1.3k 1.53 1.52 1.50 1.50 1.49 1.48 1.46

2.0 1.60 1.60 1.59 1.59 1.58 1.58 1.57 1.56 1.56

0.25 1.25 I.2U 1.22 1.21 1.20 1.18 1.19 1.18 1.16

k
0.5 1.25 1.25 I.2I+ 1.23 1.22 1.21 1.21 1.20 1.19
1.0 1.28 1.28 1.27 1.26 1.25 1.25 1.25 1.24 1.22

2.0 1.30 1.30 1.30 1.30 1.29 1.29 1.29 1.28 1.28

0.25 1.13 1.12 1.11 1.10 1.10 1.09 1.10 1.09 1.08

8
0.5 1.12 1.12 1.12 1.12 1.11 1.10 1.11 1.09 1.09

1.0 l.llt l.li* l.llt 1.13 1.13 1.13 1.12 1.12 1.11

2.0 1.15 1.15 l.lii 1.15 l.lU 1.14 1.14 l.i4 1.14

0.25 1.06 1.06 1.06 1.05 1.04 1.04 1.05 1.04 1.04

16
0.5 1.06 1.06 1.06 1.06 1.06 1.05 1.05 1.05 1.05

1.0 1.07 1.07 1.07 1.06 1.06 1.06 1.06 1.06 1.05

2.0 1.07 1.07 1.07 1.08 1.07 1.07 1.07 1.07 1.07
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TABLE C.3 F3/F2 FOR VARIOUS COMBINATIONS OF L, D, c^, AND 6, AT
c = 0, 4) = 35°, a = 1 AND Y = 90°

Length Depth =w
= 9.6 kPa % = 19.2 kPa c = 28. 8 kPa

Ratio Ratio
D
H

L
H

0° 5.7° 11.3° 0° 5.7° 11.3° 0° 5.7° 11.3°

0.25 1.32 1.31 1.28 1.22 1.20 1.19 1.17 1.15 1.13

0.5 I.2I+ 1.2i+ 1.23 1.20 1.20 1.18 1.17 1.16 1.15
1

1.0 I.IT 1.17 1.17 1.21 1.15 1.16 l.lU l.lU l.lV

2.0 1.11 1.11 1.12 1.11 1.11 1.12 1.11 1.11 1.12

0.25 1.17 1.16 l.lU 1.12 1.11 1.10 1.09 1.08 1.07

2
0.5 1.13 1.13 1.13 1.10 1.10 1.10 1.09 1.09 1.08

1.0 1.09 1.09 ,1.09 1.08 1.08 1.08 1.07 1.07 1.07

2.0 1.06 1.06 1.06 1.06 1.06 1.06 1.06 1.06 1.06

0.25 1.09 1.08 1.07 1.06 1.05 l.OU 1.05 1.04 1.04

k
0.5 1.06 1.06 1.07 1.05 1.06 1.05 1.05 l.OU 1.05

1.0 1.05 1.05 1.05 1.04 l.OU l.OU 1.04 l.OU 1.04

2.0 1.03 1.03 1.03 1.03 1.03 1.03 1.03 1.03 1.03

0.25 1.05 I.OI+ l.Olt 1.03 1.02 1.02 1.03 1.02 1.01

8
0.5 l.Oit 1.03 1.03 1.02 1.03 1,03 1.02 1.02 1.02

1.0 1.02 1.02 1.03 1.02 1.02 1.02 1.02 1.02 1.02

2.0 1.02 1.01 1.02 1.02 1.02 1.02 1.02 1.02 1.02

0.25 1.02 1.02 1.01 1.02 1.01 1.01 1.01 1.01 1.01

16
0.5 1.01 1.02 1.02 1.01 1.01 1.02 1.01 1.01 1.01

1.0 1.01 1.02 1.01 1.01 1.01 1.02 1.01 1.01 1.01

2.0 1.01 1.00 1.01 1.01 1.01 1.01 1.01 1.01 1.01
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TABLE C.k F3/F FOR VARIOUS COMBINATIONS OF L, D, c^, AND Y, AT
0"= 57.9 kPa (1000 psf),

(J)
= 0°, a = 1, AND e = 11.3°

Length Depth c
w

= 9.6 kPa c
w

= 19.2 kPa c
w

= 28.8 kPa
Ratio Ratio .

D
H

L
H

70° 80° 90° 70° 80° 90° 70° 800 90°

0.25 2.56 2.32 2.18 2.37 2.17 2.06 2.22 2.05 1.96

1
0.5 3.02 2.58 2.34 2.82 2.UU 2.23 2.66 2.32 2.1U

1.0 k.kQ 3.23 2.68 k.23 3.09 2.59 U.OU 2.97 2.51
2.0 - 5.09 3.36 ~ l+.9i+ 3.29 - I+.8I 3.22

0.25 1.67 1.62 1.59 1-59 1.55 1.53 1.52 I.I19 1.1+8

2
0.5 1.82 1.73 1.67 1.73 1.66 1.61 1.66 1.60 1.57
1.0 2.15 1.96

,
1.81+ 2.08 1.90 1.80 2.01 1.8U 1.76

2.0 3.16 2.50 2.18 3.08 2.U5 2.1U 2.99 2.U0 2.11

0.25 1.31 1.30 1.29 1.27 1.26 1.26 I.2I+ I.2U I.2I+

k
0.5 1.37 1.31^ 1.33 1.33 1.31 1.31 1.30 1.29 1.28

1.0 1.50 IA5 I.U2 I.I16 I.U2 l.UO 1.1+3 l.ltO 1.38
2.0 1.78 1.66 I.5U 1.75 1.6U 1,60 1.72 1.62 1.55

0.25 1.15 1.15 l.lU 1.13 1.13 1.13 1.12 1.12 1.12

8
0.5 1.18 1.17 1.17 1.15 1.15 1.15 l.lU l.lU I.II+ •

1.0 1.23 1.21 1.21 1.22 1.20 1.20 1.20 1.19 1.19

2.0 1.3U 1.31 1.29 1.33 1.30 1.28 1.31 1.29 1.28

0.25 1.08 1.08 1.08 1.07 1.06 1.07 1.06 1.06 1.06

16
0.5 1.09 1.08 1.08 1.07 1.07 1.07 1.07 1.07 1.07
1.0 1.11 1.10 I.IC 1.10 1.10 1.10 1.09 1.09 1.09

2.0 1.16 1.15 l.lli 1.15 l.lU l.lli 1.15 l.lU I.1I+



TABLE C.5 F3/F2 FOR VARIOUS COMBINATIONS OF L, D, c^, AND Y, AT
c = 2i|.0 kPa (500 psf),

(J)
= 10°, a = 1, AND 3 = 11.3°

20li

Length Depth c
w

= 9.6 kPa
^w

= 19.2 kPa c
w

= 26.8 kPa

Ratio Ratio
D
H

L
H

70° 80° 90° 70° 80° 90° 70° 80° 90°

0.25 2.16 1.98 1.89 1.92 1.80 l.lh 1.77 1.68 1.61+

1
0.5 2.1+ It 2.13 1.95 2.22 1.98 1.81+ 2.05 1.86 1.75

1.0 3.23 2.41 2.05 3.03 2.30 1.99 2.83 2.18 1.91

2.0 - 3.11 2.17 - 3.03 2.1I+ - 2.95 2.10

0.25 1.51 I.U7 l.i*5 l.ItO 1.38 1.37 1.33 1.32 1.31

2
0.5 1.59 1.52 1.U8 1.50 l.h3 1.1+2 1.1+2 1.1+0 1.38

1.0 1.75 1.61 1.53 1.69 1.57 1.50 1.62 1.52 1.1+6

2.0 2.19 1.79 1.59 2.13 1.76 1.58 2.07 1.73 1.56

0.25 I.2U 1.22 1.22 1.19 1.18 1.18 1.15 1.15 1.16

U
0.5 1.27 1.25 I.2U 1.22 1.22 1.21 1.20 1.19 1.19

1.0 1.33 1.29 1.27 1.30 1.27 1.25 1.26 I.2I+ 1.22

2.0 l.kk 1.35 1.30 i.in 1.33 1.29 1.39 1.33 1.28

0.25 1.11 1.11 1.11 1.09 1.09 1.09 1.07 1.08 1.08

8
0.5 1.13 1.13 1.12 1.11 1.10 1.10 1.09 1.09 1.09
1.0 1.15 l.lU l.lU l.lU 1.13 1.13 1.12 1.11 1.11

2.0 1.19 1.16 l.lU 1.18 1.16 1.11+ 1.17 1.15 1.11+

0.25 1.06 1.05 1.06 I.0I+ l.OU I.OI+ 1.03 1.03 1.01+

16
0.5 1.07 1.06 1.06 1.05 1.05 1.05 I.OI+ I.OI+ 1.05

1.0 1.08 1.07 1.07 1.07 1.06 1.06 1.05 1.05 1.05

2.0 1.08 1.08 1.07 1.08 1.08 1.07 1.08 1.07 1.07
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TABLE C .6 F3/
c =

Fg FOR VARIOUS COMBINATIONS OF L, D, Cv, Al^D Y, ikT

0, (}. = 35°, a = 1 , Ai^D e = 11 .3°

Length Depth c
w

= 9.6 kPa c
w

= 19.2 kPa c
w

= 26.8 kPa

Ratio Ratio
DL 70° 60° 90° 70° 80° 90° 70° 80° 90°

H H

0.25 1.36 1.30 1.28 1.19 1.18 1.19 1.09 1.11 1.13

0.5 l.Ul 1.30 1.23 1.29 1.22 1.18 1.20 1.17 1.15
1

1.0 1.57 1.30 1.17 l.it9 1.26 1.16 IM 1.23 l.lU

2.0 3.^2 l.Ul 1.12 3.30 1.39 1.12 3.18 1.36 1.12

0.25 1.16 1.15 l.lU 1.09 1.09 1.10 l.OU 1.06 1.07

0.5 1.19 l.lU 1.13 1.13 1.11 1.10 1.09 1.09 1.08
2

1.0 1.22 l.lU 1.09 1.18 1.13 1.08 1.1b 1.11 1.07

2.0 1.35 1.16 1.06 1.33 1.16 1.06 1.32 1.15 1.06

0.25 1.08 1.07 1.07 I.OH I.OU l.OU 1.02 1.03 1.04

k
0.5 1.08 1.08 1.07 1.06 1.06 1.05 1.05 l.Oii 1.05

1.0 1.10 1.07 1.05 1.08 1.06 l.OU 1.07 1.05 l.OU

2.0 1.13 1.08 1.03 1.13 1.07 1.03 1.12 1.07 1.03

0.25' l.Ol; 1.03 l.OU 1.02 1.02 1.02 1.01 1.01 1.01

8
0.5 l.Oit 1.04 1.03 1.03 1.03 1.03 1.02 1.02 1.02

1.0 1.05 l.OU 1.03 1.04 1.03 1.02 1.03 1.02 1.02

2.0 1.06 I.OU 1.02 1.06 1.03 1.02 1.05 l.OU 1.02

0.25 1.01 1.01 1.01 1.01 1.01 1.01 1.01 1.01 1.01

16
0.5 1.02 1.02 1.02 1.02 1.02 1.02 1.01 1.01 1.01

1.0 1.02 1.02 1.01 1.02 1.02 1.02 1.01 1.01 1.01

2.0 1.03 1.02 1.01 1.03 1.02 1.01 1.03 1.02 1.01



TABLE C.7 F3/F2 FOR VARIOUS COMBINATIONS OF L, D, c^, AND a, AT
c = 47.9 kPa (1000 psf)

(J)
= 0°, e = 11.3°, AND y = 90^

206

Length Depth c =
w

9.6 kPa c =
w

19.2 kPa c =
w

28.8 kPa

Ratio Ratio
DL 0.8 0.9 1.0 0.8 0.9 1.0 0.3 0.9 1.0

H H

0.25 2.16 2.17 2.18 2.03 2. 01+ 2.06 1.92 I.9I+ 1.96

1
0.5 2.27 2.31 2.3it 2.15 2.19 2.23 2.07 2.11 2. 11+

1.0 2.U9 2.58 2.68 2.1+0 2.1+9 2.59 2.33 2.1+2 2.51

2.0 2.87 3.10 3.36 2.81 3.03 3.29 2.75 2.97 3.22

0.25 1.56 1.58 1.59 1.1+9 1.51 1.53 1.1+1+ 1.1+6 1.1+8

0.5 1.60 1.6U 1.67 I.5U 1.57 1.61 I.U9 1.53 1.57
2

1.0 1.68 1.76 1.8U 1.61+ 1.72 1.80 1.60 1.67 1.76

2.0 1.83 1.99 2.18 1.80 1.96 2.1I+ 1.77 1.93 2.11

0.25 1.26 1.28 1.29 1.22 I.2I+ 1.26 1.19 1.21 I.2I+

k
0.5 1.26 1.30 1.33 1.23 1.27 1.31 1.21 I.2I+ 1.28

1.0 1.28 1.35 1.1+2 1.26 1.33 1.1+0 I.2I+ 1.30 1.38

2.0 1.31 l.kk 1.3h 1.30 1.1+2 1.60 1.28 l.Ul 1.55

0.25 1.10 1.13 1.11+ 1.08 1.11 1.13 1.07 1.09 1.12

8
0.5 1.09 1.13 1.17 1.07 1.11 1.15 1.06 1.10 I.1I+

1.0 1.07 l.lU 1.21 1.06 1.13 1.20 1.05 1.12 1.19

2.0 l.Olt 1.16 1.29 l.OU 1.15 1.28 1.03 1.15 1.28

0.25 1.02 1.05 1.08 1.02 I.OI+ 1.07 1.00 1.03 1.06

16
0.5 1.01 1.05 1.08 0.99 1.03 1.07 0.98 1.02 1.07

1.0 0.97 I.OU 1.10 0.97 1.03 1.10 0.96 1.02 1.09

2.0 0.91 1.02 l.lU 0.91 1.02 1.11+ 0.91 1.02 I.1I+
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TABLE C.8 Fj/Fp FOR VARIOUS COMBINATIONS OF L, D, c„, AND a, AT
c = 2lt kPa (500 psf), (}) = 10°, 6 = 11.3°, AND y = 90°

Length Depth c =
w

9.6 kPa c =
w

19.2 kPa c =
w

28.8 kPa

Ratio Ratio
DL 0.8 0.9 1.0 0.8 0.9 1.0 0.8 0.9 1.0

H H

0.25 1.86 1.87 1.89 1.70 1.72 1.71+ 1.59 1.62 1.61+

0.5 1.88 1.92 1.95 1.77 1.81 1.81+ 1.68 1.71 1.75
1

1.0 1.89 1.97 2.05 1.82 1.90 1.99 1.75 1.83 1.91

2.0 1.83 1.99 2.17 1.80 1.96 2.1I+ 1.77 1.93 2.10

0.25 l.Ul 1.U3 l-k3 1.33 1.35 1.37 1.27 1.30 1.31

0.5 l.i+0 l.kk 1.1+8 1.35 1.39 1.1+2 1.30 1.30 1.38
2

1.0 1.39 1.U5 ,1.53 1.36 1.1+3 1.50 1.31 1.38 1.1+6

2.0 1.32 l.kk 1.59 1.30 1.1+3 1.58 1.29 1.1+1 1.56

0.25 1.18 1.21 1.22 1.13 1.16 1.18 1.11 1.13 1.16

k
0.5 1.17 1.20 1.21+ 1.13 1.17 1.21 1.11 1.15 1.19

1.0 1.13 1.20 1.27 1.11 1.18 1.25 1.09 1.16 1.22

2.0 1.05 1.17 1.30 1.05 1.16 1.29 I.OI+ 1.15 1.28

0.25 1.06 1.09 1.11 1.01+ 1.06 1.09 1.02 1.05 1.08

8
0.5 I.OU 1.08 1.12 1.02 1.07 1.10 1.01 1.05 1.09

1.0 1.00 1.07 1.11+ 0.99 1.06 1.13 0.97 1.05 1.11

2.0 0.92 1.02 1.14 0.92 1.02 l.lU 0.91 1.02 I.II+

0.25 1.00 1.03 1.06 0.99 1.01 I.OI+ 0.98 1.01 I.OI+

16
0.5 0.98 1.02 1.06 0.97 1.02 1.05 0.96 1.01 1.05

1.0 0.93 1.00 1.07 0.93 0.99 1.06 0.92 0.99 1.05

2.0 0.85 0.95 1.07 0.85 0.95 1.07 0.85 0.95 1.07
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TABLE C,9 F3/F2 FOR VARIOUS COMBINATIONS OF L, D, c^, AND a, AT
c = 0, 4) = 35°, a = 11.3°, Ai^D Y = 90°

Length Depth cw
= 9.6 kPa c =

w
19.2 kPa c =

w
28.8 :kPa

Ratio Ratio
DL 0.8 0.9 1.0 0.8 0.9 1.0 0.8 0.9 1.0

H H

0.25 1.29 1.26 1.28 l.lU 1.16 1.19 1.08 1.11 1.13

1
0.5 1.15 1.19 1.23 1.10 1.15 1.18 1.07 1.11 1.15

1.0 l.Oit 1.10 1.17 1.02 1.09 1.16 1.00 1.07 l.lU

2.0 0.90 1.01 1.12 0.90 1.00 1.12 0.90 1.00 1.12

0.25 1.09 1.12 1.1-t l.OU 1.07 1.10 1.01 l-.Oi+ 1.07

0.5 1.03 1.08 1.13 1.02 1.06 1.10 0.99 1.04 1.08
2

1.0 0.95 1.02 1.09 0.9^+ 1.10 1.08 0.9^+ 1.00 1.07

2.0 0.8it 0.95 1.06 0.8U 0.9^+ 1.06 0.8U 1.06 1.06

0.25 1.01 1.05 1.07 0.99 1.02 l.Oit 0.98 1.01 l.OU

h
0.5 0.97 1.02 1.07 0.96 1.01 1.05 0.95 1.00 1.05

1.0 0.90 0.97 1.05 0.90 0.97 1.04 0,89 0.96 l.OU

2.0 0.61 0.91 1.03 0.81 0.91 1.03 0.81 0.97 1.03

0.25 0.96 1.00 l.Oii 0.96 0.99 1.02 0.96 0.98 1.01

8
0.5 0.9i+ 0.99 1.03 1.01 0.98 1.03 0.93 0.96 1.02

1.0 0.88 0.95 1.03 0.88 0.95 1.02 0.83 0.94 1.02

2.0 0.79 0.90 1.02 0.79 0.90 1.02 0.79 0.95 1.02

0.25 0.95 0.98 1.01 0.95 0.98 1.01 0.95 0.98 1.01

16
0.5 0.92 0.97 1.02 0.92 0.97 1.02 0.92 0.97 1.01

1.0 0.86 0.9U 1.01 0.86 0.9i+ 1.02 0.86 0.9^ 1.01

2.0 0.78 0.89 1.01 0.78 0.89 1.01 0.78 0.9h 1.01
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APPENDIX D

FIGURES AND TABLES RELATED TO ROTATIONAL SLIDES
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TABLE D.l COMPARISON OF F3 BETWEEN ORDINARY METHOD OF COLUMNS (OMC)

AND LEMIX (Slope 1.5/1, r = O)

l^J^
OMC - LEMIX

X lOOf.

'

LEMIX
0.5 1 2 It

a» -13.3 -11.2 -10.1 - 9.5
b - 8.8 - 9.2 - 9.7 -10.0

0. 5 c - k.l - U.9 - 5.5 - 6.0
d 0.5 - 1.2 - 2.5 - 3.U

e 3.0 1.0 - 0.9 - 2.2

a .
-11.1* -10. U - 9.7 - 9.3

b - 9.3 -- 9.k - 9.0 - 9.0

1 c - 5.3 - 5.6 - 5.7 - 6.0

d - 1.6 - 2.2 - 2.9 - 3.5

n /tt

e - 0.7 - 1.7 - 2.5

£,g/H

a - 9.6 - 9.3 - 9.2 - 9.9
b - 8.9 - 9.1 - 9.3 - 9.6

2 c - 5.2 - 5.k - 5.6 - 5.9
d - 2.3 - 2.7 - 3.1 - 3.6

e - 1.5 - 1.7 - 2.2 - 1.7

a - 8.5 - 8.6 - 8.6 - 8.7
. b - 8.5 - 6.1 - 9.0 - 9.3

k c - U.9 - 5.0 - 5.3 - 5.6

d - 2.5 - 2.7 - 3.0 - 3.1*

e - 1.9 - 2,0 - 2.1+ - 2.7

*a: c = 0, 9 U0°; b: c = 7 .2 kFa, 4> = 30°

•

c: c = lU,.k kPa, 4> = 25°; d: c = 21.6 kPa, df = 20°

e : c = 28,.7 kPa, (j) = 15°
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TABLE D.2 COMPARISON OF F3 BETWEEN ORDINARY METHOD OF COLUMNS

Ai^E1 LEMIX (.Slope 2.i)/l, r = 0)
u

I /H

CMC - LEMIX
100'^

c

LEIvIIX
X

0.5 1 2 k

a -16.2 -13.5 -11.8 -10.8

b - 9.2 - 8.3 - 7.6 - 7.3
0. 5 c - 7.5 - 7.6 - T.8 - 8.0

d - 2.0 - 3.1 - U.3 - U.9

e 0.1 - 1.7 - 3.3 - U.5

a -IU.9 -12.5 -11. U -10.6

b • - 8.7 - 8.1 - 7.6 - 7.2

1 c - 8.3 - 8.2 - 8.2 - 8.2

d - 3.8 - k.2 - U.7 - 5.2

^s

e - 2.3 - 3.1 - k.O - h.6

H
a -11. U -10.9 -10.5 -10.2

b - 7.2 - 7.1 - 6.9 - 6.9

2 c - 7.8 - 7.7 - 7.8 - 8.0

d - U.l - k.3 - U.7 - 5.1

e - 3.5 - 3.8 - k.2 - 1;.8

a - 9.8 - 9.8 - 9.6 - 9.8

b - 6.1 - 6.2 - 6.3 - 6.6

h c -6.9 - 7.0 - 7.2 - 7.6

d - 3.8 - U.l - k.k - U.7

e - 3.5 - 3.8 - l+.l - It.

8
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TABLE D.3 COMPARISON OF Fo BETWEEN ORDINARY METHOD OF COLUMNS
Ai^E1 LEMIX (Slope 3-5/1, r = O)

a /H

CMC - LEMIX
X 100^

C

LEMIX
0.5 1 2 k

a - 7.3 - i*.9 - 3.6 - 2.9
b - 7.7 - 6.8 - 6.3 - 5.9

0..5 c - 9.7 - 9.3 - 9.1 - 8.9
d - U.3 - 5.0 - 5.8 - 6.1
e - 0.1 - 1.8 - 3.6 - U.8

a - 6.5 - k.6 - 3.5 - 2.8
b • - 7.9 - 7.0' - 6.k - 6.0

1 c -10.5 - 9.9 - 9.k - 9.2
d - 5.9 - 5.9 - 6.2 - 6.1+

e - 3.2 - 3.7 - k.5 - 5.3
s

H
a - k.6 - 3.7 - 3.0 - 2.6

b - 6.6 - 6.2 - 5.8 - 5.8

2 c - 9.3 - 9.2 - 9.0 - 8.9

d - 5.8 - 5.8 - 6.0 - 6.2

e - U.5 - 1^.7 - k.9 - 5.i*

a - 3.0 - 2.7 - 2.6 - 2.k

b - 5.2 - 5.2 - 5.2 - 5.2

U c - 7.9 - 8.1 - 8.2 - 8.3

d - 5.1 - 5.2 - 5.5 - 6.0

e - U.5 - k.6 - k.9 - 5.3
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TABLE D.h COMPARISON OF F3 BETWEEN ORDINARY METHOD OF COLUMNS
AND LEMIX (Slope 1.5/1, r = 0.5)

u

l/E
CMC - LEMX

lOOfc

c

LEMIX ^
0.5 1 2 k

a* 0.8 5.0 7-5 8.9
b 9.2 8.5 8.1 7.7

0.5 c 6.8 k.k 2.k 1.8
d 7.7 k.6- 2.1 0.2
e 10.6 7.2 k.l 1.8

a 2.2 ^.h 7.5 8.8
b • 8.9 8.7 8.2 7.9

1 c U.2 3.1 2.0 0.9
d 3.3 2.2 0.9 - 0.3

I
e '6.0 k.^ 3.6 l.k

s

H
a 6.0 l.h 8.6 9.3
b 9.5 9.2 8.6 8.1

2 c 3.0 2.5 1.7 0.9
d 1.0 0.7 0.1 - 0.7
e 2.8 2.k 1.6 0.9

a 9.2 9.5 9.7 10.1
b 10.0 9.7 9.1 8.6

u c 2.9 2.5 1.9 1.3
d O.k 0.1 - 0.3 - 0.8

e 1.6 l.k 1.1 0.6

» a: c' = 0, <J.'
= U0° ; b: c' = 7-2 kPa, (J)'

= 30°

c: c' = lU.U kPa, (])• = 25° ; d; c' = 21.6 kPa;
<J)'

= 20=

.0
c' = 28.7 kPa, 4)' = 15
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TABLE D.5 COivIPARISON OF F3 BETWEEN ORDINARY METHOD OF COLUMNS MD
LEMIX (Slope 2.5/1, r = 0-5)

A /H

CMC - LEMIX ,„„rf

LEMIX ^
^°°^

c

0.5 1 2 k

a - 3.7 - 0.1 1.9 3.0
b - 6.6 - 6.0 - 5.8 - 5.7

0.5 c 0.2 - 0.7 - 1.5 - 2.2
d 3.8 2.2 0.8 - 0.2
e U.5 2.3 0.1 - 1.8

a - 1.9 0.1+ 2.1 3.0
b - 7.2 - 5.9 - 6.0 - 5.3

1 c - l.k - 1.6 - 2.0 - 2.3
d 0.2 1.1 0.3 - 0.4

I
e 1.0 0.1 - 1.1 - 2.3

s

H
a l.k 2.1 3.0 3.6
b ' 5.7 - 5.6 - 5.6 - 5.4

2 c - 1.9 - 1.7 - 2.0 - 2.3
d 0.7 l.k - O.k
e - 1.1 - 1.7 - 2.1 - 2.7

a 3.8 k.o k.l k.2

b - k.3 - k.l - k.7 - k.9
k c - 1.0 - 1.2 - 1.6 - 1.9

d 0.7 0.6 0.2 - 0.3
e - 1.9 - 2.1 - 2.5 - 2.8



230

TABLE D.6 COMPARISOx^ OF F^ BETWEEN
3.i/l. r^ =

ORDINARY METHOD OF COLUMNS AND
LEMIX ( Slope 0.5)

Jl /H
OMC - LEMIX

loo:^

c

LEMIX ^
0.5 1 2 k

a - 0.9 1.6 3.2 U.O
b - 8.5 - 7.7 - 7.3 - 7.0

0.5 c 21.2 18.2 Ik.

5

11.8
d k.O 1.7 - 0.6 - 2.3
e 6.3 3.1t 0.5 - 1.7

a - 0.1 1.9 3.2 It.l

b
.
- 9.0 - 8.2 - 7.5 - 7.1

1 c lU.O 13.9 12.7 11.1

d - 0.2 - 0.9 - 1.8 - 3.0

£
e 1.8 0.6 - 1.0 - 2.3

S

H
a 2.2 3.0 3.8 4.3
b - 7.U - 7.1 - 6.9 - 6.3

2 c 10.6 11.

U

11.3 10.6

d - 2.5 - 2.U - 2.7 - 3.2

e - 1.2 - 1.5 - 5.0 - 3.0

a k.O 4.2 k.h U.6

b - 5.6 .

- 5.8 - 5.9 - 6.2
k c 10.0 10.

U

10.5 10.2
d - 2.9 - 2.9 - 3.0 - 3.3

e - 2.2 - 2.5 - 2.8 - 2.7
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APPENDIX E

User's Guide for Computer Programs BLOCKS, LEMIX, and FESPON

User's guide for computer programs BLOCKS, LEMIX, and FESPON is

presented in this section. For each program there is an example to

show how the input data are prepared and to provide output which can

be used to check the operation of the computer programs:

Example Problem 1 - BLOCKS

Example Problem 2 - LEMIX

Example Problem 3 - FESPON

It sho\;ild be noted that the meshes used in exaunple 3 are too coarse

to give accurate results. For accurate values of stress and displacement

within an embankment, eight or more layers of elements should be used,

and the number of elements should be larger than the ones in this

example

.

In all three samples, the units are in metric system.
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E.l User's Guide for Program BLOCKS

1. Strength Parameter Card (6F10.0)

1-10 C - Cohesion of foundation or embankment soil

11-20 FI - Friction angle of foundation or embankment soil,
degrees

21-30 G - Unit weight or density of foimdation or embankment
soil

31-40 CB - Cohesion of weak layer

1*1-50 FIB Friction angle of weak layer, degrees

51-60 UK - Earth pressure coefficient in the foundation or
embankment

2. Geometric Data Card (7F10.0)

1-10 TL - The i^per length at the top of the central block

11-20 H - Height of embankment

21-30 SLOPE - Slope angle of embankment, degrees

31-40 A - The ratio of the lower length to upper length
at the top of the central block

41-50 D - Depth ratio ; depth (to weak layer) to

height of embankment

51-60 BETA - Inclination of weak soil layer, degrees

61-70 GAMA - Unit weight or density of weak layer

3. Surcharge Card (2F10.0)

1-10 SURA - S'u-charge on active block

11-20 SURP - Surcharge on passive block

k. Initial Guess Value Card (FIO.O)

1-10 X(l) - Initial guess value of the factor of safety
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UNIT MT C ri CB FIB

18.81 40.00 10.00 25.00

LENGTH HT SLOPE A D BETA GAMA ALFA SF

30.50 3.00 1 33.70 1.00 .67 2.30 30.00 2.01

Fig..E.2 Output Data for Program BL0CK3
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PROGRAM BL0CK3 ( INPUT. OUTPUT. TAPE5=INPUT, TAPEG=OUTPUT

)

DIMENSIOM X(l)
COMMOiVMATL/ TP. TFB. TANA, TANP
COmON/TORS/ FAS.FS.FPS.UA.W.WP.CAS.CAB.CCS.CCB.CPS.CPB
comon/GEOM/ cosa.cosb.cosp.sinb.cosksi.coseta
EXTERNAL FCN

c ••»«••**•»»»•»»»*••••••««»•••••••»•»»•«•*»««»*»•»»«»•••#««-»•••

C READ AND WRITE INPUT DATA

READ(5.2000) CFI.G.CB.FIB.UK
READ(5. 2010 ) TL. H, SLOPE. A, D. BETA, GAMA
READ(5,2020) SURA.SURP
READ(5,2040) XINITI

PI=3.141532G/'180.

SLOPE=SLOPE*PI
FI=FI«PI
TF=TAN(FI)
FIB=FIB»PI
TFB=TAN(FIB)
Q1=45.«PI-FI^2. ..

TANP=TAN(Q1)
C0SP=C0S(Q1) ....'...•
02=45. »PI+F 1/2. '«.;..;
TANA=TAN(Q2) '

"""

Q5=FI
GAMA=GAMA«PI
BETA=BETA»PI
QB=BETA
C0SB=C0S(Q6)
SINB=SIN(QS)
Q7=GAMA
H1=D*H
B=H/TANC SLOPE)
H2=H1+H-B»TAN(QS)
COSA=l./SQRT(l. + (C0SB»(TL»(l.-A)/'2.-(H2-Hl)/TANCGAMA))/'B)"2)
C0SETA=l./'SQRT(l.+(SIN(PI/'4.+FI/2.)/TAN(GAMA))»»2)
C0SKSI=l./SQRT(l.+(SIN(PI/4.-FI/2.)/TAN(GAMA))««2)

C •••••••••••••**1Hf«»«««««(HHf*»**»«*«»«»«*««*««»»*«**««»«»**»»*1HI««

C ACTIUE BLOCK

C ••••••••»••«•••»«••••••»•»•«••••••••«•«•••*»**•••*»*»••••••••••

SURA=SURA»TL»H2*TAN C 1)
WA=G*H2»H2»TAN ( Ql ) • ( . 5»TL-H2/TAN( 07 ) /S. ) +SURA
CAS=0.5*C«H2»H2»TAN(ai)/'SINC07)
CAB=C» ( TL-H2/'TAN ( 07 ) ) •H2/C0S (01)
FAS=UK *G*H2»H2*H2»TAN ( Q 1 ) "TAN ( 05 )/( 6 . -S I N ( 07 )

)

C PflSSIUE BLOCK

C

SURP=SURP»A»TL»H 1"TAN ( Q2

)
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UA=G»H2»H2»TAN( Q 1) • ( . 5*TL-H2/TAN ( 07 ) /3 . ) +SURA
CAS=0.5«C«H2»HE»TArH(Ql)/SIM(Q7)
CAB=C« ( TL-Ha/TAN ( Q? ) ) "HS/COS (01)
FAS=UK •G»H2«H2«H2»TAN(Q1)»TAN(Q5)/'(G.»SIN(07))

C »•»••««••»•«»•»»»»»»»«•«•••»»••••»»••»«••*•»••»•••••••«•»••••»«•»

C PASSIUE BLOCK

SURP=SURP«A»TL»H1 "TAN C 02

)

WP=G*Hl*Hl«TAH(02)*(0.5«A«TL-Hl/'TAN(Q7'9r3. )+SURP
CPS=0.5»C*H1»H1*TAN(02)/SIN(07)
CPB=C»(A«TL-H1/TAN(07))»H1/'C0S(02)
FPS=UK ^G«H1»H1«H1*TAN(02)*TAM(05)/(G.»SIN(Q7))

C CENTRAL BLOCK

C •••«««*•«••««««»••«••«•••«•••••««-»•««••••»•••««•«••«•««•*••* ^••••»

B1=H2«(TL-H2'TAN(07))
B2=H1»(A»TL-H1/TAN(Q7))
Bt1=(Hl+H2)*( ( 1 .+A)«TL-(H1+H2)/'TAN(Q7) )

W=G«B»( B1+B2+BM )VB

.

CCS=0.5*C«B»(H1+H2)/(SIN(Q7)*COS(ALFA))
CCB=CB*(0.5»(1.+A)«TL-(H1+H2)/TAM(Q7))*B/COS(QG)
FS=UK »G«B»(HloHl+H2*H2+Hl«H2)»TAM(05)/(6.*SIN(Q7)»C0S(ALFA)*

• COSlQS))

C CALAULATE THE FACTOR OF SAFETY

C •»••••«»«»•«•••••«•*••••'•••«•••••••«•«*«•••••••••••«••••••••••••••

X(1)=XINITI
h=l
NDIGIT=7
RN0RI1=0.
CALL SECANTCX.M.FCN.NDIGIT.RNORM)
SF=X(1)

PFI=FI/'PI
PFIB=FIB-'PI
PSLOPE=SLOPE/PI
PBETA=BETA/PI
PGAMA=GAMA/PI
PLFA=ALFA/'PI
wRiTECB.iooo) g.c.pfi,cb,pfib»tl.h,pslope.a.d.pbe:ta.pgama.plfa,sf

10 F0RMAT(132H1 UNIT WT C FI CB FIB LENGTH
• HT SLOPE AR DR BETA GAMA ALFA
• SF //)

1000 FORMAT(8F9.1.2F9.2,2F9.1.F9.2,F10.2)
2000 FORMAT(GFIO.O)
2010 FORMAT(7F10.0)
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2020 FORMATCSFIO.O)

2040 FORMAT ( FIO.O)

STOP
END

SUBROUTIME FCNCX.F.UDF)
DIMENSION X(1),F(1)
COMMON/MATL/ TF, TFE. TANPl.TANP
COMMON/FORS/ FAS, FS, FPS. WA. W, WP, CAS. CAB, CCS. CCB. CPS. CPB
COMMDN/GEOM/ COSA, COSB, COSP. SINB. COSKSI . COSETA

F(1) = (2.*:-(CC5+FS/S0RTC1. + (X(1)/TF)«*2))«C0SA+CCB+TFB»U*C0SB)/X(1)
1 -U*SINB+(COSB+TFB»SINB/X( 1 ) )»(WP»(TANP+TF/X( 1 ) )/(l . -TANP*TF/X( 1)

)

2 -WA«(TANA-TF/-X( !))/-( l.+TANA«TF/'X(l))+COSP»(l./'X(l))»( (2. "CPS*
3 C0SKSI+CPB+2.<FPS«C0SKSI/SQRT(1.+(X(1)/TF)»»2))»(1.+TANP*(
4 TANP+TF/X (!))/(!. -TANP*TF/'X ( 1) ) ) + ( 2 . «CAS*C0SETA+CAB+2 . *FAS
5 »COSETA/SQRT (1 . + ( X ( 1) /TF ) »«2 ) ) « ( TANP+ ( TANA-TF/X ( 1 ) )

/-

G (l.+TANA*TF/X(l)))))

RETURN
END
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E.2 User's Guide for Program LEMIX

1. Embankment Information Card (8F10.2)

1-10 C - Cohesion of embankment soil

11-20 FI - Friction angle of embankment soil, degrees

21-30 GAMA - Unit weight or density of embankment soil

31-^0 RU - Pore water pressure parameter, r

4l-50 BETA - Slope angle of embankment, degrees

51-60 H - Height of embankment

6I-7O EK - Earth pressvire coefficient in embankment

7I-8O GW - Unit weight or density of water
I

2. Foundation Information Card (5F10.2)

1-10 CF - Cohesion of foundation soil

11-20 FIF - Friction angle of foundation soil, degrees

21-30 GAMAF - Unit weight or density of foundation soil

31-^0 HTF - The distance between the crest and foundation

Ul-50 FK - Earth pressure coefficient in foundation

3. Critical Circle Information Card (4F10.2, 31?)

1-10 RXY - The radixis of the 2-D critical circle, R
xy

11-20 RZ - The length of minor axis of the semi-ellipsoid

21-30 CXI - X-distance, from center to crest

31-^0 Y - Y-distance, from center to crest

Ul-lt5 NCOLUM - Number of columns along Z-direction

U6-5O NSLICE - Number of slices along X-Y plane

51-55 IFTC - Zero, if tension crack is not considered; otherwise
punch one
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k. Miscellaneous Card (t4F10.2, Ul?)

1-10 TWOD - The ratio between half of the length of the central

cylinder to the height of the slope

11-20 EX - The exponential number of X-coordinate . One means

the shear stress distribution is linear, two means

the distribution is hyperbolic, etc.

21-30 FACTS - The ratio between the subsequent length to former

length of the minor axis of the spoon

31-HO FACTR - The ratio between the subsequent length to former

length of the central cylinder

UI-U5 NSP - Number of various spoons investigated

46-50 NRL - Number of various cylinders investigated

51-55 ICOND - One, 'if the results from the Ordinary Method of

Columr^s need to be printed out; otherwise, punch

zero

56-60 IPRINT - One, if the information of width, height, area,

and weight of the columns need to be printed out;

Otherwise, punch zero

5. Initial Guess Value Cards (2F10.2)

1-10 X(l) - The initial guess value of the factor of safety

11-20 X(2) - The initial guess value of the angle of inclination,

degrees

These cards must be read for as many times as the number of NSP x NRL.

REI«!ARKS:

The value of RNORM in the output indicates

- If RNORM =0.0, then X is a root of the given system of equations

fco machine accuracy.

- If RNORM .GT. 0.0 then the relative convergence criterion was

satisfied. In this case RNORM = F(l)**2 + ... + F(N)»*»2 where

F contains the function values at X, N the number of nonlinear

equations to be solved.



2»+0

If RNORM = -1.0, then SECMT was unable to find a better

approximation than the current X. If this approximation is

not good enough the user may try a new initial guess.

If RNORM = -2.0 then the maximum number of iterations was

exceeded. The user may try a new initial guess value.

If RNORM = -3.0 then SECMT was forced to stop because it was

unable to improve the approximation to the root. The user

may try a new initial guess.
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EMBANKMENT HEIGHT»»»«»*«»«»«»»»»»«»»,,,» S.OOO

SLOPE ANGLE**»«««»»«»«*»»««»»««»»»««»«»»»» 33.G90

NUMBER OF SLICES*»*-»*«»«»«*»»**«««»*»»»»»» 30

NUMBER OF COLUMNS»***«»»*»««**«»»»««»»«»«» 10

BIG RftDIUS***««»«»»»«»»*»«»«*»*»«»«»«*»»«-» 11.180

SMALL RADIUS»»»*»*»««««»««»»»**»*»»»»»»»«» 12.000

X-DIST. FROM CENTER TO CREST»iHt»#*»«««»»«» G.OOO

Y-DIST. FROM CENTER TO CREST»*«»«*««»*»*»* 4.000

TENSION CRACK»**»»»»*»»»»»»««-»««*»*«»«»»»» q

EXPONENTIAL NUMBER»*«*»«««««»«««»«»*»»«»»» 1.000

****»»»*«»EMBANKMENT PARANETERS*««»«»»»«

C

30.00

FI

5.00

GAMA RU

18.81

-•HHHHf»«»««FOUNDATION PARAMETERS*-

FI

40.00

GAMA

18. 8G

HTF

G.OO

THE UEDTH OF CURUE: SHAPE IG»»»»»» »««<hhhh». g.B41

HALF UIDTH OF UNIFORM CROSS SECTION IS*** .OOG

2-D
(SPENCER)

3-D

FS THET RNORM

2.375 14.833 .000

2.408 11.B12 .000

3-D
CORDINARY) 2.420

Fig..E.4 Output Data for Program LEMIX
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PROGRAM LEMIXC INPUT, OUTPUT, TflPE5=INPUT, TAPEG=OUTPUT)
COMMON/MATL/' GAflA, GAMAF, C, CF, TF, TFF, RU, W2, W3, GU
COmON/GEOMl/ AXY, AYZ. SLFA, PLFA, YS, YF. HE. HF, SHE. SHF
COMMOM/GEOna/ R, RAD, EAREA, DX, D2, DTL, EK, FK
COMMOM/MISL/ hSLICE, hCOLUM, ITER, FW2, FW3, DISTRI
DIMENSIOH AXY(50,20).AY2(50,20),SLFA(50,20),PLFA(50),ALFA(50)
DIMENSION BAREA(50,20),THET(20)
DIMENSION RAD(20 ) . YS(50 ) . YP(50 ) . SHE(50, 20 ) . SHF(50, 20

)

DIMENSION HE(50,20),HF(50,20).YE(50).Yr(50),DISTRI(20)
DIMENSION X(20 ), XX(50),YY(50),2Z( 50 ),DX(50),ZC50, 20), 02(50,20)
DIMENSION FU2(50),FW3(50,20),WH(50,20),U2(50),U3(50,20)
EXTERNAL FCN

c •••*•««>•••**••«**«•«••••••••••«•••«••«••••••««•••««••••«*«»««««««

C INPUT PARAMETERS

C ••••»••««••»•»••«*»«•••»••••••••»**«••»*»»•»•»•««»»»«»««»«»«»»„„

READ 1000, C,FI,GAMA,RU,BETA,H,EK,GU
READ 1010, CF.FIF. GAMAF, HTF,FK
READ 1020. RXY,R2.CX1,Y,NCCLUM,NSLICE.IFTC
READ 1030, TUOO,EX,FACTS,FACTR,NSP,NRL,ICOND,IPRINT
TC1=1 .33*C»SQRT( ( 1 .+SIN(FI/57.295??951 ))/(!. -SINCFI/Sf.SSSrFSSl ) )

)

* /-GAMA
IFCIFTC .EQ. 0) TC1=0.
PRINT 2000, H,BETA,NSLICE,NC0LUM,RXY,RZ,CX1,Y,TC1,EX
PRINT 2010
PRINT 2020, CFI.GAMA.RU
PRINT 2030
PRINT 2040, CF,FIF, GAMAF, HTF
R=RXY
ENA=R«R/(R2*R2)
FI=FI/'57. 29577351
FIF=FIFx57. 29577351
TF=TAN(FI)
TFF=TAN(FIF)
BETA=BETA/57 . 23577951
TB=TAN(BETA)
RU=RU*GAMA

C •••••*••*•••*»•*•••••••••»••••••«••«»««••»*•»•»»••«•«•«»««»«„»,

C GEOMETRY OF THE SLOPE

C

THET1=ASIN(Y/R)
XC=R«COS(THETl)
HX=XC-CX1
THET2=ATAN ( Y/- ( XC-HX )

) -THETl
EF=H/SIN(BETA)
0E=Y/SIN(THET1+THET2)
OF=SQRT ( EF«*2+0E**2-2 . •EF»OE»COS ( THET1+THET2+BETA )

)

THET3=ASIN(H»SIN(THET1+THET2+BETA)/'(SINCBETA)*0F))
T0THET=THET1 +THET2+THET3+BETA
RSIN=R»SIN(THET1+THET2+THET3)
IF(RSIN-(Y+H)) G,5,5

5 THET4=3.141532S-ASIN(0F«SIN(THET1+THET2+THET3)/R)-THET1-THET2
• -THET3
GO TO 7

B THET4=3. 141592S-ASIN(0E«SIN(THET1+THET2+BETA)/'R)-T0THET
7 Y0=OE«SINC3.141532S-THETl-THET2-BETA)/COS(BETA)
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CX2=XC-HX-H/TB
CX3=R»C0S ( THET 1+THET2+THET3+THET4

)

TT1=THET1ij5?.295?7951
TT2=THET2-57 . 29577951
TT3=THET3«57. 29577951
TT4=THET4<:-57. 29577951

ANG1=ASIN(SIM(THET1)+TC1/R)
ANGLE=THET1+THET2+THET3+THET4-ANG1
DftliGLE=AHGLE/'FLOflT ( NSL I CE

)

C READ INITIAL GUESS UALUES FOR SECANT METHOD

ITER=1
TWODI=TWOD
DO B20 IS=1.NSP
READ 1040. X(1),X(2)
X(2)=X(2)/57. 29577351

C CALCULATE THE HEIGHT, THE WIDTH, AND THE DIP FOR EACH SLICE

ETl=ANGl+0 . 5»DANGLE

K=0
10 K=K+1

I=K
XX(K)=R«C0S(ET1)
CK=XX(K)-CX1
IF(CK .LT. 0.) GO TO 50
ZZ(K)=R»SGRT((SIN(ET1)««2-SIN(THET1)»»SVENA)
IFCITER .EG. 2) GO TO 40
YV(K)=R»SIN(ET1) .:)
YS(K)=YY(K)-Y '';

IF(YY(K) .GT. (Y+HTF)) GO TO 20
YE(K)=YS(K)
YF(K)=0. '

^
GO TO 30 . - ^: ;

20 YF(K)=YY(K)-(Y+HTF) *.
YE(K)=YS(K)-YF(K)

30 ALFA(K)=ET1
DX(K)=R*DANGLE»SIN(ET1)

40 ET1=ET1+DANGLE
GO TO 10

50 1=1-1
ET2=ET1

60 1=1+1
L=I
XX(I)=R»C0S(ET2)
IF(THET4 .LT. 0. .AND. XX(I) .LE. CX3) GO TO 150

IFCXXCn .LT. CX2) GO TO 100
ZZ(I)=SQRT((R»R-XX(I)«*2-CXX(I)«TB-Y0)»»2)/'ENA)
IF (ITER .EQ. 25 GO TO 90
DX(I)=R*DANGLEeSIN(ET2)
YY(I)=R*SIM(ET2)
YS( I )=YY( I )-Y-Y»TB/TAN(THETl+THET2)+XX( D-TB
IF(YY(I) .GT. (Y+HTF)) GO TO 70
YE(I)=YS(I)
YF(I)=0,
GO TO 80

70 YF(I)=YY(I)-(Y+HTF)
YE(I)=YS(I)-YF(I)

80 ALFA(I)=ET2
90 ET2=ET2+DANGLE
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GO TO GO

100 IF(THET4 .LT. DAMGLE) GO TO 150
L=L-1
ET3=ET2

110 L=L+1
XX(L)=R»C0S(ET3)
IFCXXCL) .LT. CX3) GO TO 150
IF(L .GT. IHSLICE) GO TO 150
2Z(L)=SQRT((R*R-XX(L)»»2-(Y+H)*«2)/ENA)
IFCITER .EQ. 2) GO TO 140
DX(L)=R»DANGLE*SIM(ET3)
YY(L)=R»SIN(ET3)
YS(L)=YY(L)-R*Siri(flMGLE+ANGl)
IF(YY(L) .GT. (Y+HTF)) GO TO 120
YE(L)=YS(L)
YF(L)=0.
GO TO 130

120 YF(L)=YY(L)-Y-HTF
YE(L)=YS(L)-YF(L)

130 ftLFA(L)=ET3
140 ET3=ET3+DAMGLE

GO TO 110

150 IFCITER .EQ. 2) GO TO 200
DO IGO I=1.(NSLICE-1)
YP(I + l) = (YS(I)+VS(I+l))/'2.

IGO CONTINUE
YP(1)=TC1
DO 170 I=1,NSLICE
PLFA( I )=1 . 5707Se3-ALFAC I)

170 CONTINUE

C CALCULATE THE WEIGHT OF EACH SLICE AND WATER PRESSURE IM
C TENSION CRACK

DTL=1.
FW2 CI ) =0 . 5«TC 1 ••2»GW*DTL
DO 180 I=2,NSLICE
FW2CI)=0.

180 CONTINUE
DO 190 I=1,NSLICE
W2CI)=CYECI)«GAMA+YFCI)*GAMAF)«DXCI)«DTL

190 CONTINUE ,:-

C «•»»••««••••••»*•••••••••»•»•••«•••»*••••«••••**•«•••»••*••*»•»

C SOLUE 2-D FACTOR OF SAFETY

RNORI1=0.
CALL SECANTCX.2.FCN,7,RN0RM)
FS=XC1)
SETA=XC 2) •57. 29577951
RN0R1=RN0RN

C •»»»»«••«•«•»»»••»»•«»»•••#«»•••••••*•*••«••••••••*»•»*«•»•*•••**

C GENERATE 3-D COORDINATES

C FIND THE MAXIMUM WIDTH OF SPOON SHAPE FAILURE SURFACE

200 BIG=22C1)
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DO 310 I=2,NSLICE
AB=ZZ(I)
IF(BIG-AB) 300,310,310

300 BIG=AB
310 CONTIMUE

DTL=BIG/(FL0AT(NC0LUM)-1.

)

TCX=R«COS(AtSGn
SENSE=(1.-(C0S(ANG1))««2-(SIN(THET1))**2)/ENA
IFCSENSE .LT. 0.) SEMSE=0.
TCZ=R*SQRT( SENSE)

C CALCULATE THE HEIGHT, SIDE HEIGHT, WIDTH, DIP, AND BOTTOM AREA FOR
C EACH COLUMN

RAD(1)=R
DO 350 J=2,NC0LUM
RAD ( J ) =SQRT ( R«R- ( ( J- 1 . 5 ) -DTL ) *»2*ENA

)

DO 340 I=1,NSLICE
IFCZZCI) .LT. (J-2.)»DTL) GO TO 330
IF(J .ED. NCOLUM) GO TO 320
IFCZZCI) .GT. CJ-2.)»DTL .AND. ZZCI) .LE. CJ-1..)»DTL) GO TO 320
DZCI,J)=DTL
ZCI.J)=DZCI.J)»0.5+(J-2.)»DTL
YHC=SQRTCR«R-XX(I)»»2-ENA«CCJ-1.5)»DTL)»«2)
HFCI.J)=YHC-Y-HTF
IFCHFCI.J) .LT. 0.) HFCI,J)=0.
HECI,J)=YHC-CYVCI)-YSCI))-HFCI,J)
IFCHECI.J) .LE. 0.) HECI,J)=0.
SH=SQRT C R«R-XX ( I ) *»2-ENA*C C J-2 . ) "DTL ) ••2

)

SHFCI,J)=SH-YHHTF
IFCSHFCI.J) .LT. 0.) SHFCI.J)=0.
SHECI,J)=SH-(YYCI)-YSCI))-SHFCI,J)
IFCSHECI.J) .LE. 0.) SHE(I.J)=0.
AXY C I , J ) =ATAN C XX ( I ) /SORT C R»R-XX C I ) •»2-ENA»Z ( I , J ) <*2 )

)

SLFACI,J)=ATANCXXCI)/SQRTCR»R-XX(I)»*2-ENA»CCJ-2.0)*DTL)**2))
AYZ C I . J ) =ATAN ( ENA*Z ( I , J ) /SORT ( R«R-XX ( I ) •»2-ENft*Z C I , J ) «*2 )

)

W3CI,J)=DXCI)»DZ(I,J)»CGAMA»HECI,J)+GAHAF«HFCI,J))
BAREACI,J)= DXCI)«DZCI,J)»CSQRTC1.-CSINCAYZCI,J))»SINCAXYC1,J)))

1 *«2))/(C0SCAYZ(I,J))«C0SCAXYCI,J)))
GO TO 340

320 DZ(I,J)=Z2(I)-CJ-2.)«DTL . ..

ZCI,J)=DZCI.J)/'2. + CJ-2.)«DTL ^
••

•

,
•

YHC=SQRT C R«R-XX ( I) **2-ENA»Z C I , J ) ••2

)

HFCI,J)=YHC-Y-HTF
IFCHFCI.J) .LT. 0.) HFCI,J)=0.
HECI,J)=YHC-CYYCI)-YSCI))-HFCI,J) *
IFCHECI.J) .LE. 0.) HECI,J)=0.
SH=SQRT C R«R-XX C I) •*2-ENA« C C J-2 . ) "DTL )**2

)

SHFCI,J)=SH-Y-HTF
IFCSHFCI,J) .LT. 0.) SHFCI,J)=0.
SHECI,J)=SH-CYY(I)-YSCI))-SHFCI,J)
IFCSHECI.J) .LE. 0.) SHECI,J)=0.
AXYCI,J)=ATAN(XXCI)/'SQRTCR»R-XXCI)**2-ENA*ZCI,J)«»2))
SLFACI,J)=ATAN(XXCI)/SQRT(R»R-XXCI)**2-ENfl«CCJ-2.0)*DTL)»»2))
AYZ C I , J ) =ATAN ( ENA»Z C I , J ) /SORT C R*R-XX C I ) •*2-ENA*Z C I , J ) ••2 )

)

W3CI,J)=DXCI)«DZCI,J)»CGAMA«HECI,J)+GAMAF*HFCI.J))
BAREACI,J)=DXCI)»DZCI,J)*CSQRTC1.-CSINCAYZCI,J))*SINCAXYCI,J)))

1 •*2))/'CC0SCAYZCI.J))«C0SCAXYCI,J)))
IF(HECi,J) .LE. 0. .AMD. HFCI,J) .LE. 0.) BAREACI, J)=0.
GO TO 340

330 DZ(I,J)=0.
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Z(I.J)=0.
HE(I,J)=0.
HF(I,J)=0.
SHE(I,J)=0.
SHF(I,J)=0.
AXY(I,J)=0.
AYZ(I,J)=0.
SLFA(I,J)=0.
U3(I,J)=0.
BflREA(I.J)=0.

340 CONTINUE
350 CONTINUE

C THIS PART DEALS WITH UNIFORM CROSS SECTIONS

TW0D=TUODI
DO GIO IU=1,NRL
C2D=TW0D»H
DO 3B0 I=1,NSLICE
DZ(I,1)=C2D
AXY(I.1)=PLFA(I)
BAREA ( I , n =DX ( I) *C2D''C0S ( AXY ( 1 , 1)

)

W3(I,1)=U2(I)«C2D
HF(I,1)=YF(I)
HE(I.1)=YE(I)
SHE(I,n=YE(I)
SHF(I,1)=YF(I)
SLFA(I,1)=PLFA(I)

C CALCULATE WATER PRESSURE IN 3-D TENSION CRACK

360 CONTINUE
DO 330 J=2,NC0LUM
IFCTCZ .LE. (J-1.)*DTL) GO TO 380
IF(TC2 .GT. (J-1.)»DTL .AND. TCZ .LE. J*DTL) GO TO 370
WH(1,J)=SQRT( R*R-TCX»»2 . -ENA* ( ( J*DTL) ^2 . ) •*2 .

) -Y
FW3 ( 1 . J ) =0 . 5»GUI*DTL«WH (1 , J ) **2
GO TO 330

370 WH(l,J)=SQRT(R»R-TCX»TCX-ENA«((TCZ+(J-l.)»DTL)»*2./'4.))-Y
FW3(1,J)=0.5»GW*(TCZ-CJ-1.)«DTL)«WH(1.J)»*2
GO TO 390

380 FW3(1.J)=0.
390 CONTINUE

WH(1.1)=TC1
FW3(1,1)=0.5*GW*C2D«TC1««2.

1000 FORMAT(SF10.2)
1010 FORMAT(5F10.2) ,

' '•
'

DO 400 I=1,NSLICE
SHE(I.NC0LUM+1)=0.
SHF(I,NCOLUN+1)=0.
SLFA(I.NCOLUM+1)=0.

400 CONTINUE
DO 410 I=2,NSLICE
DO 410 J=1,NC0LUN
WH(I,J)=0.
FW3(I,J)=0.

410 CONTINUE

IFCIPRINT .EQ. 0) GO TO 440
PRINT 2050
DO 430 J=1,NC0LUM
DO 420 I=1.NSLICE
XYA=AXY( I, J )*57. 29577351
VZA=AY2 ( I , J ) •57 . 29577951
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PRINT 20G0, I,J,DX(I).DZ(I.J).HE(I.J)tHF(I,J).XYfl.YZfl.
• BAREfl(I.J).U3(I,J)
IF (J .EQ. NCOLUM) GO TO 420
IF(I .EQ. MSLICE) PRINT 2050

420 CONTINUE
430 CONTINUE
440 CONTINUE

C •••••»•«•••••••«»»»«•»»••»••»»••»*•»••«••»•#**•***•••«••••••••••»

C SOLUE 3-D FACTOR OF SAFETY

C ASSUMING INTER-COLUMN SHEAR STRESSES DISTRIBUTION

DISTRI(1)=0.
DO 500 J=2, (NCOLUM+1)
DISTRI(J)=((C2D+(J-2.))/((NC0LUM-l.)»DTL+C2D))»*EX

500 CONTINUE

ITER=3
RNORM=0.
X(1)=FS
X ( 2 ) =SETA/57 . 2357795

1

CALL SECANT(X,2,FCN.7,RN0RM)
DEGREE=X(2)*57. 23577951
RNDR2=RN0RM
PRINT 3020, BIG
PRINT 3030, C2D
PRINT 3040 .,

PRINT 3050, FS,SETA.RN0R1 -•
' ' -; " ">

PRINT 30S0, X(l). DEGREE, RN0R2
IFCICOND .EQ. 0) GO TO GIO

C CALCULATE FACTOR OF SAFETY FROM ORDINARY METHOD OF COLUMNS

FST=0

.

FSB=0.
DO 550 J=1,NC0LUM
DO 540 I=1,NSLICE
IF(HE(I,J) .EQ. 0. .AND. HF(I,J) .EQ. 0.) GO TO 540
HRE=HECI,J)/'(HE(I,J)+HF(I,J))
HRF=1.-HRE
IFCHFCI.J)) 510,510,520

510 PA=C
PB=TF : ':: ''•'^:-

]

GO TO 530 '
:,•

-

520 PA=CF -'^- ' '
PB=TFF

530 FST=FST+PA»BAREA ( I , J ) +W3 ( I , J ) *PB« ( 1
. -RU*( HRE^GAMA+HRF/GAMAF ) )/

(

• SQRT(l.+TflN(ftXY(I,J))»»2.+TAN(AYZ(I.J))«*2))
FSB=FSB+W3(I,J)»SIN(AXY(I,J))+FW3(I,J)«(Y+2.«UH(I,J)/3.)^RAD(J)

540 CONTINUE
550 CONTINUE

FSORD=FST/FSB
PRINT 3070,F50RD

BIO TUOD=TUOD*FACTR
ITER=2

G20 ENA=ENA/(FACTS»FACTS)

1020 FORMAT(4F10.2,3I5)



2k9

1030 FORMAT(4F10.2,4I5)
1040 FORMAT(2F10.2)
2000 F0RriAT(44Hl EMBANKMENT HEIGHT*«*»««»*»*«»»»»*»*****»**, F10.3.//

1 44H SLOPE ANGLE*«»-s»**»»»*-»»«»»»»*»»»*«**»«*»«,F10.3»/'/'
S 44H NUMBER OF SLICES^»»**«***»»»»»»»»«**«*»«»*, IlOi //
3 44H NUMBER OF COLUMNS«»«»«»»*«»*»*»»»»»»»»««««, 1 10. //
4 44H BIG RADIUS*»**«»*»*»«»*«»*»«»»*»»**»»»»»»*»,F10.3»/'/'
5 44H SMALL RADIUS-»»««»»»««*»»»««»»*»«»*»»»«*«»», FIO .3» //
6 44H X-DIST. FROM CENTER TO CREST»***»»»»*««***,F10.3./'/
7 44H Y-DIST. FROM CENTER TO CREST»»*»»**»«***»*, F10.3.//'
8 44H TENSION CRACK»*»«»»*»*»*«*«»»»»«»**»»»***«, F10.3. //
9 44H EXPONENTIAL NUMBER»»»««*»»»»»»«»««»»»»*««»,F10.3f//'/')

2010 FORMAT (/'/'/,?:«*»*»*»»»«EMBANKNENT PARAMETERS*********?^, ///)
.2020 FORMAT (40H C FI GAMA RU, //, 4F10.2)
2030 FORMAT(///'.?:»*»»»*«»««FOUNDATION PARAMETERS*********?!)
2040 FORMAT(/'/',40H C FI GAMA HTF,/'/,4F10.2/'/'/

2050 FORMATCIOGHI I J DX DZ HE HF
• AXY AYZ BAREA WEIGHT /)

2060 FORMAT(2I5.GF10.2.2F14.2)

3020 F0RMAT(45H1 THE WIDTH OF CURUE SHAPE IS************** ,F10.3^)
3030 F0RMAT(45H HALF WIDTH OF UNIFORM CROSS SECTION IS*** .F10.3/'/'/

3040 F0RMAT(17X.?i FS THET RNORMp^,/)
3050 F0RMAT( 4X, ;:2-D?i/, 2X, ?!( SPENCER );*.3X,3F 10. 3//)
30G0 FORMAT(4X,;i3-D;^,7X,3F10.3//)
3070 FORMAT(4X.^3-D?i/.lX,si(0RDINARY)?i,3X,F10.3)

STOP
END

SUBROUTINE FCNCX.F.UDF)
COMMON/MATL/ GAMA, GAMAF, C, CF.TF, TFF,RU,U2. W3,GW
COMMON/GEOMl/ AXY, AYZ, SLFA, PLFA, YS, YF, HE, HF, SHE, SHF
C0MM0N/GE0M2/ R, RAD, BAREA, DX, DZ, DTL, EK, FK
COMMON/MISL-' NSLICE,NCOLUM, ITER, FW2,FW3, DISTRI
DIMENSION HE(50,20),HF(50,20),YS(50),YYF(50,20).DX(50)
DIMENSION AXY(50,20),AYZ(50,20).SLFA(50,20),PLFA(50),YF(50)
DIMENSION SHE(50,20),SHF(50,20),DISTRI(20)
DIMENSION FW2(50),W3(50,20),W2(50).FW3(50,20),BAREA(50,20)
DIMENSION RAD(2D),DZ(50,20).X(20),F(20)
F(1)=0.
F(2)=0.
RG=GAMA/'GAMAF
IF(ITER.EQ.3) GO TO 740

DO 730 I=1,NSLICE

IF(YF(I)) 700,700,710
700 PA=C

PB=TF
GO TO 720

710 Pft=CF
PB=TFF

"720 F(1)=F(1)+
1 (PA*DX( I)«DTL/(X( 1 )*COS(PLFA( I ) ) )+PB»(W2( I )«COSCPLFA(I)

)

2 -RU»YS(I)*DX(I)*DTL-^C0S(PLFA(I)))/'X(1)-W2(I)»
3 SIN(PLFA( I ) )-FW2( I )*(COS(PLFA( 1 ) )+SIN(PLFA( 1 ) )*PB/X( 1 ) )

)
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4 /(C0S(PLFA(I)-X(2))»(1.+TAN(PLFA(I)-X(2))*PB/XC1)))

/^^^"'^^^'*(Pft*DX(I)*DTL/(XCl)*C0S(PLFfl(n))+PB»(W2(I)»C0S(PLFA(I))
2 -RU»YS( I )*DX( I)»DTL/COS(PLFA( I ) ) )/X( 1 )-WE( I)*

3 SIIS(PLFA( I ) )-FW2( I )»(COS(PLFA( 1 ) )+Siri(PLFA( 1) )*PB/X( 1 ) ) )

4 /(l.+TAN(PLFA(I)-XO))»PB/X(l))
730 CONTINUE

GO TO 800

740 DO 790 J=1,NC0LUM
DO 790 I=1.NSLICE

WEIGHT=W3( I . J) «COS( AXY( I , J)

)

FWC=FW3(I,J)*C0S(AXY(I.J))
DZT=DZ(I,J)«TAN(AYZ(I.J))
TF1=TAN(AXY(I,J)-SLFACI,J))
TFe=TANi:SLFA( I. J+1 )-AXY( I, J)

)

IF(SHE(I.J) .EQ. 0. .AND. SHF(I.J) .EQ. 0.) GO. TO 750
YYF(I.J)=(RG»SHE(I.J)+SHF(I,J)/3.)*SHF(I,J)/(2.«RG»SHE(I.J)+

• SHF(I.J))

RCEl=C*DX(n*SHE(I.J)
RCF1=CF*DX(I)*SHFCI,J)
RSEl=0.5«EK*(GAMA-RU)»SHE(I.J)»«2*DX(n»TF
RSFl=FK*((GAnA-RU)«SHE(I»J)«SHF(I.J)+0.5»(GAMAF-RU)«SHF(I.J)««2) -.

• »DX(I)»TFF
RCE2=C*DX(I)*SHE(I.J+1) ..• .•

RCF^=CF»DX( I)*SHF( I . J+1)
RSE2=0 . 5«EK» ( GAMA-RU ) "SHE ( I , J+ 1) ••2»DX ( I ) *TF ^

'

RSF2=FK« ( ( GAMA-RU ) •SHE ( I . J+ 1 )SHF ( I , J+ 1 ) +0 . 5» ( GAMAF-RU ) "SHF (I . J+ 1

)

• »»2)»DX(I)*TFF
R1=(RCE1+RCF1+RSE1+RSF1)*DISTRI(J)
R2=(RCE2+RCF2+RSE2+RSF2)«DISTRI(J+1) *.:
T0TR1=R1*C0S(SLFACI.J)-AXY(I.J)) • -

•

T0TR2=R2*C0S(AXY(I,J)-SLFA(I.J+1)) ^ _,,,^^^ ,^ ^ „^^
RSl=RCEl«(B.tSHF(I,J)+3.*SHE(I.J)-3.«DZT)+RCFl«(3.«SHF(I.J)-3.«DZT

• )+RSEl»(B.«SHF(I,J)+2.«SHECI.J)-3.*DZT)+RSFl»(G.»YYF(I,J)-3.*DZT)-
RS2=RCE2«(E.»SHF(I.J+1)+3.«SHE(I.J+1)+3.*DZT)+RCF2*(3.*SHF(I.J+1)+

• 3.»DZT)+RSE2*(S.»SHF(I,J+1)+2.»SHE(I.J+1)+3.*DZT)+RSF2*(6.*
« VYF(I.J+1)+3.»DZT)
RR1=RS1»DISTRI(J)
RR2=RS2*DISTRI(J+1) '

•

- ;..;• .:,.%::.\

750 IF(HF(I»J)) 7GO,7G0.770

7B0 PA=C
PB=TF
GO TO 780

770 PA=CF
PB=TFF

780 COHESN=PA»BAREA(I.J) .^.,..,, ,,, ,.„r,-r

PDRPRE=RU«BAREA ( I , J ) • ( HE ( I . J )+HF ( I . J ) ) •PB/ ( COS ( AXY ( I , J ) ) "SORT
• (l.+TAN(AYZ(I,J))»«2+TAN(AXY(I.J))**2))

1
~

tCOHESN/XCn-PORPRE^X(l)+WEIGHT»(PB/X(l)-TAN(AXY(I.J)))+
2 (T0TR2»( 1 -PB»TF2/'X( 1 ) )-TOTRl»( 1 .+PB»TF1/X( 1 ) ) )/X( 1 )-FWC

3 •(i.+PB»TAN(AXY(I,J))/'X(l)))/(C0SCAXY(I.J)-X(2))«(l.+PB»
4 TAM(AXY(I.J)-X(2))/'X(1)))
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790
800

F(2)=F(2)+RAD(J)»

CONTItSUE
COtSTIMUE
RETURN
END

( COHESN/X ( 1 ) -PORPRE/X ( 1 ) +WE IGHT* ( PB/X ( 1 ) -TAN ( AXY ( I . J ) ) ) +

(T0TR2»( 1
. -PB«TF2/X( 1 ) )-TOTRl*( 1 . +PB»TF1/X( 1 ) ) )/X( 1)-FWC

•(l.+PB»TftN(AXY(I.J))/'X(l)))/Cl.+PB»TAN(AXY(I.J)-X(2))
/XCID)
-C0S(X(2)-ftXY(IiJ))*C0S(AXY(I. J))•(C0S(SLFA(I,J+1))»RR2-
C0S(SLFA(I.J))*RR1)/(G.»C0S(X(2))»X(1))
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E.3 User's Guide for Program FESPON

1. Control Cards

a) Heading Card (12A6)

2-72 HED - Title card for program identification

b) Control Data Card (915)

1- 5 NUMELT - Total niomber of elements in the complete structure

6-10 NUMNPT - Total nvonber of nodal points in the complete structure

11-15 NFEL - Number of elements in the foundation part

16-20 NFNP - Number of nodal points in the foundatfon part

21-25 NUMCEL - Number of elements in the preexisting part

26-30 NUMCNP - Number of nodal points in the preexisting part

31-35 NUMMAT - Number of different material types

36-itO NLAY - Nxjmber of construction layer increments

Ul-1^5 NFORCE - Number of load increments after construction

2. Material Property Cards

a) Units Conversion Card (FIO.O)

1-10 PATM - Atmospheric pressure expressed in the system of

units used in the problem.

For example: Length Unit Weight Cohesion Atmospheric
Pressure

ft ton/ft ton/ft^ 1.058

ft kip/ft 2 kip/ft^ 2.116

ft lb/ft ^
" Ib/ft^ 211.62

m ton/m ton/m 10.35

m kN/m^ kN/m^ 101.4

b) Material Properties (l5,TF10.0/i+F10.0)

The first and second cards must be specified for each material.
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First . Card

1- 5 M - Material type number

6-15 EMPR(M, 1) - Unit weight

16-25 EMPR(M, 2) - Modulus number K

26-35 EMPR(M, 3) - Unloading-reloading modulus number K

36-1+5 EMPR(M, k) - Modulus exponent n

U6-55 EMFR(M, 5) - Poisson's ratio parameter d

56-65 EMPR(M, 6) - Poisson's ratio parajneter G

66-75 EMPR(M, T) - Poisson's ratio parameter F

Second Card

1-10 EMPR(M, 8) - Cohesion c

11-20 EMPR(M, 9) - Friction angle (aegrees)

21-30 EMPR(M,10) - Failure ratio R^

31-^0 EMPR(M,11) - Earth pressure coefficient in the foundation

Kq (zero or blank if the material is not in

the foundation).

3. Nodal Point and Boundary Condition Cards (I5,3F10. 0,315)

One card for each nodal point.

1- 5 N - Nodal point number

6-15 X(N) - X-coordinate (+ to right)

16-25 y(N) - Y-coordinate (+ up)

26-30 Z(N) - Z-coordinate (left-hand rule)

31-35 ID(N, 1) - Boundary condition code for X-direction

36-lj-O ID(N, 2) - Boundary condition code for Y -direction

Ul-^5 ID(N, 3) - Boundary condition code for Z- direction
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Nodal points must be read in sequence. If nodal points cards

are omitted, the nodal point data for a series of nodal points

are generated automatically at equal spacing between those speci-

fied. The boundary condition codes for the generated nodal point

are set equal to the boundary condition codes for the previous

nodal point. The first and the last nodal points m\ist be specified.

Boundary condition code:

Zero or blank indicates that the nodal point is free to move in

that direction and loads may be applied.

One indicates that the nodal, point is fixed in that direction.

k. Element Cards (1015)

One card for each element.

1- 5 N - Element number

6-10 INP(N,l) - Number of nodal point I

11-15 INP(N,2) - Number of nodal point J

l6-20 INP(N,3) - Number of nodal point K

21-25 INP(N,U) - Number of nodal point L

26-30 INP(N,5) - Number of nodal point M

31-35 INP(N,6) - Number of nodal point N

36-UO INP(N,T) - Number of nodal point

Ul-45 INP(N,8) - N\amber of nodal point P

U6-5O INP(N,9) - Material number

Elements must be read in sequence. The nodal point numbers must

be specified proceeding counterclockwise around each element in the

order I, J, K, L, M, N, 0, P as shown in Fig. E.l. If element

cards are omitted, the element data for a series of elements are

generated automatically by increasing the preceding values of I, J,
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r

Fig.-E.S Eight Point Three-Dimensional Element
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K L, M, N, 0, P by one. The material number for the generated

element is set equal to the material number for the previous

element. The first and last elements must be specified.

The center of the element is calculated by

XCP = w {X(I) + X(J) + X(K) + X(L) + X(M) + X(n) + X(0) + X(P)}
o

YCP = h- {Yd) + Y(J) + Y(K) + Y(L) + Y(M) + Y(N) + Y{0) + Y(P)}
o

ZCP = 5- {Z(I) + Z(J) + Z(K) + Z(L) + Z(M) + Z(N) + Z(0) + Z(P)}
o

5. Construction Layer Element and Nodal Point Cards (91?)

If NLAY = 0, these cards are omitted.

One card for each construction layer.

1_ 5 LN - Number of the construction layer, increasing

upweird from the bottom

6-10 N0MEL(LN,1) - Smallest element number of the nevly placed

elements in this layer

11-15 N0MEL(LN,2) - Largest element number of the newly placed

elements in this layer

16-20 NOMP(LN,l) - Smallest nodal point number of the newly placed

nodal points in this layer

21-25 N0MNP(LN,2) - Largest nodal point number of the newly placed

nodaJL points in this layer

26-30 NPHUMP(LN,1) - The first nodal point on the humped surface

3L-35 NPHUMP(LN,2) - The second nodal point on the humped surface

36-40 WPHUMP(LN,3) - The third nodal point on the humped surface

UI-U5 NPHUMP(LN,1+) _ The fourth nodal point on the humped surface
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For simplicity, the position of the "humped surface" is

defined by the coordinates of the four nodal points on the central

section (z = 0). To the left of the first nodal point and to

the right of the fourth nodal point the surface is assumed to be

horizontal.

6. Foundation Cards

If NFEL = 0, these cards are omitted.

a) Control Card (I5,F10.0)

1- 5 HFLAY - Number of layers of elements in foundation

The maximum number of foundation layers is 10.

6-15 HFLEV - Elevation of rigid base at bottom of foundation.

b) Layer Information Cards (i+I5,F10.0)

1_ 5 I - Foundation layer number (Number from bottom

upvard)

6-10 MATNO(I) - Material property number for this layer

11-15 NLEL(I) - The first element number of this layer

16-20 NREL(I) - The last element number of this layer

21-30 HL(I) - Elevation of the top of this layer

7. Force Cards

If NFORCE = 0, these cards are omitted.

If NFORCE ^ 1, NFORCE sets of cards, each set consisting of types

(a) through (b) below, are required.

Nianber of Nodal Point Force Cards to be Used (I5)

1- 5 NUMFC - Number of nodal point force cards for this load case
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b) Nodal Point Force Cards (I5,3F10.0)

If NUMFC = 0, these cards are omitted. Otherwise need NUMFC cards,

1- 5 MM - Nodal point number where force is applied

6-15 FX(MM) - X-component of force applied at MM (+ to right)

16-25 FY (mm) - Y-component of force applied at MM (+ up)

26-30 FZ(MM) - Z-component of force applied at MM (right-hand

rule)

8. Geometry Cards

a) The Direction of the Movement Card (215)

1- 5 IFXY - One, if the movement of the failure mass is

along X-Y plane; otherwise zero

6-10 IFYZ - One, if the movement of the failure mass is

along Y-Z plane; otherwise zero

b) N;amber of Layers Card (215)

1- 5 LAYSUM - Total number of layers

6-10 MFLAY - Number of layers in the foundation

c) Elevation Information Cards (8FIO.O)

1- 5 HEIGHT(l) - Elevation at the top of layer 1

6-10 HEIGHT(2) - Elevation at the top of layer 2

Elevation must be read in sequence from the lowest value

to the highest value. They are read in the same card.

d) Foxmdation Element Number Cards (215)

1- 5 MLEL(M) - The first element number of foundation layer M

6-10 MREL(M) - The last element nvmiber of foundation layer M
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The number must he read from the lowest layer to the

highest layer of foundation. The number of these cards are

equal to the number of layers in the foundation

e) Embankment Element Number Cards (215)

1- 5 M0MEL(LP,1) - The first element number of embank-

ment layer LP

6-10 M0MEL(LP,2) - The last element number of embank-

ment layer LP

The number must be read from the lowest layer to the

highest layer 'Of embankment. The number of these cards are

equal to the number of layers in the embankments.

9. Factor of Safety Cards

A. If IFXY = 0, these cards are omitted

a) 2-D Critical Circle Information Card (6f10.3,I5)

1-10 XO - X-coordinate of the toe

11-20 YD - Y-coordinate of the toe

21-30 BETA - The angle of the slope on X-Y plane in

degrees

31-1|0 RU - Pore pressure parameter

Ul-50 GAMAE - Mean unit weight or density of embankment

soil

5I-6O GAMAF - Mean vmit weight or density of foundation

soil

61-65 NTIME - Number of critical surfaces selected
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b) 3-D Critical Surface Information Cards ( 7F10. 3,215/15)

1-10 RADIUS - The radius of the critical circle R
xy

11-20 RZ - The length of minor axis, R , of the

semi-ellipsoid

21-30 DMGLE - AG, the spacing of selecting the points

on the failure circles along X-Y plane .

31-1*0 XR - X-coordinate of the center of the

ellipsoid

kl-3Q YR - Y-coordinate of the center of the

ellipsoid

51-60 ZR - Z-coordinate of the center of the

ellipsoid

61-70 DZ - Az, the spacing of selecting the points

interested along Z-direction

71-75 NUMBER - The number of the sections divided along

Z-direction in the embankment

76-80 NUMBF - The number of the sections divided along

Z-direction in the foundation

Next Card

1- 5 ISI(2I - +1, the semi-ellipsoid on the right side

of the central plane is chosen; -1, the

left side is chosen. This choice provides

the convenience to calculate the factor

of safety if the failure mass is not

symmetrical
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These cards are repeated for as many times as the

number of failure surfaces selected.

B. If IFYZ = 0, these cards are omitted

a) 2-D Critical Circle Information Card (6F10.3,I5)

1-10 YO - Y-coordinate of the toe

11-20 ZO - Z-coordinate of the toe

21-30 BETA - The angle of the slope on Y-Z plane, in

degrees

31-UO RU - Pore water pressiore parameter

Ul-50 GAMAE - Mean vtnlt weight or density of embankment

soil

5I-6O GAMAF - Mean unit weight or density of foundation

soil

61-65 NTIME - Number of critical surfaces selected

b) 3-D Critical Surface Information Cards (7F10. 3,215/15)

1-10 RADIUS - The radius of the critical circle, R

11-20 RX - The length of minor axis, R^, of the

semi-ellipsoid

21-30 DANGLE - AS, the spacing of selecting the points

on the failure circles along Y-Z plane

31-liO XR - X-coordinate of the center of the

ellipsoid

UI-50 YR - Y-coordinate of the center of the

ellipsoid

51-60 ZR - Z-coordinate of the center of the

ellipsoid
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6I-7O DX - Ax, the spacing of selecting the points

interestea along X-direction

71-75 NUMBER - The number of the sections divided along

X-direction in the embankment

76-80 NUMBF - The number of the sections divided along

X-direction in the embankment

Next Card

1- 5 ISIGii - +1, the semi-ellipsoid on the right side

of the central plane is chosen; -1, the

' left side is chosen. This choice pro-

vides the convenience to calculate the

factor of safety if the failure mass is not

symmetrical.

These cards are repeated for as many times as the

number of failiire surfaces selected.
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PROGRftM FESPOW ( IMPUT. OUTPUT, TflPEl . TfiPE2. TAPE3. TftPE4, TflPE7. TAPES.
1 TftPES.TAPElO.TAPEll.PUMCH)
COMMON /ISOP/ El, E2.E3.RR(8).2Z(8), 00(8). LM(24),P(24), 5(33,33).

1 STR(G,33).STS(G,24).UJAC
DIMEMSIOM HED(12),T(10)

C
C PROGRAM CAPACITY CONTROLLED BY THE FOLLOWING TWO STATEMENTS
C

COMMON A( 12000)
MT0TAL=12000

C
C PROGRAM CONTROL DATA
C
100 CALL SECOND CT(1))

READ 1000, HED,NUMELT,NUMNPT,NFEL,NFNP.NUMCEL,NUMCNP,NUMMAT.
1 NLAY.NFQRCE.NPUNCH
IF (NUMELT .EQ.O) STOP
PRINT 2000. HED
PRINT 20 10, NUMELT, NUMNPT,NFEL,NFNP, NUMCEL.NUMCNP.NUMMAT.NLAY.

1 NFORCE
NUNLD=NLAY+NFORCE
IF(NPUNCH.EO.O) GO TO 110
PRINT 2020
GO TO 120

110 PRINT 2030
120 CONTINUE
C
C BLOCK OUT UARIABLES IN A-UECTOR
C

Nl=l ' ' •'
-

•

N2=N1+13«NUMNAT
N3=N2+3»NUMNPT
N4=N3+NUMNPT
N5=N4+NUMNPT
Ne=N5+NUNNPT
N7=N6+9*NUMELT
N8=N7+NUMELT
N9=N8+NUMELT
N10=N9+NUMELT
N11=N10+NUMELT
N12=N11+NUMCEL+1
N13=N12+NUMCNP+1 '^ -

N14=N13+2*NUMLD
N15=N14+2«NUMLD
N1S=N15+4*NUMLD
N17=N1B+NPUNCH
N18=N17+NUMNPT
N19=N18+NUMNPT
N20=N1S+NUMNPT
N21=N20+B»NUMELT ;:..

N22=N21+e6NUMELT -
.

....
M23=N22+G»NUMELT ; .:..;. /(O" ':' "

NN1=N22+NUMELT ••.•.'.
N31=NNl+NUnELT '

.
...v

MTMN1G=MT0TAL-N17
NN2=N22+3»NUnNPT
IF(NN2.GT.N23) N23=NN2
IF(N23.LT.MT0TAL) GO TO 130
PRINT 5000
CALL EXIT

C
C READ AND PRINT INPUT DATA AND SET UP INITIAL CONDITIONS
C
130 CALL SETUP (A(N1), ACN2). A(N3),A(N4), A(N5). A(NG).ACN7), A(Na),

1 A(N9),A(N10).A(N11).A(N12).A(N13),A(N14).A(N15),A(N1G),A(N17).
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2 A(N20 ) . A(M21 ) , A(NS2) , ACMNl ) , A(N31) , NUMELT, MUMMPT. tSUMCEL.

3 NUtlCNP, ISFEL, NUMMAT. NUMLD. NLAY. NEQ. NEQB. MBAND. PATM. MTHMIGi
4 NMXEQB.ISPUNCH)
CALL SECOND (T (2))
N24=N23+tSEQ
N25=tH24+ISEQB
IF(N25.LT.I1T0TAL) GO TO 140
PRINT 5000
CALL EXIT

C
C FORM STRAIN-DISPLACEMENT MATRIX FOR ALL ELEMENTS , STORE ON TAPE 7
C
140 CALL F0MING(A(N3).A(N4),ACN5).A(N6). NUMELT)

CALL SECOND (T(3))
T(1)=T(2)-T(1)
T(2)=T(3)-T(2)
TIME=T(1)+T(2)
DO 400 LN=1, NUMLD
T(10)=0.
CALL SECOND (T(3))
PRINT 2000, HED

C
C DETERMINE CONTROL DATA FOR EACH LAYER
C

CALL CALNEQ (A(N2).A(N11),A(N12),A(N13).A(N14).ACN15), NUMELT,
1 NUMNPT, NUMCEL, NUMCNP, NUMLD, NLAY, LN, MBAND, NUMEL, NUMNP,
2 NELCAL, NNPCAL, NELRED, NNPRED, NEQ, NEQB, NBLOCK, NMXEQB)
CALL SECOND (T(4))
NN1=N20+NEQ

C
C SET UP LOAD UECTOR
C

CALL F0RCE(A(N1),A(N2),A(N3),A(N4),A(N5),A(NS),A(N11),A(N13),
1 A(N1?),A(N18),A(N13),A(N20),A(NN1), NUMELT, NUMNPT, NUMCEL, NUMMAT,
2 NUMLD, NLAY, LN, NEQ, NEQB. NUMNP)
CALL SECOND (T(5))
T(3)=T(4)-T(3)
T(4)=T(5)-T(4)
DO 300 IT=1,2 •

CALL SECOND (T(5))
C
C CALCULATE ELEMENT STIFFNESS MATRIX FOR ALL ELEMENTS, STORE
C ON TAPE 2
C CALCULATE STRESS-DISPLACEMENT MATRIX FOR ALL ELEMENTS, STORE
C ON TAPE 11
C

CALL BILDUP (A(N7),A(N8),A(N11).NUMCEL,NUMEL,
1 NELCAL, NELRED)
CALL SECOND (T(B))
NE2B=2«NEQB
NN1=N17+NE2B»MBAND
NN2=NN1+NE2B

C
C FORM TOTAL STIFFNESS MATRIX, STORE ON TAPE4
C

CALL ADDSTF( AC N17) , ACNNl ). NUMEL, NEQB, NE2B, NBLOCK, MBAND)
CALL SECOND CT(7))
NSB=(MBAND+l)eNEQB
NNN1=N17+NSB
NNN2=NNN1+NSB

C
C SOLUE FOR DISPLACEMENT UNKNOWNS
C

CALL SYMBANC A(N17) , A(NNNl) , A(NNN2) . NEQB, MBAND, NBLOCK. NSB,
1 4.3.1.2,2)
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CALL SECOMD (T(8))
C
C EUALUATE RESULTS
C

CALL RESULT(A(Nl),A(M2),A(N3).A(N4),A(n5),A(NG).A(M7),ACM3)t
1 A(N3),A(N10),A(Nll),A(N12),fl(MlS).A(M17nA(rH20).ft(N21),
2 A(N22 ) , A ( N22 ) . A ( N23 ) . A( h24 ) . PATM, MUnELT, fSUMNPT. MUMCEL . NUMCMP.
3 NUmAT, MUI1LD. NLAY, LN. IT, MPUHCH, MUMEL, INUMNP, MELCAL, mPCAL.
4 NNPRED.HEQ.NEQB.NBLOCK)
CALL SECOND (TO))
PRINT 2100
DO 250 1=5,8

250 T(I)=T(I+1)-T(I)
TO)=T(5)+T (G)+TC7)+T(8)
PRINT 2110,T(5),T(6),T(7),T (8),T (9)
IF( IT.LT.2) GO TO 280
T(10)=T(10)+T(3)+T (4)+T(9)
PRINT 2120, T(3),T(4),T (10)
TIME =TinE+T(10)
GO TO 300

280 T(10)=T(10)+T(9)
300 CONTINUE
400 CONTINUE

PRINT 2130, T(1),T(2),TIME
GO TO 100

1000 FORMAT (12AG/'l 015)
2000 FORMAT (1H1,12AG)
2010 FORMAT (/,

135H0TOTAL NUMBER OF ELEMENTS»*»«»»«*»» 13/
2 35H0TOTflL NUMBER OF NODES»»»*-»»*«»«»*-» 13/
335H0NUMBER OF ELEMENTS IN FOUNDATION** 13 /
435H0NUMBER OF NODES IN FOUNDATION***** 13 /
535H0NUMBER OF PREEXISTING ELEMENTS**** 13 /
635H0NUMBER OF PREEXISTING NODES******* 13 /
735H0NUMBER OF DIFF. MATERIALS********* 13 /
835H0NUMBER OF CONSTRUCTION LAYERS***** 13 /
9 35H0NUMBER OF LOAD CASES «»**«•»***** 13)

2020 FORMAT (43H0RESULTS ARE PUNCHED OUT FOR FOLLOWING LOAD CASES /)
5030 FORNAT(34H0FINAL RESULTS ARE NOT PUNCHED OUT /)
.5000 FORNATC// 17H STORAGE EXCEEDED)
2100 FORMAT(14H0SOLUTION TIME /) ,

2110 FORMATC/,
1 35H0FORM ELEMENT STIFFNESSES********** F8.2 /
2 35H0FORM TOTAL STIFFNESS************** F8.2 /
3 35H0EQUATION SOLUING«*»**«»**»**»***»* F8.2 /
4 35H0CALCULATE STRESSES AND STRAINS**** F8.2 /
5 35H0SOLUTION TINE FOR THIS ITERATION** F8.2)

2120 FORMATC/,
1 35H0DETERMINE CONTROL DATA************ F8.2 /
2 35H0FORM LOAD UECTOR****************** FB.2 /
3 35H0TOTAL TIME FOR THIS LOAD CASE***** F8.2)

2130 FORMATC 12H0OUERALL LOG /,
1 35H0DATi^ INPUT************************ F8.2 /
2 35H0FORN STRAIN-DISPLACEMENT MATRIX*** F8.2 /
3 35H0TOTAL SOLUTION TIME*************** F8.2)
END

SUBROUTINE SETUP CEMPR, ID,X, Y,2, INP,BULK,SHEAR,POIS,SLMAX,NCEL,
1 NCNP, NOMEL, NOMNP, NPHUMP, NLDP, DISP, STRESS, STRAIN, XCP, VCP, ZCP,
2 NUNELT, NUMNPT, NUMCEL, NUMCNP, NFEL, NUMMAT, NUMLD, NLAY, NEQ, NEQB.
3 MBAND, PATM, MTMNIG, NMXEQB. NPUNCH)
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DIMENSION EMPRCNUMMAT. 13) . IDCNUMNPT, 3) , X( 1 ) , Y( 1) . Z( 1

)

DIMENSION BULKC 1 ) , SHEARC 1 ) . POISCl ) . SLMAXC 1 ) , XCP( 1 ) . YCP( 1 ) . ZCP( 1)

DIMENSION DISPCNUMNPT, 3) . STRESSCNUMELT, G ) , STRAINCNUNELT. G)

DIMENSION NONELCNUMLD.S ), NOMNPCNUNLD. 2 ) . INPCNUMELT.S)
DIMENSION NPHUt1P(NUNLD.4 ),NLDP( 1 ) . SINITXC 10) . SINITY(IO)

DIMENSION MATNO(10).NLEL(10 ),NREL(10 ),HL(10)

DIMENSION SINITZ(10).LM(24).PRS(5).HH(10).SIGAUE(G)
DIMENSION A(3, 3) . Zl (3. 3) . D(3) , NCELC 1 ) . NCNPC 1

)

REWIND 4
IF(NPUNCH.EQ.O) GO TO 20

C
C READ AND PRINT DATA FOR LOAD CASE TO BE PUNCHED OUT

C
READ 1050. (NLDP(I).I=1.NPUNCH)
PRINT 1050,(NLDP(I).I=1.NPUNCH)

20 CONTINUE
C
C READ AND PRINT MATERIAL PROPERTY DATA
C

READ 1000, PATM
PRINT 2000, PATM
PRINT 2010

50 READ 1010, N, (EMPR(M,I),I=1,11)
PRINT 2020, M, (EMPRCM, I),I=1,11)
PHI=EMPR(M,9)/57. 23577951
CONST=2.0/(EMPR(M,10)«(1.0-SIN(PHI)))
EMPRCM, 12)=C0NST*EriPR(M,8)»C0S (PHI)
EMPRCM, 13)=C0NSTsSIN(PHI

)

IF CM.LT.NUMMAT) GO TO 50
LL=0

C
C READ AND PRINT NODAL POINT DATA AND BOUNDARY CONDITIONS

C
100 READ 1020, MM.XCMM), YCMM),ZCMM), CIDCMM, I ). 1=1.3)

IFCLL.LE. 0) GO TO 110
DIFNP=MM-LL
DX=CXCMM)-XCLL) )/DIFNP
DY= CY CMM)-YCLL))/DIFNP
DZ=CZCMM)-ZCLL) )/-DIFNP

110 LL=LL+1
IFCMM-LL) 150,140,120

120 XCLL)=XCLL-1)+DX
Y(LL)=Y(LL-1)+DY •

:s. .

"

ZCLL)=ZCLL-1)+DZ
DO 130 1=1,3

.130 IDCLL,I)=IDCLL-1,I)
GO TO 110

140 IFCNUMNPT-NM)150.ieO»100
150 PRINT 5000, MM

CALL EXIT
IBO PRINT 2030

N=0
170 N=N+1

PRINT 2040, N,XCN),YCN),ZCN),(ID(N.I), 1=1,3)

IFCN.LT.NUMNPT) GO TO 170
NN=0

C
C READ AND PRINT ELEMENT DATA
C
200 READ 1030, N, CINPCN, I), 1=1,9)
210 NN=NN+1

IFCN.LE.NN) GO TO 230
DO 220 K=l,8

220 INPCNN,K)=INPCNN-1,K)+1
INPCNN,9)=INP(NN-1,9)
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230 IFCN.GT.NN) GO TO 210
IF(NUNELT.GT.MM) GO TO 200
PRINT 2050
M=0

250 M=N+1
XCP(M)=0.
YCP(M)=0.
ZCP(N)=0.
DO 255 1=1,8
II=INP(N,I)
XCP(N)=XCP(N)+X(II)/8.
VCP(N)=YCP(N)+Y(II)/'8.

255 ZCP(M)=ZCP(M)+Z(II)/8.
PRINT 20G0, N. (INP(N,M),t1=lt9),XCP(N),YCP(N)tZCP(N)
IF (N.LT.NUtlELT) GO TO 250

C
C SET UP EQUATION NUMBERS
C

NEQ=0
DO 330 N=1,NUMNPT
DO 330 1=1,3
IF(ID(N,n.LE.10O0) GO TO 310
NN=ID(N,n-1000
IDCN,n = ID(HN.I)
GO TO 330

310 IFCIDCN.D.EQ.l) GO TO 3S0
NEQ=NEQ+1
ID(N,I)=NEQ
GO TO 330

320 ID(N,n=0
330 CONTINUE

PRINT 2070
PRINT 2080. (N, (ID(N,I),I=1.3).N=1,NUMNPT)

C
C DETERMINE BAND WIDTH
C

MBAND=0
DO 430 N=1.NUMELT
MIN=100000
MAX=0
IJ=0
DO 410 1=1.8
II=INP(N,I)
DO 410 J=1.3
IJ=IJ+1

410 LM(IJ) =ID(II,J)
WRITE(4) (LMC I), 1=1,24)
DO 420 L=1.24
IF(LM(L).EQ.O) GO TO 420
IFCLMCD.GT.MAX) MAX=LMCL)
IF(LM(L).LT. MIN) MIN=LM(L)

420 CONTINUE
NDIF=MAX-MIN+1
IFCNDIF.GT.MBAND) MBAND=NDIF

430 CONTINUE
NMXEQB=NTt1N 1 6/ (MBAND+2 ) /a
NEQB=NriXEQB
IF(NEQB.GT.NEQ) NEQB=NEQ
PRINT 2085. MBAND,NEQ,NEQB
IFCNLAY.EQ.O) GO TO 440

C
C READ AND PRINT CONSTRUCTION SEQUENCE INFORMATION
C

PRINT 2090
• READ 1040, ((LN,(N0MEL(LN,I).I=1,2),(N0MNP(LN.J),J=1,2).
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1(NPHUMP(LN,K),K=1,4)).LJ=1.NLAY)
PRIMT 2100. ((LM. (MOMELCLN, I),I=l.S).(riDMNP(LN,J)»J=1.2)f
1(NPHUMP(LN,K),K=1,4)),LN=1.NLAY)

440 CONTINUE
IF (NUMCEL .EQ. 0) GO TO 450

C
C READ AND PRINT DATA FOR PREEXISTING ELEMENTS AND NODAL POINTS
C

PRINT 2110
READ 1050,(NCEL(N).N=l,NUt1CEL)
PRINT 1050,(NCEL(N),N=l.NUnCEL)
PRINT 2120
READ 1050. (NCNP(N).N=1.NUMCNP) . .

PRINT 1050. (NCNP(N),N=1.NUMCNP)
450 CONTINUE
C
C INITIALIZATION OF STRESSES. STRAINS. AND STRESS LEUELS
C IN ALL ELEMENTS AND DISPLACEMENTS OF ALL NODAL POINTS
C

DO 500 I=1,NUMELT
SLMAX(I)=0.
DO 500 J=1.G
STRESS(I.J)=0.

500 STRAIN(I.J)=0.
DO 510 I=1.NUMNPT
DO 510 J=l,3

510 DISP(I.J)=0.
IF (NUMCEL .EQ. 0) GO TO 550

C
C READ STRESSES. STRAINS AND DISPLACEMENTS AND CALCULATE MODULUS
C UALUES FOR PREEXISTING PART
C

READ lOSO.NMODL
READ 1100. (N,(STRESS(N.M).M=1.S).J=1. NUMCEL)
IF(NMODL .EO. 0) GO TO 520
READ 1100. (N. (STRAIN(N,M).M=1.G).J=1. NUMCEL)
READ 1110, (N. (DISP(N.M).M=1,3). J=1.NUMCNP)
IFCNMODL .EQ. 1) GO TO 520
READ 1120, ((N,BULK(N).SHEAR(N),P0IS(N),SLMAX(N)),J=1, NUMCEL)
GO TO 550

520 CONTINUE
DO 530 1=1, NUMCEL
N=NCEL(I)
NN=3
NM=3
IND=0
A(1,1)=STRESS(N,1)
A(2,2)=STRESS(N.2)
A(3.3)=STRESS(IS,3)
A(1,2)=STRESS(N.4)
A(2.3)=STRESS(N,5)
A(1,3)=STRESS(N.6)
A(2,1)=A(1,2)
A(3,2)=A(2,3)
A(3,1)=A(1.3)
CALL RSEIG(NM,NN.A.IND,D,Z1)
CALL COMPAR(D)
DO 523 JP=1,3
PRS(JP)=D(JP)

'523 CONTINUE
MTYPE=INP(N,9)
CALL MODU ( EMPR, BULK, SHEAR.POIS. SLMAX, PRS, PATM, NUMMAT. N,

1 MTYPE.STRLEU.l)
SLMAX(N)=STRLEU

530 CONTINUE
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550 COMTIMUE
IF(tSFEL.EQ.O) GO TO 700

C
C READ AMD PRINT DATA FOR FOUNDATION LAYERS USED IN CALCULATING
C INITIAL STRESSES
C

PRINT 2200
READ 1200,tSFLAV,HFLEU
PRINT 2210. NFLAY.HFLEU
PRINT 2220
1=0

GOO 1=1+1
READ 1210. I.MATNO(I).NLEL(I).NREL(I).HL(I)
PRINT 2230 . I , MATNOC I ) , NLELC I ) . NREL ( I ) , HL( I)

IF(I.GT.l) GO TO GIO
HH(I)=HL(n-HFLEU
GO TO G20

GIO HH(I)=HL(I)-HL(I-1)
B20 CONTINUE

IF(I.LT.NFLAY) GO TO BOO
C
C CALCULATE INITIAL STRESSES AND MODULI FOR FOUNDATION ELEMENTS
C

DO G70 I=1,NFLAV
SINITY(I)=0.
IF( I.EQ.NFLAY) GO TO S40
NN=I+1
DO G30 J=NN.NFLAY .

MTYPE=MATNG(J) •:..*
G30 SINITY(n=SINITY(I)+EMPR(MTYPE. 1)*HH(J)
G40 MTYPE=NATNO(n

SINITY(I)=SINITY(I)+EMPR(MTYPE.l)*HH(I)/'2.
SINITXC I )=EMPR(MTYPE, 1 1)«SINITY( I

)

SINITZ(I)=SINITX(I)
NNL=NLEL(I)
NNR=NREL(I)
DO G50 N=NNL.NNR
STRESS(N.1)=SINITX(I)
STRESS(N, 2)=SINITY( I

)

B50 STRESS(N,3)=SINITZ(I)
NNL1=NNL+1
N=NNL
MTYPE=INP(NNL.9) -

PRS(1)=STRESS(NNL,2)
PRS(2)=STRESS(NNL.l)
PRS(3)=STRESS(mL,3)
CALL MOBU (EMPR.BULK.SHEAR^POIS.SLMAX.PRS.PATMVNUMMAT.N.

1 MTYPE.STRLEU.l)
SLMAX(NNL)=STRLEU
DO GGO N=NNL1.NNR
BULK(N)=BULK(NNL)
SHEAR(N)=SHEAR(NNL)
POIS(N)=POIS(NNL)

GEO SLMAX(N)=SLNAX(NNL)
B70 CONTINUE
700 CONTINUE
C
C CALCULATE INITIAL STRESSES AMD MODULI FOR LAYEIRS TO BE ADDED
C

PRINT 2310 -' -'.

IF(NLAY.EQ.O) GO TO 730
DO 780 LN=1,NLAY
NNL=NOMEL(LN.l)
NNR=N0riELCLN.2)
II1=NPHUMP(LN. 1)
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II2=NPHUMP(LM,2)
II3=IiPHUnP(LN.3)
II4=NPHUt1P(LM,4)
DO 770 H=tHNL,MNR
IFCMUnCEL .EQ. 0) GO TO 720
DO 710 M=1.HUI1CEL
IF(N .EO. NCEL(M)) GO TO 770

710 CONTINUE
720 CONTINUE

MTYPE=INP(N,3)
IF(XCP(N).LE.X(II1)) GO TO 731
IF(XCP(N).LE.X(II2)) GO TO 732
IF(XCP(N).LE.X(II3)) GO TO 733
IF(XCP(N).LE.X(II4)) GO TO 734
SLOPE=0.
HT=Y(II4)-YCP(N)
GO TO 740

731 SLOPE=0.
HT=Y(II1)-YCP(N)
GO TO 740

732 SL0PE=(Y(II2)-Y(II1))/(X(II2)-X(II1))
HT=Y(II1)+(XCP(N)-X(II1))»SL0PE-YCP(N)
GO TO 740

733 SL0PE=(Y(II3)-Y(II2))/(X(II3)-XCII2))
HT=Y(II2)+(XCP(N)-X(II2))»SL0PE-YCP(N)
GO TO 740

734 SL0PE=(Y(II4)-Y(II3)V(X(II4)-X(II3))
HT=Y(II3)+(XCP (N)-X(II3))«SL0PE-YCP(N)

740 BETA=ATftN( SLOPE)
IFCZCPCN) .LT. Z(IIl) .AND. ZCPCN) .GT. 2(112)) GO TO 741
CETA=0.
GO TO 743

741 CETA=(Y(II2)-Y(II1))/(Z(II1)-Z(II2))
HT1=Y(1I1)+(ZCII1)-ZCP(N))»CETA-YCP(N)
IF(HT-HTl) 742.743,743

742 HTT=HT1
GO TO 744

743 HTT=HT
744 STRESS(N.2)=HTT*EMPR(MTYPE,1)

STRESS(N,4)=0.5*STRESS(N,2)«SIN(BETfl)
STRESS(N.5)=0.5*STRESS(N,2)«SIN(ATAN(CETA))
STRESS(N,G)=0.
SIGAUE(2)=STRE5S(N,2)/2.
SIGAUE(4)=STRESS(N,4)/'2.
SIGAUEC5)=STRESS(N. 5)/2.
SIGAUE(G)=0.
POISl^EMPR (MTYPE.G)

750 IFCPOISl .GT.0.49) POIS1=0.43
STRESS(N,1)=STRESS(N,2)»P0IS1/(1.-P0IS1)
SIGAUEC 1)=STRESS(N. 1 )/'2.

STRESS(N,3)=STRESS(N,1)
SIGAUE(3)=SIGAUE(1)
m=3
NM=3
iriD=0
A(1.1)=SIGAUE(1)
A(2,2)=SIGAUE(2)
fi(3,3)=SIGAUE(3)
A(1.2)=SIGAUE(4)
A(2,3)=SIGAUE(5)
A(1.3)=SIGAUE(6)
A(2.1)=A(1,2)
A(3.2)=A(2,3)
A(3.1)=A(1,3)
CALL RSEIGCNM.NN.A, IND.D.Zl)
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CALL COMPAR(D)
DO 753 1=1.3
PRS(n=D(I)

753 CONTIHUE
CftLL MODU (EtIPR, BULK, SHEAR. POIS.SLMAX.PRSfPflTM.MUMMAT.N,

1 MTYPE.STRLEU.l)
POIST=POISCM)
IF (ABSCPOISl -POISD.LT. 0.0001) GO TO 760
POIS1=POIS1+(POIST-POIS1 )/'10.

GO TO 750
760 CONTINUE

SLMAX(N)=STRLEU
'770 CONTINUE
780 CONTINUE
790 CONTINUE
C
C PRINT INITIAL MODULI AND STRESSES FOR ALL ELEMENTS
C

DO 800 N=1.NUMELT
EM0D=2.«SHEAR (N)*(l.+POIS(Nn
PRINT 2320. N,XCP(N),YCP(N),ZCP(N).EMOD,BULK(N).SHEAR(N).POIS(N).

1 (STRESS(N.M).N=1.G)
800 CONTINUE

REWIND 8
REWIND 9
WRITECS) ((STRES5(I.J).J=1.G),I=1.NUMELT)
WRITEO) C(DISP(N,N).M=1,3).N=1.NUMNPT)
WRITEO) ((STRAIN(N,M).M=1.G).N=1,NUMELT)
RETURN

1000 FORMAT(FIO.O)
1010 FORriAT(I5,7F10.0''4F10.0)
lOSO FORMAT(I5.3F10. 0.315)
1030 FORMATC10I5)
1040 F0RNAT(9I5)
1050 FORMATCISIS)
1100 FORMATCIS.EFIO.O)
1110 FORMAT(I5.3F10.0) . .

"

IISO FORMAT(I5,4F10.0) ••
1200 FORMAT(I5,F10.0)
.1210 FORMAT(4I5,F10.0)
2000 F0RMAT(///.23H MATERIAL PROPERTY DATA ///,

1 22H ATMOSPHERIC PRESSURE=.F10.4//')
2010 F0RMAT(28X.8H MODULUS, 18X, 14H POISSON RATIO /

1 51H MAT UNIT WT K KUR N D.SX.IHG,
2 9X,1HF,9X.1HC.8X,3HPHI.5X.10HFAIL. RATIO. 5X,2HK0 /)

2020 FORMAT(I5,F10.4,2F10.1.8F10.4)
2030 F0RMAT(23H1N0DAL POINT INPUT DATA/^.SH NODE.SX,

1 23HN0DAL POINT COORDINATES, 19X. 9HB.C, C0DE/.7H NUMBER,
2 5GH X-ORD Y-ORD Z-ORD XX YY ZZ •)

2040 FORMAT(I7,3F10.3.10X.3I5)
2050 F0RMAT(31H1EIGHT NODES SOLID ELEMENT DATA//,

1 5H ELET.5X.15HC0NNECTED NODES, 21X,5H MATL,4X,
2 28H ELEMENT CENTER COORDINATES/
3 52H NO. I J K L M N P NO. .

435H X-ORD Y-ORD Z-ORD /)

20G0 FORNAT(10I5,3F12.3)
2070 F0RMAT(17H1EQUATI0N NUMBERS//, 20H N X Y 2/)
2080 F0RMAT(4I5)
2085 FORMAT (/,

1 35H0BAND WIDTH »»«»*»«»*»»«»»»«»»»«»«»I4 /

2 35H0NUMBER OF EQUATI0NS«**«»»»***»»*»*I4 /

3 35H0NUMBER OF EQUATIONS IN BL0CK»»»«*»I4)
2090 FORMAT(31H1CONSTRUCTION LAYER INFORMATION // GH LAYER,

1 23H ADDED ELEMENTS . 12H ADDED NODES, 5X,

2 40H NODES OF HUMPED SURFACE /)
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5000 F0RMAT(17H N.P. ERROR .N = 14)
2100 FDRI1AT(I5. 19, IE.2X. 110. IB,20X.4IG)
2110 FORMAT (29H0ELEMEHTS OF PREEXISTinO PART //)

2120 FORMAT (2BH0M0DES OF PREEXISTING PART //)

2200 FDRMAT(28HlF0UhDATI0M PART INFORMATION)
2210 FORMATOSHONUMBER OF LAYER IN FOUNDATION***** 18 /

1 35H0ELEUATION OF RIGID BOUNDARY******* F8.3 /)

2220 FORMAT(47H0LAYER MAT. NO. INCLUSIUE ELEMENTS. ELEUATION /)
2230 FORNAT(I5,3I10,F12.3)
2310 F0RMAT(2aHl INITIAL UALUES IN ELEMENTS ///

1 50H ELE X-ORD Y-ORD Z-ORD E K
2 74H G POISSON S-XX S-YY S-22 S-XY S-V
3Z S-XZ //)

2320 F0RMAT(I5,3F9.3.3F3.1.7F9.3)
END

SUBRDUT INE MODU ( EMPR , BULK . SHEAR , PO I S f SLMAX . PRS , PATH

,

1 NUMMAT.N.MTYPE.STRLEU.KK)
DIMENSION EMPRCNUNMAT, 13) , BULKC 1 ) , SHEARC 1 ) , POISC 1 ) . SLMAXC 1 ) , PRS(3)

C
C CALCULATE SHEAR MODULUS, BULK MODULUS AND POISSON RATIO UALUES
C

DEUSTR=PRS(1)-PRS(3)
DEUFH=EMPR(NTYPE, 12)+EMPRCMTYPE, 13)*PRS(3)
IF(DEUFH.GT.O.O) GO TO 100
STRLEU=0.
DEULEU=0.
GO TO 110 • •..-.

100 DEULEU=DEUSTR/'DEUFH .T',:.'- -:''

STRLEU=DEULEU/EMPR(NTYPE.10) ;,;.'

110 CONTINUE
IF(KK.EQ.l) GO TO 140
IF(PRS(3).GT. 0.0) GO TO 120
POIS(N)=EMPR(MTYPE, G)
IF(POIS(N).GT.0.43) POIS(N)=0.43
GO TO 130

120 IFCSTRLEU.LT. 1.0. AND. SHEAR(N).GT. 0.0001) GO TO: 140
130 SHEAR(N)=0.00ai

GO TO 200
140 CONTINUE

IF(PRS(3).LT. 0.01) PRS(3)=0.01
IF (KK.EQ.3 .AND. STRLEU. LT. SLMAXCN)) GO TO 150
EINIT=PATM»EMPR(MTYPE,2)«(PRS(3)/'PATM)*»EMPR(MTYPE.4)
EM0D=EINIT»(1.-DEULEU)**2.
GO TO 160

150 EM0D=PATM«EMPR(MTYPE.3)»(PRS(3)/PATM)**EMPR(MTYPE,4)
IBO CONTINUE

POIS1=EMPR(MTYPE,6)-EMPR(MTYPE,7)«ALOG10(PRS(3)/PATM)
EPSAX=DEUSTR/(EINIT»(1.-DEULEU)) .

*

'

P0IS(N)=P0IS1/'((1.-EMPR(MTYPE,5)»EPSAX)»*2.)
IF(P0IS(N).GT.0.49) POIS(N)=0.49
SHEAR(N)=EM0D/'(2.»( 1 .+POIS(N) )

)

BULK(N)=SHEAR(N)/'(1.-2.«P0IS(N))
IF(KK.NE.l) GO TO 200
IF(STRLEU.GE.1.0.OR.PRSt3).LE.0.0) SHEAR(N)=0.0001

200 CONTINUE
RETURN
END
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SUBROUTIME F0I1IMG(X, Y,2, INP.NUMELT)
COMMON /ISOP/ El.E2.E3,RR(8).ZZ(8),QQ(8),LM(24)fP(24).SC33i33)i

1 STR(G.33).STS(6.24),UJflC
DIMENSION X(1).Y(1).Z(1). INPCNUMELTt 9)
DIMENSION SSS(2),TTT(2), 000(2)
DATA SSS /-0.5773502G9189G3.0.5773502G9189G3/
DATA TTT /-0.5773502G9189G3. 0.5773502G9189G3/
DATA QQQ /-0.5773502G91B363. 0.5773502G918363/

C
C FORM STRAIN-DISPLACEMENT MATRIX
C

REWIND 4
REWIND 7
DO 300 N=1.NUMELT
DO 50 1=1,

G

DO 50 J=l,33
50 STR(I,J)=0.

READ(4) (LMCn, 1=1,24)
WRITE(7) (LMCI). 1=1,24)
DO 100 1=1.8
II=INP(N,I)
RR(I)=X (II)
2Z(I)=Y(II)

100 QQ(I)=Z(II)
DO 200 11=1,2
E1=SSS(II)
DO 200 JJ=1,2
E2=TTT(JJ)
DO 200 KK=1,2
E3=QQQ(KK)
CALL RELATE
WRITE(7) UJAC, ((STR(I,J),J=1,33).I=1,G)

200 CONTINUE
E1=0.
E2=0.
E3=0.
CALL RELATE
WRITE(7) ((STR(I,J),J=1,24),I=1,G)

300 CONTINUE
RETURN
END

SUBROUTINE RELATE
COMMON /ISOP/ SX,TY,02,RR(8),2ZC8),QQ(8),LM(24),P(24),S(33,33),

1 STR(6,33),STS(G,24),UJAC
DIMENSION HR(ll),HZ(ll),Ha(ll),A(3,ll),B(3,3),XX(8,3)
DIMENSION 11(11), JJ(11),KK(11),D(3 ,3 ).IPERM(3)
DATA 11/1,4,7,10,13,16,19,22,25.28,31/
DATA JJ/2, 5, 8. 1 1 , 14, 17, 20, 23, 2G, 29, 32/
DATA IPERM/2,3, 1/
DATA KK/3, G, 9, 12, 15, 18, 21 , 24, 27, 30. 33/

C
C MATRIX OF DERIUATIUES
C

SP=1.+SX
SM=1.-SX
TP=1.+TY
TM=1.-TY
QP=1.+QZ
QM=1.-QZ
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A(l,l)=-TM*0M/'8.
A(l,2)=-fl(l.l)
A(1.3)=TP<QM/8.
A(l,4)=-A(1.3)
A(l,5)=-TM«QP/'8.
A(1,B)=-A(1.5)
A(1.7)=TP«QP/8.
A(1.8)=-A(1.7)
A(1.9)=-2.«SX
A(1.10)=0.
A(1,11)=0.

c
A(2.1)=-5t1«Qn/'8.
A(2.2)=-SP«QM/8.
A(2,3)=-AC2.2)
A(2.4)=-A(2.1)
A(2.5)=-Sn»QP/8.
A(2,G)=-SP-QP/8.
A(2.7)=-A(2.e)
A(2,8)=-A(2.5)
A(2,9)=0.
A(2.10)=-2.*TV
A(2,ll)=0.

A(3,l)=-SM«TM/8.
A(3,2)=-SP*Tn/8.
A(3.3)=-SP«TP/8.
A(3.4)=-SM»TP/'8.
A(3.5)=-A(3. 1)

A(3.6)=-A(3,2)
A(3.7)=-A(3,3)
A(3,8)=-A(3.4)
A(3,9)=0.
A(3,10)=0.
A(3. li)=-2.«QZ

C
C JACOB IAN
C

DO 40 1=1.8
XX(I.1)=RR(I)
XX(I,2)=2Z(I)
XX(I,3)=QQ(I)

40 CONTINUE
DO BO 1=1,3 -

.
- •

-

DO GO J=1.3
C=0.
DO 50 L=1.8

50 C=C+A(I,L)*XX(L,J)
60 D(I.J)=C

UJflC=D(l.l)*DC2.2)»D(3.3)+IICl,2)»D(2.3)*D(3, 1)+D(1,3)*DC2, !)•

1 D(3,2)-D(1.3)*D(2,2)»D(3. 1)-D(1.1)*D(2.3)»D(3»2)-DC1.2)»D(2.1)»
S D(3.3)

C
DO 70 1=1.3
J=IPERI1i:i)
K=IPERM(J)
B(I.I)=(D(J.J)*D(K,K)-D(K.J)»D(J.K))/UJAC
B(I.J) = (D(K.J)*D(I.K)-D(I.J)«D(K,K))/'UJAC

70 B(J,I)=(D(J.K)»D(K,I)-D(J.I)»D(K.K))/'UJAC
C

DO 100 1=1.11
HR(I)=0.
HZ(I)=0.
HQ(I)=0.
DO 100 J=1.3
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HR(I)=E(1,J)»A<J, I)+HR(I)
HZ(I)=B(2,J)*A(J, I)+HZ(I)

100 HQ(I)=B(3.J)«A(J.I)+HQ(I)
C
C FORM STRIN DISPLACEMENT MATRIX
C

DO 200 K3=l,ll
I=II(K3)
J=JJ(K3)
K=KK(K3)
STR(1,I)=HR(K3)
STR(2,J)=HZ(K3)
STR(3.K)=HQ(K3)
STR(4,I)=H2(K3)
STR(4,J)=HR(K3)
STR(5.J)=HQ(K3)
STR(5,K)=HZ(K3)
STR(G.I)=HQ(K3)

200 STR(G,K)=HR(K3)
C

RETURN
END

SUBROUTINE CALNEQC ID. NCEL» NCNP. NOMEL, NOMNP, NPHUMP, NUMELT.NUMNPTf
1 NUMCEL,NUMCNP.NUMLD.NLAY,LN,MBAND,NUMEL,NUMNP,NELCAL
1 , NNPCAL, ISELRED. NNPRED, NEQ, NEQB. NBLOCK, NMXEQB

)

DIMENSION ID(NUMNPT,3).NCEL(1).NCNP(1)
DIMENSION N0MEL(NUMLD,2 ), N0MNP(NUMLD,2 ) , NPHUNPCNUMLD. 4 )

C
C DETERMINE CONTROL DATA
C

IF(LN. GT. NLAV) GO TO 10
PRINT 2000, LN
PRINT 2010, (N0MEL(LN,N),N=1,2),(N0MNP(LN.M),M=1,2).

1 (NPHUMP(LN,L),L=1,4)
GO TO 20

10 LNMLAY=LN-NLAY
PRINT 2020,LNMLAY

20 CONTINUE
IF(LN.GT.NLAY) GO TO 80
IF (NUMCEL .EQ. 0) GO TO 50
NUMEL=MAX0 ( NOMEL ( LN , 2 ) , NCEL ( NUMCEL )

)

NUMNP=MAXO ( NOMNP ( LN , 2 ) , NCNP (NUMCNP )

)

GO TO GO
50 NUMEL=N0MEL(LN,2)

NUMNP=NCMNP(LN,2)
GO NELCAL=NGNEL(LN,2)

NELRED=N0MEL(LN,1)
NNPCAL=N0MNP(LN,2)
NNPRED=NGMNP(LN,1)
GO TO 100

80 NUMEL=NUMELT
NUMNP=NUMNPT
NELCAL=NUMELT
NNPCAL=NUMNPT
NELRED=NUMELT+1
NNPRED=NUMNPT+1

100 CONTINUE
C
C DETERMINE NUMBER OF EQUATIONS AND BLOCKS
C
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NEQB=NMXEOB
MAX=0
DO 120 N=l,mMriP
DO 120 1=1,3
IFdDCIS, I) .GT. MAX) MAX=ID(N.I)

120 CONTIMUE
NEQ=t1AX
IFCNEQB .GT. NEQ) MEOB=MEQ
NBLOCK= ( HEQ- 1 ) /ISEQB+

1

PRIMT 2100,MBftND.HEQ.MEQB.NBL0CK
RETURM

2000 FORMAT(/»
1 57H »•»«*****«»**«««•«••••*»*»«**••***«*»*»•»*«-»*•*»*•••••• /
2 5?H •««»*»«»<»»»«•••»••»**«»•«••»•«*»«*«•*••*»«•«»••»«»«•» /
3 5?H « •/
4 45H « LAYER NLIf1BER*««**»«»«»«»«»»»**«»«»»»«**» ,14, 8H */
5 57H e * /
6 57H «*»«»*»•*»«••»*•»»••*••»••»•••*»«»«»»»»*«•••*»«»»»««»«•» /
7 57H **»»*»*»***»«*««•»»«•»*»»»***»»»»*«*»»«»«»*«•««*««»«««««» /)

2010 FORmTC/,
1 35H0ADDED ELEMENTS»*«»****»****»»»»**»I5, 5H THRU, 15 /
2 35H0ADDED NODAL P0IHTS»»»»»*»»*»«*««»»I5, 5H THRU. 15 /
3 35H0ISODAL POIMTS OF HUMPED SURFACE »»»* 415 /)

2020 FORMAT (/,

2 57H «««*»»*»«»»**««*«•«»«-»»»»»«»«»»•»«»•»»«»«»•»«»»«•»««»»«« /
3 5?H e

,
• /

4 45H • LOAD CASE AFTER CONSTRUCTION*************, I4,8H • /
5 57H * • /
G57H»****»**«*»*»»*******»»«»»»-«r«»«»»*»«*»**»*»»«»»»**««««»» /
757H»«***«***«*»«-e*»*»**»***«»»*»*»»«-»*»»«»**»»«»»»«««»«»«»« /)

2100 FORMATC/,
1 35H0BAND WIDTH************************ 14 /
2 35H0TOTAL NUMBER OF EQUATIONS********* 14 /
3 35H0NUMBER OF EQUATIONS IN BLOCK****** 14 /
435H0NUMBER OF BLOCKS****************** 14 /)
END

SUBROUTINE FDRCECEMPR, ID. X, V, Z. INP, NCEL. NOMEL. FX. FY, F2, B, R,
1 NUMELT, NUMNPT, NUMCEL, NUMMAT, NUMLD, NLAY, LN, NEQ, NEQB, NUMNP)
DIMENSION EMPR(NUMNAT,13),ID(NUMNPT.3).X(1),Y(1),Z(1)
DIMENSION INP(NUMELT,9),N0MEL(NUNLD.2 ),FX( 1),FY(1 ), F2( 1 ) . BCD
DIMENSION RCNEQB).NCEL(l)

C
C CALCULATE NODAL POINT FORCES DUE TO WEIGHTS OF ADDED ELEMENTS
C

DO 50 1=1, NUMNP
FX(I)=0.
FY(I)=0.

50 FZ(I)=0.
IF(LN.GT. NLAY) GO TO 400
NELS=NOMEL(LN.l)
NELL=N0MEL(LN.2)
DO 300 N=NELS,NELL
IFCNUMCEL .EQ. 0) GO TO 100
DO 80 M=l, NUMCEL
IF(N.EQ. NCEL(M)) GO TO 300

80 CONTINUE
100 CONTINUE

FG=0.
MTVPE=INP(N,S)
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KK=1
I=INP(N, 1)
J=INP(N,2)
K=INP(N,4)
L=inP(M,5)

120 UOL=((X(J)-X(I))»(YCK)»Z(L)-Y(L)»Z(K))+(X(L)-X(K))»(Y(n»Z(J)-
1 Y(J)eZ(I))+(X(I)-X(K))»(Y(J)»Z(L)-Y(L)*2(J))+(X(L)-X(I))»
2(Y(J)eZ(IO-Y(K)<-Z(J)) + (X(J)-X(L))»(Y(I)*Z(K)-Y(K)*Z(I)) +
3 (X(K)-X(J))»(Y(I)*Z(L)-Y(L)«Z(I)))/G.
FG=FG-EI1PR(MTYPE. 1 )»UQL
IFCKK.EQ.S) GO TO 140
IF(KK.EQ.2) GO TO 137
IF(KK.EQ.3) GO TO 138
IF(KK.EQ.4) GO TO 139
KK=KK+1
I=INP(Nt2)
J=INP(N,3)
K=INP(N,4)
L=IISP(n,7)
GO TO 120

137 KK=KK+1
I=IMP(H,2)
J=INP(N,5)
K=IMP(N,G)
L=INP(N,7)
GO TO 120

138 KK=KK+1
I=IMP(N.2)
J=INP(N,4) .•

, .Jm
K=ItSP(M,5) -' '•• '.:

L=INPCN,7)
GO TO 120

139 KK=KK+1
I=INP(M.4)
J=IISPCN,5)
K=INP(M,7)
L=INP(N.83
GO TO 120

140 CONTINUE
FG=FG/8.
KL=8
DO 250 1=1. KL
II=INP(N.I)

250 FY(II)=FY(II)+FG
300 CONTINUE

GO TO E50
400 CONTINUE
C
C READ NODAL POINT FORCE DATA AND DISTRIBUTED LOAD DATA
C FOR LOAD CASE AFTER CONSTRUCTION
C

READ lOOO.NUMFC
PRINT 2000.NUMFC
IF(NUMFC.EQ.O) GO TO 550
DO 520 I=1,NUMFC

520 READ 1010, MM,FX(MM).FY(nri).FZ(MM)
550 CONTINUE
E50 CONTINUE
C
C SET UP FORCE UECTOR
C

DO 700 1=1, NEQ
700 B(I)=0.

DO 720 N=1,NUMNP
DO 720 1=1,3
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II=ID(N,I)
IFCII.LT. 1) GO TO 720
IFCI .EQ. 2) GO TO 710
IF(1,EQ.3) GO TO 715
B(II)=B(II)+FX(N)
GO TO 720

710 B(II)=B(II)+FY(N)
GO TO 720

715 B(II)=B(II)+FZ(N)
720 CONTINUE

REWIND 10
KSHIFT=0
DO 730 I=1,NEQB

730 R(I)=0.
DO 750 N=1,ISEQ
II=N-KSHIFT
R(II)=B(N)
IFCII .NE. NEQB) GO TO 750
WRITE(IO) R
KSHIFT=KSHIFT+NEQB
DO 740 1=1, NEQB

740 Rcn=o.
750 CONTINUE

WRITE(IO) R
C
C PRINT NODAL POINT FORCES
C

IFCLN .LE. NLAY) GO TO 7E0
PRINT 2030
GO TO 770

7E0 PRINT 2035
770 CONTINUE

DO 800 N=1,NUMNP
800 PRINT 2040. N.FX(N),FY(N).FZCN)
1000 FORMfiTCIS)
1010 FORmT(I5.3F10.0)
2000 FORMATC/.

1 35H0NUMBER OF N.P. FORCE CflRDS»»»»»*** .IX, 13)
2030 FORMAT (19H1NODAL POINT FORCES // 35H NP X-FORCE Y-FORCE 2-

IFORCE/)
2035 F0RMAT(47H1N0DAL POINT FORCES (WEIGHT OF ADDED ELEMENTS ) //,

1 35H NP X-FORCE Y-FORCE Z-FORCE/')
2040 FORMAT(I5,3F10.3)

RETURN
END

SUBROUTINE BILDUP (BULK. SHEAR. NCEL.NUMCEL.NUMEL.NELCAL.NELRED)
COMMON /ISOP/ E1.E2.E3.RR(8).ZZ(8).QQ(8).LM(24).P(24).S(33.33).

1 STR(G.33).STS(G.24),UJAC
DIMENSION BULK( 1 ) . SHEARC 1 ) , POISC 1 ) . NCELC 1

)

REWIND 2
REWIND 11
REWIND 7

C
C INITIALIZATION:
C

DO 300 N=1.NUMEL
KEY=0

DO 20 1=1.33
DO 20 J=l,33
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20 S(I.J)=0.
C
C FORM STIFFNESS MATRIX AND WRITE ON TAPE 2
C

IF(N .LE. MELCAL .OR. MUMCEL .EQ. 0) GO TO 40
DO 30 M=l.rSUMCEL
IF (N.EO. MCEL(M)) GO TO 40

30 CONTINUE
GO TO 50

40 KEY=1
50 CONTINUE

IFCKEY .EQ. 0) GO TO 80
IF(N.GE.NELRED.AND.N.LE.NELCAL) GO TO GO

55 LL=1
FMAG=1.
GO TO 80

BO IF (NUMCEL .EQ. 0) GO TO 75
DO 70 M=l. NUMCEL
IF(N .EQ. NCEL(M)) GO TO 55

70 CONTINUE
75 LL=0

FMAG=0. 00001
80 CONTINUE

READ(7) (LMCn, 1 = 1.24)
C1=FMAG»(BULK(N)+SHEAR(N))
C2=FMAG» ( BULK C N ) -SHEAR ( N )

)

C3=FMAG«SHEAR(N)
DO 100 LX=1.2
DO 100 LY=1.2
DO 100 LZ=1,2
READ(7) UJAC, ( (STRCI, J), J=lf 33). 1=1. G)
IFCKEY . EQ. 0) GO TO 100
DO 30 J=l,33
D1=UJAC*(C1«STR(1.J)+C2«STR(2.J)+C2»STR(3.J))
D2=UJAC-(C2«-STRa.J)+Cl*STR(2,J)+C2»STRC3.J))
D3=UJAC«(C2*STR(1.J)+C2*STR(2,J)+C1«STR(3,J))
D4=UJAC*-C3<STR(4.J)
D5=UJAC»C3»STR(5.J)
D6=UJAC*C3«STR(6.J)
DO 90 I=J,33
S(I.J)=S(I.J)+STR(1,I)»D1+STRC2,I)»D2+STR(3.I)»D3+STR(4. 1)»D4

1 +STR(5,I)«D5+STR(B. I)«D6
90 S(J.I)=S(I,J)
100 CONTINUE

IFCKEY . EQ. 0) GO TO IGO
C
C ELIMINATE EXTRA DEGREES OF FREEDOM
C

DO 150 NN=1.9
L=33-ISN
K=L+1
IF(S(K.K).EQ.O.) GO TO 139
GO TO 141

139 PRINT 140.K.SCK.K)
140 F0RMAT(5X.?^K =^. IS.^^SCK.K) =?=. F13.3)
141 DO 150 1 = 1,

L

C=S (I.K)-'S (K.K)
DO 150 J=1.L

150 S(I.J)=S(I.J)-C*S(K.J)
160 CONTINUE

WRITE(2) (LM(I),I=1.24).((S(I.J).J=1.24).I=1,24)
C
C FORM STRAIN-DISPLACEMENT MATRIX AND WRITE ON TAPE 11
C

READ(7) ((STR(I.J).J=1.24),I=1.S)
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IFCKEV .EQ. 0) GO TO 300
WRITE(ll)(LI1(I),I = l,24),((5TR(If J).J=l,24)tI=ltG).LL

300 CONTINUE
RETURN .

END

SUBROUTINE ADDSTFC A,B.NUMEL,NEQB,NE2B.NBL0CK .MBPlNE)
C FORM GLOBAL EQUILIBRIM EQUATIONS IN BLOCKS

CONMON /ISOP/ El,E2.E3.RR(8).2Z(8).QQ(8).Lri(24),P(24).SC33f33).
1 STR(E.33),STS(G,24),UJAC
DIMENSION A(NE2B,MBAND),B(NE2B)
K=NEQB+1
X=NBLOCK
MB=SQRT(X)
MB=MB/2+l
NEBB=MB*NE2B
MM=1

C
NSHIFT=0
REWIND 10
REWIND 4

C
C FORM EQUATIONS IN BLOCKS (2 BLOCKS AT A TIME)
C

DO 500 M=1,NBL0CK,2
DO 100 I=1,NE2B
DO 100 J=1,MBAND

100 A (I,J)=0.
READ (10) (B(I).I=1,NEQB)
IF(N .EQ. NBLOCK) GO TO 120
READ (10) (B(I).I=K,NE2B)

120 CONTINUE
C

REWIND 2
REWIND 3
NA=3
NUME=NUM3
IF(MM .NE. 1) GO TO 150
NA=2
NUME=NUMEL
NUM3=0

150 DO 300 N=1,NUME
READ(NA) (LM(I),I=l,24),(tS(If J)»J=l,24).I=lt24)
DO 220 1=1,24
LMN= l-LM(I)
II=LM(I)-NSHIFT
IFdl .LE. .OR. II .GT. NE2B) GO TO 220
DO 200 J=l,24
JJ=LM(J)+LMN
IF(JJ.LE.O) GO TO 200
A(II,JJ)=A(II,JJ)+S(I,J)

200 CONTINUE
220 CONTINUE
C
C DETERMINE IF STIFFNESS IS TO BE PLACED ON TAPE: 3
C

IFCMM.GT. 1 )G0 TO 300
DO 250 1=1,24
II=LM(I)-NSHIFT
IFdl .GT. NE2B .AND. II .LE. NEBB) GO TO 2E0

250 CONTINUE
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GO TO 300
£60 WRITEO) CLM(I). 1=1.24). ((S(ItJ).J=l. 24). 1=1,24)

hUli3=MUM3+l
300 COHTIMUE

WRITE(4) ((A(I,J),I=1,NEQB).J=1.MBAMD).(B(I).I=1.NEQB)
IF(M .EQ. NBLOCK) GO TO 500
WRITE(4) ((ft(I,J),I=K,ISE2B).J=l.MBAMD).(B(I).I=K,NE2B)
IFCtlM.EQ.MB) MM=0
MM=MM+1
MSHIFT=MSHIFT+ME2B

500 CONTINUE
RETURN
END

SUBROUTINE COMPARCUB)
DIMENSION PRS(3).UB(3)
IF(UB(1)-UB(2)) 10.11.11

10 PRS(1)=UB(2)
PRS(3)=UB(1)
GO TO 12

11 PRS(1)=UB(1)
PRS(3)=UB(2)

12 IF(PRS(1)-UB(3)) 13.14.14
13 PRS(2)=PRS(1)

PRS(1)=UB(3)
GO TO 18

14 IF(PRS(3)-UB(3)) IB, 15, 15
15 PRS(2)=PRS(3)

PRS(3)=UB(3)
GO TO 18

IG PRS(2)=UB(3)
18 CONTINUE

UB(1)=PRS(1)
UB(2)=PRS(2)
UB(3)=PRS(3)
RETURN
END

SUBROUTINE SYMBANC A, B, MAXB. NEQB. MB, NBLOCK, NSB, NORG. NBKS, NTl,
1 NT2.NRST)
DIMENSION A(NSB).B(NSB).MAXB(NEQB)

C
NC=MB+1
NBR=(NB-1)/NEQB+1
INC=NEQB-1
NMB=NEQB«MB
N2=NT2
N1=NT1
REWIND NORG
REWIND NBKS

C
C REDUCE EQUATIONS BLOCK-BY-BLOCK
C

DO 900 N=l, NBLOCK
IF(N.GT.l.AND.NBR.EQ.l) GO TO 110
IF(NBR.EQ.l) GO TO 105
REWIND Nl
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REUIND N2
105 MI=N1

IFCN.EQ.n riI=NORG
READCISI) A

110 DO 300 I=1.ISEQB
D=fl(n
IF(D)115,300.1S0

115 t1=tSEQB-(N-l) + I

PRINT IIB.M.D
IIG FORMAT (33H0SET OF EQUATIOMS MftV BE SINGULAR /

1 2GH DIAGONAL TERM OF EQUATION 18, 8H EQUALS
STOP

C
120 II=I

DO 125 J=2.NC
II=II+NEOB

1S5
C

A(II)=A(II)/-D

DO 130 J=I,NMB,NEQB
IF(A(J).NE.O.) MAXB(I)=J

130 CONTINUE
C

c

1PE12.4)

JL=I+1
IF(JL.GT.NEQB) GO TO 300
II=I
DO 200 J=JL.NEQB
II=II+NEQB
IF(II.GT.NMB) GO TO 200
C=A(II)
IF(C.EQ.O.O) GO TO 200
C=C»A(I)

C
KK=J-II
MAX=MAXB(I)
DO 150 JJ=II.MAX,NEOB

150 A(JJ+KK)=A(JJ+KK)-C«A(JJ)
C

KK=J+NMB
JJ=I+NMB
fi(KK)=A(KK)-C*A(JJ)

200 CONTINUE
300 CONTINUE

WRITE(NBKS) A.NAXB
C
C SUBSTITUTE INTO REMAINING EQUATIONS
C

DO 800 NN=1,NBR
IF(N+NN.GT.NBLOCK) GO TO 800
NI=N1
IF(N.EQ.l) NI=MORG
IFCNN.EQ.NBR) NI=NORG
READCNI) B
IL=1+NN*NEQB*NEQB
DO 700 I=1.NEQB
II=IL
DO B90 K=1.NEQB
IF(II.GT.NMB) GO TO G90
C=A(II)
IFCC.EQ.0.0) GO TO 690
C=C«A(K)
MAX=MAXBCK)

KK=I-II
DO G40 JJ=II,MAX.NEQB

S40 B(JJ+KK)=B(JJ+KK)-C*A(JJ)
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KK=I+MMB
JJ=K+ISMB
B(KK)=B(KK)-C»A(JJ)

C
690 II=II-IMC
?00 IL=IL+NEQB
C

IFCNBR.NE.l) GO TO 750
DO ?40 1=1, MSB

740 A(I)=B(I)
GO TO 800

750 WRITE(M2) B
800 CONTIMUE
C

M=N1
N1=N2

900 M2=ri
C
C BACKSUBSTITUTIOIH- RESULTS ON TAPE NRST
C

NEB=NEQB»(NBR+n
NUM=NBR«rSEQB
DO 905 1=1, HEB

905 B(I)=0.
REWIND NRST

C
DO 1000 N=1,NBL0CK
BACKSPACE NBKS
READ(NBKS) A,MAXB
BACKSPACE NBKS
K=NEB
DO 910 J=1,NUM
I=K-NEQB
B(K)=B(I)

910 K=K-1
C

I=NMB
K=0
DO 920 J=1,NEQB
1=1+1
K=K+1

920 B(K)=A(I)
C

DO 950 I=1,NEQB
J=NEQB+1-I
MAX=MAXB(J)
IF(A(J).EQ.0.0) GO TO 950
KK=J
JJ=KK+1
IL=J+NEQB
C=B(KK)
DO 940 II=IL,MAX,NEQB
C=C-A(II)«B(JJ)

940 JJ=JJ+1
B(KK)=C

950 CONTINUE
C

1=0
K=0
DO 960 J=1,NEQB
K=K+1
1=1+1

960 A(I)=B(KJ
C
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WRITECNRST) (ACI), I=lt NEQB)
1000 CONTINUE
C

RETURN
END

SUBROUTINE RESULTCEMPR, ID, X. Y, Z, INP, BULK. SHEAR, POIS. SLMAX, NCEL.

1 NCNP, NLDP, DISP, STRESS, STRAIN, SNEW. DELD, B, R, PATM, MUNELT,

2 NUMNPT, NUI1CEL, NUtlCNP, NUMMAT, NUMLD, NLAY, LN, IT, NPUNCH, MUNEL,

3 NUmP, NELCAL, NNPCAL, NNPRED, NEQ. NEQB. NBLOCK)
COMMON ylSOP/ El,Ea, E3.RR(8),ZZ(8),QQ(3),LM(24).P(E4),S(33,33).

1 STR(G,33),STS(B,24).UJAC
COMMON/JSOP/ LAYSUM. MFLAY, MLEL, MREL, MOMEL, HEIGHT
DIMENSION EMPRCNUMMAT, 13) , IDCNUMNPT. 3) . BULKC 1 ) , SHEARC 1 ) , POISCl

)

DIMENSION INP ( NUMELT. 9 ) , SLMAX ( 1) . NLDP ( 1) , NCEL ( 1 ) . NCNP ( 1

)

DIMENSION DISPCNUMNPT, 3) , STRESSCNUMELT, B) , STRAINCNUMELT, G)

DIMENSION SNE14(NUMELT,B),DELD(NUMNPT.3),B(1),R(1)
DIMENSION SIG(B).EPS(B),PRSC14),A(3,3),Z1(3,3).D(3)
DIMENSION X(1),Y(1),Z(1)
DIMENSION HEIGHT(20),NLELC20),NREL(20),NOMEL(20,2)
REWIND 2
REWIND 8
REWIND 11

C
C MOUE DISPLACEMENTS INTO CORE
C

NQ=NEQB*fNBLOCK
DO 10 NN=1, NBLOCK
READ(2) (R(I). 1=1, NEQB)
N=NEQB
IF(NN.EQ.l) N=NEQ-NQ+NEQB
NQ=NQ-NEQB
DO 10 J=1.N
I=NQ+J

10 B(I)=R(J)
IF(LN.GT.NLAY) GO TO 15
PRINT 2000, LN, IT
GO TO IB

15 LNMLAY=LN-NLAY
PRINT 2005,LNMLAY,IT

le CONTINUE
IF(IT.LT.2) GO TO 110

C
C ADD INCREMENTAL DISPLACEMENTS AND PRINT INCREMENTAL AND TOTAL

C DISPLACEMENTS
C

PRINT 2010
REWIND 3
READO) ((DISP(N,M),M=1, 3). N=l, NUMNPT)
READO) ((STRAIN(N,M),M=1,S),N=1. NUMELT)
DO 20 N=1,NUMNP ._ -. .

DO 20 1=1,3
20 DELD(N,I)=0.

DO 70 N=1,NUMNP
IF(N .LE. NNPCAL .OR. NUMCNP .EQ. 0) GO TO 40
DO 30 M=l, NUMCNP
IF (N.EQ. NCNP(M)) GO TO 40

30 CONTINUE
GO TO 70

40 CONTINUE
IF(N.LT.NNPRED. OR. N.GT. NNPCAL) GO TO 45
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IFCNUMCMP .EQ. 0) GO TO 70
DO 42 f1=lfHUt1CMP
IF(N .EQ. HCMP(M)) GO TO 45

42 CONTINUE
GO TO 70

45 CONTINUE
DO 50 1=1,3
II=ID(N,I)
IF(II.LT.l) GO TO 50
DELDCN, I)=B(II)

50 CONTINUE
DO BO J=l,3

GO DISP(N,J)=DISP(N,J)+DELD(N.J)
70 CONTINUE

DO 100 N=l,NUIiNP
IF(N .LE. NNPCAL .OR. NUHCNP .EQ. 0) GO TO 90
DO 80 M=l,NUnCNP
IF(N .EQ. NCNP(N)) GO TO 90

80 CONTINUE
GO TO 100

90 CONTINUE
TD=SQRT(DISP(N, 1 )»»2+DISP(N, 2)«»2+DISP(N. 3)**2)
PRINT 2050, N, (DELDCN, I), 1=1,3). (DISP(N.M),N=1, 3). TDfN

100 CONTINUE
110 CONTINUE
C
C CALCULATE INCREMENTAL STRESSES AND STRAINS, ADD INCREMENTAL
C STRESSES AND STRAINS AND PRINT STRAINS AND MODULUS UALUES
C

READ(8) ((STRESS(I.J),J=1,G),I=1,NUMELT)
DO 120 N=1,NUNEL
DO 120 1=1,

G

120 SNEU(N,n=STRESS(N,I)
DO 300 N=1,NUMEL
IF(N .LE. NELCAL .OR. NUMCEL .EQ. 0) GO TO IGO
DO 140 M=l, NUMCEL
IF(N .EQ. NCEL(N)) GO TO IGO

140 CONTINUE
GO TO 300

IBO CONTINUE
READ(ll) (LM(I).I=1,24),((STR(I,J),J=1,24),I=1.G),LL
IF(LL.EQ.O) GO TO 222

C
C FORM STRESS-DISPLACEMENT MATRIX
C

C1=BULK(N)+SHEAR(N)
C2=BULK(N)-SHEAR(N)
C3=SHEAR(N)
DO 200 K=l,24
STS(1,K)=C1*STR(1,K)+C2*STR(2,K)+C2»STR(3,K)
STS(2,K)=C2*-STRC1,K)+C1<-STR(2,K)+C2»STR(3,K)
STS(3,K)=C2*STR(1,K)+C2*STR(2,K)+C1«STR(3,K)
STS(4,K)=C3*STR(4,K)
STS(5,K)=C3»STR(5,K)
STS(G,K)=C3*STRCG,K)
KK=LM(K)
IF(KK.EQ.O) GO TO 180
P(K)=B(KK)
GO TO 200

180 P(K)=0.
200 CONTINUE

DO 220 1=1,

G

SIG(I)=0.
DO 220 K=1.24

220 SIG(I)=SIG(n+STS(I,K)«P(K)
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GO TO 228
222 CONTIMUE

IF(IT.EO.l) GO TO 225
DO 224 1=1,

G

224 SIG(I)=0.
GO TO 228

225 COMTIhUE
DO 22B 1=1.

B

22G SIG(I)=STRESS(N,

n

228 COMTIISUE
IFCIT.EQ.S) GO TO 240
DO 230 1 = 1.

G

230 SMEWCN. I)=STRE5S(N, I)-0.5*SIG(I)
GO TO 300

240 CONTIMUE
DO 250 1=1.

G

SNEUCM. I )=STRESS(M, I )-SIG( I

)

250 STRESS(N.I)=SMEW(M,n
DO 270 1=1.

G

EPS(I)=0.
IF(LL.EQ.O) GO TO 270
DO 2G0 K=1.24

2G0 EPS(I)=EPS(I)+STR(I.K)»P(K)
270 STRAIIH(N.I)=STRAIN(N,I)-EPS(I)*100.
300 CONTINUE

IF(IT.LT.2) GO TO 400
PRINT 2100
DO 3G0 N=1.NUMEL
IF(N .LE. NELCftL .OR. NUNCEL .EQ. 0) GO TO 340
DO 320 n=l.NUt1CEL
IF(N .EQ. NCEL(M)) GO TO 340 •.

320 CONTINUE . d. ./:.:,

-

GO TO 3G0
340 CONTINUE
C
C CALCULATE PRINCIPAL STRAINS
C

IND=0
N(1=3
ril=3
A(1,1)=STRAIN(N,1)
A(2.2)=STRAINCN,2)
A(3,3)=STRAIN(N.35
A(1,2)=STRAIN(N,4)
A(2,3)=STRAIN(N.5)
A(1.3)=STRAIN(N.G)
A(2.1)=A(1.2)
A(3.2)=A(2.3) ,
A(3.1)=A(1,3)
CALL RSEIGCNM.Nl.A.IND.D.Zl)
CALL COMPAR(D)
PRS(1)=D(1)
PRS(2)=D(3)
PRS(3) = (PRS(1)-PRS(2)V2.
EM0D=2.*BULK(N)«(l.+POIS(N))»(l.-2.»POIS(N))
PRINT 2150, N.E(10D.BULK(N).SHEAR(N).P0IS(N). CSTRAIN(N.M),M=lfS)f

1 PRS(3),N
3S0 CONTINUE

PRINT 2200
PRINT 21G0

400 CONTINUE
C
C CALCULATE PRINCIPAL STRESSES AND NEW MODULUS UALUES
C

DO 500 N=1,NUMEL
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IFCN .LE. MELCAL .OR. NUMCEL .EQ. 0) GO TO 440
DO 420 M=ltnUhCEL
IF (N .EQ. NCEL(M)) GO TO 440

450 CONTINUE
GO TO 500

440 CONTINUE
IMD=0
NM=3
Nl=3
A(l.l)=SNEW(Ntl)
A(2f2)=SNEU(N,2)
A(3,3)=SNEW(N.3)
A(1.2)=SNEW(N,4)
A(2,3)=SNEU(N,5)
A(1.3)=SNEW(N,6)
A(2.1)=A(1.2)
A(3,2)=A(2,3)
A(3.1)=A(1,3)
CALL RSEIGCNM.Nl.A.IND.D.Zl)
CALL COnPftR(D)
DO 443 1=1,3
PRS(I)=D(I)

443 CONTINUE
MTYPE=INP(N.9)
KL=2
IFCIT.EQ.l) KL=3
CALL MODU (EMPR, BULK, SHEAR, POIS.SLMAX.PRS.PATM.NUMMAT.N.

1 MTYPE.STRLEU.KL)
IF(IT.LT.2) GO TO 500
IF ( STRLEU . GT . SLMAX ( N ) ) SLMAX ( N ) =STRLEU
PRS(4) = (PRS(l)-PRS(3))-'2.

C CALCULATE THREE DIRECTIONS OF STRESSES
JJ1=1
DO 451 1=1.3
PRS(5+(JJl-l)»n=5?.2957?951*ZlCI,l)
PRS(B+(JJ1-1)*I)=5?.29577951»21(I,2)
PRS(7+(JJ1-1)«I)=57.2357?951»21(I,3)
JJ1=JJ1+1

451 CONTINUE
IF(PRS(3).NE.O.) GO TO 4G0
PRS(14)=999.99
GO TO 470

4B0 PRSC14)=PRS(1)/PRS(3)
470 CONTINUE
C
C PRINT STRESSES
C

PRINT 2250. N.(STRESSCN,M).ri=l.G),(PRS(I), 1=1.3), PRS(14),
ISLMAX(N), STRLEU

500 CONTINUE
IF(IT.LT.2) GO TO 530
REWIND 3
URITEO) ((DISPCN,M).M=1,3),N=1,NUMNPT)
URITEO). ((STRAIN(N.M),M=1,G),N=1.NUNELT)
IF(LN .EQ. NUMLD) GO TO 501
GO TO 508

501 READ 2203, IFXY, IFY2
IFCIFXY .EQ. .AND. IFY2 .EQ. 0) GO TO 504
REAP 1000, LAYSUn.NFLAY
READ 1010, ((HEIGHT(n).I=l,LAYSUM)
READ 1020, ((nLEL(I),NREL(I)).I=l,MFLAY)
MELAY=LAYSUM-NFLAY
READ 1020, ((NQNEL(I,1),M0MEL(I.2)),I=1.MELAY)
IFdFXY .EQ. 0) GO TO 502
CALL FACTXV(E(1PR,X, Y.Z, INP. SHEAR, STRESS. NUMELT.NUMMAT)
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502 IFCIFYZ .EO. 0) GO TO 504
CALL FACTYZCEMPR, X. Y, Z. IMPt SHEAR, STRESS, MUMELT, MUMMAT)

504 CONTIHUE
508 COMTINUE

REWIND 8
WRITECS) ((STRES5(M,M),M=l.G),M=l,NUnELT)
IF(NPUNCH.EO.O) GO TO 530
DO 510 I=1,HPUNCH
IFCLM.EQ.MLDPd)) GO TO 520

510 CONTINUE
GO TO 530

520 CONTINUE
PUNCH 2500, (N, (STRESSCN. M) , M=1,G) , N=l, NUMEL)
PUNCH 2500, (N. (STRAINCN, M) , N=l, 8) , N=l, NUMEL)
PUNCH 2550,(N,(DISP(N,M),M=1,3),N=1.NUMNP)
PUNCH 2800, (N,(BULK(N),SHEAR(N).P0IS(N),SLMAX(N)),N=1, NUMEL)

530 CONTINUE
RETURN

1000 F0RMAT(2I5)
1010 FORnAT(8F10.2)
1020 F0RMftT(2I5)
2000 FORMATCISHILAYER NUMBER =,:3.15H ITERATION =, 13/

1 G0H':-**«*«««»***»**->:-»«»»«»»»a»«**»»««»«« »»»»*»»»»»*«*«»•»»*»«»» /)
2005 F0RMAT(12H1L0AD CASE =, 13, 15H ITERATION =,13^

1 BOH «»»«««*»«««»*»««»«*«»»««**•»»•«»*»*»»»»»«»»»»»«««<••«••» /)
2010 FORMAT(G5H0 NP DELTA-X DELTA-Y DELTA-Z X-DISP Y-DISP

1 Z-DISP ,15H TOTAL NP/)
2050 FORMAT(I5,7F10.4,I5)
2100 F0RMAT(53H1 MODULUS AND POISSON S RATIO UALUES BASED ON AUERAGE,

1 30H STRESSES DURING THE INCREMENT,/,
2 4SH STRAINS FOR FINAL CONDITION AT END OF INCREMENT,//,
3 51H ELE ELAS MOD BULK MOD SHEAR MOD POIS EPS-X,
4 SEH EPS-Y EPS-Z GAM-XY GAM-YZ GAM-ZX GAMMAX ELE /)

2150 FORMAT(I5,3F10.1, 8F8.3,I5)
21G0 FORMAT

(

1 132H SIG-X SIG-Y SIG-Z TAU-XY TAU-YZ
2 TAU-ZX SIG-1 SIG-2 SIG-3 SIG1/SIG3 SLMAX S
3LPRES/) -

2200 FORMATCSIHI STRESSES AND STRESS LEUELS FOR FINAL CONDITION AT,
1 17H END OF INCREMENT,//)

2201 FORMATdOSH TAUMX Tl-12 Tl-23 Tl-13 T2-1
12 T2-23 T2-13 13-12 T3-23 T3-13 )

2202 FORMAT(5X,GF10.3,2X,4F10.3,////)
2203 F0RMAT(2I5)
2250 FORMAT(I5,GF10.3,2X,4F10.3,4X,2F10.3 )

2500 FORMftT(I5,8F10.4)
2550 FORMAT(I5,3F10.4)
2G00 FORMAT(I5.4F10.4)

END

SUBROUTINE FACTXYCEMPR, X, Y, Z, IMP, SHEAR, STRESS, NUMELT, NUMMAT)
COMMON/JSOP/ LAYSUM, NFLAY, NLEL, NREL, NOMEL, HEIGHT
DIMENSION EMPRCNUMMAT, 13),X(1),Y(1),Z(1), INP (NUMELT, 9)
DIMENSION STRESSCNUMELT. 8) , SHEARCl

)

DIMENSION HEIGHT(20),NLEL(20),NREL(20),NOMEL(20,2)
READ 2000, XO,YO,BETA,RU,GAMAE,GAMAF,NTIME
TB=TAN ( BETA/57 . 2957795 1

)

VT=HEIGHT(LAYSUM)
XT=XO+(YT-YO)/TB
DO 280 INUM=1,NTIME
READ 2001, RADIUS, RZ, DANGLE, XR.YR.ZR.DZ, NUMBER. NUMBF.ISIGN
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PRINT 3000
PRINT 3001, RADIUS, RZ,XR.YR,ZR, BETA, DANGLE
PRINT aooa
RTOP=SQRT ( ( XR-XT

)

*<2

.

+ ( YR-YT ) •*2 .

)

DIST=ABS ( XR-TB-YR+YO-XO»TB )/SQRT ( 1 . +TB»TB

)

TSIGN=0.
TTAUN=0.
TCOHES=0.

1=1
50 ZP=ZR+(FLOAT(I)-0.5)*DZ»ISIGN

DET=1.-((FLOAT(I)-0.5)*:DZ/RZ)»»2.
IF(DET .LT. 0.) GO TO 280
RXY=RAD IUS«SQRT ( DET

)

IF(RXY .LE. DIST) GO TO 275
ALFAO=ASIN( (YR-YT)/RXY)
ANGLE=ALFAO+DANGLE/ ( 2 . e57 . 29577951

)

IF(RXY .GE. RTOP) GO TO 80
GO YL=YR-YO-RXY<SIN(ANGLE)

YU= ( XR-XO+RXY<fCOS ( ANGLE ) ) »TB
IF(YL .GE. YU) GO TO 70
GO TO 80

70 ANGLE=ANGLE+DANGLE/ ( 2 . <57 . 29577951

)

GO TO GO

80 YP=YR-RXY»SIN(ANGLE)
ITER=1
NI=LAYSUt1

SO IF(NI .EQ
GO TO 110

100 IFCYP .LE
GO TO 300

110 IFCYP .LE
NI=NI-1
GO TO 30

1) GO TO 100-

HEIGHTCl) .AND. YP. GE. 0.) GO TO 120

HEIGHT(NI) .AND. YP .GT. HEIGHT(NI-l) ) GO TO 120

-120 XP=XR+RXY«COS( ANGLE)
CKX=XP-XO
CKY=YP-YO
IFCCKX .LE. 0. .AND. CKY .GE. 0.) GO TO 270
IF(CKX .GT. 0. .AND. CKY .GT. 0.) GO TO 130
GO TO 140

130 SXY=CKY/CKX
IFCSXY .GE. TB) GO TO 270

140 IFCNI .LE. NFLAY) GO TO 150
NF=NI-NFLAY
NS=N0MEL(NF,1)
GO TO IGO

150 NS=NLEL(NI)
160 N1=INP(NS,1)

N2=INP(NS,2)
N3=INP(NS,3)
N4=INP(NS,4)
N5=INP(NS,5)
N8=INP(NS,8)

IFCITER .EO. 2) GO TO 210
IF(X(N1) .EQ. X(N4)) GO TO 170
CK1=X(N1)+((X(N4)-X(N1))/(Y(N4)-Y(N1)))«(YP-Y(N1))
GO TO 180

170 CK1=X(N1)
180 IF(X(N2) .EQ. X(N3)) GO TO 190

CK2=X(N2)+((XCN3)-X(N2))/'(Y(N3)-V(N2)))«(YP-Y(N2))
GO TO 200

190 CK2=X(N2)
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200 IFCXP .GE. CKl .AMD. XP .LT. CK2) GO TO 210
MS=NS+1
GO TO IGO

210 IF(Z(N1) .EO. Z(N4)) GO TO 220
CK3=Z(N1)-(Z(H1)-Z(N4))*(YP-Y(N1))/(Y(N4)-Y(N1))
GO TO 230

220 CK3=Z(N1)
230 IF(Z(N5) .EQ. Z(tS8)) GO TO 240

CK4=Z(N5)-(2(N5)-Z(M8))»(YP-Y(N5))/(Y(N8)-Y(M5))
GO TO 250

240 CK4=2(N5)
250 IFCZP .GE. CK3 .AND. ZP .LT. CK4) GO TO 2G0

IF(fSI .GT. MFLAY .AND. NS .GE. MOnELCriF. 2) ) GO TO 230
IFCNI .LE. NFLftV .AISD. MS. GE. MRELCMD) GO TO 290
IF(MI-MFLAY) 252,252,254

.252 N5=MS+NUI1BF
GO TO E5G

254 MS=MS+NUMBER
25G ITER=2

GO TO IGO

2B0 AXY=1.57079G3-AMGLE
DX=RXY«- ( DAMGLE/S? . 29577951 ) «COS C AXY

)

fiY2=ATAM(CRADIUS/R2)»«2.«ABS(ZP-ZR)/(YR-YP))
AAXY=AXY-57 . 2957795

1

AAYZ=AYZ*57 . 2957795

1

AREA=DX*D2-SQRT(1.-(SIM(AYZ)»SIN(AXY))»»2.)/(C0S(AXY)«C0S(AYZ))
UT=SORT ( 1 . +TAM ( AXY ) ««2 . +TAM ( AYZ ) •»2 .

)

U1=TAM(AXY)/UT
U2=1./UT
U3=TAM(AYZ)/UT
T1=STRESS(NS,1)«U1-STRESS(MS,4)»U2-STRESS(MS,G)*U3
T2=-STRESS(MS,4)-U1+STRESS(MS,2)«U2-STRESS(MS,5)*U3
T3=-STRESS(MS,G)«U1-STRESS(MS,5)»U2+STRESS(NS,3)*U3
SIGM=T1*U1+T2«U2+T3<U3
IF(SIGM .LE. 0.) SIGM=0.
TAUM=SQRT(ABS(T1*T1+T2»T2+T3»T3-SIGM»SIGN))
MTYPE=INP(MS,9)
IF(SHEAR(MS) .LE. 0.0001) GO TO 2G1
TAMFI=TAMCEMPR(I1TYPE,9)/57. 29577951)
COHES=EMPR(MTYPE, 8)
GO TO 2G2

.2G1 TAMFI=0.
COHES=0.

.2G2 IFCXP .GE. XT) GO TO 2E5
IFCXP ,GT. XO) GO TO 2G3
WP=RU:>GAMAF« C YD-YP )

GO TO 2E7

2G3 IFCYP .GE. YO) GO TO 2G4
WP=RU ::• C GAMAE* C XP-XO ) «TB+GAMAF« C YG-YP )

)

GO TO 267

2G4 t4P=RU«GAMAE«CY0+C XP-XO )»TB-YP)
GO TO 2G7

ESS IFCYP .GE. YO) GO TO 2GS
WP=RU» C GAMAE* C YT-YO ) +GAMAF* C YO-YP )

)

GO TO 267

:2GG WP=RU*GAMAE»CYT-YP)

EG7 FS=C CSIGM-WP)»TAMFH-COHES)/TAUM
PRINT 2003, NS. XP, YP, ZP. SIGN, UP, TAUN. AAXY, AAYZ. AREA. FS
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TSIGM=TSIGN+(SIGrH-WP)«TfiMFI-»AREA
TTfiUN=TTAUN+TftUH-AREft
TC0HES=TCOHES+COHES*:AREA
flMGLE=ANGLE+DAhGLE/57 . 29577951
GO TO 80

270 1=1+1
GO TO 50

275 TFS=(TSIGM+TCOHES)/TTAUri
PRINT 2004. TFS

280 COMTIHUE
GO TO 310

290 PRINT 2005
GO TO 310

300 PRINT 200G
310 CONTINUE

RETURN
2000 FORriAT(GF10.3. 15)
2001 F0RriAT(7F10. 3, 215/15)
2002 FORMAT (//, 11 OH ELE X Y Z SIGN

1 UP TAUN AXY flVZ AREA LOCAL FS)
2003 FORMAT(I10.10F10.3)
2004 F0RriAT(//,5X.^0UERALL FACTOR OF SAFETY = ^.FIO.3)
2005 FORMATCSX.^^-'-^UARING--^-* THE FAILURE SURFACE OUTSIDE THE EMBANKMENT

1 ?!,/')

200G F0RMAT(5X,^*--*WARING»»« THE FAILURE SURFACE BELOW THE RIGID FOUNDft

3000 FORMAT(50H1 RXY RYZ XR YR ZR.
1 33H BETA DANGLE )

3001 FORMftT(7F10.3)
END

SUBROUTINE FACTYZ( ENPR, X, Y, Z. INP. SHEAR, STRESS. NUMELT, NUMMAT)
COMMON/JSOP/ LAYSUN, NFLAY, NLEL. NREL. NOMEL. HEIGHT
DIMENSION EMPRCNUMMAT. 13) . X( 1 ) . Y( 1 ) , Z( 1) . INPCNUMELT. 9)
DIMENSION STRESSCNUMELT. 6) . SHEARC 1

)

DIMENSION HEIGHT(20).NLEL(20).NREL(20).NOMEL(20.2)
READ 2000, YO.ZO.BETA.RU.GhNAE.GAMAF.NTIME
TB=TAN ( BETA/57 . 29577951

)

YT=HEIGHT(LAYSUM)
ZT=Z0-CYT-YO)/TB
DO 280 INUn=l,NTIME
READ 2001, RADIUS, RX, DANGLE, XR.YR.ZR.DX. NUMBER. NUMBF.ISIGN
PRINT 3000
PRINT 3001. RX. RADIUS. XR. YR, ZR, BETA, DANGLE
PRINT 2002
RTOP=SQRT( (ZR-ZT)*«2.+(YR-YT)*»2.

)

D I ST=ABS ( -ZR»TB-YR+YO+ZO«TB ) /SORT ( 1 . +TB»TB

)

TSIGN=0.
TTAUN=0.
TCOHES=0.

1=1
50 XP=XR+(FLOAT(I)-0.5)»DX»ISIGN

DET=l.-((FL0AT(I)-0.5)eDX/RX)»«2.
IFCDET .LT. 0.) GO TO 280
RYZ=RADIUS*SQRT(DET)
IFCRYZ .LE. DIST) GO TO 275
ftLFAO=AS I N ( ( YR-YT ) /RYZ

)

ANGLE=ALFAO+DANGLE/ ( 2 . '57 . 29577951

)

IFCRYZ .GE. RTOP) GO TO 80
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60 YL=YR-yO-RYZ= SIN (ANGLE)
YU= ( 20-ZR+RY2tC0S ( ANGLE ) ) •TB
IFCYL .GE. YU) GO TO 70
GO TO 80

70 ANGLE=ANGLE+DAhGLE/ ( 2 . «57 . 29577951

)

GO TO GO

80 YP=YR-RYZ<-SIN( ANGLE)
ITER=1
NI=LAYSUM

90 IFCNI .EQ
GO TO 110

100 IF(YP .LE
GO TO 300

HO IFCYP .LE
NI=NI-1
GO TO 30

1) GO TO 100

HEIGHT(l) .AND. YP. GE. 0.) GO TO 120

HEIGHT(NI) .AND. YP .GT. HEIGHT(NI-1 ) ) GO TO 120

120 ZP=ZR-RYZ«COS(ANGLE)
CK2=Z0-ZP
CKY=YP-YO
IFCCKZ .LE. 0. .AND. CKY .GE. 0.) GO TO 270
IF(CKZ .GT. 0. .AND. CKY .GT. 0.) GO TO 130
GO TO 140

130 SYZ=CKY/CKZ
IFCSYZ .GE. TB) GO TO 270

140 IFCNI .LE. NFLAY) GO TO 150
NF=NI-NFLAY
NS=NOriEL(NF,l)
GO TO IGO

150 NS=NLEL(NI)
IBO Nl=INP(NS.l)

N2=INP(NS,2)
N3=INP(NS.3)
N4=INP(NS,4)
N5=INP(NS,5)
N8=INP(NS.8)

IFdTER .EQ. 2) GO TO 210
IF(X(N1) .EQ. X(N4)) GO TO 170
CK1=X(N1)+((X(N4)-X(N1))/(Y(N4)-Y(N1)))»(YP-Y(N1))
GO TO 180

170 CK1=X(N1)
180 IF(X(N2) .EQ. X(N3)) GO TO 190

CK2=X(N2)+((X(N3)-X(N2))/'(Y(N3)-Y(N2)))*(YP-Y(N2))
GO TO 200

190 CK2=X(N2)
200 IFCXP .GE. CKl .AND. XP .LT. CK2) GO TO 210

NS=NS+1
GO TO ISO

210 IFCZCNl) .EO. Z(N4)) GO TO 220
CK3=Z(N1)-(Z(N1)-Z(N4))«(YP-Y(N1))/(Y(N4)-Y(N10)
GO TO 230

220 CK3=Z(N1)
230 IF(Z(N5) .EQ. Z(N8)) GO TO 240

CK4=Z(N5)-(Z(N5)-Z(N8))»(YP-Y(N5))/(Y(N8)-Y(N5))
GO TO 250

240 CK4=Z(N5)
250 IFCZP .GE. CK3 .AND. ZP .LT. CK4) GO TO 260

IFCNI .GT. NFLAY .AND. NS .GE. N0MELCNF,2)) GO TO 290
IFCNI .LE. NFLAY .AND. N5. GE. NRELCND) GO TO 290
IFCNI-NFLAY) 252.252.254

252 N5=NS+NUNBF
GO TO 256
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254 NS=rss+rsuriBER

25G ITER=2
GO TO IGO

2G0 AYZ=1 . 570?9B3-AMGLE
DZ=RYZ=- ( DftNGLE/5? . 2957795 1 ) »C05 ( AYZ

)

AXY=ATAN( (RflDIUS/RX)»»2.«ABS(XP-XR)/'(YR-YP)

)

AAXY=AXY«57. 29577951
AAYZ=AYZ*57 . 29577951
AREA=DX*DZ*^SQRT(1.-(SIN(AYZ)»SIIS(AXY))«*2.)/(C0S(AXY)»C0S(AYZ))
UT=5QRT(1.+TAN(AXY)**2.+TAMCAYZ)»*2.)
U1=TAN(AXY)/UT
U2=1./UT
U3=TAM(AYZ)/UT
Tl=STRES5(NS,n*Ul-STRESS(IHS.4)«U2-STRESS(NS.G)*U3
T2=-STRESS(NS,4)»U1+5TRE55(NS.2)»U2-STRE55(NS.5)*U3
T3=-5TRES5(rHS,B)*Ul-STRESS(MS.5)*U2+STRESS(NS.3)*U3
SIGN=TleUl+T2<-U2+T3--U3
IFCSIGN .LE. 0.) SIGrS=0.
TAUN=SQRT(AB5(T1-'T1+T2-T2+T3»T3-5IGM«SIGN))
riTYPE=INP(N5.9)
IF(SHEAR(NS) .LE. 0.0001) GO TO 2B1
TftNFI=TAN(E!-lPR(MTYPE.9)/57. 29577951)
COHES=EriPR(MTYPE, 8)

GO TO 2G2
2B1 TAMFI=0.

COHE5=0.
2G2 IFCZP .GE. ZT) GO TO 2G5

IF(ZP .GT. ZO) GO TO 2G3
WP=RU«GAnAF* ( YO-YP

)

GO TO 2G7

2B3 IFCYP .GE. YO) GO TO 2G4
WP=RU» ( GAMAE» ( ZP-ZO ) «TB+GAI1AF« (YO-YP )

)

GO TO 2G7

2G4 WP=RU«GAMAE» ( Y0+ ( ZP-ZO ) "TB-YP

)

GO TO 2G7

2G5 IFCYP .GE. YO) GO TO 2GG
WP=RU» ( GAMAE* ( YT-YO ) +GAMAF* ( YO-YP )

)

GO TO 2G7

2G6 WP=RU3GAMAE»(YT-YP)

2B7 FS=( (SIGM-WP)«TAMFI+C0HE5)/'TAUM
PRINT 2003, M5, XP. YP, ZP, SIGM. UP. TAUN. AftXY. AAYZ. AREA. FS
TSIGN=TSIGN+(SIGN-UP)»TANFI»AREA
TTAUN=TTAUIS+TAUN«AREA
TC0HES=TC0HES+C0HES*AREA
ANGLE=ANGLE+DANGLE/57 . 23577351
GO TO 80

270 1=1+1
GO TO 50

275 TFS=(TSIGn+TCOHES)/'TTAUN
PRINT 2004, TFS

280 CONTINUE
GO TO 310

290 PRINT 2005
GO TO 310

300 PRINT 200G
310 CONTINUE

RETURN
2000 FORNAT(GF10.3,I5)
2001 FORt1AT(7F10. 3, 215/15)
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2002 FORMAT (//, 11 OH ELE X Y Z SIGN
1 UP TAUN AXY AYZ AREA LOCAL FS)

2003 FORMAT(I10.10F10.3)
2004 F0RMAT(//'.5X,;^0UERALL FACTOR OF SAFETY = ?!,F10.3)
2005 F0RMAT(5X,;i»«eWARIMG»»» THE FAILURE SURFACE OUTSIDE THE EMBAMKMEIST

1 ^.y)
200B F0RMAT(5X,?!«»»WARING»«» THE FAILURE SURFACE BELOU THE RIGID FOUNDA

ITIOH?;,/)
3000 FORMAT(50H1 RXY RY2 XR YR 2R.

1 33H BETA DANGLE )

3001 FORMAT (7F1 0.3)
END
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