
HAL Id: hal-01145792
https://hal.inria.fr/hal-01145792

Preprint submitted on 27 Apr 2015

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Seamless: A Reflective Middleware for Pharo (DRAFT)
Nikolaos Papoulias

To cite this version:

Nikolaos Papoulias. Seamless: A Reflective Middleware for Pharo (DRAFT). 2015. �hal-01145792�

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by INRIA a CCSD electronic archive server

https://core.ac.uk/display/49529335?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://hal.inria.fr/hal-01145792
https://hal.archives-ouvertes.fr

Seamless: A Reflective Middleware for Pharo (DRAFT)

Chapter 1

Seamless: A Reflective
Middleware for Pharo
(DRAFT)

by Nick Papoulias

Seamless 1 is a reflective communication middleware for Pharo that aims
to facilitate the prototyping of distributed applications. It provides devel-
oper friendly abstractions and syntactic sugar for an out-of-the-box Pharo
to Pharo communication experience. After prototyping your application,
Seamless lets you easily profile and tweak communication settings such as
distribution and serialization policies for optimizing performance and avoid
common distribution caveats. This Chapter covers version 0.4 of Seamless
for Pharo 3.0 and will be updated frequently towards version 1.0 (stable re-
lease).

1.1 Wait: Reflective What?

The first thing we do, let’s kill all the lawyers – from "Henry VI", Shakespeare

A communication middleware is a networking solution (such as a library
or a framework) that aims to hide some of the complicated networking setup
(low-level details of socket management, remote method invocation, nam-
ing etc) from the developer. A reflective communication middleware is the
more dynamic variant of such a system whose implementation relies on run-

1http://ss3.gemstone.com/ss/Seamless.html

Seamless: A Reflective Middleware for Pharo (DRAFT)

http://ss3.gemstone.com/ss/Seamless.html

2 Seamless: A Reflective Middleware for Pharo (DRAFT)

time reflection and can thus be itself adapted and configured at runtime 2 .
Seamless is such a reflective middleware for Pharo and as a project can be
considered a descendant of Remote Smalltalk 3 which itself was preceded by
projects such as OpenCorba 4 and Distributed Smalltalk 5. It was born as an
engineering prerequisite for a research prototype on remote debugging and
has since be used on and off internally by other RMoD projects at INRIA.

From the point of view of the Pharo developer Seamless aspires to be -
eventually - what RMI and DCOM is for Java and the .NET platforms re-
spectively, while leveraging the reflective and dynamic nature of our envi-
ronment. Seamless may be distinguished from other solutions in that:

• It targets the Pharo environment and strives to integrate with its core
facilities (ie available serialization solutions like Fuel, proxy implemen-
tations like Ghost etc)

• It provides abstractions, syntactic carbohydrates (sugar) and program-
ming facades to make the prototyping of distributed applications feel
out-of-the-box. In a nutshell Seamless is biased towards Rapid Applica-
tion Prototyping.

• Under the hood it tries to reify every single part of the object distribu-
tion process and its policies, so as to allow extensibility as well as easy
profiling and fine-tuning.

1.2 Enough Said: Death to Sockets!

Installation

Seamless has been ported to Pharo 3.0. To install Pharo on your system fol-
low the online instructions here or here. To install Seamless and start playing
around evaluate the following code-snippet in your Workspace:

Gofer it
url: 'http://ss3.gemstone.com/ss/Seamless';
package: 'ConfigurationOfSeamless';
load.

((Smalltalk at: #ConfigurationOfSeamless) project version: '0.4') load.

2For more info on reflective middleware, you can read this overview by Fabio Kon et al:
http://www.inf.ufg.br/~fmc/papers/CACM-ReflectiveMiddleware-no-access.pdf

3http://www.squeaksource.com/rST.html
4http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.79.1783
5http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.22.7323

http://pharo.org/download
http://get.pharo.org/
http://www.inf.ufg.br/~fmc/papers/CACM-ReflectiveMiddleware-no-access.pdf
http://www.squeaksource.com/rST.html
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.79.1783
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.22.7323

1.2 Enough Said: Death to Sockets! 3

Alternatively Seamless can be also loaded directly from the command
line as follows:

./pharo-ui Pharo.image config \
http://ss3.gemstone.com/ss/Seamless \
ConfigurationOfSeamless \
--install=0.4

Then in order to be able to initiate and respond to requests from other
images evaluate:

aDeamon := SeamlessDeamon
newDefaultWithGlobalAccess
startOn: 8080.

which again can be done directly from the command-line at start-up. To
sum-up here is how you can download pharo, load Seamless and start the
daemon in your preferred port in one go:

wget -O- get.pharo.org | bash;
./pharo-ui Pharo.image config \

http://ss3.gemstone.com/ss/Seamless \
ConfigurationOfSeamless \
--install=0.4;

./pharo-ui Pharo.image eval "SeamlessDeamon newDefaultWithGlobalAccess
startOn: 8080"

In order to follow the example in this chapter you will be needing two
images, listening to port 8080 (peer1 from now on) and 8081 (peer2 from
now on) respectively.

Hallo Transcript!

Once you have your peers set-up you can start sending messages from one
image to another. This section will step-by-step dissect these remote msg-
sends by showing you:

• How you get a reference to a remote receiver.

• What happens when you pass different kind of objects as arguments.

• How values from these message-sends are returned.

along the way we will also see how to use the SeamlessLogger, which
doubles as a profiler for remote messaging.

4 Seamless: A Reflective Middleware for Pharo (DRAFT)

Fetching Remote References

The simplest example possible would be to print the customary ’hallo world’
or a sequence of numbers from peer1 to the transcript of peer2.

There are a lot of different ways to do that with Seamless let’s see some
of them (from peer1):

"sugar 1"
remoteTranscript := (Transcript from: '127.0.0.1:8081').
remoteTranscript open.
remoteTranscript show: 'Hallo World !'.
1 to: 100 do: [:i |

remoteTranscript show: i; cr.
].

As you can see the only difference with printing locally is on line 2 when
we retrieve the remote transcript instead of using the local Transcript of
peer1. We will come back to the trade-offs introduced to your code by this
transparency between local and remote execution. In the meantime here is
some other ways you can retrieve a remote object and start sending mes-
sages to it with Seamless:

"sugar 2"
remoteTranscript := '127.0.0.1:8081' globalAt: #Transcript.
"sugar 3"
remoteEnvironment := '127.0.0.1:8081' asRemoteEnvironment.
remoteTranscript := remoteEnvironment at: #Transcript.
"sugar 4 (alt 1)"
remoteTranscript := (Smalltalk from: '127.0.0.1:8081') globals at: #Transcript.

This is of course all syntactic sugar with the seamless daemon and pro-
tocol working behind the scene to manage your remote references. You can
even use these as a base to introduce your own abstractions for fetching re-
mote objects.

Passing Arguments By Value

Let’s now re-run our Transcript example (shown above), only this time we
will use the SeamlessLogger (on both peers) to take a pick behind the scenes:

SeamlessLogger new.

Figure 1.1 shows the loggers on peer1 (left) and peer2 (right) after print-
ing "1 to: 100" on the Transcript of peer2 as we did earlier. On the upper
left side of each logger we can see the list of daemons in each peer. Mul-
tiple daemons with different configurations (communication and serializa-
tion protocols and policies) can co-exist in each peer. While each one of

1.2 Enough Said: Death to Sockets! 5

Figure 1.1: Remote Printing of Basic Objects (LOG).

these daemons can connect to multiple remote peers initiating a one-to-one
session with each one (lower left side of each logger). On each of these ses-
sions we can start/stop logging (stopping also clears the log) and update the
log-views (upper right and lower right side of each logger) even while the
communication is taking place. Automatic updating of the log is currently
disabled in order to minimize the slow-down introduced by the logging fa-
cilities.

The log-views for our example inform us that:

• Peer1 (Upper-Log): 2 instances of TSeamlessRemoteProxy (ie remote
objects) received all local messages (100% of them) that amounted to
201 messages in total. 0.5% (ie 1 out of the 201) of those messages send
to TSeamlessRemoteProxy instances where #at:, 49.8% (ie 100 mes-
sages) where #cr, while the rest 49.8% (ie 100 messages) were #show.

• Peer1 (Lower-Log): All messages were outgoing (outgoing arrow),
with each line also displaying:

– the message-id counting from the start of the session
– the class, with a unique qualifier for each instance that received

the message under parenthesis (for proxies this is the proxy-id for
local objects this is their hash)

– the selector of the message

• Peer2 (Upper-Log): As expected it was an instance (local to peer2) of
the SystemDictionary class that received the #at: (to retrieve the re-
moteTranscript) while all other messages (200 of them) were send to 1
instance of the ThreadSafeTranscript, and were divided among #show
and #cr sends.

• Peer2 (Lower-Log): All messages were incoming (ingoing arrow), with
each line displaying as before the message-id, the class with a

6 Seamless: A Reflective Middleware for Pharo (DRAFT)

Figure 1.2: Remote Printing of Composite Objects (LOG).

unique qualifier for each instance and the selector.

Passing Arguments By Reference

So far so good, no surprises here as far as remote communication goes this
is the simplest example possible. Let’s try something else now:

1 remoteTranscript := '127.0.0.1:8081' globalAt: #Transcript.
2 aLocalObject := Object new.
3 (1 to: 100) do: [:i |
4 remoteTranscript show: aLocalObject; cr.
5].

The only thing we have changed here (on line 4) is the argument passed
to the message #show: that the remoteTranscript receives. The code behaves
as expected (ie aLocalObject is printed on the remoteTranscript as previ-
ously), but this time behind the scenes something different is going on. As
shown in Figure 1.2 our explicit call to the remoteTranscript generated im-
plicit proxies and incomming traffic from the other side. More specifically
aLocalObject was implicitely proxied to peer2 because it was passed as an
argument to #show, and then this new proxy generated traffic because it re-
ceived the message #asString from the Transcript on peer2.

Note also here that because of this implicit proxying, although the code
seems to send 200 messages (100 shows and 100 cr) the traffic that was gen-
erated in both directions in total was 300 messages. So why this difference,
what changed ? The answer is that the argument to #show: changed from
a Number to a composite Object. More specifically it changed from a termi-
nal instance that can be copied when passed as an argument, to an instance
that is not terminal but potentially points to other objects. This latter instance
should be referenced (ie proxied) otherwise (if copied) it will not remain in
sync with the other side. Should is the operative word here, cause at the end

1.2 Enough Said: Death to Sockets! 7

of the day it is you (the programmer) that decides what gets proxied (and re-
mains in sync) and what gets copied as terminal information (be it terminal
instances such as numbers or even composite objects with their whole object
graph).

By default Seamless chooses for you a handful of classes (including all
their subclasses) to be passed or returned by value (ie copied) while all other
local arguments to a remote call (or return values) will be passed by reference
(implicitly creating proxies on the other side). This is done because while
prototyping, you shouldn’t - ideally - care. Knowing what Seamless does
for you though will help you code more efficiently. As we said a simple
rule that you can guide you is that by default basic objects such as numbers
and strings are passed by value while more composite objects are passed by
reference. The global default daemon of Seamless passes the instances of the
following classes (and of their subclasses) by value:

• Boolean

• Character

• Number

• String

• Symbol

• UndefinedObject

• Color

• Point

Changing Policies on The Fly

Of course the above list can be changed dynamically either while setting up
your daemon or even (if needed) while your application is running. Even
more conveniently you can programmatically choose to serialize a previ-
ously proxied object or force the serialization of a local object to the other
side on a per instance and per message basis. For our example this would be
done as follows:

1 remoteTranscript := '127.0.0.1:8081' globalAt: #Transcript.
2 aLocalObject := Object new.
3 (1 to: 100) do: [:i |
4 remoteTranscript show: aLocalObject byValue; cr.
5].

8 Seamless: A Reflective Middleware for Pharo (DRAFT)

Figure 1.3: Remote Printing of Proxied Objects (LOG).

By sending the message #byValue to a local object (line 4), it will force it to
be copied rather than proxied on the remote call it is passed as an argument.
Conversely #byValue send to a proxy (ie a remote and not a local object) will
return a local copy of it for further processing. Several synonyms exist in
Seamless for this facility (ie #asLocalObject, #asRemoteObject etc) but they
all do the same thing for both local and remote objects. That is: Force the
serialization of the object in question in the syntactic context they are used.

Passing Proxies Around

So we ’ve seen what happens when both terminal instances and composite
objects are passed as arguments to remote calls. What about remote proxies
themselves, what happens then ? Let’s evaluate the following code:

1 remoteTranscript := '127.0.0.1:8081' globalAt: #Transcript.
2 (1 to: 100) do: [:i |
3 remoteTranscript show: remoteTranscript; cr.
4].

This time on line 3 we ask the remote transcript to print itself. The code
behaves as expected, we see the transcript on peer2 being printed as a string
on itself. This time though behind the scenes (in Figure 1.3) we don’t see
any implicit proxies created or messages send from both sides. In fact the
log when passing proxies as arguments looks identical to the one we saw on
Figure 1.1 when passing numbers by value. Why ? Well, it turns out that a
proxy passed as an argument to a remote call will just be de-referenced in
the other side where it actually resides as a local object.

1.2 Enough Said: Death to Sockets! 9

Return Values

Similarly for return values of remote calls, there are three distinct cases (ac-
cording to the serialization policies of the peer that responds to the message):

1. A return value is serialized if it is a local terminal instance

2. A return value is proxied if it is a composite object

3. A return value is de-referenced in the other side (since it is a proxy
from the calling peer)

Run the following code and watch the values printed in your local tran-
script to make these distinctions more clear:

1 remoteTranscript := '127.0.0.1:8081' globalAt: #Transcript.
2
3 returnValue := remoteTranscript class.
4 Transcript show: returnValue; cr; show: returnValue xxx___isProxy; cr; cr.
5
6 returnValue := returnValue allInstances.
7 Transcript show: returnValue; cr; show: returnValue xxx___isProxy; cr; cr.
8
9 returnValue := returnValue size.
10 Transcript show: returnValue; cr; show: returnValue xxx___isProxy; cr; cr.
11
12 returnValue := (Smalltalk from: '127.0.0.1:8081') globals at: #aRemoteObject put:

Object new.
13 Transcript show: returnValue; cr; show: returnValue xxx___isProxy ; cr; cr.

<OUTPUT>

ThreadSafeTranscript
true

{Transcript}
true

1
false

an Object
false

On line 1 as previously we retrieve the remote transcript and then on line
3 we send the message #class to it. We print the return value and ask if it is a
proxy. The return value is the class ThreadSafeTranscript (a composite object
from the other side) so it is indeed a proxy (true). Then on line 6 we ask from

10 Seamless: A Reflective Middleware for Pharo (DRAFT)

this remote class all its instances and print them locally. The answer is an
ordered collection that includes the remote transcript {Transcript} and since
this is a composite object it exists on peer1 as a proxy (true). Then on line 9
we ask this remote ordered collection for its size. Since size returns a num-
ber and numbers are terminal instances the size is returned by value (false).
Finally on line 12 we create a new entry on the remote System Dictionary
storing a local object (from peer1). As we saw earlier this local object will be
implicitly proxied on peer2. But, when the remote call #at:put: will return the
value stored (an Object), this value will be a de-referenced local object (false)
that is also being proxied on the other side.

To sum-up the following Table gives you all the possibilities for both ar-
guments and return values for a two-peer communication:

Type Distribution

Terminal Instance By Value (Serialized/Copied)
Composite Object By Reference (Proxied)
Proxy De-Referenced (Proxied Object from the other side)

1.3 Between Ping-Pong and the REST

Armed with the experience of our previous example we now move on to a
slightly more complicated case in order to understand more about the trade-
offs of implicit proxyfication and traffic. Our goal is for the reader to be
able to reason with ease about the distribution (either explicit or implicit) of
objects and structure his or her code accordingly.

After that we will have a short discussion about the well-documented
caveats of transparent distribution 6 and how this model compares to - what
can be seen as - the the other end of the communication spectrum, namely
that of stateless one-shot requests (REST).

Let’s Play Ping-Pong

In the first code snippet below (which you can find in the Examples sub-
package of Seamless) we see the localPingPong method of the TutorialExam-
ple class. This method on line 2 creates a new instance of the PingPong class
and sends the message #decrement:using: to it.

1 TutorialExample class>>localPingPong
2 PingPong new decrement: 100 using: PingPong new.

6http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.41.7628

http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.41.7628

1.3 Between Ping-Pong and the REST 11

aPingPong another
PingPong

decrement: 100 − 1
using: aPingPong (self)

decrement: 99 −1
using: anotherPingPong (self)

2

3

decrement: 100
using: anotherPingPong

1

4
..

5
..

Figure 1.4: Mutally recursive calls between ping-pong instances.

As seen in Figure 1.4 the ping-pong instance through the #decre-
ment:using: method is responsible for decrementing the number aNumber
which it receives as the first argument through mutual-recursion with an-
other ping-pong instance (whence the name).

Inside the #decrement:using: method (seen below), the number is de-
creased on line 6 as it is passed back and forth between the two instances,
while on line 11 the number of each step is printed. Printing is done after
the mutual recursive calls with each executing context (100 contexts in this
example) printing the number it received before returning.

1 PingPong>> decrement: aNumber using: aPingPongInstance
2
3 aNumber = 0 ifFalse: [
4
5 aPingPongInstance
6 decrement: aNumber - 1
7 using: self.
8
9].
10
11 Transcript show: aNumber; cr.

If you open a Transcript and execute TutorialExample localPingPong you
will - as expected - see the count-down from 100 being printed on your
screen.

This rather abstract and boring example can become more intresting if
one of the two instances is remote. This is achieved on lines 2 and 3 of the
#pingPong method in the TutorialExample class (see below) where a local
PingPong instance receives a remote instance of the same class as a second

12 Seamless: A Reflective Middleware for Pharo (DRAFT)

Figure 1.5: The Log of the PingPong Example.

argument.

1 TutorialExample class>>pingPong
2 remotePingPongClass := ('127.0.0.1:8081' globalAt: #PingPong).
3 PingPong new decrement: 100 using: remotePingPongClass new.

To run this example set-up peer1 and peer2 as previously and open the
Transcripts on both sides. You should see that now - in contrast with the
local version - only even numbers are printed on peer1 while odd numbers
are printed on peer2.

In this case the hundred executing contexts which print the results before
returning are coupled between the two machines. Naturally the first call to
the local pingPong instance on line 3 below will wait for all contexts in both
machines to return before printing 100. This is also seen in Figure 1.5 where we
log the communication between the two machines.

What we should note here is that one explicit remote call (on Line 3 on the
code-snippet above) not only generated implicit proxyfications and traffic,
but this implicit traffic was heavily coupled between the two machines. In
essence the execution time of this one explicit remote call, includes:

• it’s own execution time and it’s own communication overhead

• PLUS the communication overhead that the subsequent coupled 100
contexts generated

Now these kind of scenarios can easily appear under naive distribution
coding. Now although the ping-pong example runs pretty smoothly in
Seamless for a lot more than 100 contexts, more coupled and more compli-
cated examples will generate even more implicit traffic. These coupled sce-
narios can introduce unacceptable slow-downs (latency) to your application
or bring application resources (memory, bandwidth) to their limits.

1.3 Between Ping-Pong and the REST 13

Where is the Ball?

In our particular example even serializing on-demand our objects (ping-
pong balls) will not exactly help us. That is if we intend to leave the rest
of the code unchanged. To illustrate this consider the following two exam-
ples below. On the first example we have changed the pingPong method we
saw earlier by sending the message #asLocalObject to the remotePingPong
instance we have created. This message send will actually return a copy
of the remote pingPong instance, effectively serializing the proxied object.
This will in turn result in a local-only execution of the #decrement:using:
method, since now both ping pong instances reside on the same machine.
You can confirm this by running the following code and watching the whole
sequence of numbers being printed only on peer1.

1 TutorialExample class>>pingPong
2 remotePingPongClass := ('127.0.0.1:8081' globalAt: #PingPong).
3 PingPong new decrement: 100 using: remotePingPongClass new asLocalObject.

Alternatively you could force the otherwise implicitely generated proxy
from peer1 to be passed by value as follows:

1 PingPong>> decrement: aNumber using: aPingPongInstance
2
3 aNumber = 0 ifFalse: [
4
5 aPingPongInstance
6 decrement: aNumber - 1
7 using: self byValue.
8
9].
10
11 Transcript show: aNumber; cr.

The only thing that has changed here is the byValue directive on line 7
which will force the local ping pong instance of peer1 to be sent by copy to
peer2. You can confirm this by running the code and watching the whole
sequence of numbers (except the first) being printed only on peer2.

In both examples above by serializing the distributed objects - despite
de-coupling the communication - we actually changed the semantics of the
application since now we don’t get the same side-effects as in the first scenario
(even numbers on one peer and odd numbers on the other).

Of course the solution 7 to this coupling problem (if we hypothesize that
our intention is to print odd and even numbers on two different peers) is to
change the code itself to look more like the first Hallo Transcript example on

7Apart from using optimizations like futures or batch communication (see concluding Sec-
tion)

14 Seamless: A Reflective Middleware for Pharo (DRAFT)

RESTTransparent
Distribution

xml-rpc,
corba

rmi,
dcom

seamless
(default)

+ dynamic
+ better integration
with languages
+ intuitive

- coupled
- error prone
- generates *lots*
of implicit traffic

- static
- less integratable
- procedural

+ decoupled
+ easy to debug
+ generates explicit
traffic

(Everyting-By-Value)(Everyting-By-Reference)
almost

- mostly a utopia*

For your applications your position in this
SPECTRUM will depend on your distribution
policies (i.e. if you are mostly proxying or

mostly serializing your arguments and return-
values).

* applicable for concurrent local processes with shared memory

Figure 1.6: A (over-simplified) view of the spectrum of communication mid-
dleware solutions in terms of distribution policies and implicit traffic.

Section 1.2. That example just prints numbers in the other side in one-shot
remote message-sends by passing arguments by copy.

The (Simplified) Big Picture

We generalize and illustrate this situation in Figure 1.6. It turns out that the
more objects or classes of objects you pass by value (like the first Hallo Tran-
script example) the more closer you are to a communication paradigm like
REST where everything is passed as a copy and each call is a one-shot re-
quest against a simple communication API (that is uncoupled and does not
generate implicit traffic). On the contrary the more you rely on the implicit
proxyfication of objects between calls (like in the ping-pong example) the
more closer you are to transparent distribution and its documented caveats
(strong coupling, latency, hard to debug). On the other hand REST is more
static and feels like a procedural communication API rather than an object-
oriented one while transparent distribution is fully object-oriented and intu-
itive. But when this transparency is taken to extremes it can be seen as mostly
utopic. 8

The idea behind Seamless is that you should be able to play across the
whole spectrum while you are prototyping and fine-tune your own code by
profiling and considering the trade-offs. Even more so you may want to use
Seamless to craft useful abstractions that enforce certain paradigms to your

8With the exception of transparent distribution over shared local memory (see concluding
Section)

1.4 Practice Makes Perfect 15

[…]

Contact (on peer2)
- database: OrderedCollection
- firstName: String
- lastName: String

ContactListEditor (on peer1)
- selectedContactIndex: Number
+ contacts(): OrderedCollection
[…]

The ModelThe Controller/View

Figure 1.7: Main classes of the Contact manager application of Pharocasts.

code.

1.4 Practice Makes Perfect

In this section we will go over some applications from the Seamless-
Examples package, that you should play around with to get more comfort-
able with the framework.

Ok, ok: Contact the Beatles

First on our list is the ContactListEditor app from PharoCasts 9. We will
be repurposing the app using Seamless to make it browse and edit contacts
from a remote peer.

The ContactListEditor is a local application for contact management that
is aimed at showcasing Polymorph. The two main classes of the app are
shown in Figure 1.7. It has a simple model-view architecture. We will be
running through Seamless the view (seen on the left of the figure) on peer1
and the model (on the right of the figure) on peer2. The view consists of
the ContactListEditor class, which remembers the currently selected contact
(selectedContactIndex iv) and retrieves all available contacts through the #con-
tacts method. These contacts are actually stored on the class-side variable
of the class Contact (database iv), with each Contact instance holding a first-
Name and a lastName string.

The class ContactsDatabaseExample on the Seamless-Examples package
provides some helper methods to load example data on each peer for the

9http://www.pharocasts.com/2011/02/pharo-gui-with-polymorph.html

http://www.pharocasts.com/2011/02/pharo-gui-with-polymorph.html

16 Seamless: A Reflective Middleware for Pharo (DRAFT)

Figure 1.8: The Contact Manager with the Beatles (peer1) and the Beatles
Wifes (peer2).

application. Go ahead and evaluate the following code on peer1 and peer2
respectively.

ContactsDatabaseExample loadBeattles (on peer1)
...
ContactsDatabaseExample loadBeattlesWifes (on peer2)

Then by evaluating:

ContactListEditor open. "the local editor"

on each peer you should be seeing something similar to Figure 1.8. This is
the local behavior of the app (as it was originally intented) with our sample
data (ie the Beatles on peer1 and Yoko Ono and her friends on peer2).

Now let’s evaluate the following code on peer1, to browse the contacts of
peer2 remotely:

Contact database: (Contact from: '127.0.0.1:8081') database.

ContactListEditor open. "browsing contacts from remote peer"

By now you should be comfortable by what has been done here. On the
first line of the code-snippet we pointed the Contacts database to peer2 and
then on the second line we re-opened the editor. Now Yoko (and the rest of
the Beatles wifes) is shown on peer1 although they are stored on peer2. 10

Figure 1.9 shows the results of this remote re-purposing and the Seam-
lessLogger. Go ahead and browse or edit the contacts and also try to move
around the window. If it feels a bit sluggish, update the SeamlessLogger to
see why. The ui (morphic in this case) in the view is sending messages to

10Of course we could have achieved that in a more elegant way, by extending the view to be
able to browse more than one databases. In this case we wanted to leave the original application
code as unchanged as possible.

1.4 Practice Makes Perfect 17

Figure 1.9: Loading the Contacts of a Remote Peer.

your model (stored on the other side) even while you are moving the win-
dow !

Of course there are many ways to change that, with the first one being
to control when morphic asks the model for updates. For example you can adopt
a Model-Model-View-Controller pattern in your code (for more on this read
here 11). What this means essentially is that what you see in the ui will be the
Application Model or the UI Model, which will be different from the Domain
Model or Back-End Model (the Contacts database in this case). If you have this
distinction in your code, morphic will be sending messages to the first model
which is by definition local, while the second model can be distributed (like
in our case) without Morphic getting in the way.

Another way would be to use a more rest-like approach by using Seamless
as we described earlier. This is seen in the following code-snippet. Go ahead
and try it:

Contact database: (Contact from: '127.0.0.1:8081') database asLocalObject

ContactListEditor open. "browsing contacts from remote peer"

As you may have guessed what we did here is to on-demand serialize our
request to the other side by bringing all remote contacts locally. Of course we
brought the whole of the contacts database in this example (since it is small).
In a real-world scenario you would be probably doing this incrementally (ie
bringing the first n-contacts and then using paging to navigate). Serializing
means that editing, browsing etc does not generate additional requests but
also that now it is your responsibility to sync the local copy to the other side.

11http://c2.com/cgi/wiki?ModelModelViewController

http://c2.com/cgi/wiki?ModelModelViewController

18 Seamless: A Reflective Middleware for Pharo (DRAFT)

Figure 1.10: Mixing Local and Remote Contacts (Crude Data-Balancing).

Finally on Figure 1.10 we see something more exotic that you can do with
the contact manager example. This is a crude data-balancing case. Go ahead
and try on peer1 the following code-snipet:

ContactsDatabaseExample loadBeattles.

Contact database: (OrderedCollection new
addAll: Contact database;
addAll: (Contact from: '127.0.0.1:8081') database;
yourself).

ContactListEditor open.

Here we first restored the Beatles on peer1 and then added both the local
Beatles and their remote wifes (as proxies) on the local db. The result as seen
in Figure 1.10 is a database that seamlessly (pun intended) integrates contacts
from two different machines.

Ok, ok: Make me a Remote Tester

Next stop is remote testing. Take a look at the class TestRunnerExample and
its #testCategoryNamed:at: method below. From lines 1 to 5 we run the tests
of a specific category as you might have expected. That is we select first the
category (line 3) then all its classes (line 4) and finally we run the tests (line
5).

TestRunnerExample»testCategoryNamed: aCategoryName at: aRemoteAddress

| tr |

1.4 Practice Makes Perfect 19

1 tr := (TestRunner from: aRemoteAddress) new.
2 tr
3 categoryAt: (tr categoryList indexOf: aCategoryName) put: true;
4 selectAllClasses;
5 runAll.
6
7 "difference on inspection between local and remote objects"
8 tr result inspect.
9 tr result asLocalObject inspect.
10 Smalltalk tools inspector inspect: tr result.

The difference of course with a local such scenario is on line 1 where
instead of the local TestRunner we fetch a remote one (whose address is de-
scribed by aRemoteAddress argument).

Now the more crucial part of this example is on lines 7 to 10 where we
inspect the test results in three different ways. If you have your two peers
set-up evaluate the following code to run the ProfStef tests of peer2 from
peer1 and check the results:

TestRunnerExample new
testCategoryNamed: #'ProfStef-Tests'
at: '127.0.0.1:8081'

As seen in Figure 1.11 there are three inspectors opened, one in peer2 and
the other two on peer 1. Line 8 is responsible for the inspector on peer2 (on
the right). This inspector opened on the target image (that is peer2 where
the tests where run) because the #inspect message was send to a proxy ! This
is the proxy object returned by the message #result sent to another proxy
(namely tr) which we retrieved on line 1.

What if now we wanted to see the results remotely on peer1 ? This is
done on line 10 where we open the local inspector of peer1 "on" the proxy
instead of asking the proxy itself to be inspected (as we did on line 8). Most
of the traffic generated (that is seen on the logs of Figure 1.11) originates by
this inspector, which is contacting the other side.

Finally, the best way - in this case - to browse the remote results on peer1
is seen on line 9. Since test results are actually computed only once and do
not change (ie do not have to be in sync with the other side) we serialize
them (bringing them to peer1) where now the message #inspect is send to a
local object.

20 Seamless: A Reflective Middleware for Pharo (DRAFT)

Figure 1.11: Different ways to to distribute the test results.

[…]

Puzzle (on peer2)
- pieces
- pieceSelectionnee

AfficheurPuzzle (on peer1)
- vue: GridMorph
- puzzle: Puzzle
[…]

The ModelThe Controller

[…]

Piece (on peer2)
- position: Point
- couleur: Color
- estSelectionnee: Boolean[…]

GridMorph (on peer1)

The View

[…]
+ connexionAuBackEnd

- puzzle: Puzzle
- afficheur: AfficheurPuzzle
- vue: GridMorph
- middleware: SeamlessDeamon

AppliPuzzleDistant (on peer1)

Figure 1.12: Main classes of the "puzzle-game" application of Car-Mines.

Ok, ok: Make me a Distributed Game

Last (but not least) on our list is a puzzle-game from the Car-Mines lab of
Ecole-des-Mines de Douai 12 . We will be using Seamless to connect to the
game’s back-end from a remote peer who runs the puzzle front-end. The main
classes of the game are seen in Figure 1.12.

The game has an MVC architecture with the class GridMorph (on the left
side) on the role of the view, the class AfficheurPuzzle on the middle on the
role of the controller and the classes Puzzle and Piece as the model. Instances
of Puzzle hold a list of pieces and the current selected piece among them,

12http://car.mines-douai.fr/

http://car.mines-douai.fr/

1.5 How It All Works? 21

with each piece having a position (Point), a couleur (Color) and a Boolean
value describing if the piece is selected or not. The controller has references
to both the view and the model. Finally the class AppliPuzzleDistant con-
trols the middleware (a SeamlessDeamon) and assembles the view, the con-
troller and the model together.

You can run and play around with the game by evaluating the following
code on peer2 and peer1 respectively:

BackEndAppliPuzzleDistribue demarrer. "peer2"
[...]
AppliPuzzleDistant demarrer. "peer1"

Figure 1.13 shows the puzzle game in action with the SeamlessLogger
profiling it. The following method (#connectionAuBackEnd) which is called
from within the #demarrer method we called earlier is where all the magic
happens:

AppliPuzzleDistant>>connexionAuBackEnd
| classePuzzleDistante |

1 classePuzzleDistante := (middleware connectOn: '127.0.0.1:1111') at: #Puzzle.
2 puzzle := classePuzzleDistante new.
3 afficheur := AfficheurPuzzle new.
4 afficheur puzzle: puzzle vue: vue.
5 vue onClickDo: [:x :y|
6 Transcript show: 'sending'; cr.
7 puzzle inverserSelectionPieceX: x y: y.
8]

On line 1 the remote model is retrieved via the middleware (a Seamless-
Deamon) and a new puzzle is created (line 2) which is proxied. On line 3 a
new controller is instantiated and is initialized with the view (this is a Grid-
Morph as the one shown on Figure 1.13) and with the remote puzzle. Then
finally on lines 5 through 8 the view is instructed through the #onClickDo:
method to invert (on a left-click) the currently selected piece with the piece
on the click’s (x,y) co-ordinates.

What is interesting to note about the puzzle game (as shown in the log of
Figure 1.13) is that apart from the core-logic remote calls of the game (the #in-
verseSelectionPieceX:y message we have seen) there is a significant amount
of traffic generated just by connecting the local controller with the remote
model on line 4. This is to be expected since in this example too the applica-
tion and the domain model are the same. Nevertheless the game runs very
smoothly under Seamless since the return values of most of the messages
send to the backend (#x, #y, #couleur etc) - which we see in Figure 1.13 - are
serialized automatically by the framework (being terminal instances such as
Points and Colors).

22 Seamless: A Reflective Middleware for Pharo (DRAFT)

Figure 1.13: Front-End and Log of the Puzzle Game.

SeamlessTranscoder SeamlessConnection

SeamlessTransporter

Seamless
ObjectTransporter

Seamless
Protocol

Seamless
ProcessManager

Seamless
DistributionTable

Figure 1.14: Low-level architectural overview of Seamless.

1.5 How It All Works?

Lower-Lever Overview

On Figure 1.14, we provide an overview of the low-level communication
infrastructure of Seamless:

SeamlessConnection Low-level bidirectional asynchronous event-driven
communication abstraction.

A seamless connection has the same api regardless of the underlying com-
munication protocol or medium. Currently Seamless can operate both over
plain sockets with its own protocol and (slower) over http.

SeamlessTranscoder This is our marshaller which is responsible for serial-
izing and materializing information, passed through the connection.

Different marshalers can support different transcoding algorithms. Cur-
rently Seamless operates by wrapping a fast binary marshaller (Fuel), but

1.5 How It All Works? 23

also a simpler yet more verbose string marshaller has been tested. Other
options could include serializing to xml, json etc

SeamlessTransporter The concrete subclasses of this abstract class handles
the actual communication between peers.

Each concrete transporter knows about the communication channels sup-
ported by the peers (protocols, types of sockets etc) and establishes an appro-
priate SeamlessConnection between them.

SeamlessObjectTransporter This is an OO abstraction for the transporter.

Instead of sending or receiving bytes, plain-text, xml etc higher-level
components of the Seamless framework exchange objects through this class.
These objects are instances of one of the SeamlessProtocol classes.

SeamlessProtocol This is a whole hierarchy of classes, that defines an open
object protocol.

As we saw, connected peers with Seamless exchange objects (through the
object transporter). These objects are instances of one of the SeamlessProto-
col classes that contain both data (other objects) and meta-data (describing
the semantics of the object exchange, message-passing infromation etc).

SeamlessProcessManager While a SeamlessConnection is asynchronous by
itself the ProcessManager can create its own blocking strategy.

The SeamlessProcessManager is listening to the asynchronous communi-
cations and suspends or resumes requesting processes on-demand.

SeamlessDistributionTable This is an actual reference table keeping track
of remote references, as well as local references of objects from other
peers.

Remote referencing in Seamless is also adaptable with two tested avail-
able implementations. The first one uses Ghost which is a uniform, light-
weight and stratified general purpose proxy model, while the second one is
more specialized and is based on shadow classes.

Higher-Lever Overview

Figure 1.15 provides an overview of the high-level communication compo-
nents of Seamless. These depend on the low-level communication infras-
tructure, through SeamlessSession which has a one-to-one relationship with
the SeamlessConnection on Figure 1.14.

24 Seamless: A Reflective Middleware for Pharo (DRAFT)

SeamlessDeamon

SeamlessSession

Seamless
AuthenticationManager

Seamless
DistributionStrategy

Seamless
UserGroup

Seamless
User

Seamless
DistributionPolicy

Seamless
SecurityPolicy

Figure 1.15: High-level architectural overview of Seamless.

SeamlessDeamon This class defines methods for the orchestration (assem-
bling) and initialization of our middleware, acting more or less as a
Factory.

Deamons can handle multiple connections (see also SeamlessSessions)
to different peers and each environment can have multiple deamons (with
different adaptations) running in parallel.

SeamlessSession This is a high-level view of a SeamlessConnection that is
established upon successful authentication on both sides.

SeamlessAuthenticationManager A simple authentication manager (see
users and groups below).

SeamlessUserGroup A user group is a named set of users that is associated
with a specific distribution strategy.

SeamlessUser This is a standard/user password pair.

SeamlessDistributionStrategy A distribution strategy combines a distribu-
tion policy with a security policy (see below) to make decisions about
whether or how communicaton will proceed.

SeamlessDistributionPolicy This class (through its concrete subclasses) de-
cides how specific objects or group of objects will be distributed among
peers.

1.6 Seamless Papercuts 25

Options can include: full serialization, shallow serialization, proxying,
etc..

SeamlessSecurityPolicy The concrete subclasses of this abstract class are re-
sponsible for authentication and for restricting access (either message
sending or distribution) for specific instances or whole classes of ob-
jects.

1.6 Seamless Papercuts

It is the little things in life that will make you mad. Here are some do’s and
dont’s while using Seamless. These papercuts will incrementally go away as
we advance to more stable releases.

NEW: Latest Development Branch Solves UIProcess, Workspace and Morphic
unresponsiveness under heavy messaging

The UI Process

All ui applications of Pharo are naturally event-driven. What this means is
that their application logic is triggered by input events such as keyboard-
strokes and mouse-clicks. Upon the invocation of such events application
callbacks are evaluated from within the UI Process. Essentially this results
in all front-end applications being handled by a single green thread, unless
otherwise instructed by the programmer of the callback.

This situation can cause the ui to be unresponsive, if for example a single
morph is taking too long to compute its callback (try interactively evaluat-
ing (Delay forSeconds: 10) wait from any text morph to see what happens).
This papercut although not specific to Seamless can create frustration when
you are proxying application models and feeding them directly to morphs.
Using Seamless with futures will help in this case (see below) but the more
general solution that we intent to integrate is to equip the UI-Process with
sub-threads (either globally or per application) as to allow the ui to respond
to events while a sub-ui-thread still computes the slow callback of a morph.

The Workspace

A somewhat related papercut involves the workspace. You will be probably
experimenting with Seamless by evaluating stuff through the workspace or
elsewhere so you should remember that [] forking your slow do-its might
help avoid unresponsiveness by the ui. Morover the workspace is currently
being particularly mean to proxies of all kinds (distributed or otherwise)

26 Seamless: A Reflective Middleware for Pharo (DRAFT)

by sending them all shorts of messages for syntax-highlighting and inter-
nal book-keeping. By fixing the UI-Process and using memoization for this
workspace noise (or even making the workspace aware of proxies) this pa-
percut will be resolved.

Morphic

This is again not specific to Seamless, but can nevertheless hurt your dis-
tributed adventures. Morphic sends a lot of messages to your models to
update, some of them can be automatically memoized by Seamless (we are
working on that) others not. As previously stated using an MMVC pattern
and controlling the updates yourself between the application and the domain
model resolves this issue. Ultimately though we will be looking more closely
at Morphic (as well as Spec and Glamour) to see if they can provide some
kind of abstraction (such as an explicit update policy) to help you do that
more easily.

Image-Save

Please save your code on a repository or on the local-cache and reload your
projects on start-up on a clean image. This is a good practice in general, trust
us. In the future we may review the ability to resume previously image-saved
connections. Right now (to keep us all sane) we perform aggressive clean-
ups (on deamons, sessions and sockets) upon every start-up and shut-down.

Exceptions

Once we move to a stable release we will be porting remote reflection fa-
cilities (from the Mercury prototype) and full-blown exception handling for
your remote exceptions. Right now Seamless only forwards back to the orig-
inal caller (that may be many remote calls coupled) a SeamlessRemoteExcep-
tion that is less informative than you might expect. Stay tuned.

1.7 Where Do We Go From Here?

Short-Term

• More Documentation / Testing / Refactoring: The Seamless code-base
requires some additional love. Being for most of its life time an engi-
neering part of a larger research prototype there can be dragons here.

1.8 Summary 27

• Papercuts: See Section 1.6 above. A stable release should not suffer
from these annoyances.

• Shared-Memory: As seen in Figure 1.6 there is a special and very inter-
esting case where the mostly utopic transparent distribution end of the
communication spectrum makes sense. We are currently working on
that. Current experiments in development branch include NanoMsg
and pure posix shared-memory transporters.

Mid-Term

• Futures / Batch-communication / Memoization: There is a large list
of optimizations for systems like Seamless from both academia and in-
dustry. We will take it one step at a time. After this is done comparing
to systems like RMI and DCOM both in terms of features and perfor-
mance should be the next logical step.

• Low-level Profiling: The underlying low-level communication solu-
tion of Seamless is quite descent for a stable release. We need num-
bers and low-level profiling (on sockets) to see what can go even better
here.

• Closer integration with Fuel: Lots of great things can happen on this
front, by being able to migrate processes, classes or incrementally-
serializing remote object graphs.

• More Monitoring: The SeamlessLogger has proven to be a very conve-
nient tool. We need more of those tools for interacting with the Seam-
lessProcessManager, the SeamlessDistributionTable, viewing Remote-
Exceptions etc.

• Distributed-GC: We have the hooks for implementing simple
distributed-gc algorithms and a long list of related bibliography. Quite
doable at this stage but also a whole field on its own.

• Remote Reflection: Bringing parts of our research prototype for remote
reflection to enough maturity for community-use is one of Seamless
raison d’ etre

• Field Applications: Field applications where Seamless is used daily
and from which we can get constant feedback.

28 Seamless: A Reflective Middleware for Pharo (DRAFT)

1.8 Summary

This Chapter presents Seamless a reflective communication middleware for
Pharo that aims to facilitate the prototyping of distributed applications. Af-
ter a short introduction on how to install and get started, we present all the
details of remote messaging under Seamless. Specifically how to fetch re-
mote references, pass arguments by value or by reference and retrieve return
values. Moreover we show how to set-up distribution policies and change
those same policies on the fly to fit your needs. We introduce you to the
SeamlessLogger which is used for logging and profiling of remote messag-
ing and discuss the trade-offs between explicit and implicit proxying and
traffic. Subsequently we walk through three application examples from the
SeamlessExamples package and give you an overview of the internal work-
ings of the framework. Finally we detail a list of do’s and dont’s to avoid
common caveats associated with Seamless and discuss some short-term and
mid-term future perspectives.

	 Seamless: A Reflective Middleware for Pharo (DRAFT)
	Wait: Reflective What?
	Enough Said: Death to Sockets!
	Between Ping-Pong and the REST
	Practice Makes Perfect
	How It All Works?
	Seamless Papercuts
	Where Do We Go From Here?
	Summary

