

JOINT HIGHWAY RESEARCH PROJECT ISHC/JHRP-80/3

DETERMINATION OF CONTRACT TIME DURATIONS FOR ISHC HIGHWAY CONSTRUCTION PROJECTS

James E. Rowings, Jr.

Digitized by the Internet Archive in 2011 with funding from
LYRASIS members and Sloan Foundation; Indiana Department of Transportation

$80-3$

Final Report

DETERMINATION OF CONTRACT TIME DURATIONS FOR
 ISHC HIGHWAY CONSTRUCTION PROJECTS

TO: H. L. Michael, Director
Joint Highway Research Project

FROM: Donn E. Hancher, Research Engineer Joint Highway Research Project

March 25, 1980
Project: C-36-67J
File: 9-11-10

The attached report is the Final Report on the JHRP Study "Determination of Contract Time Durations for ISHC Highway Construction Projects". The Report has been authored and conducted by James E. Rowings, Graduate Instructor in Research on our staff, under the direction of Professor Donn E. Hancher.

Objectives of the research were to review the current method within ISHC of establishing contract duration and to identify the factors which influence the time required, to review the methods used by nearby states to set contract times, and to develop improvements in the method currently used in Indiana so that total project cost would be reduced. All three objectives were attained and are detailed in the Report.

The findings of the Study have been made available to the ISHC Construction Division and we will continue to work with them on implementation of the results.

Donn E. Hancher
Research Engineer
DEH:ms
cc: A. G. Altschaeffl
D. E. Hancher
C. F. Scholer
W. L. Dolch
K. R. Hoover
K. C. Sinh
R. L. Eskew
J. F. McLaughlin
C. A. Venable
G. D. Gibson
R. D. Miles
P. L. Owens
H. P. Wehrenberg
W. H. Goetz
G. T. Satterly
L. E. Wood
M. J. Gutzwiller
G. K. Hallock
E. J. Yoder
S. R. Yoder

DETERMINATION OF CONTRACT TIME DURATIONS FOR ISHC HIGHWAY CONSTRUCTION PROJECTS

by
James E. Rowings, Jr. Graduate Instructor in Research
Joint Highway Research Project Project No.: C-36-67J File No.: 9-11-10
Prepared as Part of an Investigation
Conducted by
Joint Highway Research Project Engineering Experiment Station Purdue University
in cooperation with the
Indiana State Highway Commission

ACKNOWLEDCMENTS

The author would like to express his appreciation to his wife LaDona for the understanding and encouragement provided throughout the research and the Master's degree coursework.

He would also like to thank his major professor, Ir. Donn E. Hancher, for his guidance, assistance, and encouragement with the research and the graduate coursework.

Finally the author wishes to thank the Indiana State Highway Commission for their financial support and their personnel for their assistance in obtaining the necessary data.

TABLE OF CONTFNTS

Page
V
LIST OF TABLES
LIST OF FICURES vi
LlST OF CHARTS viiii
ABST'RACT ix
CHAPTER 1 - INTRODUCTION 1
1.1 Justification for the Study 3
1.2 Dbjectives of the Study 4
1.3 Methods of Completing the Research 7
CIIAPTER 2 - GENERAL CAUSES FOR LATE COAPLETION OF HIGHNAY CONSTRUCTION CONTRACTS 12
CHAPTRR 3 - CURRENT ISHC METHOD FOR CONTRACT TIME DETERMIINATTON 22
3.1 Procedure 23
3.2 General Comments on the Current Procedure 32
CIIAPTSR 4 - METHOISS USED BY OTHFR STATES FOR CONTRACT TIME DCTEPMINATION 35
4.1 Ohio Methodology 35
4.2 Illirois Methodology 40
4.3 ilichigan Methodology 50
4.4 Kentucky Meihodology 62
CHAPTER 5 - OTHER SCHETULING AND CONTRACT TIME DETERMINATION :IETIODS 72
CHAPTER 6 - A RECOMMENDEL NETHODOLOGY FOR DETERYININ:G CONTRACT DUPATION 89
CHAPTER 7 - CONCLUSIONS 131

TABLE OF CONTENTS (Continued)

$$
\text { LIST OF REFERENCES } 133
$$

LIST OF TABLES

Table Page

1. Schedule of Liquidated Damages for Each Day of Overrun in Contract Time 14
2. Contracts with Liquidated Damages 15
3. Contracts Completed Late Without Liquidated Damages 17
4. Jistribution of Work Days - Light Grading ξ_{G} Urban 27
5. Distribution of Work Days - Medium ε_{1} Heavy Grading 28
6. Distribution of Work Days - Bridges 29
7. Distribution of Work Days - Traffic 30
8. Construction Daily Production Table 44
9. Critical Path Construction Time Estimates 56
10. Activity Codes and Restricted Dates 60
11. Daily Production Rates 95

LIST OF FIGURES

Figure Page

1. Monthly Construction Progress Report 13
2. Progress Schedule 33
3. Contract Time Computation Shect - Ohio 37
4. Estimatc of Time Required - Illinois 42
5. Suggested Daily Rate for Earth Excavation - Illinois 48
6. Suggested Daily Rate for PC Concrete Pavement Illinois 49
7. Progress Schedule - Illinois 51
8. CPM Network - Michigan 53
9. Typical Bar Chart - Small Paving Project 74
10. Critical Path Network - Road Project 79
11. Activity and Event Representation 80
12. Independent Activities 80
13. Dependent Activity 81
14. A Merge 81
15. A Burst 82
16. A Cross 82
17. Dummy Activity 83
18. Representation of Two Activities with the Starting and Ending Events 84

LIST OF FIGURES (CONTINUED)

Figure Page
19. Contract Time Determination Worksheet 92
20. Time Scaled Bar Chart 126
21. Contract Time Determination Worksheet - Bridge Project (partial) 129
22. Contract Time Determination Workshect - Bridge Project (continued) 130

LIST OF CHARTS

Chart

1. Bridge Project - Shect 1 Back Cover 2. Bridge Project - Sheet 2 Back Cover
2. Bridge Project - Sheet 3 Back Cover

ABSTRACT

Rowings, James Emerson, MSCE, Purdue University, December, 1979, "Determination of Contract 'Time Durations for ISHC Highway Construction Projects". Major Professor: Dr. Donn E. Hancher.

Review of the Indiana State Highway Commission (ISHC) monthly construction reports revealed that a significant number of highway construction projects are not completed within the specified contract duration. In most cases when contracts are not completed on time the contractor is assessed liquidated damages for the delay in completion. The liquidated damages serve to reduce the contract cost; however, the benefits of the project are delayed and the inconveniences are. prolonged for the taxpayer. The project and administrative costs to the ISHC also increase the total project cost with each day of delay in the completion. After discussing the problem with personnel of the ISHC Construction Division it was determined that research would be beneficial in reducing the number of contracts with delayed completions. The primary goal of the study was to cvaluate the current methods used to determine highway construction contract completion dates and recommend revisions which would impreve the procedure for
establishing contract durations.
In order to attain the goal of the investigation, three major objectives were identified. The first objective was to review the current method of establishing contract duration and identify the factors which can influence the time necessary for completion. This objective was accomplished through interviews with the staff of the ISHC Construction Division. The second major objective was to review the methods used by nearby states for setting contract times as well as other methods described in current literature. This phase was accomplished through interviews with staff members of the Highway departments of Illinois, Kentucky, Ohio, and Michigan. Also the applicability of methods such as CPM, PERT, and Precedence was investigated. The final major objective was to develop improvements to the current method for contract time determination which would serve to reduce the overall total project cost of highway construction. Various possibilities for improvement were discussed with the ISHC construction personnel and the final recommendations were developed by the researchers.

The final recommendations include a step-by-step approach for documenting assumptions made, applying average productivity rates, determining the contract duration and representing the construction logic in the form of a timescaled bar chart. Included with the recommendations are
examples of the proposed method's use for highway construction projects, along with the advantages of the new procedure over the one currently being used.

CHAPTER 1

INTRODUCTION

To serve the needs of the public, the Indiana State Highway Commission (ISHC) identifies numerous highway construction projects every day which are necessary to expand and improve the Indiana Highway Transportation Network. Based on the funds available the ISIIC establishes priorities for the construction and performs the enginecring design for the projects. Construction contract documents are prepared as the dosign is completed, with each construction contract identifying the contract time allowed for performance of the specified work. The contract time is established by the construction staff of the ISIIC based on the urgency of the project and an evaluation of the work units required for the completion of the contract.

The contract time can be expressed in several different ways. The contract time nay be expressed as a number of calendar days, or a calendar date, for completion. Calendar days are simply every day shown on the calendar, including Saturdays, Sundays and holidays. Another way to express the contract timc is by specifying the number
of working days allowed for completion. From the Indiana State Highway Standard Specifications a working day is defined as:
"A calendar day, exclusive of Saturdays, Sundays, and State recognized legal holidays, on which weather and other conditions not under the control of the Contractor will permit construction operations to proceed for at least fifty percent of the day with the normal working force engaged in performing the controlling operation or operations of work which would be in progress at that time. However, no work days will be charged during the months of December, January, February, or March, unless otherwise specified."

In addition to the contract time for completion of the project, many contracts also limit the closure time of roadways and structures or disruption of traffic. The 1imitations may be expressed as working days, calendar days, or calendar dates which identify a time period for the closure or disruption of traffic. The contracts also contain provisions for liquidated damages to be paid by the contractor should he fail to complete the project within the contract time, or delay the opening (or dis ruption of traffic) beyond the limitations specified in the contract. Currently a significant number of the construction contracts are not completed within the specified contract time. It is the purpose of this paper to investigate the present methodology used in establishing the contract times and propose to the Indiana State Highway Commission any changes in their procedure which would improve the determination of contract durations.

1.1 Justification for the Study

One of the primary goals of every governmental agency is to provide their assigned services to the public in an efficient, economical, and timely manner. The ISHC makes every effort to set contract times which reflect the urgency of the work and the optimum production levels. Prequalification of the bidders seeks to assure that the contractor can perform the work if awarded the contract. Nevertheless, as noted earlicr, a significant number of construction contracts are not completed within the limits set forth in the contract. Review of the monthly construction progress reports from January 1979 through June 1979 , which listed data for 406 completed construction contracts revealed 69 contracts which have had liquidated damages assessed, with charges amounting to $\$ 260,155$. There were another 95 contracts accepted later than the contract completion date.

Projects that are not completed on time delay the benefits of the project, and the inconveniences (as in the case of a bridge closure) are prolonged for the taxpayer. In addition, the project and administrative costs to the ISHC increase the total project cost with each day of delay. Although liquidated damages serve to reduce the contract cost, in most cases, the previous mentioned consequences far outweigh the penalty imposed. When comparing the cost cf liquidated damares to the cost of working overtime, it
is doubtful that the contractors have sufficient incentive to meet a completion date once he realizes normal production levels will not be adequate. The data presented indicates that research would be useful to examine the problem of late completions. It is hoped that the research report will provide useful findings which will significantly reduce the number and magnitude of completion delays on construction contracts. The conclusions and recommendations made should serve to reduce the overall cost of delays to the Indiana taxpayer for highway construction projects.

1.2 Objectives of the Study

There are many causes for late completions of highway construction contracts. Just as each project has a unique scope of work and site conditions, so too, the circumstances for late completions are unique for each project. When a contractor assumes the responsibility for performing the work, he also assumes the responsibility for the project's timely completion. It is questionable whether knowledge of the specific circumstances for every project which was completed late would serve any beneficial purpose to the ISHC other than documentation for the files. Further, in many cases, the causes would be extremely difficult to identify and obviously there would be the tendency of the parties involved to "point fingers" rather than assume any responsibility. During the early interviews with the ISHC

Construction Division staff it was suggested that, rather than identifying specific causes for delays of past projects, it would be more beneficial to look at the general causes for delays, to identify the factors which can affect the project duration, and develop an improved methodology, incorporating these factors, for prediction of contract durations.

There are three primary objectives of this investigation which will contribute to the attainment of the goal of the study.

The first objective of this study was to thoroughly review the current methods of establishing contract times. This included a complete evaluation of the methods used for each type of construction contract. Before completely understanding the method it was necessary to examine the sequence of events which take place prior to the awarding of a construction contract. It is important to understand who makes the decisions, what information is used in the evaluation and determination of contract times. From discussions with various members of the ISHC Construction Division the general cuases for completion delays were identified. Factors which influence the contract time, such as material delivery, machinery availability, manpower, weather, etc., were also investigated as part of this objective. The method for incorporating these factors in the time evaluation was another area of research.

Completion of the first objective established the starting point or datum from which improvements or refinements can be made. Without this information it would have been difficult to develop a methodology which would be a useful tool.

The second objective of the investigation was to make a comprehensive review of methods currently being used by other states in establishing highway construction contract times. Again a basic understanding of the entire contracting process was necessary as well as the specific details of their scheduling methods. Comparison of the methods used by other states with the procedure Indiana utilizes identified the similarities and differences, and the advantages and disadvantages of each. To supplement this information further investigation of the current 1iterature on the subject of determination of contract times was conducted to seek other improvements which might be useful. The final part of the investigation was the overall evaluation of the many differing methods to determine their applicability to the Indiana system, with emphasis given to the economical and simple implementation of any improvements.

The third objective of this research study was the development of a procedure for evaluating a construction project to establish a contract time. The procedure
developed includes steps for $\mathbf{i m p l e m e n t a t i o n ~ w i t h i n ~ t h e ~}$ current ISHC contracting system. The method developed has cnough flexibility to allow its use on the various types of construction contracts awarded by the ISHC. The proposed system will account for several predictable factors which affect the contract duration, and will, hopefully, increase the accuracy of prediction. As part of the procedure, a list of time estimates for bid items was developed as a guide for establishing durations of projects. A review and explanation of the control uses of the method was also included as part of this objective.

1.3 Methods of Completing the Research

The objectives of this study were described in the preceding paragraphs. The method of conpleting the research and accomplishing these objectives will now be explained.

Considerable time is spent designing and planning highway construction projects before contract documents are given to contractors for their bid preparation. It is important to understand the many design and planning steps, as well as, their timing, sequence, and relationships with one another. Many people on the ISIIC staff are involved with each project. Each of these individuals has specific tasks to accomplish which contributc to the successful completion of the project. Therefore the best approach
to gaining a better understanding of the entire process was to interview the many individuals making the decisions related to the determination of contract times.

The first interview conducted in this investigation was with the Chief Engineer of the Construction Division of the ISHC, Mr. Willian Ritman and the Engineer of Construction Mr. Murray Cantrall. The interview centered around the general aspects of the contracting process for highway projects in Indiana. Specific types of projects, such as Maintenance, Traffic, Road, Bridge, etc. were discussed to identify the similarities and differences in the planning process for each. Individuals responsible for setting the contract times were identified and introduced. It was arranged for the researcher to reccive monthly construction progress reports. Information was also provided indicating the status of current and past highway projects.

Individual interviews were then conducted with the various field engineers responsible for setting contract times. During these interviews the field engineers explained the process that they follow to establish the contract times. The assumptions made and factors considered along with the logic used were identified for each category of construction contract. Each interview included the actual setting of a contract time based on
the contract documents by the field engincer with an explanation of the process being used.

The second phase of the investigation involved the review of the methods used by nearby states for setting contract times. Interviews were conducted with the Chief Construction Engincers from Illinois, Kentucky, and Ohio by telephone. The researcher traveled to Michigan to tour their facilities and interview the Deputy Director of Highways, Mr. G. J. McCarthy. The questions asked of all were as follows:

1. Who, in the organization (title), establishes the contract duration and completion date?
2. Who reviews and approves the duration and date specificd in the contract?
3. What are the activities and sequence of events prior to contract letting?
4. At what point in the contract preparation are the duration and completion date established?
5. What method is employed in establishing the duration and completion date?
6. Which of these are used in identifying work activities?
area of responsibility
craft or crew requirement
_ equipment requirement
material
___ identifiable subdivision of work
location of work
payment of bidding items
7. What level of detail is used in defining activities?
8. What factors are considered in making the construction time estimates?
9. What assumptions are made about the contractors who will perform the work?
10. Are resource constraints assumed such as material, machincry, manpower, money, or time?
11. Is there an allowance made for uncontrollable factors such as weather, strikes, etc.?
12. Is a schedule included as part of the contract documents?
13. If a schedule is included, how is it used?
14. What schedule control is exercised over the contractor.
15. Roughly what percentage of your contracts run over the specified completion dates.
Subsequent to this, a review was made of current literature on scheduling techniques which would be applicable to the Indiana methodology. The various methods were evaluated to determine the possibilities for improvement or refinement for the current method being used.

The final part of this investigation centered around the development of an improved method for determination of ISHC highway construction contract times. The various possibi.lities were discussed with the field engineers and a procedure was developed. This included further input from the ISHC concerning time estimates for various construction activities. As a part of this development, anticipated productivities for various construction activities were compiled from members of the Indiana Highway Constructors Association. Final recommendations were made and reviewed with the ISHC.

CHAPTER 2

GENERAL CAUSES FOR LATE COMPLETION OF HIGHWAY CONSTRUCTION CONTRACTS

The ISHC prepares a computer printout monthly showing the current status of highway construction contracts which are in progress or have been completed during the year. A sample of the data received from the Indianapolis office is shown in Figure 1. The report supplies information concerning the type of contract, the location and description of the work, the contractor, financial data, milestone dates, and progress of the project. A complete description of the information given is at the top of each page of the report. The contract number assigned to the project indicates the type of contract. The seven types of contracts are listed below indicating the letter designation used in the contract number.

Bridge	$-B$	Road-Surface	$-R S$
Road	-R	Road-Traffic	-RT
Traffic	-T	Road-Maintenance	-RM
Maintenance	-M		

Evaluation of the monthly reports from January through June of 1979 revealed that 40.4% of the highway contracts

> PI

Figure 1
MonthIy Construction Progress Report
shown as completed were not completed within the specified timc duration.

When contracts are not completed in the specifjed time, liquidated damages are assessed against the contractor. Table 1, from the Indiana State Highway Standard Specifications, indicates the daily charges assessed for delays.

TABLE 1

Schedule of Liquidated Damages for
Each Day of Overrun in Contract Time

Original Contract Amount Daily Change			
From More Than	To and Including	Calendar or IFixcd nate	Wo
0	25,000	30.00	42.00
25,000	50,000	50.00	70.00
50,000	100,000	75.00	105.00
100,000	500,000	100.00	140.00
500,000	1,000,000	150.00	230.00
1,000,000	2,000,000	200.00	280.00
2,000,000	4,000,000	300.00	420.00
4,000,000	7,000,000	400.00	560.00
7,000,000	10,000,000	550.00	770.00
10,000,000	.	700.00	980.00

TABLE 2

Contracts with Liquidated Damages

Type of Contract	Number with Liquidated Damages
Bridge	22
Traffic	6
Road	11
Maintenance	11
Road-Surface	16
Road-Traffic	3
Road-Maintenance	0
	Total
	69

During this six month period liquidated damages were assessed on 69 of these contracts. A breakdown by contract type of the contracts with jiquidated damages is shown in Table 2.

For the contracts shown in Table 2, it must be assumed that the reason for the late completion was due to the contractor's inability to perform the work in the specified time, or the contractor's choice to not perform the work in the specified time due to economic considerations. The state prequalifies contractors before allowing them to bid on contracts in an attempt to eliminate those contractors who do not have the resources or the expertise needed to perform the work. Prequalification of contractors generally involves evaluation of their financial status, their special area of expertise, and their past performance on
projects for the Indiana State Highway Commission. The prequalification will imply minimum performance standards but the various contractors who will qualify may vary greatly in their abilities above the minimum. Therefore, each contractor will have his own economically optimal production rate which may be above or below the rate implied by the contract duration. For this reason contractors may choose to exceed the specified duration, because they are operating at a lower but more economical production rate, and add the anticipated cost of liquidated damages to their bid. Their bid may be competitivcly lower than other contractors who are pricing the work on the basis of the specified duration. At first glance, the contract price appears to be satisfactory since the low bid infers the least cost to the public. This may not be the case, however, when the additional costs of project staffing and administration are included in the total cost of the project for the days beyond the specified duration. Additionally, delays in conpletion deprive the public of the anticipated benefits of the project and often prolong inconveniences associated with construction.

Reviewing the monthly construction reports also revealed a significant number of projects for which liquidated damages were not yet charged but were late in their completion. Table 3 shows the breakdown of these projects between January and June 1979 by contract type.

TABLE 3

Contracts Completed Late Without Liquidated Damages

Type of Contract	Number completed late without
Bridge	27
Road	19
Maintenance	3
Traffic	33
Road-Traffic	6
Road-Surface	7
Road-Maintenance	Total 95

For many of the contracts listed in Table 3, the liquidated damage charges had not yet been computed and assessed at the reporting date. On the others, the delay could not be traced to the contractor.

Several reasons, for the completion delays in the 164 contracts shown in Tables 2 and 3 exist. Some of these problem areas can be identified with specific contract types while others can arise on any of the types of contracts. Indiana State Highway Personnel have indicated that material procurement is the primary problem encountered in completing traffic contracts. The delivery time for materials has recently increased greatly along with the increased demand on the manufacturing industry. Little can be done when the demand exceeds the supply. Since the contractor has bid the work on a fixed price basis,
he cannot afford to offer the manufacturer an incentive or reimburse him for production overtime costs involved in meeting the delivery dates required by the contract. This problem is reflected in the large number of late completions for traffic contracts. Material delivery problems are not limited to traffic contracts. Often projects requiring either large orders of steel or steel fabrication such as bridges are delayed for months because of late deliveries. In general, contractors are not assessed liquidated damages when material shortages delay the project completion.

Unpredictable or severe weather can also delay most types of construction contracts. The delay may vary depending on the type of activity being performed. In some cases work may proceed regardless of weather, such as traffic signal work or shop fabrication. In still other instances, work will be halted beyond the period of severe weather due to such conditions as flooding or excessively wet soil conditions. Seasonal weather changes should not be considered as a factor in construction delays since it is accounted for either by specifying work days or in the calendar day conversion tables.

Another reason for completion delays arises from design changes after construction has started. In some cases this might occur from a mistake by the designers or from some obvious oversight of the existing conditions.

However, more commonly the design changes come about when something which has been hidden from sight is uncovered during the construction phase and must be replaced. A case of this type is often encountered on bridge deck repair work where the extent or scope of the project cannot be clearly defined until the existing surface is removed. Clearly if the designers must alter their original plans then the project will be delayed until a new design can be approved. Design change delays, in most cases, are unpredictablc and unavoidable for the contractor and he is not assessed liquidated damages for the delay since the responsibility for the design is not within his scope of work.

In highway construction projects it is often impossible to determine the exact quantities prior to the commencement of work. For example, the designers cannot determine the quantity of muck to be removed for a project, but instead use an estimated quantity for bidding purposes and then pay the contractor for the measured amount removed. When quantities are greater than originally thought, it is obvious that a delay in completion may result. It is often difficult to analyze the extent of the delay without reviewing the entire construction $p l a n$ for the possible secondary effects of the changes in quantities.

The current procedure for determing the time estension is quite simple. Using the contract unit prices, the new
total contract price (computed with actual quantities) is divided by the original total contract price (computed with estimated quantitjes) and this value is multiplied by the original duration to give the new contract duration. This procedure has some drawbacks. First, it does not permit the determination of the new contract duration until after all work is complete. Therefore, the contractor does not have a goal or target date for completion established once the original quantities have been exceeded. Also, this procedure does not reflect the construction logic or the secondary effects of quantity changes on other activities. Finally, unbalanced bidding for units of work or work items which are low in cost, but very time consuming, cannot be accurately handled using this procedure to establish a new contract duration.

Construction projects are undertaken as needs are identified. Often a large number of similiar type work will be concentrated in a relatively small geographical area. After a severe winter in one corner of the state, there may be the need to resurface a large portion of the roads. Many times contractors will be awarded numerous projects which must all be completed in approximately the same tine frame. To perform the work profitably the contractor is constrained to using his own manpower, equipment, and supervision. The contractor often has to make a choice as to which projects will be finished on time and
which projects will be delayed.
Less frequently the completion of a project may be delayed due to the failure of a subcontractor to perform his portion of the work in a timely manner. The responsibility for subcontractor performance rests with the prime contractor in accordance with the contract between the ISHC and the prime contractor. Therefore, extreme care should be taken in the selcction of subcontractors. A small delay by a subcontractor can have major implications to the overall project completion date.

There are numerous other causes for completion delays which may be unavoidable and unpredictable. Problems such as strikes, equipment failure, construction accidents or mistake, inspection delays, approval delays, transportation problems, sitc availability, and contractor default occur less frequently but still often have major impacts on the duration of a construction project.

CHAPTER 3

CURRENT ISHC METHOD FOR

CONTRACT TIME DETERMINATION

The Unit Price Contract system is used in the State of Indiana for most highway construction projects. This system has been chosen for its inherent flexibility and controlled low cost feature. On highway projects it is often difficult to identify the exact work quantities to be performed by the contractor. Unknown subsurface conditions, unpredictable situations, and management decisions can cause changes to the estimated quantities. The Indiana State Highway Commission makes an estimate of the quantities of work or work items which are used in the contract. The estimate identifies units of work corresponding to an activity, such as lineal feet for pipe laying. The ISHC then compiles a comprehensive list of all of the work items and quantities, which is used to prepare the engineer's estimate. The list of quantities for work items is also the basis for determining the contract completion date to be used in the contract.

The completion dates for all highway projects are set in the Indianapolis office. Field cincinecrs in the

Indianapolis office establish the duration or completion date for the projects in their geographical district. Each field engineer follows the same basic process in establishing.the duration for completing the work items. It should be pointed out at this time that the entire process requires that many assumptions and judgments be made by the field engineers.

3.1 Procedure

The current procedure used involves the following steps.

1. EXAMINATION OF THE DRAWINGS, SPECIFICATIONS, AND CONTRACT DOCUMENTS. This step is extremely important to insure that the field engineer completely understands the scope of worl of the contract. The field engineer gains an understanding of the existing items. Then he examines the special provisions to determine if there are any limitations placed on traffic disruption or closure. Further, he must determine if any special safety procedures must be followed. The purpose of this step is the faniliarization of the field engineer with the project.
2. IDENTIFICATION OF THE CONTROLLING ACTIVITIES.

In this step the field engineer reviews the quantities for each work item and makes a judgment
as to which work items will take the most time to complete. On many projects this may be a simple task; for example, a road project with massive quantities of earthwork and pavement. However, other projects such as bridges will have numerous work items of smaller quantities. Some of these work items may be dependent on each other, while others can be performed concurrently. The engineer must use his experience and make a judgment as to which activities will be the controlling ones.
3. ESTABLISH THE ORDER OF THE WORK ACTIVITIES. Upon determination of the controlling activities the field engineer establishes an order for the construction of those activities. Again the field engineer must use his experience and make an assumption about the probable order or sequence the contractor will follow. For some projects there may be more than one sequence of activities which could control the project duration, therefore the engineer identifies each of these.
4. DETERMINATION OF THE ACTIVITY DURATION. Activity durations are established from judgments made by the field engineer based on assumptions made about production rates. Production may vary widely depending upon the contractor. Generally the
engineer assumes higher productivity rates on larger projects. This assumption is based on the fact that larger contractors will bid on larger projects and these contractors will achicve higher daily production rates. It is assumed that smaller projects will experience lower production rates, since smaller contractors will perform the work and will probably not have the equipment and manpower to achieve higher rates of production. Larger contractors will probably not bid the smaller work or may not be competitive due to their higher overhead costs.

Another factor which is considered in this analysis is the location of the work. Urban construction will often be slower than rural due to traffic conjestion in the work area. Haul distance may also be a dclay factor if borrow material is not readily available. The effect of the project location on activity duration must be evaluated by the field engineer.
5. SUMMATION AND ANALYSIS OF ACTIVITY DURATIONS. The activity durations for the controlling work items are added to give the total project duration. The field engineers review the sequence of controlling activities to determine if any overlap might exist
between work items, This would shorten the project duration. The review also reveals possible activities which might not be listed as a work item but would require time. Examples of this might be curing of concrete or drying of paint between applications. This type of activity would lengthen the duration of the project.
6. APPLY CONTINGENCY FACTOR. To the total duration calculated in the proceding steps a contingency factor is applied. The contingency allowance which is added usually varies from ten to twenty percent. The engineer evaluates the degree of uncertainty involved in his initial assumptions used to compute the activity durations and project schedule, and makes a judgment about the allowance he will use for the contingency factor.
7. APPLY WORK DAY TABLES TO TOTAL DURATION. For projects in which the contract duration will be expressed in calendar days or contracts with a specified calendar day completion date, the workday duration is translated to calendar days by use of Tables 4, 5, 6, and 7. These tables have been compiled based on actual historical experience for the different categories of highway construction projects performed in Indiana. The

Tab]e 4

Distribution of Hork Days

- Light Grading \& Urban

0	Jiai		FET						distrieutioy of kodise days					
0	yEß			YPR										
0	MAR				4^{5}									
4	AR	,	4	4	4	Viv								
3	Eiv	17	17	17	17	13	J'?							
7	Ju-	3	3.4	34	311	30	17	תi.						
8.	JCL	52	$5 ?$	5	521	43	- 35	16	\cdots		1.ICTT CPADING 8 URBA:			
8	AtC	70	io	10	70.	$5 i$	53	35	13	55^{5}	1,kert cran -			
8	Stip	83.	\& 5	23	23	34	11	53	35	15	OES			
1.	Sct	105	125	-	105	101	-3	11	53	35	17	\%0\%		
5	$\because \mathrm{OV}$	117	112	110	$\underline{12}$!	135	93	5	52	40	22	5	DEC	
0	DEC												0	
0	Js.												-	
0	FE8													
-	12:													
4	-	114	114	214	114	113	27	?	6?	44	25	9	4	
3	Ki	117	127	127	12	:23	110	3	75	57	3		\cdots	
7	J-	146	149	15	14	131	112	112	$9 ?$	71	5		-	
8	vir	16-	15	15	15	155	115	128	110	0	73		$5 ?$	
8	ACG	1-3	115	\% 0	13	176	15	145	13?	113	22	73	37	
\%	Ser	1\%	125	1-9	13	19	151	! 4	25	?20	120	23	${ }^{5}$	
7	C\%	215	215	215	215	21	143	1×1	11,3	165	TT5	$1: 10$	125	
5	-:-	220	22	220	220	2!	265	13	16	15	13	$1 i c$	12	
0	$\mathrm{U}^{-1} \mathrm{C}^{-}$													
0	Jai;													
0	FE?													
0	\%R													
4	+	22^{\prime}	274	224	274	220	207	170	172	153	136	119	114	
3	+4.	237	-231	237	233	23	225	233	155	$\ln 7$	10	1?	-2,	
7	Je:	254	254	25 :	-	250	\cdots	$2 ?$	$20 ?$	13	1. ${ }^{2}$	- 4	\%	
2.	J1L	$3 i 2$	27	272	-	-	$2 \pm$	23	$2: 0$	22?	13:	$1 \cdot 7$	159	
8		349	20	- 3)	2 O	-	273	25%	23.	$? 20$	225	35	130	
8	Sts	303	305	392	373	304	21	27:	- 35	235	220	03	123	
7	${ }^{\text {ctr }}$	335	335	335	335	? ? !	303	201	213	255	231	22	215	
5	Sin:	330	335	$3=0$	330	225	313	23	278	$2 \div 2$	225	220		
0	DC													
0	JA,													
0	EE8													
2	!													
4	APP	-33:	334	331	33.	33	317	300	$25 ?$	$26:$	25	5,	2	
3	N1	137	-361	3:7	\therefore	331	351	313	295	$\bigcirc 77$	232		23	
2	Jくi	$3 \cdot$	35.	36!	10,	350	31.7	330	$31 ?$	29	275		$\because \because$	
ε	F.1.	$3 \leq 2$	35?	$32:$	02	373	26.5	$3: 3$	230	?	23	$2: ?$	23	
8	\triangle	4	400	600	-3	395	351	$3=6$	3:3	330	312	O3	290	
8	-sE	-13	5 L	C2,	$4!$	414	5	\square	$3{ }^{3} 5$	3.3	33)	1.3	3	
1	CC:	$\square 35$	435	435	135	431	31.5	401	333	Ins	37	333	325	
5	So	405	40.5	400	400	435	423		393	370	$35 ?$	335	$3 \geq 0$	
0	1 EC													

Table 5

Distribution of Work Days

- Medium \& Heavy Grading

Table 6
Distribution of Work Days-Bridges

Table 7
Distribution of Work Days -Traffic

translation is made by choosing the month of commencement of work on the horizontal scale and readjing vertically downward until you read a number of working days equal to or larger than the estimated workday duration. Reading horizontally to the left produces the month for completion of the project. As an example, if it is estimated that a bridge contract will require 180 working days to complete and work is expected to berin on July 15, 1980, the completion date would be determined from Table 6 as follows: Reading vertically downward from July until a number equal to or larger than 180 is reached and then reading to the left yields Soptember, 1981 as the month of completion. It should be noted that work days are not charged durjng the months of December, January, February, or March, nor is it assumed that work will be performed during these months when converting to a calenclar date completion. Thus the completion date which would be used for the exanple project would be September $15,1981$. This procedure and the tables which have been developed attempt to account for the contractor being unable to work due to poor weather conditions.
8. COIPARE DURATION OR COAPLLETION DATE TO PREVIOUS PROJECTS. Finally the engjneer compares his time prediction with similar previous projects of the same type and scope. This provides a good check for the reasonableness of his estimate. Assuming this is jin line, the completion datc, or duration for the project, is now set.

3. 2 General Comments on the Current Procedure

The entire process for determination of contract duration is performed in, at most, a couplc of hours. The engineer makes his working notes on a fow $81 / 2^{\prime \prime}$ x 11" pages for even a large project. This is the only record of the assumptions made and the logic used in determination of contract duration for a project. It should also be noted that the Engineer's. Cost Estimate is performed completely independent of the detcrmination of the project completion date.

For monitoring, the monthly construction report discussed in Chapter Two shows the current progress of projects not yet completed. The report shows the planned percent complete and the actual percent complete. The planned percent complete is taken from the progress schedule, Figure 2, which must be prepared by the contractor and approved by the Indiana State Highway Commission prior to

starting construction. The percent of completion is shown on the left cdge vertically and the accumulated time on the bottom horizontally. The percent completion is computed on a monetary basis for both the planned and actual percent completions. While the information may be useful for budget information to the Indiana State Highway Commission, it lends little relevance to identification of contracts which are seriously behind schedule. If the contractor changes his work plan he may appear to be ahead of schedule because he has completed more exponsive work items while in fact, he is behind schedule because he has not started less expensive, but more time consuming, activities. It appears that while the current procedure is quite simple, modifications could be made which would improve the current methodology for establishing contract times.

Chapter 4

METHODS USED BY OTHER STATES FOR CONTRACT TIME DETERIANATION

The sccond major objective of this study was the evaluation of current methods used by other states for determination of contract times for highway projects. The four bordering states to Indiana were chosen due to their proximity and similar working environments. All of these states, as well as Indiana, utilize the unit-price contracting system for highway projects. The researcher contacted members of each state's highway department staff responsible for setting contract times. Included in the followirg pages are descriptions and supplemental information for the methods employed by Ohio, Illinois, Kentucky and Michigan to establish contract times.

4.1 Ohio Methodology

The Department of Highways in Ohio has developed a unique method for determination of contract times. The contract time is established by the estimating engineer. The duration is, therefore, set by the same person who establishes the cost estimate. The duration must then be approved by both the Engineer of Planning and the Engineer
nf Construction. Ohio has developed a computation sheet for use by the estimating engineer to evaluate the project and establish the number of work days necessary for completion (see Figure 3). A brief description of the methodology used by the estimating engincer and an explanation of the computation sheet follows. The estimating engineer first examines the bid items to establish the items of work or activities which are required for completion. Listed in the left hand colum of the computation sheet are typical work or bid items used for highway construction projects. The listing on the computation shoct is not inclusive of all work items but does identify the items of work which, in most cases, will be the controlling items. The items listed will, in most contracts, be a major part of the project or may be items which must bc completed before other major items of work can commence. Column two, titled "Quant" is provided for the estimating engineer to compilc the total amount of the work item involved in the project. It is necessary for the estimating engineer to combine actual bid items to determine the quantities for the work items described on the computation sheet. In columns three and four are listed minimum and maximum production rates which can be expected for each of the listed work items. As can be seen from the values listed, a wide range of productivity exists. It is therefore necessary for the estimating

Figure 3

Contract Tjme Computation Sheet
Ohio
engineer to make a judgmont or assumption about the productivity rate which can be reasonably expected.

Many factors may enter into the decision the estimator makes. Such factors might be working conditions (urban or rural), type or size of equipment to be used, labor availability, and prequalifications of the contractor. The assumptions made and the decision concorning the production rate are the keys to reasonable and accurate time estimates. The productivity rate chosen is then entered in column five. The work days for each work jtem is computed by simply dividing the quantity, from colunn two, by the chosen productivity rates, in column five. The work days for cach item are entered in colum six. The "romarks" column is provided for further descriptive information about cach work item. The work items are classificd into seven major work groups.

The right hand portion of the computation sheet is space provided to show the planned begiming and conpletion dates of each of the groups of work. After the computed work days for each activity have been entered into Column 6 a total for all activitics is computed and entered in the space provided at the bottom of that column. In the lower right hand portion of the computation shect overlap factors are listed. As can be seen the degrec of overlap varies directly with the days per mile of road construction. For instance, if the total work days for a 5 mile project is
computed to be 120 days then an overlap factor of 10% would be applicd. This table attempts to demonstrate and reflect the degree of overlap of work activjties on highway projects which are large in scope. Smaller projects would have little or no overlap and very large projects would have up to 60 percent overlap reflecting the many con-current activities which would be ongoing at any time during the project duration. The total work days are then multiplied by one minus the overlap factor. This valuc represented the adjusted total work day duration for the roadway portion of the project. Finally consideration is made for the time needed for any bridges included in the project. With this information the project time is established.

Ohio establishes the completion time by specifying the contract duration in terms of work days on nearly all of its highway construction work. Work days are not charged during the months of December, January, February, or March. Normally, only ten work days in November and ten in April can be expected. May and October arc assumed to each have fifteen work days available and Junc, July, August, and September are assumed to have twenty work days each. Ohio does not include a schedule as part of the contract documents but does require the contractor to submit a progress schedulc prior to commencenent of work. The schedule must be revised if the contractor falls more than fifteen percent behind. Currently, roughly forty percent of the highway construction projects are completed late in Ohio.

4.2 Illinois Methodology

The Illjnois Department of Transportation has also developed their own unique system of establishing contract duration. The project engincer in the appropriate district office is the originator of the contract duration. After the project duration has been estimated a review is made by the district design enginecr and the Chief Engineer of Plan Review and Assembly in the Central Bureau of Design. Upon their review and approval the duration is established for use in the contract documents. Iljinois utilizes a working day approach to specify the contract duration. The method of establishing the allowable working days is quite simple; a bricf description of the method follows.

The project engincer primarily considers the location of the work and the payment or bidding items in identifying the worh activities. The level of detajl used is quite extensive since all major pay items are considered in his overall evaluation of the project. The guidelines which have been established by Illinois for the estination of contract time merit consideration to adquately explain the rationale for the assumptions the project engineer makes. First, the guidelines stress that severe time limitations can unnecessarily constrain contractors, and thereby cause inflated bids and less than desirable relationships between the contractor and the Department of Transportation. More specifically, feasible time limits should considcr the
logical sequence of construction operations and be based on sound enginecring judgments. The guidelines highlight that the magnitude of the project must be evaluated and considered when making estimates. The contractor on a small project will utilize a smaller work force and equipment fleet than a contractor involved in large multimjllion dollar project. The guidelines also specify that consideration should be given to material delivery time in making contract time estimates. As a final point, the guidelines recommend periodic review and revision of the construction productivity rates to incorporate changes which may come about through advancements in either equipment output or construction techniques. As a part of the guidelines developed, the project engincer propares his time estimate on a form Blo220. A copy of this form is shown in Figure 4.

Completion of form BD220 will establish the number of allowable working days for a project. In column one of the form the project enginecr lists each of the work items which are major bid items for the project. Column two is provided for the production units which pertain to the various work items. Quantities of each work item are entered in the third column by the project engineer. The fourth column is used for the expected daily productivity rates. The project engineer obtains productivity data

EGThAATE OF THAE REQURED

IT2V	unit	gusimity		birs	$\begin{aligned} & \text { DAYS Nor } \\ & \text { AFFECRNG } \\ & \text { TME El: } \end{aligned}$	
	C. Pds					
Rocs froustm	Curis.					
	Cu ids					
P. C. Cncreter Premont	S7 Y Y					
Cructor Crish Store Surdie Couss						
Cutesant Guesers	1 Im Fe.					
	Cus Yis					
Gude	If ft .					
P.C. Cotrele forcome	St Y Sc					
	10 B					

Figure 4
Estimate of Time Required
Illinois
from various sources. The rates for major items have been tabulated by the Illinois Department of Transportation from past experience. The production rate data which Illinois uses is shown in Table 8. In the case of earth excavation and concrete pavement the project enginecr uses the graphs shown in Figures 5 and 6. For earth excavation the project engineer computes the cubic yards of excavation per mile. Identifying this value on the horizontal scale and proceding upward to the intersection with the curve will yield the average daily production rate on the vertical scale. A similar procedure is followed to determine production rates for concrete pavement. For work items which are not inc]uded in the table the project engineer uses rates from the district construction files determined on previous highway projects. The fifth column an form BD2.20 is completcd by dividing the quantity by the daily production rate for each work item. The value computed is the number of work days which will be necessary for completion of the work item. The sixth column is intended to indicate the number of days of overlap that the work item has with other activities. The project engjneer must make a judgment concerning which operations will be performed similtaneously or

TABLE 8

CONSTRUCTION DATLY PRODUCTION TABI,F

ITEM
Adjusting Frames G Grates
Aluminum Handrail
Bituminous Concretc Base Course Widening g"
Bituminous Concrete Binder ε_{i}
Surface Course, Sub I-11
Bituminous Matcrials
Bituminous Materials Pumped
Borrow Excavation
Catch Basins
Chain Link Fence
Channel Excavation
Class "A" Concreic
Class "A" Excavation for Structures
Class "R" Excavation for Structures
Class "X" Concrete (Culverts)
Class "X" Concrete (Headwalls)
Class "X" Concrete (Supersiructure Bridge)
Class "X" Concrete (Substructure Bridge)
Cleaning \& Painting
Cofferdams Excavation
Combinatioll Curb \& Gutter
Concrete Gutter
Concrete Removal
Concretc Riprap
Continuously Reinforced Concrete pavement
Curb \& Gutter
Curb \& Gutter Removal
Driving Concrete Piles
Driving Stcel Pilcs
Driving Timber Piles
Electric Cable
Embankment
Erecting Handrail
Erecting Right-of-Nay Markers
Erecting Structure Steel
Evergreens
Excavation:

Borrow

Earth

PRODUCTION RATE PER DAY

5 Each
80 Lin, Ft.
$1,100 \mathrm{Sq} . \mathrm{Yds}$.
500-550 Tons
5,000 Gals.
5,000 Gals.
Sce Fjgure S-401.02a
5 Each
1,200 Lin. Ft.
650 Cu. Yds.
$8 \mathrm{Cu} . \mathrm{Yds}$.
$150 \mathrm{Cu} . \mathrm{Yds}$.
$100 \mathrm{Cu} . \mathrm{Yds}$.
8 Cu. Yds.
4 Cu . Yds.
$12 \mathrm{Cu} . \mathrm{Yds}$.
$8 \mathrm{Cu} . \mathrm{Yds}$.
50,000 (3 men/day)
75 Cu . Yds.
300 Lin. Ft.
500 Lin. Ft.
$20 \mathrm{Cu} . \mathrm{Yds}$.
175 Sq. Yds.
See Figure 8-501.02b
300 Lin. Ft.
800 Lin. Ft.
250 Lin. Ft.
350 Lin. Ft.
300 Lin. Ft.
2,500 Lin. Ft.
2,200 Cu. Yds.
80 Lin. Ft.
30 Each
25,000 Lbs.
20-25 Each
See Figure 8-501.02a
Sce Figure 8-501.02a

1 TEM

Special

Channel
Cofferdan
Earth (Shouldering, Widening)
Rock
Expansion Bolts
Exploration Trench, 52" Depth
Fabriration $\&$ Furnjshing Structural
Steel (Avg. 3 Span Siructures)
WF Beam
Welded Plate Girder
Gravel or Crushed Stonc Dase Course
Gravel or Crushed Stone Shoulders
Gravel or Crushed Stone Surface Course
Granular Backfill
Granular Embanknent Special
Guard Pail
Gutter Crackins:
Handholes (Electric)
Handrail Concretc
Hedge Removal
Holes lrilled
Inlets
Intermediate Trees ${ }^{\text { }}$
Jute Matting
Landscaping:
Evergrecns
Intcrmediate Trees
Sceding
Shade Trees
Shrubs
Sodding
Top Soil
Laying Sional Concuit
Lightwejght Structural Concrete
Limestonc Ground Agreregate
Manholes
Mcdian
Median Surface (Concretc)
Membrane Katcrpoofing
Metal Handrail

PRODUCTION
RATE PER DAY
$500 \mathrm{Cu} . \mathrm{Yds}$.
$650 \mathrm{Cu} . \mathrm{Yds}$.
75 Cu . Yds.
$500 \mathrm{Cu} . \mathrm{Yds}$. 100 Cu . Yds. 25 Each 200 Lin. Ft.

150 Calcrdar Days
180 Calendar Days
800 Tons
800 Tons
$300 \mathrm{Cu} . \mathrm{Yds}$.
800 Tons
275 lin. Ft.
1,000 I, in. Ft.
4 Each
1 Cu . Yds.
5-10 Unit
250 Each
5 Each
25-50 Fach
$1,200 \mathrm{Sq}$. Yds.
20-25 Each
25-35 Lach
10 Acres
15-20 Each
250-350 Each
800-1,000 Sq. Yds.
350 Cu . Yds.
375 Lin. Ft.
10 Cu . Yds.
10 Tons
3 Each
300 Lin. Ft.
3,000 Sq. Ft.
500 Sq . Ft.
80 Jin. Ft.

TABle \& (Continacri)

Construcitoon matly pronuction tables

ITEM

Moving, Firc Hyduants, Light
Standards, Traffic Signals,
Buffalo Boxcs, etc.
Patching
Paved Ditch
Pavement Removal
Pavement Removal and Replacoment
Pipe Culverts
Pipe Underdrains
P.C. Concrete Fasc Course
P.C. Concreto Base Course

Nidening
P.C. Concrete Drjucway
P.C. Concrete Median
P.C. Concrete Parement
P.C. Concrete Sjdewalk

Porous Granular Fmbankment
Precast Concretc Bridge Decl-
Proparation of Base
Prestress Concrete Ecans

Protective Coat

Raceway for Magnetic Detectors
Reinforcement Bars (Culverts)
Reinforcenent Bars (Substructure)
Reinforcemcnt Bars (Superstructure)
Relocatc Existing Traffic Signal Posts
Remove and Reset Metal Handrail
Rock Excavation
Seeding (Iarge Jobs)
Sceding Trees
Shade Trees
Shrubs
Sidewalk, P.C. Concrete
Sidewalk Removal
Slope liall
Sodding

PRODUCTION
fate per day

2 Each
75 Sq. Yds. 300 Lin. Ft. 1,000 Sq. Yds. 75 So. Yds. 200 Lin. Ft. 500 Jin Ft.
See Figure 8-501.02b
$1,200 \mathrm{Sq} . \mathrm{Y} d s$.
$100 \mathrm{Sq}$. Y'ds.
300 Lin Ft.
See Figure 8-501.02b
$1,000 \mathrm{Sq}$. Ft.
$500 \mathrm{Cu} . \mathrm{Yds}$.
250-300 Sq. Ft.
4,000 Sq. Yds.
3 weeks for approval
of shop, plans, then
3 beams e 50'/day plus
3 days for curing
$10,000 \mathrm{Sq}$. Yds.
50 Lin. Ft.
(Considered with Cl.X
concrete)
2,500 Lbs.
5,000 Lbs.
4 Each
50 Lin. Ft.
100 Cu . Yds.
10 Acres
2,000 (By Hand) Each
10,000 (By Machine)
15-20 Each
250-350 Each
$1,000 \mathrm{Sq}$. Ft.
1,500 Sq. Ft.
50 Sq . Ft.
800-1,000 Sq. Yds.

TABLE 8 (Continued)

CONSTRUCTION DAJLY ProDUCTION TABLE

Item

Special Excavation
Stabilized Shoulders
Stabilized Subbase $4^{\prime \prime}$
Stcel Plate Feam Guard Rail
Storm Sewers
Straw for Asphalt Coated Mulch
Subbase Granular `ácerials
Thermoplastic Pavement Marking
Thermoplastic Pavement Marling Symbol
Top Soi 1
Traffic Signal Head Alternations
Traffic Signal Posts
Trece Removal ($6^{\prime \prime}$ to $15^{\prime \prime}$)
Tree Removal (Over 15'')
Tree Removal
Trench Excavation (52" Deep
Exploration)
Trench and Backfill
Vines
Woven Wire Fence

Production Rate Per Day
$500 \mathrm{Cu} . \mathrm{Y}$ ds.
$1,500 \mathrm{Sq}. \mathrm{Yds}$.
4,000 Sq. Yds.
250 Lin..Ft.
200 Lin. Ft.
4-6 Tons
800 ions
15,000 Lin. Ft.
$45 \mathrm{Sq} . \mathrm{Ft}$.
$350 \mathrm{Cu} . \mathrm{Yds}$.
4 Each
4 Each
110 In. Dia.
110 In. Dia.
1.5 Acres

200 Lin. Ft.
450 lin. Ft.
2,000 Each
2,000 Lin. Ft.

Note: These figures are based on the output of one average construction unit in an 8 hour day.

Figure 5
Suggested Daily Rate for
Earth Excavation - Illinois

Figure 6
Suggested Daily Rate for
intermittently and to wat degrec the work item will be controljing the project schedule. Finally the last column is provided for the mumer of days which the work item will be the controlling operation. This number is computed by subtracting the value in the sixth column from the value in the fifth column. Finally the project engincer computes the total for column seven. This value is the total number of work days for the project. The guidelines specify that the minimm number of work days for a project should be fifteen and that work days should be specified in multiples of five. The guidelines also recommend the use of bar charts for more complicated projects where many activities may be performed concurrently.

The Illinois Department of Transportation requires the contractor to submit a progress schedule of the form shown in Figure 7 prior to the preconstruction conference. This progress schedule must reflect the contract time specified for the project and is the basis for cstablishing the controlling item of construction operations and for checking the progress of the work. Currently only about 10 percent of the highway construction projccts in Illinois are completed late.

4.3 Michigan Mcthodology

The Michigan Department of Transportation has developed a comprchensive method of establishing contract durations. The contract durations are established by the
Poute_ ProcaEsS scMEDME Date of Estimated ionsletion contractor Celins, wit nop later than ten eays after Working days in Contract___
O.te or Musid

Figure 7
Progress Schedule

$$
\begin{aligned}
& \text { Wat iem is controilios. }
\end{aligned}
$$

shret___
Date of Scarting___________
Cate contract mas enecuted ___
design squad. The design squad also has the responsibility for the cost estimates and the bid documents, due to their familiaricy and understanding of the highway projects. Michigan utilizes a computerized drafting method and has developed a complete program for making the necessary scheduling calculations. The schedule produced by this process is incorporated into the bid documents and serves as the basis for measurement of progress and control of the highway construction projects.

The basis for the determination of contract time is a Critical Path analysis of the project. The scheduling progran carries out a number of calculations necessary for the determination of the critical path. Following is an explanation of the methodology and computer program used for determination of contract time. The first step in this procedure is to identify the work activities which must be performed to complete the project. The design squad engineer refers to the listing of bid items to identify the necessary work activities. The engineer then makes a list of all of the activities from (and including) the award of the contract through the end of the project. After the list of activities is completed, the engineer considers each activity separately and identifies which of the other activities must be completed before the activity being considered can commence. Once this process is completed the engineer sketches a network diagram. The network diagram

Figure δ
CPM Network - Michigan
shows each of the work activities and also the sequential relationships which were developed in the previous step. As this diagram is the basis for the calculations, the output will only be as valid as the model. The engineer must have a familiarity with the work and exercise sound judgment in preparation of the diagram. A typical example of a network diagram is shown in Figure 8. Each work activity is shown as a solid arrow on the diagram; the length of the arrow is not significant. If one activity follows another, the tail of the following activity is located next to the arrowhead of the preceding activity. The circles, or nodes, at the terminals of the arrows reprosent events. An event marks the time when all of the activities whose arrowheads end at the node are completed and all activitics whose tails start at the node may begin. Dashed arrows represent "dummy" activitics. A "dunmy" activity is an artificial device with a zerotime duration used to indicate the correct relationships between activities and to ensure unique identification of activities. Each node, or event, is numbered so that work activities can be identified by a unique set of events. The next logical step in the determination of contract time is the establishment of time estimates for each activity. The bid quantities are evaluatcd using average productivity rates developed by the Michigan Department of Transportation. The productivity rates are updated periodically
to reflect new construction methods. Presented in Table 9 are the most recent productivity rates which have been established by the Michigan Department of Transportation. The bid quantities are divided by the productivity rates to establish the time cstimates for each activity. With this information the design squad engineer prepares the input for the computer program. The input for the program consists of a few control cards and activity-specification cards. There is one card for each activity. The program can accomodate up to 400 cards. Information describing each activity is coded on each card.

The first two columns on the card are used to identify any restrictions on the working dates for the activity. Table 10 is a listing of the restrictions and codes uscd. These restrictions reflect a reasonable approach for identifying the seasonal weather constraints which exist for some activities. The third and fourth columns are used to identify any functional responsibilities for activities. These columns are optional and the engineer develops his own system of alphanumerical coding for functional responsibilities for activities. Column five through ten are used to identify the logical sequence of the activities. The unique node, or event numbers, fron the network diagram are entered into these colums. The beginning node number is entered in columns five through seven and the ending node number is placed in columns eight through ten. "Dummy" activities are also identificd in these columns.

TABLE 9

CRITICAL PATH

CONSTRUCTION TIME ESTIMATES

I. ANARD CONTRACT USF "WW" CODE
A. For letting months with the 1st on Thur., Fri, or Sat.
B. For all other letting months

14 days @ 7-day week
21 days @ 7-day week
II. MOVE IN TIME (10 calendar days) USE "WTV" CODE

10 days e 7-day weck
III. . DRAINAGE
A. Cross Culverts (generally included in $\mathrm{G}+\mathrm{DA}$)

1. Rural Highways

120 L.F./Day
2. Expressways
3. Large Headwalls
4. S1ab or Box Culverts

150 L.F./Day
5 Days/Unit
5 Days/Pour
B. Sewers

1. $\left.0^{\prime-14 ' ~(u p ~ t o ~} 60^{\prime \prime}\right) \quad 120$ L. F./Day
2. 0'-14' (over 60')

80 L.F./Day
3. 14'-over (up to 60")

80 L.F./Day
4. 14'-over (over 60'1)

60 L.F./Day
5. Jacked-in-place

40 L.F./Day
Includ. Exc. Pit and Setup
6. Tunnels

Includ. Exc. Pit and Sctup
C. MHs
D. CBs

3 Units/Day
Min. 5 Days
30 L.F./Day

4 Units/Day
IV. UTILITIES

A. Water Main (to $\left.16^{\prime \prime}\right)$	300 L.F./Day
Flushing, Testing, Chlori- nation	4 Days

TABLE 9 (Continued)

CRITICAL PATH

CONSTRUCTION TIME ESTIMATES

B. Water Main (20" to 42") Flushing, Testing \& Chlorination
C. Gas Lines

5 Dives
300 L.. i , onay
V. EARTHWORK AND GRADING Expressway Rural
A. Emb. CIP 2000
B. Muck (Exc. Waste \& Backfill
C. Exc. and/or Emb. (Freeway) 2000
D. Exc. and/or Emb. (Reconst.) 1000
E. Exc. (Widening)
F. Emb. (Light Weight Fill)

400
G. Grading (GeqD)
H. Subbase and sel sub (24' or less)
I. Subbase and sel sub (more than 20")
J. Shoulders (Gravel) one side

25 Stas/liay
VI. SURFACING ITEMS
A. 24 ft . Conc. Pav't. Includ. Forming and Cure
B. 24 ft . Bit Pav't. (per course)
C. 16 ft . Conc. Pav't. Ramps Includ. Forming and Cure
D. Curb (one side)
E. Conc. Shoulder Median
F. Bit Shoulders (one side per crse.)
G. Sidewalk
H. Sidewalk (Patching)

15* Stas/hay
Min. 7 liays
40 Stas/biay
10* Stat:/lity
Min. 7 llays 25* Sta:;/bay 1500 syds/bay

25 St:as/lu:1y 2000 siy. lit./Day $700 \mathrm{sq} . \mathrm{lt} . / \mathrm{Day}$
VII. STRUCTURES
A. Sheeting (Shallow) $\quad 100$ I..I./l)ay
B. Gen. Exc. at Bridge Site

TABLE 9 (Continued)

CRITIC:AL PATH

CONSTRUCTION TIME ESTIMATES

C. Ex. for Footings
D. Piles (40')
E. Substructure
F. Order and Deljver Str. Stecl

1. Plate Girders
2. Rolled Beams USE "BW"
3. Conc. Reams CODE
G. Erection of Str. Steel
H. Forre and Pour Deck

Includ. Curc Time
I. Two Course Brjedre Decks

1. Add 9 Days for 2nd Crsc. Latcx
2. Add 12 Days for 2nd Crse. Low S1un"
J. Sidewalk and Parapets
K. Paint
L. Clean-up
M. Overlay of Exist. Deck (1 or 2 at a time)
3. Entire Deck (Traffic removed)

15 Days
2. 1/2 Deck (Maintain traffic)
VIII. RETAINING WALLS
IX. RAILROAB STRUCTURES
A. Grade Temp. Runaround
B. Ballast, Ties and Track
C. Place Deck Plates
D. Waterpioof, Shotcrete $\&$ Mastic
X. TEMPORARY RAILROAD STRUCTURE
A. Order and Neliver Stecl USE "BN" CODE

5 Days/Span
5 Days/Span
10 Days

3 Days/Span
5\% Days/Span
Min. 20 Days

1 Days/Unit
15 Piles/Day
5 Days/Unit

85 Days (5-day wk)
85 Days (5-day wk)
50 Days (5-day wk)

TABLE 9 (Continued)

CRITICAL PATH

CONSTRUCTION TIME ESTIMATES

B. Order \& Deliv. Mechan. \& Electrical Equip.

90 Days
C. Install Mechan. \& E1cctrical Equipment

30 Days
XII. MISCELLANEOUS
A. Removing 01d Pavernent 200 Ln . Ft./Day
B. Removing Trees

1. Urban
2. Rural
15 Each/Day
30 Fach/Day
C. Clearing
D. Sodding
E. Seeding
F. Guard Rail
G. Fencing Vovenwire
H. Fencing, Chain Link
I. Clean-up
J. Conc. Med. Barrier
K. Reroute Traffic (Add 4 days if 1 st operation)
L. Conc. G1are Screen
M. Light Foundations

2 Acres/Day 2500 Syds/Day
10 Acres/Day
750 L.F./Day
1200 L.f./Day
500 L.F./Day
20 Stas/Day 1000* L.F./Day

1 Day/Move
1500 L.F./Day
6 Each/Day
N. Remove Railing \& Replace w/barricr (1 or 2 Decks at a time)

4 Days/Side

TABLE 10

ACTIVITY CODFS AND RESTRICTED DATFS

The folloving codes entered in columns 1-2 of the activity specification record will imply that only dates within the limjis of its restrictions will be considered in determjining starting ancl finishing dates for the activity.

CODE	ACTIVITY	VALID VORK DATES
BLANK	WTNTER WORK RESTRICTED	4-15 to 11-15
BC	BITUMINOUS CONCRETE	5-15 to 11-01
CP	CONCRETE PAVING	5-01 to 11-01
SE	SEIJDJNG	4-15 to 10-15
SO	SOIJIIJ ING	$\begin{aligned} & 5-01 \text { to } 6-01 \text { and } \\ & 8-15 \text { to } 11-15 \end{aligned}$
SS	SUPERSTRUCTURE CONCRETE	5-01 to 11-1.5
WM	WATER MAINS	10-15 to 5-15
WW	WINTER WORK	ALL DATES VALID
BY	BY OTHERS, WINTER HORK RESTRICTED. DURATION OF ACTIVITY USED IN SIETTING DATES, BUT DOES NOT AFPECT TIIE CRITJCAL PATH.	4-15 to 11-15
BW	SAME AS "BY" BUT HAS NO WINTER WORK RESTRICTIONS	ALL DATES VALID
S (COL 1)	EARLIEST DATE THE ACTIVITY CAN BEGIN IS PRESENT IN COL 15-20 (MONTH, DAY, YR)	
C (COL 1)	DATE THE ACTIVITY WAS COMPLETED IS PRLSENT IN COL 15-20 (MONTH, DAY, YR)	

The eleventh column on the data card is used to jndicate the assumed number of days in each work week. This column is used only for those activitics which will proceed on a different work week basis than identified on the control card for the project. The control card normally specifies a four day work week. The four day work week is assumed to incorporate typical poor weather conditions that are randomly encountered during the construction season. Table 10 also gives a guideline for the work week to be used for activities. The twelfth through fourteenth columns are used to input the activity durations in work days which were previously calculated. If an "S" or a "c" is coded into columns one and two, then columns fifteen through twenty are used to indicate the numeric month, day, and year that the activity starts or is completed. In the next thirty two colums a brief description of the activity is entered.

Once the activity-specification cards are complcted, they are added to the control cards for the program. The control cards contain such information as the name of the user, account charge numbers, a description of the project, normal number of days in the work week, a letting or starting date, and identification of the sorts desired for the output. The program has the capacity to perform a variety of sorts. Those which may be selected are (1) Total Float (2) Earliest Start (3) Earliest Finish (4) Latest Start
(5) Latest Finish (6) Code (7) Node or (8) Responsibility. Normally in determining the duration the total float sort is used because it will produce a chronological ordering of the critical activities.

Once the calculations are complete, a comprehensive Critical Path network can be sketched utilizing a plotter. Together with the computer output this network shows the job logic, durations for activitics, early start dates, late start dates, carly finish dates, late finish dates, total float, and the critical path of activities for the project. From the output, the contract duration can be expressed either as working days or as calendar days. The Construction Division reviews the completed network for it's validity prior to it's inclusion in the bid documents. Michigan has found that the methodology has considerably reduced the number of contracts which are not completed on time. The computer program has significantly reduced the calculation time. The network has also helped in resolving differences between contractors and the state.

4. 4 Kentucky Methodology

Kentucky has developed a computerized methodology for establishing contract completion times. The Roadway Plan Review Section is assigncd the responsibility for making the computations of contract times for most projects. The computer program was designed as a Critical Path network
model based on working days. The output takes the form of a time scaled bar graph. Fourteen controlling work items are included. Each controlling work item is represented by a bar on the graph. The length of each bar represents the time required for completion of the controlling work item. The time is computed by dividing the quantity by the applicable production rates. Expected production rates have been established from past construction experience. After the time for each controlling work item has been established, the time bars are arranged in their jogical sequence and overlapped when appropriate. The degree of overlap for each work iten is calculated from a delay formula based on logic and construction experience. Following is an explanation of the logic programmed for each of the fourteen controlling work items.
(1) Clearing and Grubbing

The unit of acres is used for clearing and grubbing. Listed in the table below are the production rates or work days for various ranges of quantity.

Quantity
$\frac{\text { Acres/Day }}{\text { mobilization }}$ days (T_{1})

0	
$0-10$	
$11-25$	1
$26-50$	2
$51-70$	3
$71-100$	4
Over 100	5

As can be seen, if there is no clearing and grubbing work item then ten days are allowed for mobilization. Similarly if there are 10 acres or less of clearing and grubbing then a minimum of ten days is used. For values greater than ten acres the appropriate acres/day is applied to the quantity involved. Since this work item marks the beginning of construction, there is no start lag or delay computed.
(2) Culvert Pipe

The unit of lineal feet is used for culvert pipe. The table below gives the applicable production rates for the quantity ranges.

Quantity Lin. Ft./Day

$1-2000$	100	
$2001-7500$	200	Lin. Quantity
$7501 . / D a y$		

7501-15,000
300
over 15,000 400
The delay for this work item is as follows:

$$
\begin{aligned}
\text { delay }\left(\mathrm{D}_{2}\right)- & 10 \text { days if clearing and grubbing } \\
& \text { time }\left(\mathrm{T}_{1}\right) \text { is less than } 15 \text { days. }
\end{aligned}
$$

delay (D_{2}) - 15 days if clearing and grubbing time (T_{1}) is 15 days or greater.

(3) Class "A" Concrete

The unit for this work item is cubic yards. Below the applicable production rates are tabulated.

Quantity	Lin. Cyd/Day
$1-200$	10
$201-500$	20
$501-1000$	30
$1001-2000$	40
over 2000 Lin. Cyd7Day	
	50

The delay is computed as follows:

$$
\begin{aligned}
& \text { delay }\left(\mathrm{I}_{3}\right)=\mathrm{D}_{2}+\mathrm{T}_{2} \text { when } \mathrm{T}_{2}<10 \text { days } \\
& \text { delay }\left(\mathrm{D}_{3}\right)=\mathrm{D}_{2}+10 \text { when } \mathrm{T}_{2} \geq 10 \text { days }
\end{aligned}
$$

(4) Roadway Excavalion

The unit for this item of work is cubic yards.
Listed below is a table of expected production rates for various quantities.

Quantizy
1-5000
5001-10,000
10,001-50,000
50,001-100,000
100,001-200,000
200,001-500,000
500,001-1 million
1,000,001-2 million 2,000,001-3 mị11ion over 3 million

cyd/day

200
500
1000
2000
3000
5000
8000
10,000
15,000
20,000

The delay is computed as follows:

$$
\begin{aligned}
& \text { delay }\left(\mathrm{D}_{4}\right)=\mathrm{D}_{3}+\mathrm{T}_{3} \text { when } \mathrm{T}_{3}<10 \\
& \text { delay }\left(\mathrm{D}_{4}\right)=\mathrm{D}_{3}+10 \text { when } \mathrm{T}_{3} \geq 10 \\
& \text { delay }\left(\mathrm{D}_{4}\right)=\mathrm{D}_{2}+10 \text { when } \mathrm{T}_{3}=0 \\
& \text { delay }\left(\mathrm{D}_{4}\right)=10 \text { days when } \mathrm{T}_{3} \& \mathrm{~T}_{2} \text { both }=0
\end{aligned}
$$

(5) Structural Steel

The unit for this work item is pounds. Listed below are the productivity rates and expected delay times for various quantities.

Quantity
$1000-20,000$
$20,001-50,000$
$50,001 \cdots 100,000$
$100,001-500,000$
$500,001-1 \mathrm{million}$
$1,000,001-2$ million
$2,000,001-3$ million
$3,000,001-4$ million
over 4 million

Ibs/day
1000
2000
5000
$10,000 \quad 70$
15,000 80
$2.0,00090$
30,000
100
40,000
50,000 150

Delay $\left(\mathrm{D}_{5}\right)$ *
50
50
60

$$
\frac{\text { Quantity }}{\text { ins /day }}=T_{5}
$$

*The delay for structural steel generally depends upon fabrication and delivery time.

(6) Class "AA" Concrete

The unit for this item is cubic yards. The table below gives the productivity rates for sarionus quantities.

Quantity
1-200 10
201-500
501-1000
1001-2000
over 2000

cyd/day

20
30

$$
\frac{\text { Quantity }}{\text { cyd/day }}=T_{6}
$$

The delay is computed as follows.

$$
\begin{aligned}
& \text { delay }\left(\mathrm{D}_{6}\right)=\mathrm{D}_{5}+\mathrm{T}_{5}-.5 \mathrm{~T}_{6} \text { when } \mathrm{T}_{5}>\mathrm{T}_{6} \\
& \text { delay }\left(\mathrm{D}_{6}\right)=\mathrm{D}_{5}+.5 \mathrm{~T}_{5} \text { when } \mathrm{T}_{5}<\mathrm{T}_{6}
\end{aligned}
$$

when $\mathrm{T}_{5}=0$
$\left(D_{6}\right)=D_{3}+T_{3}-.5 T_{6}$ when $T_{3}>T_{6}$
(DG) $=\mathrm{D}_{3}+.5 \mathrm{~T}_{3}$ when $\mathrm{T}_{3}<\mathrm{T}_{6}$
(7) Aggregate Base

The unit for this work item is tons. The
table below gives the productivity rate expected for various quantities.

Quantity	Tons/day	
	-5000	500
$5001-10,000$	700	
$100,001-25,000$	1000	Quantity $=\mathrm{T}_{7}$
$25,001-50,000$	1500	Tons/day
$50,001-75,000$	2000	
$75,001-100,000$	2500	
$1000001-125,000$	3000	
$125,001-200,000$	4000	
$200,001-300,000$	5000	
over 300,000	6000	

The delay is computed as follows.

$$
\begin{aligned}
& \text { delay }\left(\mathrm{D}_{7}\right)=\mathrm{D}_{4}+\mathrm{T}_{4}-.5 \mathrm{~T}_{7} \text { when } \mathrm{T}_{4}>\mathrm{T}_{7} \\
& \text { delay }\left(\mathrm{D}_{7}\right)=\mathrm{D}_{4}+.5 \mathrm{~T}_{4} \text { when } \mathrm{T}_{4}<\mathrm{T}_{7}
\end{aligned}
$$

(8) Cement Concrete Pavement

The unit for this work item is square yards.
The table below lists the productivity rates for various quantities.

Quantity

$$
1-5000
$$

$$
5001-15,000
$$

$$
15,001-25,000
$$

$$
25,001-50,000
$$

$$
50,001-75,000
$$

$$
75,001-100,000
$$

$$
100,001-150,000
$$

$$
150,001-200,000
$$

$$
\text { over } 200,000
$$

syd/day

500
700

$$
1000
$$

$$
2000
$$

$$
3000
$$

$$
4000
$$

$$
5000
$$

$$
7000
$$

$$
10,000
$$

The delay for this work item is computed as follows.

$$
\begin{aligned}
& \text { if } \mathrm{T}_{4} \quad 0 \text { then } \\
& \quad \text { delay }\left(\mathrm{D}_{8}\right)=\mathrm{D}_{7}+\mathrm{T}_{7}-.5 \mathrm{~T}_{8} \text { when } \mathrm{T}_{7}>\mathrm{T}_{8} \\
& \text { delay }\left(\mathrm{D}_{8}\right)=\mathrm{D}_{7}+.5 \mathrm{~T}_{7} \text { when } \mathrm{T}_{7}<\mathrm{T}_{8}
\end{aligned} \quad \begin{aligned}
& \text { if } \mathrm{T}_{4}=0 \text { then } \\
& \mathrm{D}_{8}=\mathrm{D}_{7}+\mathrm{T}_{7}-.25 \mathrm{~T}_{8} \text { when } \mathrm{T}_{7}>\mathrm{T}_{8} \\
& \mathrm{D}_{8}=\mathrm{D}_{7}+.75 \mathrm{~T}_{7} \text { when } \mathrm{T}_{7}<\mathrm{T}_{8}
\end{aligned}
$$

(9) Curb and Gutter (All Types)

The unit for this work item is lineal feet. The table below relates the productivity rates to various quantities.

Quantity	lin.ft./day
$1-1000$	100
$1001-3000$	200
$3001-5000$	300
$5001-10,000$	400
$10,001-35,000$	500
$15,001-20,000$	600
$20,001-30,000$	700
over 30,000	800

The delay for this work item is computed as follows.

$$
\begin{aligned}
\text { delay }\left(\mathrm{D}_{9}\right) & =\mathrm{D}_{8}+\mathrm{T}_{8}-.5 \mathrm{~T}_{9} \text { when } \mathrm{T}_{8}>\mathrm{T}_{9} \\
\text { delay }\left(\mathrm{D}_{9}\right) & =\mathrm{D}_{8}+.5 \mathrm{~T}_{8} \text { when } \mathrm{T}_{8}<\mathrm{T}_{9} \\
\text { if } \mathrm{T}_{8}=0\left(\mathrm{I}_{9}\right)= & \mathrm{D}_{7}+\mathrm{T}_{7}-.5 \mathrm{~T}_{9} \text { when } \mathrm{T}_{7}>\mathrm{T}_{9} \\
\left(\mathrm{D}_{9}\right) & =\mathrm{D}_{7}+.5 \mathrm{~T}_{7} \text { when } \mathrm{T}_{7}<\mathrm{T}_{9}
\end{aligned}
$$

(10) Bituminous Concrete Pavement

The unit for this work item is tons. The
table below lists the productivity rates for various quantities.

Quantity
$1-2000400$

2001-5000
5001-10, 000
10,001-20,000
20,001-30,000
30,001-40,000
40,000-50,000
50,001-60,000
60,001-75,000
over 75,000
tons/day
400
500
600
700
800
900
1000
1100
1200
1500

The delay for this work item is computed as follows.

if $\mathrm{T}_{9} \quad 0: \quad$| delay $\left(\mathrm{D}_{10}\right)=\mathrm{D}_{9}+\mathrm{T}_{9}-.5 \mathrm{~T}_{10}$ when $\mathrm{T}_{9}>\mathrm{T}_{10}$ |
| :--- |
| delay $\left(\mathrm{D}_{10}\right)=\mathrm{D}_{9}+.5 \mathrm{~T}_{9}$ when $\mathrm{T}_{9}<\mathrm{T}_{10}$ |
| if $\mathrm{T}_{9}=0: \quad$ delay $\left(\mathrm{D}_{10}\right)=\mathrm{D}_{8}+\mathrm{T}_{8}-.5 \mathrm{~T}_{10}$ when $\mathrm{T}_{8}>\mathrm{T}_{10}$ |
| |
| delay $\left(\mathrm{D}_{10}\right)=\mathrm{D}_{8}+.5 \mathrm{~T}_{8}$ when $\mathrm{T}_{8}<\mathrm{T}_{10}$ |

If both
$\mathrm{T}_{9} \& \mathrm{~T}_{8}=0$ delay $\left(\mathrm{D}_{10}\right)=\mathrm{D}_{7}+\mathrm{T}_{7}-.25 \mathrm{~T}_{10}$ when $\mathrm{T}_{7}>\mathrm{T}_{10}$ delay $\left(\mathrm{D}_{10}\right)=\mathrm{D}_{7}+.75 \mathrm{~T}_{7}$ when $\mathrm{T}_{7}<\mathrm{T}_{10}$
(11) Renoving Guardrail

The unjt for this item is lineal feet. The
table below indicates the productivity rates for various quantities.

> Quantity

1in.ft./day

1-30,000	1000	Quantity
30,001-75,000	1500	lin.ft./day

The delay for this work itein is computed as follows.

$$
\begin{aligned}
& \text { delay }\left(\mathrm{D}_{11}\right)=\mathrm{D}_{4}+\mathrm{T}_{4}-.5 \mathrm{~T}_{11} \text { when } \mathrm{T}_{4}>\mathrm{T}_{11} \\
& \text { delay }\left(\mathrm{D}_{11}\right)=\mathrm{D}_{4}+.5 \mathrm{~T}_{4} \text { when } \mathrm{T}_{4}<\mathrm{T}_{11}
\end{aligned}
$$

(12) Constructing Guardrail

The unit for this work item is lineal fcet.
The table below indicates the productivity rates for various quantities.
Quantity Lin.ft./day

| $1-30,000$ | 1000 | 1500 |
| :--- | :--- | :--- |\quad Iin Quantity $=T_{12}$

over 75,000
2000

The delay for this work iten is computed as follows.

$$
\begin{aligned}
& \text { delay }\left(\mathrm{D}_{12}\right)=\mathrm{D}_{11}+\mathrm{T}_{11}-.5 \mathrm{~T}_{12} \text { when } \mathrm{T}_{11}>\mathrm{T}_{12} \\
& \text { delay }\left(\mathrm{D}_{12}\right)=\mathrm{D}_{11}+.5 \mathrm{~T}_{11} \text { when } \mathrm{T}_{11}<\mathrm{T}_{12}
\end{aligned}
$$

(13) Seeding and Protection

The unit for this work item is square yards. The table below lisis the productivity rates for various quantities.

Quantity	$\frac{\text { syd/day }}{}$	5000
$1-100,000$	10,000	Quantjty
$100,001-200,000$	15,000	syd/day $=T_{13}$
$200,001-300,000$	20,000	
over 300,000		

The delay for this work item is computed as follows.
delay $\left(\mathrm{D}_{13}\right)=\mathrm{D}_{12}+\mathrm{T}_{12}-.25 \mathrm{~T}_{13}$ when $\mathrm{T}_{12}>\mathrm{T}_{13}$
delay $\left(\mathrm{I}_{13}\right)=\mathrm{D}_{12}+.5 \mathrm{~T}_{12}$ when $\mathrm{T}_{12} \leqslant \mathrm{~T}_{13}$

When $\mathrm{T}_{12}=0 \mathrm{D}_{13}=\mathrm{D}_{10}+\mathrm{T}_{10}-.25 \mathrm{~T}_{13}$ when $\mathrm{T}_{10}>\mathrm{T}_{13}$ $\left.\mathrm{D}_{13}=\mathrm{D}_{10}+.5 \mathrm{~T}\right] 0$ when $\mathrm{T}_{10} \leqslant \mathrm{~T}_{13}$
when T_{12} \& T_{10} both $=0 \quad \mathrm{D}_{13}=\mathrm{D}_{8}+\mathrm{T}_{8}-.25 \mathrm{~T}_{13}$
when $\mathrm{T}_{8}>\mathrm{T}_{13} \mathrm{D}_{13}=\mathrm{D}_{8}+.5 \mathrm{~T}_{8}$ when $\mathrm{T}_{8} \leqslant \mathrm{~T}_{13}$
when $T_{12}, T_{10}, G_{8} T_{8} 11=0 \quad D_{13}=D_{4}+T_{4}$
(14) Final Clean-up

There are no units for this work item. The time allowance made for this item is computed as follows.

If the total time for all other items of work is:

> A. 1-50 days, use 10 days for clean-up (T_{14})

> B. $51-150$ days, use 15 days for clean-up $\left(\mathrm{T}_{14}\right)$
> C. over 150 days, use 20 days for clean-up $\left(\mathrm{T}_{14}\right)$

The delay for this item $\left(D_{14}\right)$ is calculated by taking the maximum of ($\mathrm{T}_{\mathrm{i}}+\mathrm{T}_{\mathrm{i}}$) for all i and rounding back to the nearest five day increment.

The program is designed to allow the user to utilize either the overlap method or an end-to-end is often used. Although the computer program makes calculations based on working days it also has the capability of adjusting the duration to fit the construction season. An average value for the number of working days in a normal construction season is used for this adjustment. After the total contract time duration is established, the computer program makes adjustment as follows:
(1) If the time remaining in the construction season is 35 working days or less, the duration is extended to the end of the construction season.
(2) If the time computed extends into the next construction season by 25 working days or less, the completion date is the end of the previous construction season.
(3) If the time extends into the next construction season by 25 to 50 working days, then the duration is extended to a minimum of 50 working days into the next season.

CHAPTER 5

OTHER SCHEDULTNG AND CONTRACT TMF
DETERMINATION METFODS

Contract time is an essential and critical part of the contract documents. It is vital that the contract time be reasonable with respect to the magnitude of the project. Care and sound engineering judgment must be exercised in establishing the working days or completion date for a project. Severe timc limjtations placed on contractors will probably be reflected in their bid prices, either through inclusion of overtime costs or expected liquidated danage charges. A realistic time limit will also help in avoiding differences and disputes between the contractor and the ISHC. For establishing feasible project time limits, a comprehensive analysis of the work involved in the project is the only valid approach. Development of an estimated schedule for the contract execution is the most logjcal method for the analysis.

There are scveral scheduling methods which have been developed and used in the construction industry. Probably the most widely uscd and one of the oldest methods is the bar (Gantt) chart. The bar chart shows each activity of
the project plotted as a horizontal bar. The length of the bar indicates the time necessary to complete the activity. Normally the activities are listed in chronological order of their starting dates. An cxample of a typical bar chart is shown in Figure 9. The main advantage of the bar chart are related to its' simplicity. The bar chart shows the total project in a compact format that is easy to read and understand. Nearly all contractors have a familiarity with the bar chart and are quite comfortable in interpreting its logic.

The bar chart does, however, have some serious pitfalls and shortcomings that constrain its application to complex highway construction projects. These include:

1. A tendency to over simplify the breakdown of the project into component activities. Often bar charts are prepared with division of the project into gross, broadly scoped component activities. The result of this type of approach is a plan with very little information which can be used for control of the project.
2. A failure to include important time consuming items. Activities such as material procurement and delivery, preparation and approval of shop drawings, approval of temporary structure drawings, public utility modification support

Typical Bar Chart - Small Paving Project
activitias, aw liecnse and perait procurement are often omitted from the bar chart.
3. The interdependencies between activities in the construction nlan for the proicct are not shown. The necossary information to identify dependencies of onc activity on others is not shown on bar charts. Although some relationships may be obvious, many others are not. An evaluation of the construction activity jogic or the communication of the planned logic is not possible without the identification of the relationships between the activities needed for project completion.
4. An inability to be adaptable to schedule deviations and updating. Often the bar chart is used as the basis for measuring and controlling the contractor's performance. If actual performance varies from anticipated productivity the bar chart does not reflect the impact of the deviation on the overall project time. Also, the effects of deviations on later activities in the sequence of work itcms cannot be casily identificl from a bar chart. Thus, updating requires a complete analysis of the remaining l:ork each time a deviation occurs.

Due to the disadvantaces of the bar chart, other methods have been developed. Probably the most popular of
these is the Critical Path Method (CPM). This method can be classifiedas a network technique for scheduling. This method was developed over twenty years ago and has been used on many projects in the last two decades. The Critical Path Method requires that a project be broken down into component activities that can be presented in a form to show their sequential relationship. CPM utilizes a diagram made up of arrows and circles to identify activities and events. It also requires time estimates for each work item. Following is a description of the Critical Path Method of plaming and scheduling.

A good CPM analysis must begin with sound project planning. The project planning should include identifying the necessary items of work and time consuming activities to achieve the completion of the project. Also it must involve establishing the most logical and economical order for the activities and present all of the information in a clear and understandable graphical model. The following factors are normally considered when deciding on the practical breakdown of the project into component time-consuming activities:

1. Area of Pesponsibility
2. Category of work by craft or crew requirements
3. Category of work by equipment requirement
4. Category of work by material requirement
5. Identifiable subdivision of work
6. Location of work
7. Bid or payment items

Activities may be classified into three major categories. The categories are procurement, production and management decision activities. Procurement activities are probably the most difficult and frustrating items for the construction planner. Typical procurement activities include material purchases, obtaining specialized labor, rental or purchase of equipment, and securing engineering approvals, licenses and permits. Production activities involve the consumption of resources such as material, labor and equipment. Management decision activities are thosc related to the options considered by the contractor for completion of the work. As an example, the contractor may decide to delay some operations until a later date so that he may make better utiJization of his supervision on a project.

Depending on the desired use of the CPM schedule; different levels of detail for activities will be chosen. If the activity breakdown is not sufficient to identify the important dependencies, the plan will not yield valid and useful information. When activities are broken out in too great of detail, obscurity in the work plan will result. A:tivities should only be broken down to a level where the :iependencies can be shown clearly. After the
component activities have been determined the relationships between the activities must be identified. The sequence of activities is often termed the "job logic". To establish the job logic one basic question needs to be answered and that is "what activities must be finished before this activity can start"? After the preliminary activity list is prepared and each activity numbered, it is a simple matter to assign preceding activity numbers to each activity by answering the one question. It should be noted here that when using the Critical Path Method it is not possible for an activity to begin before the preceding activity is completed. If in the development of the job logic this situation occurs then a further breakdown of the activities is necessary to show the job logic properly. After each activity has been analyzed and the preceding activities determined, it is possible to graphically represent the job logic through the use of a network diagram (see figure 10). The graphical representation for an activity in the network diagram using the Critical Path Method is an arrow. The length of the arrow has no significance. The start and end of each activity are represented by nodes or circles on the CPM network; these are often referred to as "events". An event is a point in time and therefore does not have a duration. Event numbers, or node numbers, are used to identify activities
(3)
since separate events, or nodes, occur which mark the start and end of each activity, Figure 11 shows the representtion of an activity and events.

Figure 11
Activity and Event Representation

The event at the head of the arrow is designated as the "j event" or end of the activity. The "j event" occurs at the tail of the activity arrow and represents the point in time at which the activity may start.

If two activities are independent of each other they will be represented by two separate arrows with no connedlion as shown in Figure 12.

Figure 12
Independent Activities

When an activity is dependent on the completion of another activity the connecting point or event will be shared by the two activities. The common event will be the "j event" for the preceding activity and the "i event" for the dependent activity. This type of relationship is illustrated in Figure 13.

Figure 13
Dependent Activity

Often an activity is dependent on the completion of more than one activity. This situation is called a "merge" and is illustrated in Figure 14.

Figure 14
A Merge

In this case the start for activity $C(9-11)$ is dependent on the completion of both activity A and B. Similiarly more than one activity may be dependent on the completion of one activity. This situatjon is called a "burst" and is shown in Figure 15 .

Figure 15
A Burst

In this case both activities B and C are dependent on the completion of activity A, therefore, neither may begin until activity A is completed. Sometimes the logic will establish that more than one activity will be dependent on two or more preceding activities. This case is termed a "cross" and is illustrated in Figure 16.

Figure 16
A Cross

The diagram indicates that neither activity C or D may begin until both activities A and B are complete.

If one activity is dependent on the two preceding activities and another activity depends on only one of the two activities then a "cross" representation would not be correct. To illustrate this situation assume activity C is dependent on the completion of activities A and B. The cross representation shown in Figure 16 would not be correct. The correct representation is shown in Figure 17.

Figure 17
Dummy Activity

Figure 17 shows the use of an activity called a "dummy". A "dummy" activity is a fictitious activity with no time duration. In this case it is added to represent the correct logic that activity C must wait until activity B is completed.

Another use of the dummy activity is shown in Figure 18 (b).

(a) Incorrect

(b) Correct

Figure 18
Representation of Two Activities with the Same Starting and Ending Events

Jf figure 18 (a) were used to represent the logic of activities A and B then both activities A and B would have identical event numbers. This representation is not correct because it's ambiguity leads to confusjon in the computations that must be performed. To avoid this situation a dummy activity is used so that activity A and B will have unique event or node numbers. After the complete diagram has been drawn it should be carefully checked to eliminate any unnecessary dumnies which may have been included. The network diagran must begin with one event and end with one event.

The next phase involves the cstablishing of durations for each activity. A time interval must be selected as a basis for measurement. Any tine interval may be chosen that will be convenient for use with the anticipated activities. Normally, in construction, an eight hour work day is chosen since this is the common employment period for construction labor. Sometimes calcndar days are used for procurement activities. Regardless of the choice, the time intcrval selected should be used consistently throughout the diagram. For an accurate presentation of the project it is imperative that time durations be based on a sound enginecring analysis of the work. Assuming that the quantitics of work are known accurately, a multitude of factors such as work method, crew size, and type or size of equipment must be estimated to determine the activity duration. Assumptions must be made about these factors and a choice made for the productivity rates. The productivity rate chosen should be a reasonable compromise between speed and cost.

The following guidelines are generally applied in establishing productivity rates.

1. The activity duration should be based on a "normal" level of manpower and equipment similar to that assumed in preparing the cost estimate.
2. Each activity should be evaluated separately.
3. Where possible productivity rates on projects of a similar scope and magnitude should be utilized.
4. Contingency allowances for strikes, fire, accidents or late material deliveries should not be included in activity durations. Weather may be included because it is predictable to some degree.

The activity duration is determined by dividing the quantity of work by the productivity rates. Procurement activity durations normally can be dctermined by contacting the supplicrs or from experience. Management decision activity times are bascd solcly on experience from past projects. Dummy activitics have a zero-time duration.

Once the Critical Path network djagram has been drawn showing the activj.ties, their interrelationships, and their durations, it is possible to make several calculations. For each activity computations are made to determine the earliest and latest times and the earliest and latest finish times. The early start time of an activity is defincd as the carlicse time at which the activity can commence which is also the time at which all the preceding activitics have been completed. The early finish time is the earliest possible completion time for the activity. This is obtained by adding the activity duration to the early start timc. The late start timc for an activity is defined as the latest possible time at which the
activity can comence and not delay the project completion. The late finisll time is the latest time for completion of the activity which will not delay the overall project completion. Two other tems are used in the computations. These are the "early event time" and the "late event time". The early event time is the earliest possible time at which all activities terminating at the event, or node, can be completed. The late event time is the latest possible time at which all activities terminating at the event can be completed wjthout delaying the overall project. The procedure for making these computations involves two major steps. These two steps are known as the "forward pass" and "backward pass". A complete description of the calcularions can be found in ncarly all textbooks covering scheduling techniques. The computations for CPM can be accomplished easily by hand calculations.

The critical path method provides a useful tool for analyzing the work involved in the project. It can also be used for financial planning, cost control, project monitoring and evaluation of the impact of changed quantities.

There are several other methods which have been developed to model the work activities involved in a construction project. Precedence diagramming and PERT (Program Fvaluation and Review Technique) are two of these.

In the Precedence method activities are represented by nodes rather than lincs. Another feature of precedence diagramming is the use of "1ag factors" for overlapping activity durations. This method tends to be more complicated than the basic Critical Path Method. PERT is a method based on a probabilistic approach. It required multiplc time estimates for cach activity. Due to the excessive data requirements the PERT approach has not been utilized widely on construction projects. Both of these methods were evaluated, however, thejr application to the determination of contract time offers little advantage over a basic CPM approach.

CHAPTER 6

A RECOMIENDED METHODOLOGY FOR
DETERIINING CONTRACT DURATION

The various nethods of contract time determination used by the surrounding states, as well as other scheduling: methods used in construction have been discussed previously in this report. While many of the nore complex methods offer advantages in project control and monitoring,it appears they offer only a minimal, if any, improvenent in contract time determination. The primary advantages of CPM, Precedence, and PERT methods can only be realized by contractors who have a sound basis for the assumptions required in their use. For the Indiana State Highway Commission to cffectively utilize these more complex methods and gain the full benefits would require radical changes in contracting philosophy, changes in legislation relating to contracting, an increase in construction staffing, and a comprehensive staff training progran in the use of the methods. These changes appear to be prohibitive at the present time due to the current economic and political conditions. Therefore, as a practical solution, the
following recomendations are male mich incormores some of the advantages of the C.PM and Precedence methods with respect to contract time determination.

It is hoped that the recommendations presented in this section will improve the method currently used to establish contract times. The recommendations will be listed as steps for a methodology to be used in determining the contract time and will incorporate many of the steps now used. At the end of this section is a discussion of how this methodology can be effectively utilized by the Indiana State Highway Commission. Examples of the methodology are also included. Following is a step-by-step approach which can be used to establish the completion date, and document the key assumptions and construction logic which will be used for a highway construction project.

Step 1

The first step involves examination of the drawings, specifications, and contract documents. This step is necessary to familiarize the engincer with the existing conditions, the scope of the work planned, and identification of special requirements or procedures which are incorporated in the contract. From this investigation the field engineer can determine all of the necessary work activities which will be performed to complete the project. Items such as constraints on traffic disruptions or
closures are iclentified for incorporation in the overall plan. This step also will give an indication of the magnitude ancl technical specialties of the project. This information will provide the engineer with an indication of the type of contractor who will be bidding for the contract and thereby indicate the range of expected productivitics for the project.

Step 2

Identify all of the time consuming work activities necessary for completion of the project. The criteria for establishing work activitics can be any of the following:

1. Area of responsibility
2. Craft or crew requirements
3. Equipment requirements
4. Material requixements
5. Subdivision of work
6. Location of work
7. Bid or payment items

The activity list should include all bid items but may include several in one activity. Figure 19 can be used to list each activity. Activitics should be listed in chronological order in the second column. The quantity for each of the bid items should be cntered in the third column. Special attention should be given to incorporating procurement activities for critical materials such as

is.	ko:k Item	cuanticy	$\underset{\text { Eaily }}{\text { Praluctivity }}$	[uration	Preceling	$\underbrace{\text { circ }}_{\text {ctart }}$	Finish

Figure 19
Contract Time Determination Worksheet
structural steel or other materials which are not shelf items. Depending on the size and complexity of the project different activity breakdown and levels of detail can be used. It should be remembered that the intent of the method is to establish a reasonable project duration and not to schedule the day-to-day activities of the contractor. Therefore, a level of detail should be chosen which will identify major work activities which must be completed before other activitics may begin. Once the activity list is complete, identification numbers (1, 2, 3, 4,...) should be entered in column 1 of Figure 19.

Step 3

Establish the construction logic for the project and identify the relationships between work activities. This step involves identifying, for cach activity, the other activities which must be completed before it can begin. All time consuming preceding activitics should be noted. The preceding activities can be entered in the sixth column on Figure 19. Sometimes activities can begin before the preceding activity is completcly finished. As an examplc, form, pour, and cure culvert C-2 can begin five days before form, pour and cure culvert C-1 is complete because the five days required for curing culvert $C-1$ does not restrict the forming and pouring of culvert C-2. As in the CPM methods this relationship can be indicated by showing the overlap, in work days, in brackets () after
the preceding activity number in column 6. Often times this step may identify activities which may have been omitted from the initial work item list. To accurately represent the project logic it may also be necessary to create two or more activitjes from onc larger activity to show the actual constraints which exists. In other instances it may become clear that several activities can be combined without clouding the project logic. For standard types of construction contracts, such as bridge deck repair, the project logic will not vary. In these types of projects standard sequences can be developed for use on future projects. However, care should be exercised in using standard sequences since minor deviations in work items or existing jobsite conditions can alter the most effective construction logic. Often the standard sequence can be altered slightly to incorporate the minor differences which may exist.

Step 4

Establish the activity duration for each activity which has been identified. The activity duration should be expressed in work days wherever possible. To determine activity durations a daily productivity needs to be established. As a guide for use in establishing activity durations Table 11 lists average values of daily production for most of the bid items used by the Indiana State

TABLE 11
DAILY PRODUCTION RATES

Work Item Description	Units	Estimated Daily Production Rate	
		ISHC	Contractors
$\begin{aligned} & \text { Excavation Common } \\ & 0000-1999 \end{aligned}$	CYS	500	350
Excavation Common 2000-4999	CYS	2000	400
Excavation Common 5000-9999	CYS	2000	750
Excavation Common $10000-24999$	CYS	2000	1000
Excavation Common 25000-49999	CYS	3000	2000
$\begin{aligned} & \text { Excavation Common } \\ & 50000-99999 \end{aligned}$	CYS	6000	3000
Excavation Common 100000-OVER	CYS	8000	4000
Excavation for Subgrade Treatment	CYS	1000	500
Water Way Excavation	CYS	500	500
Rock Excavation	CYS	1000	1000
Unclassified Excavation 000-1999	CYS	500	350
$\begin{aligned} & \text { Unclassified Excavation } \\ & \text { 2000-4999 } \end{aligned}$	CYS	2000	400
Unclassified Excavation 5000-9999	CYS	2000	750
Unclassified Excavation 10000-24999	CYS	2000	1000

TABLE 1] (Continued)

DAILY PRODUC'IJON RATES
Esiimated Daily
Work Itcm Description Units Production Rate
ISHC Contractors

$\begin{aligned} & \text { Unclassificd Excavation } \\ & 25000-49999 \end{aligned}$	CYS	2000	2000
```Unclassified Excavation 50000-0VER```	CYS	3000	3000
Class "y" Excavation 350-500	CYS	500	
$\begin{gathered} \text { Peat Excavation } \\ 0000-1999 \end{gathered}$	CYS	800	
$\begin{aligned} & \text { Peat Excavation } \\ & 2000-4999 \end{aligned}$	CYS	1000	
$\begin{gathered} \text { Peat Excavation } \\ 5000-9999 \end{gathered}$	CYS	1000	
$\begin{gathered} \text { Peat Excavation } \\ 10000-24999 \end{gathered}$	CYS	1000	
```Peat Excavation 25000-49999```	CYS	1000	
$\begin{aligned} & \text { Peat Excavation } \\ & 50000 \text {-OVER } \end{aligned}$	CYS	1000	
Surcharge 0-4 FT	LFT	2000	
Surcharge 4-8 FT	LFT	2000	
Surcharge 3-12 FT	L FTT	2000	
Surcharge 12-16 FT	LFT	2000	
Surcharge 16-20 FT	LFT	2000	
Surcharge 20-24 FT	L,FT	2000	

TABLE 11 (Continued)

DAILY PROLUCTION RATES

Work Item Description	Units	EstimatedDailyProduction Rate	
		ISHC	Contractors
Surcharge 24-30 FT	LFT	2000	
Surcharge 30-36 FT	LFT	2000	
$\begin{aligned} & \text { Borrow } \\ & 0000-1999 \end{aligned}$	CYS	500	350
$\begin{aligned} & \text { Borrow } \\ & 2000-4999 \end{aligned}$	CYS	2000	400
$\begin{aligned} & \text { Borrow } \\ & 5000-9999 \end{aligned}$	CYS	2000	750
$\begin{aligned} & \text { Borrow } \\ & \quad 10000-24999 \end{aligned}$	CYS	2000	1000
$\begin{aligned} & \text { Borrow } \\ & 25000-49999 \end{aligned}$	CYS	3000	2000
$\begin{aligned} & \text { Borrow } \\ & 50000-99999 \end{aligned}$	CYS	6000	3000
$\begin{aligned} & \text { Borrow } \\ & \quad 100000-\text { OVER } \end{aligned}$	CYS	8000	4000
$\begin{aligned} & \text { B Borrow } \\ & \quad 0000-1999 \end{aligned}$	CYS	500	350
$\begin{aligned} & \text { B Borrow } \\ & \\ & 2000-4999 \end{aligned}$	CYS	1000	400
$\begin{aligned} & \text { B } \begin{array}{l} \text { Borrow } \\ 5000-9999 \end{array} \end{aligned}$	CYS	1000	750
$\begin{aligned} & \text { B Borrow } \\ & 10000-24999 \end{aligned}$	CYS	2000	1000
B Borrow $25000-49999$	CYS	2000	1000

TABLE 11 (Contimued)
DATLY PRODUCTION RATES
Estimated Daily
Work Itein Description
Units
Production Rate
ISHC Contractors

	CYS	2000	1000
```B BOrrow```	CYS	2000	1000
B Borrow for Structure   Backfil]	CYS	500	500
Plowing	acre	5	2
Embankment	CYS	100	750
Pavement Removal	SYS	800	650
Surface Removal	SYS	2400	2.000
Breaking Pavement	SYS	1000	1000
Concrete Curb Removal	LFT	500	500
Bitum Curb Removal	LFT	2000	1300
Center Curb Removal	SYS	100	500
Walk Removal	SYS	300	750
Retaining Wall Removal	LFT	100	
Guard Rail Renoval	LFT	1000	625
Shoulder Drains	EA	10	4
Sand Drains	LFT	2	
Mail Boxes .. Reseiting	F.A	15	8
Tree Removal 6 in,	1:A	100	

## TARLE 11 (Continued)

daily pronuction rates

	Estimated
Work Item Description Units $\quad$ Production Rate	

ISIIC Contractors

Tree Removal 10 in.	EA	60	
Tree Removal 18 in.	EA	50	
Tree Removal 30 in.	EA	30	
Tree Removal 48 in.	EA	25	
Paved Side Ditch Removal	LFT	500	300
Removal of Bituminous Surface	SY'S	1000	1000
Gabions	CYS	200	
Exploratory Excavation 000-7500	CYS	500	500
Exploratory Drilling	LFT	500	300
Exploratory Cores $500-750$	LFT	200	
Piezometers	EA	2	
Linear Grading	MILE	$\frac{1}{4}$	
Pipe Group A $12^{\prime \prime}-24^{\prime \prime}$	LFT	300	100
Pipe Group A $30^{\prime \prime}-54^{\prime \prime}$	JFT	200	75
Pipe Group A $60^{\prime \prime}-108^{\prime \prime}$	LFT	100	25
Pipe Group B $12^{\prime \prime}-24^{\prime \prime}$	LFT	300	100

## TABLE 11 (Continued)

DATLY FRODUCTION RATI:S

Work Iten Description	Units	Estimated Daily Production Rate	
		ISHC	Contractors
Pipe Group B $30^{\prime \prime}-66^{\prime \prime}$	LFT	200	75
$\begin{aligned} & \text { Pipe Group } C \\ & 12^{\prime \prime}-24^{\prime \prime} \end{aligned}$	LFT	300	100
Pipe Group C $30^{\prime \prime}-48^{\prime \prime}$	LFT	200	75
Pipe Group D $12^{\prime \prime}-24^{\prime \prime}$	LFT	300	100
Pipe Group D $30^{\prime \prime}-66^{\prime \prime}$	L. F'T	200	75
$\begin{aligned} & \text { Pipe Group E } \\ & 12^{\prime \prime}-24^{\prime \prime} \end{aligned}$	LFT	300	100
Pipe Group E $30^{\prime \prime}-48^{\prime \prime}$	LF'T	200	75
Pipe Group F $12^{\prime \prime}-2^{\prime \prime}$	LFT	300	75
Pipe Groun G-1 Min Area $1.1-4.1$	LFT	300	70
Pipe Group G-1 Min Area $4.4-12.9$	LFT	200	50
Pipe Group G-1 Min Arca 14.3 - 35.0	LFT	100	20
Pipe Group G-2 Min Area $2.2-6.4$	LFT	300	50
Pipe Group G-2 Min Area $7.4-12.9$	LFT	200	35

TABLF 11 (Continued)
DAILY PROJUUCTION RATES

Work Itan Description
Units
Estimated
Daily
Production Rate
ISHC
Contractors

Pipe Group G-2 Min Area $14.3-40.0$	LFT	100	10
Pipe Group G-3 Min Area 6.3 - 12.9	LFT	200	30
Pipe Group G-3 Min Area 14.3 - 28.0	LFT	100	25
Pipe Group H-1 Min Area 1.1-4.1	LFT	300	70
Pipe Group H-1 Min Area $4.4-14.3$	LFT	200	50
Pipe Group H-2 Min Area $6.4-7.4$	LFT	200	40
Pipe Group H-3 Min Area 4.1 - 6.3	LFT	300	50
${\underset{\text { Pipe }}{\prime \prime}}^{\text {Group }^{\prime \prime}} \text { L }$	LFT	500	150
Pipe Group L $27 \prime \text { - } 66^{\prime \prime}$	LFT	200	75
$\left\lvert\, \begin{array}{cc} \text { Pipe Groun } M \\ 6^{\prime \prime}-24^{\prime \prime} \end{array}\right.$	LFT	500	150
Pipe Group M $30^{\prime \prime}-54^{\prime \prime}$	LFT	200	75
$\begin{array}{\|l} \text { Pipe Groun P } \\ 6{ }^{\prime \prime}-24^{\prime \prime} \end{array}$	LFT	500	150
Pipe Group $P$ $27^{\prime \prime}-60^{\prime \prime}$	LFT	200	75

TABIE 11 (Continued)

## DAILY PRODUCTION RATES

Estimated
Daily
Work Item Description
Units Production Rate
ISHC Contractors

Pipe Reinforced Concrete Culvert 12" - $30^{\prime \prime}$	LFT	300	100
Pipe Reinfonced Concrete Culvert 36" - 72"	LFT	200	75
Pipe Reinforced Concrete   Culvert 78" - 114"	LFT	50	20
Pipe Reinforced : 111 iptical Concrete Culvert $3.3-10.2 \mathrm{sq} . \mathrm{ft}$.	LFT	300	40
Pipe Reinforced Elliptical Concrete Culvert 12.9-29.5 sq. ft.	LFT	200	30
Pipe Reinforced Elliptical Concrete Culvert $34.6-40.1 \mathrm{sq} . \mathrm{ft}$.	LFT	100	25
Pipe Heavy Duty Reinforced Concrete Culvert 36" - 72"	LFT	100	25
Pipe 18 Corrugated Steel $6^{\prime \prime}-24^{\prime \prime}$	LFT	500	150
Pipe 16 Corrugated Stec 1 $20^{\prime \prime}-72^{\prime \prime}$	LFT	100	25
Pipo with Paved Invert $12^{\prime \prime}-24^{\prime \prime}$	LFT	500	100
Pipe with Paved Invert 30" - 84"	LFT	100	75
$\left\lvert\, \begin{aligned} & \text { Pipe Concrete Sewer } \\ & 6 "-24^{\prime \prime} \end{aligned}\right.$	LFT	500	150

TABLE 11 (Continued)
DAILY PRODUCTION RATES


Pipe Reinf. Conc. Sewer 12" - 24"

Pipe Reinf. Conc. Sewer 27" - 66"

Plastic Pipe $I^{\prime \prime}$
Pipe Galv. Stecl $3^{\prime \prime}$
Pipe Vit. Clay Sewer Standard Strength $4^{\prime \prime}$ - 15"

Pipe Vit. Clay Sewer Standard Strength 18" - 36"

Pipe Perf. CS for Underdrains
$6^{\prime \prime}$ - 18"
Pipe Draintile Class Standard 6" - 24"

Aggregate for Underdrains

Aggregate for Underdrains (Size no. 7)

Catch Basin Type A 1
Catch Basin Type A 2
Catch Basin Type A 3
Catch Basin Type A 4

LTT	500	100
LFT	200	75
LFT	500	500
LFT	500	60
LFT	700	150
LFT	300	75
LFT	500	100
LFT	500	100
CYS	350	50
CYS	350	150
EACH	3	

## TABLE 11 (Continued)

DAJLY PRODUCTION RATES

Work Item Description
Units
ISHC Contractors


## TABIE 11 (Continued)

DAILY prodiction rates

	Estimated	
Waily		
Work Item Description	Units	Production Rate
	ISHC Contractors	


In1et A 3	EACH	5
Inlet A 4	EACH	5
Inlet A 7	EACH	5
Inlet A 8	EACH	5
Inlet A 9	EACH	5
Inlct A 10	EACH	5
Inlet $\wedge 15$	EACII	5
Inlet B I	EACH	5
Inlct B 2	EACH	5
Inlet B 8	EACH	5
Inlct B 9	EACH	5
Inlet C 5	EACH	5
Inlet D 6	EACH	5
Inlet D 10	EACH	5
Inlet E 7	EACH	5
Inlct E 8	EACH	5
Inlet F 7	EACH	5
Inlet G 7	EACH	5
Inlet Type "H"	EACH	5
Inlet Type 115	FACH	5

## TABLE 11 (Continued)

DATLY PRODUCTION RATES

Work Item Description	Units	```Estimated Daily roduction Rate```	
		I SIIC	Contractors
Inlet Type 14	EACH	5	
Inlet J 10	EACll	5	
Inlet J 11	EACH	5	
Inlet K 10	EACH	5	
Inlet K 11	EACII	5	
Inlet M 10	EACH	5	
Inlet 111	EACII	5	
Inlet N 12	EACH	5	
Inlet P-12	EACH	5	
Inlet P-12A	EACH	5	
Inlet $\mathrm{R}-5 \mathrm{~A}$	EACH	5	
Inlet R-13	E^CH	5	
Inlet S-14	EACH	3	
Inlet T-14	EACH	3	
Inlet Type U-A	EACH	3	
Inlet Type $W$ - $A$	EACH	3	
Inlet Type A-2	EACH	3	
Manholc A-2	EACH	1	
Manhole A-4	EACH	1	
Manhole $\mathrm{A}-7$	EACH	1	

## TABLE 11 (Continued)

DAILY PRODUC'TION RATES
Estimated
Daily
Work Item Description
Units
Production Rate
ISHC
Contractors


TABLE 11 (Continucd)
DAILY PRODUCTION RATES

Work Item Description Units | Estimated |
| :---: |
| Daily |

ISIC Contractors

Casting Furn. \& Adj. To Grade Type 2

Casting Furn. \& Adj. To Grade Type 4

Casting Furn. \& Adj. To Grade Type 7

Casting Furn. \& Adj. To Grade Type 8

Casting Furn. \& Adj. To Grade Type 10

Casting Furn. \& Adj. To Grade Type 13

Casting Furn. \& Adj. To Grade Type 15

Casting Furn. \& Adj. To Grade Pipe Catch Basin 12 in.

Inlets Using Casting In Place Type "A"

In1ets Using Casting In Place Type 'E"

Inlets Using Casting In-Place Type 'R"

Inlets Using Casting In-Place Type "J"

Conc. Class A in Structure

EACH	10
EACH	10
EACH	15
EACII	15
EACH	15
EACH	15
20	

## TABLE 11 (Continued)

DAIJY PRODUC'JON MATES

Work Item Description	Units	$\begin{gathered} \text { Estimated } \\ \text { Daily } \\ \text { Production Rate } \end{gathered}$	
		ISHC	Contractors
Conc. Class F. in Structure	CYS	20	
Conc. Class A for Integral Curb Walk	CYS	15	
Conc. Class "A" for Guard Raj. 1	CYS	15	
Conc. Class "A" for Sidewalk Ramps	SYS	10	
Conc. Steps	CYS	8	
Reinf. Conc. Spring Box	EACH	2	
Reconstructured InJet	LFT	7	
Reconstructured Catch Basin	LFT	7	
Reconstructured Manhole	LFT	7	
$\begin{aligned} & \text { Casting Adjusted to } \\ & \text { Grade } \end{aligned}$	EACH	10	
Pipe Jacked 15' - 36'	LFT	30	
Portland Cement Conc. Base 8 in.	SYS	5000	
Portland Cement Conc. Basc 9 in.	SYS	5000	
Portland Cement Concretc for Patching	SYS	10	
Bituminous Mixture for patching Pavement	TON	100	40

## TABLE 11 (Continued)

DAIIY PRODUCTTON RATES
Estimated
Daily
Work Item Description
Units
Production Rate
ISHC Contractors

Bituminous Mixture for Patching Pavement	TON	150	40
Widening with Bituminous Mixture	TON	1000	600
Widening with Compacted Aggregate	TON	750	750
Conc. Patches	SYS	10	
Conc. Widening 8 in.	SYS	4000	
Conc. Widening 9 in.	SYS	4000	
Filling Cracks and Joints in Conc. Pavement or Base	TON	50	3
Sealing Cracks and Joints in Bituminous Pavement	TON	50	4
Driller Holes for Underseal	EA	200	
Subbase 0000-4999	CYS	400	
Subbase 5000-9999	CYS	400	
Subbase 10000-24999	CYS	400	
Subbase 25000-49999	C.YS	700	
Subbase 50000-99999	CYS	1000	
Subbase 100000-OVER	CYS	1000	

TABLE 11 (Continued)
DAJLY PROIUCTION RATES
Estimated
Daily
Work Item Description
Units
Production Rate
ISHC Contractors

Bituminous Stabilized Subbase	TON	3000	1350
Bituminous Base	TONS	2000	1100
Rituminous Surface	TON	1500	1100
Hot Asphalt Concrete Base	TON	2000	1100
Hot Asphalt Concrete Bindex	TON	2000	1200
Bituminous Binder	TON	2000	1200
Bituninnus Fixture for Wodşo and Levelling	TON	700	850
Type 0 Compacted ACC for Basc (Size No. 53)	TON	2000	1100
	TON	2.000	700
Type 0 Compacted AGC for Surface (Size No. 73 )	TON	1000	900
Type $P$ Comp. AGC for   Base (Size No. 53)	TON	2000	1000
Type P Comb. $\Lambda$ GC for Surface Sizc No. 73)	TON	1000	900
Type $P$ Comp. AGC for Shoulder (Sizc No. 73)	TON	1000	700

TABLE 11 (Continued)
DAILY PRODUCTION RATES

Work Item Description	Units	Estimated Daily Production Rate	
		I SHC	Contractors
Hot Asph. Conc. Surface Type B	TON	1500	1100
Scarifying and Reshaping	SYS	400	1000
Bituminous Coated AGC for lase Wideniug	TON	1000	800
Bituminous Mixture for Shoulders	TON	1000	600
Bituminous Mixture for Crossovers	TON	300	250
Bituminous Mixture for Approaches	TON	300	200
Bituminous Mixture for Park Roads	TON	1000	700
Bituminous Mixture for Parking Area	TON	1000	525
Bituminous Material for Prime Coat	TON	200	7.5
Bituminous Material for Tack Coat	TON	200	2
Bituminous Material for Seal Coat	TON	200	7.5
Covering Aggregate	TON	400	175
AGC for Shoulder Drains	TON	200	20
Reinf. Cement Conc. Pavt. 7 in.	SYS	7000	

TABLE 11 (Contintice)
DAILY PROIUCTION RATES

Work Item Description Units | Estimated |
| :---: |
| Daily |

ISHC Contractors


TABLI: 11 (Continued)
DAILY FRODUCTION RATES

	Estimated
Work Item Description	Units $\quad$ Production Rate

ISHC Contractors

Continuously Reinf. Com. Conc. Pavt. 7 in.	SYS	7000
Continuously Reinf. Cem. Conc. Pavt. 8 in.	SYS	7000
Continuousiy Reinf. Cem. Conc. Pavt. 9 in.	SYS	7000
Terminal Joints	LFT	96
Contraction Joint Typd. $D-1$	L.FT	2500
Expan. Joint Performed with Load Transfer 1 in.	LFT	500
Reinforcing Stecl for Pavt.	LFT	3800
Riprap	SYS	800
Slopewall 4 in.	SYS	800
Slopewall 5 in.	SYS	800
Standard Lip Gutter	L.FT	300
Paved Side Ditch Type A	LFT	300
Paved Side Ditch Type B	LFT	300
Paved Side Ditch Type C	I.FT	300
Paved Side Ditch Type 1	LFT	300
Paved Side Ditch Type E	LFT	300

TAJLE 11 (Continued)
DAILY PISODUCTION RATES

	Estimated	
Wark Item Description	Uniís	Production Rate
		ISHC $\quad$ Contractors


Paved Side Ditch Type F	LFT	300	
Paved Side Ditch Type G	LFT	300	
Paved Side Ditch Type H	L FT	300	
Paved Side Ditch Type J	LFT	300	
Paved Side Ditch Type K	LFT	300	
Paved Sidc Ditch Type L	LFT	300	
Paved Side Ditch Type M	LFT	300	
Integral Conc. Curb	LFT	250	
Integral Conc. Curb Type B	LFT	250	
Integral Conc. Curb Type C	J.FT	250	
Bituminous Curb	LFT	1000	650
Cement Conc. Curb	LFT	300	
Cement Conc. Gutter	LFT	300	
Combined Conc. Curb and Gutter	L.FT	300	
Reinf. Conc. Gutter	LFT	300	
Reconstructued Conc. Curb	LFT	300	
Conc. Center Curb Type $A-D$	L.FT	400	

TAPIEE 11 (Continued)
DAILY PRODUCTION RATES
Estimated Daily
Work Item Description
Units Production Rate

ISHC
Contractors

Conc. Median Parrier	LFT	400	400
Bituninous Center Curb	SYS	700	825
Guard Rail Type A	LFT	600	450
Guard Rail Type B	LFT	600	600
Guard Rail Type C	LFT	600	300
Guard Rail Type D	LFT	600	275
Guard Rail for Railroad Signal Protection, Median	EACH	4	2
Guard Raji for Railroad Signal Protection, Shoulder	EACH	4	1.5
Resetting Guard Rail	LFT	400	350
47 in. Fence Farm Ficld	LFT	500	750
Resetting Farm Field Type Fence	LFT	500	500
48 in. Fence Chain Link	LFT	400	325
Resetting Chain Link Type Fence	LFT	400	200
```Gates Farm Field 47 in. x 12 ft.```	EACH	10	3
```Gates Farm Ficld 47 in. x 30 ft.```	EACH	10	3

TABLE 11 (Coníinued)
DAILY PROIDUCTION RATHS

	Estimated
Daily	

ISHC Contractors

Gates Chain Link 48 in. x 12 ft .

Flexible Delincator Posi (B-8)

Delineator wiih Post Type 1)-1 - D-3

STD Parricades Type I-V

Permanent Barricades Type 1 II - V

Typical Sign Stds. (Constr. Sign Type A \& B)

Conc. Header Type A - D
Conc. Sidewalk
Reconstructed Sidcwalk
Conc. Sidewalk Removal
Expansion JT for Sjdewalk

Temp. Crossover Type $A \& B$

Lighting for Temp. Crossover Type "A"

Right-of-liay Niarkers
Monument Type $\Lambda$ - D

$\mathrm{E} \wedge \mathrm{CH}$	10	3
EACH	2.00	
EACH	1.50	75
E^CH	50	
LACII	50	
EACI	50	
LFT	1/2	
SYS	100	
SYS	50	
SYS	200	
LFT	500	
EA	$1 / 5$	
EA	1/2	$1 / 5$
E^CH	50	17.5
EACH	50	

TARLE 11 (Continued)
DAIJY PROMUCTION PATES

	Estinated	
Daily		
Work Item Description	Units	Production Rate
		ISHC $\quad$ Contractors


Bench Mark Post	EACH	50	
Conduit 2 in.	LFT	500	400
Sodding	SYS	2500	
Lime Stabilization	TON	800	
Mulched Seedirg	SYS	40,000	
Stop Sign	EACHI	100	25
Speed Limit	EACH	100	25
Control R-10-R	EACH	100	25
Do Not Pass Sign	EACH	100	2.5
Pass with Care	EACH	1.00	25
Wrong Way	EACH	100	25
Yield Sion	EACII	100	25
Curve Sign	EACH	100	25
Reverse Curve Sign	EACH	100	25
Side Road Signs	EACH	100	25
T Symbol Sign	EACH	100	25
Flashing Arrow Sign (Single)	EACH	10	
Flashing Arrow Sign (Double)	EACH	10	

TABJ.F 11 (Continued)
DAJLY PRODUCTJON RATES


## TABLE 11 (Continued)

## DATLY pronuction rates

Work Item Description	Units	Estinated   Daily   oduction Rate	
		ISHC	Contractors
Temporary Pavement Marking (Tape)	LFT	6000	1300
Parking Barriers (Conc) 7 ft. Long x 8 in. Wide	EACH	100	
Wood Post Barriers	EA	60	30
Line Skip White 4 in.	LFT	10,000	
Line Skip Yellow 4 in.	LFT	10,000	
Line Skip White 4 in.	L FT'	10,000	
Line Skip Yellow 1 in.	LFT	10,000	
Thermo-Plastic Special Markings 6 in.	EACH		
Straw Bales in Place	EACH	100	
BRIDGE ITEMS			
Concrete, Class C in Superstructure	CYS		
Below 200   Above 200		30 cys	
Concrete, Class A in Substructure			
Above 200		$10 \text { cys }$	
Concrete, Class R Above Footings $\qquad$ $\qquad$		$10 \text { cys }$	

TARLE 11 (Continued)
DAILY PRODUCTION PATES
Estimated
Daily
Work Item Description Units

Production Ratc
I SIIC
Contractors

Concrete, Class B in Footings

Pile Encasement (Concrete)

Concrete, Class A in Structures

Reinforcing Stecl
Structural Stecl Beams
75000-300000
3000001-500000
Above 500000
Anchor Rods
MK-AR 7
Deck Drains
Cast Iron Drain Pipe $6^{\prime \prime}$

Cast Iron Grates, Basins \& Fittings

Steel Conduit 2 in.
Tie Down Assemblies
Steel H Piles
8 in.
10 in.
12 in.

TABLE 11 (Continued)
DAILY PRODUCTION RATES

	Estimated	
Waily		
Work Item Description	Units	Production Rate
		ISHC $\quad$ Contractors



Highway Commission. Thesc rates were established from data collected from the ISIIC construction staff and many contractors who perform construction work for the ISHC. It should be emphasized that these rates are average values and should be reviewed periodically to ensure that they reflect technological improvements within the construction industry. The estimated daily production rate is entered in the fourth column of Figure 19. Once the productivity rates are known the activity durations are determined by dividing the quantity given in the contract documents by the daily production rate. The duration should be rounded up to the nearest whole doy. If the activity involves more than one bid item or other time consuming work items a close evaluation is necessary to set a reasonable time duration. As an example the activjty might be "form, pour and cure, culvert C-1." In this case the quantity is divided by the production rate (expressed in cubic yards per day) to give the number of days required for forming and pouring the culvert. To this number of days the mininum curing time should be added to set the duration for the activity. The activity duration is entered in the fifth column of Figure 10.

Conversion from calendar days to work days is necessary for activitics such as curing concretc. The conversion is made on the basis of five work days for every seven calendar days. In a fow instances this may not be cxactly
correct but due to the overall project duration the difference will be minimal. In projects involving a large number of calendar day activitics it would be prudent to make the project duration determination by using calendar days for activity durations.

## Step 5

Establish the start time and finish tine for each activity. The approach which will be followed in this step is similar to the early start time and early finish time calculations performed in the critical path method. First it is assumed that the project begins at work day 0. All activitics which have no preceding activities will have a start time of 0 . This should be entered in the seventh column of Figure 19. The finish times for these activities, therefore, are simply the durations. Next the work items which are preceded by the initial activities are considered, For each of these work items the finish times of the preceding activities are compared and the largest of these becomes the start time and is entered in the seventh column. The finish time is derived by adding the activity duration to the start time. In cases where one or more preceding activities have bracketed numbers following them, the number in the bracket should be subtracted from the finish time of the preceding activity before being compared with the finish times of the other
precedjng activities. The procedure of comparison and computation is followed until the start times and finish times for all activities are established.

## Step 6

Draw a time scaled bar graph to represent activity durations. A typical example of a time scaled bar graph is shown in Figure 20. At the top of the bar graph, information identifying the contract and its location should be identified, On the far left hand column space is provided to number the various activities. The second column is used to name the work activity and describe the specific task to be performed. The upper row across from each activity will be used to identify the proposed quantity, proposed daily production rate, and proposed duration. The lower row across from each activity will be used later to reflect the actual quanti.ty, actual daily production rate, and actual activity duration. In the third column the quantity of work which will be used for bidding purposes is filled in on the upper half. The upper half of the fourth column should be used to identify the proposed daily productivity. In the space provided on the right hand portion of the graph, the activity duration is represented by a bar. The length of the bar is the number of work days allocated for the activity. The starting point of the bar is the earliest possible time

Figure 20
Time Scaled Bar Graph
which the activity can begin, determined by the completion of any activities which must preceed it.

Activities normally are listed in chronological order of their start times. This can be done simply from column seven in Figure 19. Although this is not absolutely necessary it certainly simplifies reading of the chart.

As an aid in clearly jdentifying the construction logic, the preceding activitics are noted on the bar graph to the left of each activjty bar. With the construction logic clearly shown, deviations from the proposed daily productivity or clanges in the quantitics can be evaluated for their overall impact on the total project duration.

The scale used to plot the activity durations is in work days. A row is provided above this scale to identify calendar days (or calendar dates). This can be added by applying the work day correlation tables $4,5,6$, and 7 .

Finally, a contingency time allowance may be added to the total project duration to reflect the possibility of strikes, late material deliveries, unusual weather, equipment breakdowns, or other unforeseen circumstances. Depending on the size and scope of the project and the degree of urgency, this contingency allowance may vary from zero to ten percent of the estimated total project duration. The contingency allowance should be treated as the final activity commencing after the completion of the project.

To illustrate the use of the recommended methodology, worksheets and time scaied bar graphs for a bridge project are shown in Figures 21, 22 and charts 1, 2, and 3 on page 131.

- ミ. シ : iroject -

N.	Voris Item		Iaily Iroductivity	Duration	$\begin{gathered} \text { Procedins } \\ \text { Astivity(s) } \end{gathered}$	$\begin{aligned} & \text { Start } \\ & \text { Tire } \end{aligned}$	$\begin{aligned} & \text { Finisin } \\ & \text { Tinc } \end{aligned}$
1	Swe-in	-	-	5	-	0	5
2	finve txising Striketure	-	-	5	1	5	10
3	Gríl \& Teliver Fiting	-	-	21	. -	0	21
4	Constriat Fill	$\begin{array}{r} 8,000 \\ \text { cyd } \end{array}$	$500 \mathrm{cyd} / \mathrm{d}^{\mathrm{y}} \mathrm{y}$	16	2	10	26
5	Fent 1 Coffercama	1 ea.	-	3	4	26	29
6	Fent l Piling	1500 lft	$500 \mathrm{lft} / \mathrm{day}$	3	3;5	29	32
7	knt 1 Iorm \& Pas Tmtina	$10 \mathrm{c}) \mathrm{d}$	-10 cyc/day	$1$	6	32	33
8	Écni 1 Curve rootinus	-	-	1	7	33	34
9	Ibwater, fora ruur fent 1 Stem	20 cyd	10 cyd/clay	2	8	34	36
10	Fent 1 Can	10 cyd	$10 \mathrm{cyd} / \mathrm{day}$	2	9	36	38
11	Eent 2 Corfordan	1 ca.	-	3	5	29	32
12	Font 2 Piliar	15001 ft	$500 \mathrm{lft} / \mathrm{dov}$	3	6,11	$3 ?$	35
13	Bent 2 Fm \& Pour lontine?	10 rat	$10 \mathrm{cra} / \mathrm{dyy}$	1	7,9,12	36	37
14	Ronl 2 Cure   Fosting	-	-	1	13	37	35
15	Dewater, Fon \& four Bent ? Ste:n	20 cyd	$10 \mathrm{ccd} / \mathrm{day}$	2	9,14	3.	40
16	Rent 2 Cap	10 crd	$10 \mathrm{cyd} / \mathrm{d} x \mathrm{y}$	2	15	40	42
17	Nortil End Rent Irive filing	10001 ft	$5001 \mathrm{it} / \mathrm{day}$	2	12	35	37
18	North Tsel Rent Form \& rull	30 cyd	10 cyalday	3	15,17	40	43
19	North find Fent Cure	-	-	4	18	43	47
20	South Lud Pant Drive Piling	10001 ft	$5001 \mathrm{ft} / \mathrm{day}$	2	17	37	39
21	South Fid Ent Fon:i \&. Four	30 cyd	$10 \mathrm{cyd} / \mathrm{dil}$	3	18,20	43	46

Figure 21
Contract Time Determination
Worksheet - Bridge Project

\%	Fiork Item	Quantity	$\begin{aligned} & \text { Maily } \\ & \text { PTeductivity } \end{aligned}$	Euration	$\begin{aligned} & \text { Preve?ine } \\ & \text { Activity(s) } \end{aligned}$	$\begin{aligned} & \text { Start } \\ & \text { Ti:c } \end{aligned}$	$\begin{aligned} & \text { Finjsh } \\ & \text { Ti-c } \end{aligned}$
22	South tind Fent cure	-	-	4	21	46	so
23	$\begin{aligned} & \text { Mrar \& ioliwer } \\ & \text { Rears } \end{aligned}$	-	-	45	-	0	45
24	Set Bears	-	-	2	$10,16,19,22$	50	52
25	form $\&$ Pour Diaghrams	$15 \mathrm{c} / \mathrm{d}$	$5 \mathrm{cyd} / \mathrm{day}$	3	24	52	55
26	Cure Diaphrans	-	-	4	25	55	59
27	Form Deck \& Coping	-	-	4	26 [3]	56	60
28	Rebar	60,000 10s	20,000 ibs/day	3	27 [2]	58	61
29	Pour meak i/o Slepport Cuttoits	150 cyd	$150 \mathrm{cyd} / \mathrm{day}$	1	28	61	62
30	Fien:e Bulns-as \& Flace Con:rete	20 cyc	$10 \mathrm{cy} /$ /day	2	29	62	64
31	Cure reck	-	-	4	30	64	68
3 ?	Fom \& Pour Top kail	30 cs d	15 cyd/day	2	31 [1]	67	69
33	Cure Ton Wall	-	. -	4	32	69	73
34	Irirforced Concrete Approzches	180 cyd	$30 \mathrm{Cra/d} \mathrm{l}$ y	6	32	69	75
35	Cure stpreaches	-	-	4	34	75	79
36	Place Conncted	450 tons	2000 tors/day	1	34	75	76
37	Mace Bitentrous	250 tons	1323 ten:/day	1	36	76	77
38	Sridgc iail	8001 ft	$6001 \mathrm{EL} /$ day	?	33,35,37	79	81
33	Curd Rail	12001 ft	$6001 \mathrm{ft} / \mathrm{day}$	2	37	77	79
40	Sredins. \& Solding	5000 syd	2500 5yd/day	2	37	77	79
41	Clean-us	-	-	9	38,53,40	31	20
	:						

Figure 22
Contract Time Determination
Worksheet - Bridge Project
(continued)

## CHAPTER 7

CONCLUSIONS

The goal of this investigation was to develop an improved methodology for contract time determination. The methodology described in Chapter 6 has many advantages over the current system used to determine contract durations. Adoption of the methodology would provide more consistency in the determination of contract times by the ficld engineers. The assumptions and judgments made about the project prior to bidding, should be well documented for use in evaluating and prequalifying bidders, monitoring construction progress, and settling disputes over time extensions. The project logic is identificd clearly so that a determination of the controlling work activities can be made on a "work day" contract. The effects of delays on the completion date for the project can be determined through analysis of the time scaled bar chart. This would be a uscful tool in persuading the contractor to take the necessary remedial action to bring the project back onto schedule. The time scaled bar chart would also provide a method of communication between the field engineer
and the cstimator who will coripile the onginecr's estimate for the State Highway Comission. The estimator should have knowledge of productivity rates in his evaluation and projection of the cost of construction.

Another advantage to this method j.s that procurement items and other monpay items will be identified and their importance to a timely completion of the project highlighted. The time scaled bar chart can also serve a purpose in the field where the work is going on. Progress can be plotted and productivity rates noted for comparison with the original bar chart. This information can be used to give a more accurate representation of the progress than the current system used for the monthly construction report.

The Indiana State Highway Commission prepares many contracts winch are similar in nature. With this method it would be possible to develop basic logic diagrams for these similar projects. Modifications could be madc to the standard activity list when unusual or peculiar conditions existed. This would greatly reduce the time spent by field engineers in determining contract durations.

It should be noted that the mothodology still requires sound engineering judgment. The suggested daily productivity rates should be checked with actual productivities periodically and be updated or revised to include new work items or new technology.

LIST OF REFERENCES

## LIST OF REFERENCES

Indiana State Highway Commission, Standard Specjfications, 1978

Harris, Robert B., Precedence and Arrow Networling Techniques for Construction, John Wilcy \& Sons, Jnc., 1978

Shaffer, L. R., J. B. Ritter and W. L. Meycr, The CriticalPath Method, McGraw-Hill, Inc., 1965

Clough, Richard H., Construction Contracting, 2nd Edition, Wiley-Interscience, 1969.

Antill, Janes M. and R. W. Woodhead, Crjtical Path Methods $\frac{\text { in Construction Fractice, }}{\text { science, } 1979 \text {. }}$

Bonny, John B. and Joseph P. Frein, llandbook of Constructjon Managenent and Organization, Van Nastrand Kcinhold Company, 1973.

Carr, Robert I., Simulation of Construction Project Dura, tion, Journal of the Construction Division, ASCE, Vol. $\overline{105}$, No. C02, Proc. Paper 14607, Junc, 1979, pp. 117128.

Baldwin, John R. and others, Causes of Delay in the Construction Industry, Journal of the Construction Division, $\overline{\text { ASCE, Vo1. 97, No. C02, November, 1971, pp. 177-187. }}$

