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Abstract: Let C be a real plane algebraic curve defined by the resultant of two polynomials
(resp. by the discriminant of a polynomial). Geometrically such a curve is the projection of the
intersection of the surfaces P (x, y, z) = Q(x, y, z) = 0 (resp. P (x, y, z) = ∂P

∂z (x, y, z) = 0), and
generically its singularities are nodes (resp. nodes and ordinary cusps). State-of-the-art numerical
algorithms compute the topology of smooth curves but usually fail to certify the topology of singular
ones. The main challenge is to find practical numerical criteria that guarantee the existence and
the uniqueness of a singularity inside a given box B, while ensuring that B does not contain any
closed loop of C. We solve this problem by first providing a square deflation system, based on
subresultants, that can be used to certify numerically whether B contains a unique singularity p
or not. Then we introduce a numeric adaptive separation criterion based on interval arithmetic to
ensure that the topology of C in B is homeomorphic to the local topology at p. Our algorithms
are implemented and experiments show their efficiency compared to state-of-the-art symbolic or
homotopic methods.

Key-words: Topology of algebraic curves, subresultant, numerical algorithm, singularities, in-
terval arithmetic, node and cusp singularities



Algorithmes numériques certifiés pour la topologie d’une
courbe résultante ou discriminante

Résumé : Bien que francophones et très attachés à notre langue maternelle, nous avons pensé
et rédigé ce travail en anglais comme la grande majorité de la production scientifique mondiale.
Dans ce contexte, il est clair que cette version française de l’ ”abstract” n’a aucun interêt pour
notre communauté, et nous avons peu d’espoir qu’il puisse en être autrement même en dehors de
notre communauté. Nous proposons néanmoins quelques pistes en français pour cet improbable
lecteur et serions comblés si celui-ci en venait à apprendre l’anglais pour pouvoir lire notre prose.
Nous étudions la topologie d’une courbe plane issue de la projection d’une courbe lisse dans
l’espace. Génériquement, la projection présente des singularités de type noeud et cusp (dans le
cas d’un discriminant seulement). Les algorithmes numériques de l’état de l’art ne calculent la
topologie que dans le cas de courbes lisses. L’enjeu est donc de concevoir des critères numériques
garantissant l’existence et l’unicité d’une singularité dans une boite donnée, tout en assurant que
cette boite ne contienne pas d’autre partie de la courbe non connectée à ce point dans la boite.
Nous proposons une déflation basée sur les sous-résultants pour le premier problème ainsi qu’un
critère de séparation basée sur de l’arithmétique d’intervalles pour le second problème.

Mots-clés : Topologie de courbes algébriques, sous-résultant, algorithme numérique, arithmétique
d’interval, noeuds et cusps
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1 Introduction

Given a bivariate polynomial f with rational coefficients, a classical problem is the computation
of the topology of the real plane curve C = {(x, y) ∈ R2|f(x, y) = 0}. One may ask for the
topology in the whole plane or restricted to some bounding box. In both cases, the topology is
output as an embedded piecewise-linear graph that has the same topology as the curve C. For a
smooth curve, the graph is hence a collection of topological circles or lines; for a singular curve,
the graph must report all the singularities: isolated points and self-intersections.

Symbolic methods based on the cylindrical algebraic decomposition can guarantee the topol-
ogy of any curve. However, the high complexity of these purely algebraic methods prevents them
to be applied in practice on difficult instances. On the other hand, purely numerical methods
such as curve tracking with interval arithmetic or subdivision are efficient in practice for smooth
curves but typically fail to certify the topology of singular curves. A long-standing challenge is
to extend numerical methods to compute efficiently the topology of singular curves.

Computing the topology of a singular curve can be done in three steps.

1. Enclose the singularities in isolating boxes.

2. Compute the local topology in each box, that is i) compute the number of real branches
connected to the singularity, ii) ensure that it contains no other branches.

3. Compute the graph connecting the boxes.

The third step can be done using existing certified numerical algorithms (e.g. [GG10, vdH11,
BL13]), we will thus focus on the first two steps.

Contribution and overview. The specificity of the resultant or the discriminant curves com-
puted from generic surfaces is that their singularities are stable, this is a classical result of singu-
larity theory due to Whitney. The key idea of our work is to show that, in this specific case, the
over-determined system defining the curve singularities can be transformed into a regular well-
constrained system of a transverse intersection of two curves defined by subresultants. This new
formulation can be seen as a specific deflation system that does not contain spurious solutions.

Our contribution focuses on the first two steps of the above mentioned topology algorithm for
a curve defined by the resultant of two trivariate polynomials P and Q: f = Resultantz(P,Q).

In Section 2, the main results are Theorems 1 and 2 that characterize the singularities of the
resultant or discriminant curve in terms of subresultants under generic assumptions. A semi-
algorithm 1 is proposed to check these generic assumptions, i.e. it terminates iff the assumptions
are satisfied (note that this is the best one can hope for a purely numerical method). Based on the
characterization of Theorems 1 and 2 , Algorithm 2, using subdivision and interval evaluation,
isolates the node and cusp singularities with an adaptive certification.

Sections 3 and 4 address the second step on the above mentioned topology algorithm, that is
computing the local topology at singularities. Algorithms 3 and 4 in Section 3 distinguish nodes
from cusps and compute the number of branches. Then in Section 4, Algorithm 5 certifies that
an isolation box of a singular point does not contain locally other branches than those that pass
through the singularity.

In Section 5, experiments are detailed showing that our specialized certified numerical method
outperforms state-of-the-art implemented methods for polynomials of degree greater or equal to
5. Moreover, the performance of our method is also improved when we restrict the problem to a
box.

Notations. Let f be a bivariate polynomial and C it associated curve. We denote by fxiyj the

partial derivative ∂i+jf
(∂x)i(∂y)j . A point p = (α, β) in C2 is singular for f if f(p) = fx(p) = fy(p) = 0,
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4 Rémi Imbach, Guillaume Moroz, Marc Pouget

and regular otherwise. A node is a singular point with det(Hessian(f)) = f2
xy − fx2fy2 6= 0. An

ordinary cusp is a singular point such that det(Hessian(f)) = 0 and for all non trivial direction
(u, v), f(α+ ut, β + vt) vanishes at t = 0 with multiplicity at most 3.

We denote by�f any convergent interval extension of f , that is for any boxB, {f(x, y)|(x, y) ∈
B} ⊂ �f(B), and for any decreasing sequence of boxes Bi converging to a point p, the sequence
�f(Bi) converges to f(p). By abuse of notation, we often simply denote �f(B) by �f . The
Krawczyk operator of a mapping F defined in Lemma 7 is denoted by KF .

For two polynomials P and Q in D[z] with D a unique factorization domain (in this article
D will be Q[x, y]), recall that the ith subresultant polynomial is of degree at most i (see e.g.
[Kah03, §3]), we denote it Si(z) = siiz

i + si,i−1z
i−1 + · · ·+ si0. The resultant is thus S0(z) = s00

in D and we also denote it more classically as Resz(P,Q). Finally, V(f1, . . . , fn) denotes the
solutions of the system f1 = · · · = fn = 0.

Previous and related work. There are many works addressing the topology computation
via symbolic methods, see for instance the book chapter [MPS+06] and references therein. Most
of them use subresultant theory, but there are also some alternatives using only resultants (e.g.
[SW05, ES11]) or Gröbner bases and rational univariate representations [CLP+10]. Some alter-
native even compute a rational univariate representation numerically if all approximate solutions
are known [AHS14]. For the restricted case of computing the topology of non-singular curves, nu-
merical methods are usually faster and can in addition reduce the computation to a user defined
bounding box. One can mention interval analysis methods [GG10] or more generally certified
homotopy methods [BL13, vdH11]. These methods are based on the fact that the regular solu-
tions of a square system can be certified and approximated with quadratic convergence with the
interval Newton-Krawczyk operator [Rum83, Neu90]. Another well-studied numerical approach
is via recursive subdivision of the plane. Indeed, the initial idea of the marching cube algorithm
[LC87] can be further improved with interval arithmetic to certify the topology of smooth curves
[Sny92, PV04, LMP08].

For singular curves, isolating the singular points is already a challenge from a numerical
point of view. Indeed, singular points are defined by an over-determined system f = fx = fy = 0
and are not necessarily regular solutions of this system. A classical approach to handle an over-
determined system {f1, . . . , fm} is to combine its equations in the form f1xi

f1 + · · ·+fmxi
fm = 0

for each variable {xi}1≤i≤n<m, to transform it into a square system [Ded06], but this introduces
spurious solutions. Singular solutions can be handled through deflation [GLSY07, OWM83,
LVZ06, MM11], roughly speaking, the idea is to compute partially the local structure of a non-
regular solution, and use this information to create a new system where this solution is regular.
However this system is usually still overdetermined, and it does not vanish on the solutions of
the original system that do not have the same local structure. Thus, this cannot be directly used
to separate solutions with different multiplicity structures. It is important to mention that the
certification of solutions of over-determined systems is theoretically out of reach of numerical
methods in the general case. In the polynomial case, non-adaptive lower bounds can be used but
they are too pessimistic to be practical, see [HS12, Remark 7] or [BCGY12].

When the curve we consider is a resultant, its singular locus can be related to the first
subresultant (see [Jou79, §4.3] and [BM09, §5] for examples). In Section 2, we use this structure
to exhibit a square deflation system. Another approach would be to exhibit a square system
in higher dimension that defines the set of points for which the polynomials P and Q have two
solutions. This approach was considered in [DL13] to compute the topology of the apparent
contour of a smooth mapping from R2 to R2.

The number of real branches connected to the singularity can be computed with the topolog-
ical degree of a suitable mapping [Sza88, AMW08, MM11] or with the fiber multiplicity together

Inria



Numeric certified algorithm for the topology of resultant and discriminant curves 5

with isolation on the box boundary [SW05]. Certifying the topology inside a box requires the
detection of loops near a singularity. It is usually solved in the literature by isolating the x-
extreme points, which reduces the problem to a univariate polynomial computed with resultants
([SW05, MPS+06] for example).

We are not aware of numerical algorithms that can handle in practice the computation of
the topology of singular curves. Still, relying on global non-adaptative separation bounds for
algebraic systems, the subdivision approach presented in [BCGY12] can theoretically certify
the topology of any singular curve. Due to these worst-case bounds, this algorithm cannot be
practical. A numerical algebraic geometric approach is presented in [LBSW07] using irreducible
decomposition, generic projection and plane sweep, deflation and homotopy to compute the
topology of a singular curve in any codimension. So far this work seems more theoretical than
practical and the certification of all the algorithm steps appears as a challenge.

2 Subresultant based deflation

The input of algorithms in this section are two trivariate polynomials P,Q and a box B0 in R2.
Our goal is to isolate the singularities of the plane curve f = 0 defined by the resultant of P
and Q with respect to z. In this section, we exhibit a square polynomial system g = h = 0
and a polynomial u such that the singularities of f are exactly the solutions of the constrained
system g = h = 0 and u 6= 0. Moreover, the singularities are regular solutions of g = h = 0, such
that numerical methods can certify whether a box contains or not a singularity. In Section 2.1,
the constrained system is constructed using subresultants. In Section 2.2, the regularity of this
system is translated in terms of types of singularities. Generic assumptions are required so that
these characterizations of the singularities of f hold. Section 2.3 presents a semi-algorithm for
checking the assumptions that we now define. Given two trivariate polynomials P,Q in Q[x, y, z]
and a two-dimensional box B0, we define the generic assumptions:

(A1) Above the box B0 for the x and y-coordinates, the intersection of the surfaces P (x, y, z) = 0
and Q(x, y, z) = 0 is a smooth space curve denoted CP∩Q, i.e. the tangent vector t =
OP × OQ is nowhere null on CP∩Q (where OP is the gradient vector (Px, Py, Pz)).

(A2) Above any point (α, β) in B0, there are at most two points of CP∩Q counted with multi-
plicities, or in other words, the polynomial gcd(P (α, β, z), Q(α, β, z)) has degree at most
two. In addition, there are finitely many (α, β) in B0 such that this degree is two.

(A3) The leading coefficients LP (x, y) and LQ(x, y) of P and Q seen as polynomials in z have
no common solutions in B0.

(A4) The singularities of the resultant or discriminant curve are only nodes or ordinary cusps.

Note that these assumptions are satisfied for almost all pairs of polynomials in Q[x, y, z].

2.1 Singularities via subresultants

Let f be the resultant polynomial (with respect to the variable z) of two polynomials P and Q
in Q[x, y, z]. We always assume that f is square-free and thus its singularities are isolated. Let
Ssing = V(f, fxfy) be the set of singular points of f and Ssres = V(s11, s10)−V(s22). We prove
in this section that, under our assumptions, these two sets coincide.

Theorem 1 ([Rec13]). Let f be the resultant of the polynomials P and Q in Q[x, y, z] with
respect to the variable z. Then Ssres ⊂ Ssing and if the assumptions (A1) to (A3) are satisfied
then Ssing ⊂ Ssres.

RR n° 8653



6 Rémi Imbach, Guillaume Moroz, Marc Pouget

Proof of the inclusion Ssres ⊂ Ssing. Let I = 〈f, fx, fy〉 and J = 〈s11, s10〉 : 〈s22〉∞, then

Ssing = V(I) and V(J) = V(s11, s10)− V(s22) = Ssres ⊃ Ssres. It is thus sufficient to prove that
I ⊂ J , or in other words that there exists a positive integer m such that 〈f, fx, fy〉 · 〈s22〉m =
〈sm22f, s

m
22fx, s

m
22fy〉 ⊂ 〈s11, s10〉.

The generic chain rule of subresultant (see for instance [Kah03, Theorem 4.1]) yields s2
22f =

Res(S2, S1). On the other hand, Res(S2, S1) =

∣∣∣∣∣∣
s22 s11

s21 s10 s11

s20 s10

∣∣∣∣∣∣ = s2
10s22 + s2

11s20 − s10s11s21.

Hence s2
22f ∈ 〈s11, s10〉.

The previous identity expresses s2
22f as a quadratic form in s11 and s10, differentiating with

respect to x (or y) yields a sum with s11 or s10 as a factor in each term, thus ∂(s2
22f) is in 〈s11, s10〉.

This implies that ∂(s3
22f) is also in 〈s11, s10〉. In addition, ∂(s3

22f) = 3s2
22f∂s22 + s3

22∂f hence
s3

22∂f = ∂(s3
22f) − 3s2

22f∂s22 with both terms in 〈s11, s10〉, thus ∂(s3
22f) is in 〈s11, s10〉. We

conclude that 〈s3
22f, s

3
22fx, s

3
22fy〉 ⊂ 〈s11, s10〉, hence I ⊂ J and Ssres ⊂ Ssing.

Proof of the inclusion Ssing ⊂ Ssres. Let (α, β) be a singular point of f , so that f(α, β) = 0.
According to the generic condition (A2), gcd(P (α, β, z), Q(α, β, z)) has at most two simple roots
or one double root.

For the case of a double root, gcd(P (α, β, z), Q(α, β, z)) has degree 2 and by the gap structure
theorem (more precisely its corollary showing the link between the gcd and the last non-vanishing
subresultant, see e.g. [Kah03, Corollary 5.1]) and assumption (A3): (a) this gcd is the subresul-
tant S2(α, β), hence s22(α, β) 6= 0, and (b) the subresultants of lower indices are vanishing, in
particular s11(α, β) = 0 and s10(α, β) = 0. Hence (α, β) is in Ssres.

Otherwise, let γ be a simple root of gcd(P (α, β, z), Q(α, β, z)), the generic condition (A1)
yields that the tangent vector t(p) to CP∩Q at the point p = (α, β, γ) is well defined and not
vertical. Indeed, the multiplicity of γ in gcd(P (α, β, z), Q(α, β, z)) is 1, so it is also one in at
least one of the polynomials P (α, β, z) or Q(α, β, z). In other words, Pz(p) 6= 0 or Qz(p) 6= 0
which implies that the x and y-coordinates of t(p) cannot both vanish (otherwise, t(p) would be
the null vector contradicting assumption (A1)). Without loss of generality we may assume that
the x-coordinate of t(p) is not null: xt(p) = Py(p)Qz(p)− Pz(p)Qy(p) 6= 0.

We now apply [BM09, Theorem 5.1] rephrased in the affine setting to P and Q:

fy = ±
∣∣∣∣Py Pz
Qy Qz

∣∣∣∣ s11 + uP + vQ

with u, v in Q[x, y]. Evaluated at p, P and Q vanish and we obtain: fy(α, β) = ±xt(p)s11(α, β).
Since (α, β) is a singular point of f , fy(α, β) = 0, and together with xt(p) 6= 0 this gives
s11(α, β) = 0. The gap structure theorem and f(α, β) = 0 then implies that (a) s10(α, β) = 0, and
(b) the degree of gcd(P (α, β, z), Q(α, β, z)) is at least two. Together with the generic condition
(A2), this degree is exactly two and so is the degree of the second subresultant S2 evaluated at
(α, β), thus s22(α, β) 6= 0. We then conclude that in this case too (α, β) is in Ssres.

2.2 Regularity conditions

The main theorem of this section is the relation between the types of singularities of f and the
regularity of the solutions of the system s11 = s10 = 0. We assume for this section that the
assumptions (A1), (A2) and (A3) hold.

Theorem 2. Let f be the resultant of the polynomials P and Q in Q[x, y, z] with respect to
the variable z. If the assumptions (A1), (A2) and (A3) hold then the following propositions are
equivalent:

Inria



Numeric certified algorithm for the topology of resultant and discriminant curves 7

i. p is a regular solution of s11 = s10 = 0 and s22(p) 6= 0

ii. p is a node or an ordinary cusp of the curve f = 0

Furthermore in this case, p is an ordinary cusp point if and only if CP∩Q has a vertical tangent
above p.

The proof of this theorem is decomposed with the following lemmas.

Lemma 3 ([Rec13]). Let p be a node of f . Then p is a regular point of the system s11 = s10 = 0.

Proof. Since p is a node, it is a singular point of f = 0 and Theorem 1 implies that p is a solution
of the system s11 = s10 = 0. Moreover, we saw in the proof of Theorem 1 that Ssres ⊂ Ssing
but more precisely that 〈s3

22f, s
3
22fx, s

3
22fy〉 ⊂ 〈s11, s10〉. In particular, this implies that the

multiplicity of p in 〈s11, s10〉 is lower or equal to its multiplicity in 〈s3
22f, s

3
22fx, s

3
22fy〉. Since p is

a node of f , the determinant of the Hessian of f is non-zero and p is a regular point of 〈f, fx, fy〉.
And since s22(p) 6= 0, we can conclude that the multiplicity of p in 〈s3

22f, s
3
22fx, s

3
22fy〉 is 1. Thus

p has also a multiplicity one in 〈s11, s10〉.

Lemma 4. Let p be an ordinary cusp point of f . Then p is a regular point of the system
s11 = s10 = 0.

Proof. Let p = (α, β) be an ordinary cusp point of f . Suppose by contradiction that p is a
singular solution of s11 = s10 = 0. Then the determinant of the Jacobian matrix

( s11x s10x
s11y s10y

)
is 0

and there exists a vector (u, v) ∈ R2 \ {(0, 0)} orthogonal simultaneously to the gradient of s11

and to the gradient of s10. In particular, s11(α+ut, β+vt) (resp. s10(α+ut, β+vt)) vanishes at
0 in t with multiplicity at least 2. Using standard formula on the resultants ([Kah03, Theorem
4.1] for example) we have s2

22f = Res(S1, S2). Developing the right hand side we get:

s2
22f = s22s

2
10 − s21s11s10 + s20s

2
11.

Thus, evaluating the right hand side on (α + ut, β + vt), we observe that it vanishes at 0 in t
with multiplicity at least 4.

On the other hand, p being an ordinary cusp of f , the polynomial f(α+ ut, β + vt) vanishes
at 0 in t with multiplicity at most 3. In addition, under the assumptions (A2) and (A3), we
have s22(p) 6= 0 and the left hand side vanishes at 0 in t with multiplicity at most 3, hence the
contradiction.

Lemma 5. Let q = (α, β, γ) be a regular point of the curve CP∩Q such that s22(p) 6= 0 with
p = (α, β). Then q is a regular point of the curve S2(x, y, z) = S1(x, y, z) = 0. Moreover, the
vectors ∇P (q),∇Q(q) generate the same vector space as ∇S2(q) and ∇S1(q).

Proof. Using the identities of [Kah03, Theorem 4.2], there exists U, V, U ′, V ′ such that:

s2
22P = US2 + V S1

s2
22Q = U ′S2 + V ′S1

Since s22(p) 6= 0, we have:

∇P (q) =
U(q)

s22(p)2
∇S2(q) +

V (q)

s22(p)2
∇S1(q) ∇Q(q) =

U ′(q)

s22(p)2
∇S2(q) +

V ′(q)

s22(p)2
∇S1(q)

Since q is a regular point of P = Q = 0, ∇P (q) and ∇Q(q) generate a dimension 2 vector space.
Thus ∇S2(q) and ∇S1(q) also generate the same dimension 2 vector space and q is a regular
point of the curve S2 = S1 = 0.

RR n° 8653



8 Rémi Imbach, Guillaume Moroz, Marc Pouget

Proof of Theorem 2. The implication ii. =⇒ i. is a direct corollary of Lemma 3 and 4.
For the reciprocal, we know that s22(p) 6= 0, thus

f =
1

s22
s2

10 +
1

s2
22

s20s
2
11 −

1

s2
22

s21s10s11

Let us denote by A, J and V the matrices and the vector

A =

(
2s22 −s21

−s21 2s20

)
J =

(
s10x s10y

s11x s10y

)
V =

(
s10

s11

)
The resultant satisfies f = 1

2s222
V t ·A ·V . Let p be a singular point of the curve f = 0. According

to Theorem 1, s11(p) = s10(p) = 0. Moreover, without restriction of generality, we can assume
that (α, β, 0) satisfy P (α, β, 0) = Q(α, β, 0) = 0 using the property that the resultant is invariant
by translation of z in P and Q. In this case, we have also s20(p) = 0.

With abuse of notations, we denote by Ok(x, y) a polynomial that is in the ideal 〈x, y〉k where
k is a positive integer. In particular we have:

Ok1(x, y) ·Ok2(x, y) = Ok1+k2(x, y)

Ok1(x, y) +Ok2(x, y) = Omin(k1,k2)(x, y)

δOk(x, y) = Ok−1(x, y) for δ = ∂/∂x or ∂/∂y

With this notation, the taylor expansion of V at p gives

V (p+ (x, y)) = J(p)

(
x
y

)
+O2(x, y)

such that :

f(p+ (x, y)) =
1

2s22(p)2
(x y) J(p)t ·A(p) · J(p)

(
x
y

)
+O3(x, y)

This implies that the Hessian of f at p is the matrix 1
s22(p)J(p)t ·A(p) · J(p). If the determinant

of the Hessian is not zero, then p is a node. Otherwise we have det(A(p)) det(J(p))2 = 0. Let
us prove in this case that p is an ordinary cusp in f . For that, we need to prove that for every
direction (u, v) 6= (0, 0), the valuation of t in f(ut, vt) is lower or equal to 3. By hypothesis
i., det(J) 6= 0, thus det(A(p)) = 4s22(p)s20(p) − s21(p)2 = 0. In particular, this means that
s21(p) = 0. In particular recalling that:

f =
1

s22
s2

10 +
1

s2
22

s20s
2
11 −

1

s2
22

s21s10s11

we have for (u, v) such that a := us10x(p) + vs10y(p) 6= 0:

s2
10(α+ ut, β + vt) = a2t2 +O3(t)

s20s
2
11(α+ ut, β + vt) = O3(t)

s21s10s11(α+ ut, β + vt) = O3(t)

This implies:

f(α+ ut, β + vt) =
1

s22(p)2
a2t2 +O3(t)
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Numeric certified algorithm for the topology of resultant and discriminant curves 9

and for (u, v) such that us10x(p) + vs10y(p) = 0 there exists a constant c 6= 0 such that (u, v) =
(cs10y,−cs10x) and we have:

f(α+ ut, β + vt) =
c3

s22(p)2
(s20x(p)s10y(p)− s20y(p)s10x(p))(s11x(p)s10y(p)− s11y(p)s10x(p))2t3

+O4(t)

=
c3

s22(p)2
det(G(p)) det(J(p))2t3 +O4(t)

where

G :=

(
s20x s20y

s10x s10y

)
Lemma 5 implies that (α, β, 0) is a regular point of S2(x, y, z) = S1(x, y, z) = 0. On the other
hand,

∇S1(α, β, 0) =
(
s10x(p) s10y(p) s11(p)

)
∇S2(α, β, 0) =

(
s20x(p) s20y(p) s21(p)

)
Since s11(p) = s21(p) = 0, the point (α, β, 0) is regular in S2(x, y, z) = S1(x, y, z) = 0 only if
the determinant of the matrix G(p) is different from zero. In addition, hypothesis i. implies
det(J(p)) 6= 0. We thus conclude that for every (u, v) 6= (0, 0), the valuation of t in f(ut, vt) is
lower or equal to 3, and p is an ordinary cusp.

Finally, we prove that p is an ordinary cusp if and only if CP∩Q has a vertical tangent above p
at q = (α, β, 0). First, if p is an ordinary cusp, then the Hessian of f is zero at p and det(A(p)) = 0.
In this case we saw that s21(p) = 0 and since s11(p) = 0, this implies that ∂S2

∂z (q) = s21(p) = 0

and ∂S1

∂z (q) = s11(p) = 0. Using Lemma 5 this implies that ∂P
∂z (q) = ∂Q

∂z (q) = 0 such that the
tangent vector of CP∩Q at q is vertical. Reciprocally, if the tangent vector of CP∩Q at q is vertical,

then ∂P
∂z (q) = ∂Q

∂z (q) = 0 and Lemma 5 implies that ∂S2

∂z (q) = 0, thus S2 has a double root in z
and det(A(p)) = 0. Thus the Hessian of f is zero at p and p is an ordinary cusp of f .

2.3 Checking the assumptions

As opposed to symbolic methods, our numerical approach requires assumptions on the input. To
be complete we provide a way to check that the assumptions are fulfilled using only numerical
methods.

Lemma 6. The semi-algorithm 1 terminates iff the assumptions (A1), (A2), (A3) and (A4) are
satisfied.

Proof. We first show that if the semi-algorithm terminates then (A1), (A2), (A3) and (A4) are
satisfied. Indeed, for any box of the subdivision, (a) Lines 5 ensures that the leadings of P and Q
have no common solutions (A3); (b) Lines 7, 9 and 15 ensures that f, s11 and s22 do not vanish
simultaneously, hence there is at most two points of the curve CP∩Q above each point of B0,
(A2) is satisfied; (c) Lines 11 and 17 ensures that the curve CP∩Q is smooth (A1); Line 19 finally
ensures the regularity assumption (A4).

Conversely, it is easy to see that when the assumptions (A1), (A2), (A3) and (A4) are satisfied
Semi-algorithm 1 will terminate due to the convergence of the interval functions to the actual
value of the corresponding function when the diameter of a box tends to 0.
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10 Rémi Imbach, Guillaume Moroz, Marc Pouget

Semi-algorithm 1 Subdivision based checking of assumptions (A1), (A2), (A3) and (A4)

Input: A box B0 in R2 and two polynomials P and Q in Q[x, y, z].
Output: The semi-algorithm terminates iff the assumptions (A1), (A2), (A3) and (A4) are

satisfied.
1: Let f be the resultant and s22, s11, s10 be the subresultant coefficients of P and Q wrt z.
2: L := {B0}
3: repeat
4: B := L.pop
5: if 0 ∈ �LP (B) and 0 ∈ �LQ(B) then . Checking (A3)
6: Subdivide B and insert its children in L, continue
7: else if 0 6∈ �f(B) then . Checking if P and Q have no common solution (A2)
8: continue
9: else if 0 6∈ �s11(B) then . Checking if P and Q have at most 1 common solution (A2)

10: Iz := −�s10(B)/�s11(B)
11: if (0, 0, 0) ∈ �t(B × Iz) then . Checking (A1)
12: Subdivide B and insert its children in L, continue
13: else
14: continue
15: else if 0 6∈ �s22(B) then . Checking if P and Q have at most 2 common solutions (A2)
16: Iz := union of the complex boxes solution of: �s22(B)z2 +�s21(B)z +�s20(B) = 0
17: if (0, 0, 0) ∈ �t(B × Iz) then . Checking (A1)
18: Subdivide B and insert its children in L, continue
19: else if 0 ∈ �Jacobian(s11, s10)(B) then . Checking (A4)
20: Subdivide B and insert its children in L, continue
21: else
22: continue
23: else
24: Subdivide B and insert its children in L, continue

25: until L = ∅
26: return true

2.4 Numerical certified isolation

There is no new result in this section, but for the reader’s convenience, we recall a classical
numerical method to isolate regular solutions of a square system within a given domain via re-
cursive subdivision and show how it applies in our case. Such a subdivision method is often called
branch and bound method [Kea96] and uses the Krawczyk operator or Kantorovich theorem to
certify existence and unicity of solutions. We recall the properties of the Krawczyk operator
and propose the naive Algorithm 2 for the isolation of the singularities of a resultant using the
characterization of these points proved in Theorem 2. Note that even if the assumptions (A1) to
(A4) are satisfied, this naive algorithm may fail if a singularity lies on (or near) the boundary of
a box during the subdivision. Indeed, for this algorithm to be certified, there is a need to use ε-
inflation of a box when using the Krawczyk test and cluster neighboring boxes of the subdivision.
For simplicity we do not detail this issue and refer for instance to [Sta95, §5.9],[Kea97, SN05].

Let F be a mapping from R2 to R2 and denote JF its Jacobian matrix. The following lemma
is a classical tool to certify existence and uniqueness of regular solutions of the system F = (0, 0).
For simplicity, we state the following lemma on R2 but this result holds in any dimension.

Lemma 7. (Krawczyk [Kra69][Rum83, §7]) Let B be a box in R2, (x0, y0) the center point of B

Inria



Numeric certified algorithm for the topology of resultant and discriminant curves 11

Algorithm 2 Subdivision based isolation of singularities

Input: A box B0 in R2 and two polynomials P and Q in Q[x, y, z] such that the assumptions
(A1), (A2), (A3) and (A4) are satisfied.

Output: A list LSing of boxes such that each box isolates a singularity of the curve defined by
f = Resz(P,Q), and each singularity in B0 is in a box of LSing.

1: Let f be the resultant and s22, s11, s10 be the subresultant coefficients of P and Q wrt z.
2: L := {B0}
3: repeat
4: B := L.pop
5: if 0 6∈ �f(B) or 0 6∈ �s11(B) or 0 6∈ �s10(B) then
6: Discard B
7: else
8: if K(s11,s10)(B) ⊂ int(B) and 0 6∈ �s22(B) then
9: Insert B in LSing

10: else
11: Subdivide B and insert its children in L
12: until L = ∅
13: return LSing

and ∆B =
(
Bx−x0

By−y0

)
. Let N be the mapping:

N(x, y) = ( xy )− JF (x0, y0)−1 · F (x, y)

and KF the Krawczyk operator defined by:

KF (B) := N(x0, y0) +�JN (B) ·∆B.

If KF (B) is contained in the interior of B then F = (0, 0) has a unique solution in B.

Termination of Algorithm 2. We assume that P,Q satisfy the assumptions (A1), (A2), (A3)
and (A4). Since in this case the singularities of f are either nodes or ordinary cusp points,
Theorem 2 implies that they are regular solutions of the system s11 = s10 = 0. This implies that
Algorithm 2 will always terminate.

3 Number of real branches at singularities

Algorithm 2 isolates singularities in boxes. The next step is to identify the singularity type,
node or ordinary cusp, and compute the number of real branches of the curve connected to the
singular point.

3.1 Resultant

For a resultant curve, recall that nodes are stable singularities whereas cusps are not, thus a
purely numerical method cannot distinguish between node and cusp singularities. In particular,
given a box B containing a singularity, let I be a box evaluation of the determinant of the
Hessian. If I does not vanish in the considered box, it is a node, but if it contains 0, it can still
be a node, but also a cusp. For a node, the local topology is easily deduced from the topological
degree of the mapping (fx, fy).
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12 Rémi Imbach, Guillaume Moroz, Marc Pouget

Lemma 8. [AMW08, Theorem 4.15] Let B be a box containing a singularity p of f such that
I := �det(H)(B) 6= 0, then if I < 0 then p is connected to 4 real branches, otherwise if I > 0,
then p is an isolated real point.

Conversely, if p is a node, then for a small enough box containing p, the determinant of the
Hessian does not contain 0 and the number of branches connected to p can be recovered. Thus,
when B contains a node singularity of the resultant, Semi-algorithm 3 will always terminate and
compute the number of real branches connected to p. Note that in the case when the singularity
is an ordinary cusp, Semi-algorithm 3 will not terminate.

Semi-algorithm 3 Number of branches at a resultant singularity

Input: A box B in R2 output by Algorithm 2 containing a unique singular point p.
Output: The number of branches connected to p.
1: Let f be the resultant and s11, s10 be the subresultant coefficients of P and Q wrt z.
2: while 0 ∈ � det(Hessian(f))(B) do
3: B := B ∩K(s11,s10)(B)

4: if �det(Hessian(f))(B) > 0 then return 0
5: else return 4

3.2 Discriminant

In this section we focus on a discriminant curve. Let f be the resultant of P and Q := Pz
satisfying the assumptions (A1), (A2), (A3) and (A4). Note that Resz(P, Pz) = LTz(P )Discz(P ),
assumption (A3) implies that the leading coefficient of P in z is constant, such that the curve
defined by f is the same as the one defined by the discriminant of P .

As for the resultant, the singularities of the curve f = 0 are either nodes or ordinary cusps.
Furthermore, for the discriminant curve, the ordinary cusps are stable and we can identify them
numerically. Node singularities can be detected and their local topology computed with the same
algorithm as in the previous section for the resultant. We will now focus on the case where the
singular point is an ordinary cusp. First we show that above an ordinary cusp, the polynomial
P has a triple root in z.

Lemma 9. Under the assumptions (A1), (A2), (A3), (A4) the point p = (α, β) is an ordinary
cusp of the discriminant curve f = 0 if and only if P (α, β, z) has a triple root in z.

Proof. Under our assumptions, Theorem 2 states that p = (α, β) is an ordinary cusp of the
discriminant curve f = 0 if and only if the curve CP∩Pz has a vertical tangent above p. This is
the case if and only if there exists γ such that Pz(α, β, γ) = Pzz(α, β, γ) = 0. Moreover, (A2)
implies that Pzzz(α, β, γ) 6= 0, such that γ is a triple root of P (α, β, z).

It is thus desirable to identify cusps via triple points, the following lemma states the regularity
of these points which is a necessary condition to use numerical methods for their isolation.

Lemma 10. If P has a triple point, and the curve P = Pz = 0 is smooth then the point is a
regular solution of P = Pz = Pzz = 0.

Proof. At the triple point q, the Jacobian of the system P = Pz = Pzz = 0 is Pzzz(q)
∣∣∣ Px(q) Pxz(q)
Py(q) Pyz(q)

∣∣∣.
By assumption, Pzzz(q) 6= 0. Moreover, since the curve P = Pz = 0 is regular, at least one
minor of its jacobian matrix is not zero. Since Pz(q) = 0 and Pzz(q) = 0, this means that∣∣∣ Px(q) Pxz(q)
Py(q) Pyz(q)

∣∣∣ 6= 0. Thus the Jacobian is not zero and q is regular.

Inria
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The following more effective version of this Lemma delimits the box containing the triple
root.

Lemma 11 (triple points). Let B be a box containing a unique singular point p of f and assume
that 0 /∈ �s22. The polynomial P has a triple point in z above p if and only if the system
P = Pz = Pzz = 0 has a regular solution in the box B × Iz where Iz is the interval −�s212�s22

.

Proof. If P (α, β, z) has a triple root z0 for (α, β) ∈ B, then it has a multiplicity 2 in gcd(P (α, β, z),
Pz(α, β, z)). In particular z0 is a double root of the second polynomial subresultant S2 =

s22z
2 + s21z + s20, and z0 = − s21(α,β)

2s22(α,β) ⊂ Iz. Thus if (α, β) is the projection of a triple point of

P , then this point is necessarily in the box B × Iz. Finally if the system P = Pz = Pzz = 0 has
a regular solution in B × Iz, then we can conclude that the 3d box contains a triple point of P
and that its projection is p.

An ordinary cusp is connected to exactly 2 real branches. Using Lemma 11, Algorithm 4
classifies the singularities between nodes and ordinary cusps, and compute the number of real
branches connected to them. It always terminates since the diameter of the box converges toward
0 such that eventually either det(Hessian(f))(B) 6= 0 or K(P,Pz,Pzz)(B × Iz) ⊂ int(B × Iz).

Algorithm 4 Number of branches at a discriminant singularity

Input: A box B in R2 output by Algorithm 2 containing a unique singular point p.
Output: The number of branches connected to p and its singularity type (node or ordinary

cusp).
1: Let f be the resultant and s2,2, s2,1, s11, s10 be the subresultant coefficients of P and Pz wrt
z.

2: while true do
3: if � det(Hessian(f))(B) > 0 then return (0, node)

4: if � det(Hessian(f))(B) < 0 then return (4, node)

5: Iz := − �s21(B)
2�s22(B)

6: if K(P,Pz,Pzz)(B × Iz) ⊂ int(B × Iz) then return (2, ordinary cusp)

7: B := B ∩K(s11,s10)(B)

4 Loop detection near singularities

Now that we know the number of branches np connected to a singularity p, we need to ensure
that the enclosing box B computed so far does not contain any other branches not connected to
p. First we can refine B until the number of branches crossing the boundary of B matches np.
But this is not enough, since B could contain closed loops of f . This case can be discarded by
ensuring that B contains a unique solution of the system fx = fy = 0.

4.1 Resultant

In the case of nodes, p is a regular solution of the system fx = fy = 0 since the determinant of
the Jacobian of this system is the determinant of the Hessian of f and is not zero at p. Thus
we can use standard tools from interval analysis to guarantee that p is the only root in B of the
system fx = fy = 0.
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14 Rémi Imbach, Guillaume Moroz, Marc Pouget

Lemma 12 (Node near loops). Let Kfx,fy be the Krawczyk operator defined in Lemma 7 with
respect to the system fx = fy = 0, and B be a box containing a node p of f . If Kfx,fy (B) ⊂ int(B)
then B contains no closed loop of f .

Proof. Lemma 7 ensures that p is the only solution of fx = fy = 0 in B. If B contains a closed
loop included in int(B), then a connected subset of B has its boundary included in the curve
defined by f . Thus it contains a point q where f reaches a local extrema and such that f(q) 6= 0.
In particular, fx(q) = fy(q) = 0 and q 6= p, hence the contradiction.

Remark 13. Alternatively, using tools from the next section, denoting by �f an evaluation of
f on the box B, we let I := �fxx�fyy −�fxy�fxy. Then we claim that if I does not contain 0
then B contains at most 1 solution of the system fx = fy = 0.

4.2 Discriminant

For the discriminant, the loops near the nodes can be handled as for the resultant. However, the
same approach cannot handle ordinary cusps. The problem is that ordinary cusps are singular
solutions of the system fx = fy = 0. We need the following Lemma to handle ordinary cusps.

Lemma 14 (Ordinary cusp near loops). Let p be an ordinary cusp point of f in a box B. Let
J,K,L,M be the intervals:

J = �fyy
K = �f2

yy�fxxx − 3�fyy�fxy�fxxy + 3�f2
xy�fxyy −�fxy�fxx�fyyy

L = �fyy�fxxy +�fxx�fyyy − 2�fxy�fxyy
M = �fyy�fxy −�fxy�fyy

and let J ′,K ′, L′,M ′ be the intervals obtained by the same formula with x and y swapped. If
I = J(JK−LM) or I ′ = J ′(J ′K ′−L′M ′) do not contain 0, then B does not contain any closed
loop of the curve defined by f .

Remark 15. If B is small enough, then either I or I ′ does not contain zero.

When a solution of a system S is singular, there are several ways to check that a box B
does not contain any other solutions of S. One way is to compute a univariate polynomial r
vanishing on the projection of the solutions of S (with resultant or Gröbner bases), and check
that the projection of B contains only one solution of the square-free part of r. Another way
is to use a multivariate version of the Rouché theorem ([VH94] for example). In our case, this
would amount to solve a system of two polynomials of degree lower than 3 and check if these
solutions are within a suitable complex box containing B.

The method we propose is easy to implement and can potentially be extended to other kinds
of functions than polynomials. The main idea behind the proof of Lemma 14 is to compute a
pseudo-resultant of fx and fy in the ring localized at p. Then using the fact that the evaluation on
a box of the coefficients of the Taylor expansion of a polynomial f is included in the evaluation
of the corresponding derivative of f , we can compute the evaluation of the local elimination
polynomial on B using only derivatives of the polynomials fx and fy.

Before proving Lemma 14, we define the notion of separation polynomial that we will use.

Definition 16. Let S be a bivariate polynomial system vanishing on p = (α, β), and IS the ideal
generated by its polynomials. Let k be an integer and q be a polynomial such that q(x, y)(x−α)k ∈
IS and q(p) 6= 0. Then we say that q is a separation polynomial.

Inria



Numeric certified algorithm for the topology of resultant and discriminant curves 15

A classical separation polynomial is obtained by computing the resultant of f and g seen
as univariate polynomials in y with coefficients in K[x]. We get a polynomial r(x) that can be
factorized in q(x)(x − α)k where q(α) 6= 0. However we do not restrict q to be a univariate
polynomial.

Lemma 17. Let q be a separation polynomial and B be a box containing a solution p = (α, β)
of S. If 0 /∈ �q, then, the solutions of S in B all have the same x-coordinate. Moreover, if there
is a polynomial r in IS such that 0 /∈ �ry, then S has only one solution in B.

Proof. Let (x0, y0) ∈ B such that x0 6= α. If q(x0, y0) 6= 0, then q(x0, y0)(x0 − α)k 6= 0. Thus
there is a polynomial in IS that does not vanish on (x0, y0) and this point is not a solution of
S. Moreover, if (α, y0) is solution of S with y0 6= β, then r(α, β) = r(α, y0) = 0 and ry has a
solution in B which contradicts the second part of the lemma.

Proof of Lemma 14 Consider the system fx = fy = 0. Any closed loop of f contains a
solution of this system. The cusp point p is also solution of this system and if B contains no
other solution than p, then B cannot contain a loop. By hypothesis, p is a cusp, hence a singular
solution of the system fx = fy = 0. Thus the determinant of the Hessian vanishes and we
have: fxy(p) = fx2(p)fy2(p). And since p is an ordinary cusp, we know that either fx2(p) or
fy2(p) is not zero (otherwise the multiplicity would be 4 or more in one direction). Assume
without restriction of generality that fy2(p) 6= 0. And let X,Y be two new variables such that
( xy ) = M · (XY ) where:

M =
(

fyy(p) 0
−fxy(p) 1

)
(XY )

Differentiating f along the new variables, we have:(
fXX fXY

fXY fY Y

)
= MT

(
fxx fxy

fxy fyy

)
M

In particular, we have:

fXY = fyy(p)fxy − fxy(p)fyy
fY Y = fyy

fXX = fyy(p)2fx2 − 2fy2(p)fxy(p)fxy + fxy(p)2fyy

= fyy(p)(fyy(p)fxx + fxx(p)fyy − 2fxy(p)fxy)

fXXX = fyy(p)3fxxx − 3fyy(p)2fxy(p)fxxy + 3fyy(p)fxy(p)2fxyy − fxy(p)3fyyy

= fyy(p)(fyy(p)2fxxx − 3fyy(p)fxy(p)fxxy + 3fxy(p)2fxyy − fxy(p)fxx(p)fyyy)

Observe that fXY (p) = 0 and fXX(p) = fyy(p)(fxx(p)fyy(p) − fxy(p)2) = 0. Thus, the
polynomial system fX , fY has the form:

fX = a(X)∆X2 + b(X,Y )∆Y
fY = c(X)∆X2 + d(X,Y )∆Y

Eliminating ∆Y , we get the polynomial ∆X2(ad − cb) in the ideal generated by fx and fy.
Letting q = ad − cb, we can verify that q(p) 6= 0. Indeed we have 2q(p) = fXXX(p)fY Y (p) −
fXXY (p)fXY (p) = fXXX(p)fY Y (p). By assumption, fY Y (p) = fyy(p) 6= 0 and since p is an
ordinary cusp, it cannot have a triple root in X and fXXX(p) 6= 0. Thus q is a separation
polynomial.

Then, we can observe that a(X) = fX(X,β)
∆X2 , c(X) = fY (X,β)

∆X2 , and b(X,Y ) = fX−a∆X2

∆Y ,

d(X,Y ) = fY −c∆X2

∆Y . Thus, using Taylor-Lagrange theorem, we can deduce that if B is a box
containing (α, β):
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a(B) ⊂ �fXXX
2

c(B) ⊂ �fXXY
2

b(B) ⊂ �fXY d(B) ⊂ �fY Y

Finally, evaluating 2q on a box containing p, we get:

2�q ⊂ �fXXX�fY Y −�fXXY�fXY
⊂ fyy(p)(fyy(p)2�fxxx − 3fyy(p)fxy(p)�fxxy + 3fxy(p)2�fxyy − fxy(p)fxx(p)�fyyy)�fyy
− fyy(p)(fyy(p)�fxxy + fxx(p)�fyyy − 2fxy(p)�fxyy)(fyy(p)�fxy − fxy(p)�fyy)

⊂ I(IJ −KL)

Thus if 0 /∈ I(IJ −KL) then, 0 /∈ �q and 0 /∈ �fY Y , thus B contains no other solution of
fx = fy = 0 than p.

4.3 Algorithm for the resultant and the discriminant curves

Using the interval criteria of Lemmas 12 and 14 for the detection of loops, Algorithm 5 returns
a refined box of a singular point that avoids closed loops of the curve, as soon as we know
in advance if the singularity is a node or an ordinary cusp. Note that this algorithm always
terminates if the singularity is a node or an ordinary cusp, and works for any algebraic curve.

Algorithm 5 Avoid curve loops in a singularity box

Input: A box B in R2 output by Algorithm 3 or Algorithm 4 containing a unique singular point
p with its type: node or cusp.

Output: A box that avoids closed loops of the curve.
1: Let f be the resultant and s22, s21, s11, s10 be the subresultant coefficients of P and Pz wrt
z.

2: while true do
3: if B-type = node and K(fx,fy)(B) ⊂ int(B) then return B

4: if B-type = cusp then
5: Compute I and I ′ as defined in Lemma 14
6: if 0 6∈ I or 0 6∈ I ′ then return B

7: B := B ∩K(s11,s10)(B)

5 Experiments

As a proof of concept of the approach presented in this paper to compute the topology of a
singular plane curve defined by a resultant or a discriminant, we have implemented steps (1) and
(2) proposed in Section 1. Recall that step (1) consists in isolating the singularities of the curve.
This isolation is performed by Algorithm 2 and we compare our results with state-of-the-art
symbolic and homotopic methods. In step (2), topology around singularities is computed. It
is addressed in this paper by Algorithms 3 and 4, that determine the number of branches at a
singularity and its nature (node or cusp), and algorithm 5 that ensures that no loops lie in a box
containing a singularity.

All softwares were tested on a Intel(R) Xeon(R) CPU L5640 @ 2.27GHz machine with Linux.
Running times given here have to be understood as sequential times in seconds.
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Section 5.1 gives details on our implementation and the other softwares used for comparison.
Section 5.2 presents results of our approach for the isolation of singularities, and a compari-
son to state-of-the-art symbolic and numeric methods. Section 5.3 reports our results for the
computation of the local topology at singularities.

Data for Tables 1, 2 and 3. Random dense polynomials P,Q are generated with given degree
d and bitsize σ, that is the coefficients are integers chosen uniformly at random with absolute
values smaller than 2σ. Unless explicitly stated, the given running times are averages over five
instances for each pair (d, σ).

5.1 Details of implementations

Symbolic methods. We tested RS4, developed by Fabrice Rouillier, that is specialized for bi-
variate systems and uses triangular decompositions and Rational Univariate Representations(RUR);
it is shown in [BLPR11, Bou14] that it is one of the best bivariate solvers. Roughly speaking,
it performs two steps: the first one, purely symbolic, computes the RUR of the system. The
second one is the numeric isolation of the solutions. A more stable but less efficient version,
called RSCube1, can be found as a package for the software Maple.

The first column of Tables 1 and 2 reports running times in seconds for RS4 for isolating the
real solutions of the system {s11, s10}. Recall that solutions of this system are singularities of
the curve only if they also are solutions of the resultant res.

We did also test the routine Isolate of the package RootFinding natively available within
Maple. Since it deals with over-determined systems, it has been used to isolate solutions of
{s11, s10, res}. Obtained results are not reported in Tables 1 and 2 because they are outperformed
by RS4 in every cases.

Homotopy methods. We tested two homotopy solvers, HOM4PS [LLT08] and Bertini2. These
methods do not accept constraints, thus the isolation of the system {s11, s10} is performed. Note
that the path tracking of these software is not certified and solutions can be missed when the
path tracker jumps from one path to another. We measure the reliability of a resolution by
comparing the number of obtained complex solutions to the Bézout bound of the system, which
is the actual number of solutions since our systems are dense and regular. In Tables 1 and 2, this
measure is reported in the column nsol/deg. Notice that we tackled the problem of overflows
that can arise when representing large integers by normalizing coefficients of input polynomials.

Subdivision method. We have implemented Algorithms 2, 3, 4 and 5 within the mathematical
software sage. The critical sub-algorithms are the evaluation of polynomials and the Krawczik
operator. Since the subresultant polynomials s10 and s11 have a large number of monomials with
very large coefficients, an important issue lies in both efficiency and sharpness of their interval
evaluation. We used the fast_polynomial library [Mor13] that allows to compile polynomial
evaluations using Horner scheme. The double precision interval arithmetic of the C++ boost

library is used for Tables 1 and 2. For Table 3, we used the quadruple precision interval arithmetic
of MPFI [RR05]. We used the centered form at order two evaluation of polynomials that requires
to compute symbolically partial derivatives up to order two of polynomials. Precisely, for a box
B with center c, �f(B) = f(c)+Jf (c)(B−c)+ 1

2Hf (B)(B−c)2 where Jf is the Jacobian and Hf

the Hessian of f . This evaluation form is studied in [Neu90, §2.4] and proved to be quadratically

1available at https://gforge.inria.fr/projects/rsdev/
2https://bertini.nd.edu/
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convergent. It happened to be more efficient in our experiments than the classical mean value
form. In the Krawczik operator, derivatives of s10 and s11 are evaluated at order 1.

Algorithm 2 performs the isolation in a bounded box. To extend the isolation to all real
solutions, we use a method introduced by [Neu90, p. 210] (see also [Sta95, §5.10] for a two
dimensional example). By changes of variables, this method transforms the isolation problem in
R2 to three isolations in the bounded box [−1, 1] × [−1, 1]. The running times of Algorithm 2
are given for the input box [−1, 1] × [−1, 1] and for the global isolation in R2. Concerning
the isolation in [−1, 1] × [−1, 1], the column diam of Tables 1 and 2 gives the minimum value
of log10(diam(B)) for all boxes B either discarded or inserted in the list of results Lsing in
Algorithm 2, and diam(B) stands for the diameter of B.

5.2 Singularities isolation: Tables 1 and 2

We analyze the results obtained with different approaches to isolate singularities of a plane curve
defined by Resultantz(P,Q) = 0. Table 1 reports results for a constant bitsize σ = 8 and a
variable degree d while in Table 2 the degree is a constant d = 4 and the bitsize σ is the variable.

• For all methods, the running times increases significantly with the degree of the input
polynomials.

• Only the symbolic method has a significant increase of running time with the bitsize of the
input polynomials.

• HOM4PS performs computation in double precision. Notice that it fails to parse input
polynomials with large numbers of monomials. For instance, for P,Q of degree 8, the
subresultant polynomial s10 has 1326 monomials. In addition, as reported by the column
nsol/deg, HOM4PS fails to find all solutions.

Bertini allows to use adaptive multi-precision and this has two consequences. First,
Bertini was almost always able to isolate all solutions, thus we did not add the column
nsol/deg as for HOM4PS. It only failed once in our experiments for a pair of input polynomials
of degree 7 with bitsize 8, where the maximum precision of 1024 bits has been reached.
Note also that for a degree larger than 7, we only computed a subset of the solutions so
we cannot report on this reliability measure. Second, the multi-precision arithmetic has a
heavy cost.

Bertini is thus more reliable but also slower than HOM4PS.

• The isolation by subdivision in R2 is roughly three times more expensive than in the
bounded box [−1, 1] × [−1, 1]. This is consistent with the fact that the isolation in R2

involves three isolations of systems of roughly the same complexity on this bounded box.

• With constant values of (d, σ), running times of the subdivision approach have a high
variance. For instance, when (d, σ) = (5, 4) running times for the isolation in R2 are, for
the five instances, (229, 4.56, 3.03, 1.67, 2.08).

• Our approach is certified and more efficient than both homotopic and symbolic tested
methods when d > 6 for all the tests we did perform.

5.3 Topology around singularities

We focus here on the computation of the topology around singularities of resultant and discrim-
inant curves by applying successively Algorithms 3 or 4, and 5.

Inria
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Table 3 reports the results for different degrees d and constant bitsize σ = 8 input polynomials.
Algorithms 3 or 4, and 5 are applied on all boxes containing singularities given by our global
subdivision method. Table 3 gives, for each type of curve and each pair (d, σ) the minimum,
median and maximum of values log10(diam(B)) where B are the output boxes for which the
topology is computed and certified. The large range of sizes for local topology certified boxes is
due to the diversity of the local geometry of the curve around a singular point: a singular point
may be near to another or near to a branch of the curve not connected to it locally. The sizes are
smaller for certifying singularities of a discriminant curve since the test involves higher degrees
polynomials to be evaluated.

We finally propose to appreciate the quality of different tests presented in this paper on an
example with a cusp and a nearby loop. Consider the polynomial Pcusp defined as follows

Pcusp = (z3 + zx− y)((x− δ′)2 + (z − 1)2 + y2)− (δ′/3)2

Its discriminant curve with respect to z is schematically drawn in the left part of Figure 1. This
curve has a cusp point near (0, 0) and a loop at a distance δ ' δ′ of this cusp point. The radius
of the loop is approximately δ. While the value of δ′ decreases, we compute

• the largest diameter τK of a box B centered at the cusp point such that K(s11,s10)(B) ⊂ B,

• the largest diameter τC of a box B centered at the cusp point such that Algorithm 4 detects
that the singularity in B is a cusp,

• the largest diameter τL of a box B centered at the cusp point such that the test of Lemma 14
is satisfied.

The right part of figure 1 displays the values of log10( τKδ ), log10( τCδ ), log10( τLδ ) when log10(δ)
varies in [−0.5,−6]. For instance, when δ′ = 2−16 ' 1.5 ∗ 10−5, we obtain δ ' 10−5, τL '
3.9 ∗ 10−9, τK ' 3 ∗ 10−11 and τC ' 1.7 ∗ 10−21. In this very precise case, the isolation of
the singularities in the initial box [−1, 1] × [−1, 1] together with the computation of the local
topology with our certified numerical method takes 2.94 seconds.

Notice that once a singularity has been isolated in a box B by the subdivision process, the
box B′ allowing to certify the nature of the singularity is obtained by contracting B with the
Krawczik operator, which is known to be quadratically convergent. In the above example, when
δ′ = 2−16, three iterations of the Krawczik operator are needed to obtain the suitable box. As
a consequence, rather than having an incidence on the computation time, the high gradient of
τC with respect to δ leads to the need of a multi-precision arithmetic to carry out the topology
certification.

Finally one can remark that in this example the test to avoid loops presented in Lemma 14
do not require to contract the box obtained by the subdivision process to be fulfilled.
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δ

τ

Figure 1: Left: a schematic representation of the discriminant of the polynomial Pcusp. Right:
largest diameters τK , τC , τL of a certified box as a function of the parameter δ.
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