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Abstract

We address the problem of large-scale visual place recog-

nition for situations where the scene undergoes a major

change in appearance, for example, due to illumination

(day/night), change of seasons, aging, or structural modifi-

cations over time such as buildings built or destroyed. Such

situations represent a major challenge for current large-

scale place recognition methods. This work has the fol-

lowing three principal contributions. First, we demonstrate

that matching across large changes in the scene appear-

ance becomes much easier when both the query image and

the database image depict the scene from approximately the

same viewpoint. Second, based on this observation, we de-

velop a new place recognition approach that combines (i)

an efficient synthesis of novel views with (ii) a compact in-

dexable image representation. Third, we introduce a new

challenging dataset of 1,125 camera-phone query images

of Tokyo that contain major changes in illumination (day,

sunset, night) as well as structural changes in the scene. We

demonstrate that the proposed approach significantly out-

performs other large-scale place recognition techniques on

this challenging data.

1. Introduction

Recent years have seen a tremendous progress [3, 6, 7, 8,

10, 14, 24, 28, 34, 35, 36, 40, 44] in the large-scale visual

place recognition problem [27, 36]. It is now possible to

obtain an accurate camera position of a query photograph

within an entire city represented by a dataset of 1M im-

ages [3, 8, 40] or a reconstructed 3D point cloud [28, 34].

These representations are built on local invariant features

such as SIFT [29] so that recognition can proceed across

moderate changes in viewpoint, scale or partial occlusion by

other objects. Efficiency is achieved by employing inverted
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(a) Query image (b) Street-view

(c) Synthesized view (d) Locations on the map

Figure 1. Matching across major changes in scene appearance

is easier for similar viewpoints. (a) Query image. (b) The origi-

nal database image cannot be matched to the query due to a major

change in scene appearance combined with the change in the view-

point. (c) Matching a more similar synthesized view is possible.

(d) Illustration of locations of (a-c) on the map. The dots and ar-

rows indicate the camera positions and view directions.

file [33, 39] or product quantization [20] indexing tech-

niques. Despite this progress, identifying the same place

across major changes in the scene appearance due to illumi-

nation (day/night), change of seasons, aging, or structural

modifications over time [12, 30], as shown in figure 1, re-

mains a major challenge. Solving this problem would have,

however, significant practical implications. Imagine, for ex-

ample, automatically searching public archives to find all

imagery depicting the same place to analyze changes over

time for applications in architecture, archeology and urban

planning; or visualize the same place in different illumina-

tions, seasons or backward in time.

In this paper, we demonstrate that matching across large

changes in scene appearance is easier when both the query

image and the database image depict the scene from ap-

proximately the same viewpoint. We implement this idea

by synthesizing virtual views on a densely sampled grid on

the map. This poses the following three major challenges.
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First, how can we efficiently synthesize virtual viewpoints

for an entire city? Second, how do we deal with the in-

creased database size augmented by the additional synthe-

sized views? Finally, how do we represent the synthetic

views in a way that is robust to the large changes in scene

appearance?

To address these issues, we, first, develop a view syn-

thesis method that can render virtual views directly from

Google street-view panoramas and their associated approx-

imate depth maps, not requiring to reconstruct an accurate

3D model of the scene. While the resulting images are of-

ten noisy and contain artifacts, we show that this represen-

tation is sufficient for the large-scale place recognition task.

The key advantage of this approach is that the street-view

data is available world-wide opening-up the possibility for a

truly planet-scale [23] place recognition. Secondly, to cope

with the large amount of synthesized data – as much as nine

times more images than in the original street-view – we use

the compact VLAD encoding [2, 21] of local image descrip-

tors, which is amenable to efficient compression, storage

and indexing. Finally, we represent images using densely

sampled local gradient based descriptors (SIFT [29] in our

case) across multiple scales. We found that this represen-

tation is more robust to large changes in appearance due to

illumination, aging, etc. as it does not rely on repeatable

detection of local invariant features, such as the Laplacian

of Gaussian [29]. While local invariant features have been

successfully used for almost two decades to concisely rep-

resent images for matching across viewpoint and scale [41]

they are often non-repeatable across non-modeled changes

in appearance due to, e.g. strong perspective effects or ma-

jor changes in the scene illumination [4, 9]. Not relying on

the local invariant keypoint detection comes at a price of

reduced invariance to geometric transformation. However,

we have found this is in fact an advantage, rather than a

problem, as the resulting representation is more distinctive

and thus copes better with the increased rate of false posi-

tive images due to the much larger database augmented with

synthetic views.

2. Related work

Place recognition with local-invariant features. The

large-scale place recognition is often formulated as a vari-

ation of image retrieval [22, 33] where the query photo-

graph is localized by matching it to a large database of

geo-tagged images such as Google street-view [6, 8, 10, 14,

24, 35, 36, 40, 44]. The 3D structure of the environment

can be also reconstructed beforehand and the query is then

matched directly to the reconstructed point-cloud [28, 34]

rather than individual images. The underlying appearance

representation for these methods is based on local invariant

features [41], either aggregated into an image-level index-

able representation [8, 10, 14, 24, 40, 44], or associated to

individual reconstructed 3D points [28, 34]. These methods

have shown excellent performance for large-scale match-

ing across moderate changes of scale and viewpoint that are

modeled by the local invariant feature detectors. However,

matching across non-modeled appearance variations such

as major changes in illumination, aging, or season are still

a challenge.

We investigate compact representations based on de-

scriptors densely sampled across the image rather than

based on local-invariant features. Densely sampled de-

scriptors have been long used for category-level recog-

nition [5, 11, 26, 32] including category-level localiza-

tion [14], but due to their limited invariance to geomet-

ric transformations have been introduced to instance-level

recognition only recently [45]. While we build on this work,

we show that combining dense representations with virtual

view synthesis can be used for large-scale place recognition

across significant changes of scene appearance.

Virtual views for instance-level matching. Related to our

work are also methods that generate some form of virtual

data for instance-level matching, but typically they focus

on extending the range of recognizable viewpoints [17, 37,

43] or matching across domains [4, 38] and do not con-

sider compact representations for large-scale applications.

Irschara et al. [17] generate bag-of-visual-word descriptors

extracted from existing views for virtual locations on a map

to better model scene visibility. Shan et al. [37] use 3D

structure to synthesize virtual views to match across ex-

treme viewpoint changes for alignment of aerial to ground-

level imagery. Wu et al. [43] locally rectify images based

on the underlying 3D structure to extend the viewpoint in-

variance of local invariant features (SIFT). Their method

has been successfully applied for place recognition [8] but

requires either known 3D structure or rectification on the

query side. Recently, rendering virtual views has been also

explored for cross-domain matching to align paintings to

3D models [4] or to match SIFT descriptors between im-

ages and laser-scans [38].

Modelling scene illumination for place recognition. In

place recognition, the related work on modeling outdoor il-

lumination has focused on estimating locations and time-

stamps from observed illumination effects [13, 18]. In

contrast, we focus on recognizing the same scene across

changes of illumination. However, if illumination effects

could be reliably synthesized [25] the resulting imagery

could be used to further expand the image database.

3. Matching local descriptors across large

changes in appearance

In this section we investigate the challenges of using local

invariant features for image matching across major changes



(a) Query image Street-view (d) Query image Synthesized view

(b) Sparse SIFT (DoG) Inlier ratio: 0.05 (53/1149) (e) Sparse SIFT (DoG) Inlier ratio: 0.12 (122/984)

(c) Dense SIFT Inlier ratio: 0.31 (1135/3708) (f) Dense SIFT Inlier ratio: 0.76 (5410/7138)

Figure 2. Matching across illumination and structural changes in the scene. First row: The same query image is matched to a street-

view image depicting the same place from a different viewpoint (a) and to a synthesized virtual view depicting the query place from the

same viewpoint (d). Second row: Matching sparsely sampled SIFT descriptors across a major change in illumination is difficult for the

same (e) as well as for the different (b) viewpoints. Third row: Densely sampled descriptors can be matched across a large change in

illumination (c) and the matching is much easier when the viewpoint is similar (f). In all cases the tentative matches are shown in red and

geometrically verified matches are shown in green. Note how the proposed method (f), based on densely sampled descriptors coupled with

virtual view synthesis, obtains significantly higher inlier ratio (0.76) on this challenging image pair with major illumination and structural

changes in the scene.

in scene appearance due to day/night illumination and struc-

tural changes in the scene. We first illustrate that local in-

variant features based on the difference of Gaussian (DoG)

feature detector are not reliably repeatable in such condi-

tions. Then we show that densely sampled descriptors re-

sult in better matches, but suffer from limited invariance to

geometric transformations (scale and viewpoint). Finally,

we demonstrate that matching can be significantly improved

when we match to a virtual view synthesized from approxi-

mately the same viewpoint. In this section we illustrate the

above points on a matching example shown in figure 2. We

verify these findings quantitatively on the place recognition

task in section 5.

In all examples in figure 2 we build tentative matches

by finding mutually nearest descriptors. The tentative

matches are shown in red. We then geometrically verify the

matches by repeatedly finding several homographies using

RANSAC. The geometrically consistent matches (inliers)

are shown in green. We deem all geometrically verified

matches as correct (though few incorrect matches may re-

main). The quality of matching is measured by the inlier ra-

tio, i.e. the proportion of geometrically consistent matches.

The inlier ratio is between 0 and 1 with a perfect score of 1
when all tentative matches are geometrically consistent.

First, we match the upright RootSIFT descriptors [1]

sampled at DoG keypoints [29] between a query image and

a street-view image depicting the query place (figure 2(a))

from a different viewpoint. The matches are shown in fig-

ure 2(b) and result in an inlier ratio of only 0.05, clearly

demonstrating the difficulty of matching DoG keypoints

across large changes in appearance.

Second, we repeat the same procedure for the synthe-

sized view (figure 2(d)), which captures the query place

from approximately the same viewpoint as the query image.

The result is shown in figure 2(e). The resulting inlier ra-

tio of only 0.12 indicates that matching the DoG keypoints

across large changes in appearance is difficult despite the

fact that the two views have the same viewpoint.

Third, we extract RootSIFT descriptors with a width of

40 pixels (in a 640× 480 image) on a regular densely sam-



pled grid with a stride of 2 pixels. The descriptor matching

was performed in the same manner as for the descriptors

extracted at the sparsely detected keypoints. Matching the

densely sampled descriptors across different viewpoints and

illuminations already shows an improvement compared to

sparse keypoints, with the inlier ratio increasing from 0.05

to 0.31 (figure 2(c)). The fact that the descriptor (SIFT) is

identical for both sampling methods suggests that the main

problem is non-repeatability of the Difference of Gaussian

local invariant features underpinning the sparsely sampled

method, rather than the descriptor itself.

Finally, we apply the densely sampled descriptors to the

image pair with different illuminations but similar view-

points (figure 2(d)). The matches are shown in figure 2(f).

The inlier ratio further increases to 0.76 clearly demonstrat-

ing the benefits of virtual view synthesis for dense descrip-

tor matching.

4. View synthesis from street-level imagery

In this section we describe our view synthesis method that

expands the database of the geo-tagged images with addi-

tional viewpoints sampled on a regular grid. To synthesize

additional views we use the existing panoramic imagery to-

gether with an approximate piece-wise planar depth map as-

sociated with each panorama, as illustrated in figure 4. The

piece-wise planar depth map provides only a very coarse

3D structure of the scene, which often leads to visible arti-

facts in the synthesized imagery. However, in section 5 we

demonstrate that this quality is sufficient to significantly im-

prove place recognition performance. In addition, this data

is essentially available world-wide [15], thus opening up the

possibility of planet-scale view synthesis and place recog-

nition [23]. The view synthesis proceeds in two steps. We

synthesize the candidate virtual camera locations, which is

followed by synthesizing individual views. The two steps

are discussed next.

We generate candidate camera positions on a regular

5m × 5m grid on the map that covers the original street-

view camera positions. We only generate camera positions

that are within 20m distance from the original street-view

trajectory, where the trajectory is obtained by connecting

the neighboring street-view camera positions. We found

that going farther than 20m often produces significant ar-

tifacts in the synthesized views. We also use the available

depth maps to discard camera positions that would lie inside

buildings. The camera positions of the synthesized views

are illustrated on the map in figure 3.

To synthesize the virtual views at the particular virtual

camera position we use the panorama and depth map down-

loaded from Google maps [15]. Each panorama captures

360◦ by 180◦ horizontal and vertical viewing angle, respec-

tively, and has the size 13, 312× 6, 656 pixels, as illustrated

in figure 4(a). The depth map is encoded as a set of 3D plane
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Figure 3. Combining street-view imagery with synthetic views.

The figure shows camera positions for part of the 24/7-Tokyo

dataset. The positions of the original street-view images are shown

in red, the positions of synthesized views (5×5m grid) are shown

in grey, and the positions of query images are shown in blue. The

inset (top right) shows a close-up of one road intersection. The

database of geo-tagged images includes 75, 984 views generated

from the original 6, 332 street-view panoramas and 597, 744 syn-

thesized views generated at 49, 812 virtual camera positions.

parameters (normal and distance for each plane) and an

512×256 image of indices pointing, for each pixel, to one of

the planes, as illustrated in figure 4(c). Using this index we

can look-up the corresponding plane for each pixel, which

allows us to generate the actual depth map for the panorama,

as illustrated in figure 4(b). All views at a particular vir-

tual camera position are synthesized from the panorama and

depth map of the closest street-view image. Virtual views

are synthesized by standard ray tracing with bilinear inter-

polation. In detail, for every pixel in the synthesized vir-

tual view, we cast a ray from the center of the virtual cam-

era, intersect it with the planar 3D structure obtained from

the depth map of the closest street-view panorama, project

the intersection to the street-view panorama, and interpo-

late the output pixel value from the neighboring pixels. For

each virtual camera location we generate 12 perspective im-

ages of 1, 280 × 960 pixels (corresponding to 60 degrees

of horizontal field of view) with a pitch direction 12◦ and

the following 12 yaw directions [0◦, 30◦, ..., 360◦]. This

perspective view sampling is similar to e.g. [8, 40]. Ex-

amples of the synthesized virtual views are shown in fig-

ures 1, 8 and 9. While the synthesized views have missing

information and artifacts (e.g. incorrectly rendered people

or objects), we found this simple rendering is already suf-

ficient to improve place recognition performance. Higher

quality synthesis could be potentially obtained by combin-

ing information from multiple panoramas. Rendering one

virtual view takes about a second, but we expect 1-2 or-



(a) Street-view panorama (b) Associated depth-map (c) Individual scene planes

Figure 4. Input data for view synthesis. (a) The street-view panorama. (b) The associated piece-wise planar depth-map. Brightness

indicates distance. (c) The individual scene planes are shown in different colors.

(a) Query 1. (b) Query 2. (c) Query 3. (d) Database image

Figure 5. Example query images from the newly collected 24/7 Tokyo dataset. Each place in the query set is captured at different times

of day: (a) daytime, (b) sunset, and (c) night. For comparison, the database street-view image at a close-by position is shown in (d). Note

the major changes in appearance (illumination changes in the scene) between the database image (d) and the query images (a,b,c).

ders of magnitude speed-up using a graphics processing unit

(GPU). We generate the same set of perspective views for

original street-view images and combine the real and vir-

tual views into a single place recognition database. Note

that virtual views are only needed for extracting the com-

pact dense VLAD descriptors as described in section 3 and

can be discarded afterwards.

5. Experiments

In this section we describe the newly collected 24/7 Tokyo

dataset, give the place recognition performance measures

and outline the quantitative and qualitative results of our

method compared to several baselines.

24/7 Tokyo dataset. We have collected a new test set of

1, 125 query images captured by Apple-iPhone5s and Sony-

Xperia smartphones. We captured images at 125 distinct lo-

cations. At each location we captured images at 3 different

viewing directions and at 3 different times of day, as illus-

trated in figure 5. The ground truth GPS coordinates at each

location were recorded by manually localizing the position

of the observer on the map at the finest zoom level. We esti-

mate that the error of the ground truth location is below 5m.

The dataset is available at [16]. In the following evaluation,

we use a subset of 315 query images within the area of about

1, 600m× 1, 600m covered by our geo-tagged database.

Evaluation metric. The query place is deemed correctly

recognized if at least one of the top N retrieved database

images is within d = 25 meters from the ground truth po-

sition of the query. This is a common place recognition

metric used e.g. in [8, 35, 40]. The percentage of correctly

recognized queries (Recall) is then plotted for different val-

ues of N .

Implementation details. To compute the Dense VLAD

descriptor, we resize each image to have the maximum di-

mension of 640 pixels. This is beneficial for computational

efficiency and limiting the smallest scale of the extracted

descriptors. We extract SIFT [29] descriptors at 4 scales

corresponding to region widths of 16, 24, 32 and 40 pix-

els. The descriptors are extracted on a regular densely sam-

pled grid with a stride of 2 pixels. When using synthesized

images, we remove descriptors that overlap with image re-

gions that have no image data (shown in black in the syn-

thesized imagery). We use the SIFT implementation avail-

able in Vlfeat [42] followed by the RootSIFT normaliza-

tion [1], i.e. L1 normalization followed by element-wise

square root. The visual vocabulary of 128 visual words

(centroids) is built from 25M descriptors randomly sam-

pled from the database images using k-means clustering.

We have kept the original dimension of the SIFT descriptor,

unlike [22]. Each image is then described by an aggregated

intra-normalized [2] VLAD descriptor followed by a PCA

compression to 4,096 dimensions, whitening and L2 nor-

malization [19]. The similarity between a test query and the

database images is measured by the normalized dot prod-

uct, which could be efficiently performed using [20, 31].

Following [6], we diversify the returned shortlists by per-

forming spatial non-max suppression on the map, where

we associate the score from each virtual view to the clos-

est street-view panorama.
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(a) All queries (b) Day time queries (c) Sunset and night queries

Figure 6. Evaluation on the 24/7-Tokyo dataset. The fraction of correctly recognized queries (Recall, y-axis) vs. the number of top N
retrieved database images (x-axis) for the proposed method (Dense VLAD SYNTH) compared to the baseline methods (Dense VLAD,

Sparse FV). The performance is evaluated for all test query images (a), as well as separately for daytime queries (b), and sunset/night

queries (c). The benefits of the proposed method (Dense VLAD SYNTH) is most prominent for difficult illuminations (c).
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(a) Comparison with baselines. (b) Descriptor dimension (c) View sampling density

Figure 7. Place recognition performance on the 24/7-Tokyo dataset. Each plot shows the fraction of correctly recognized queries

(Recall, y-axis) vs. the number of top N retrieved database images (x-axis).

Baseline methods. We compare results to the following

baselines. First, we evaluate the VLAD descriptor based

on the Difference of Gaussian (DoG) local invariant fea-

tures [29, 42] (Sparse VLAD). Here we use the upright

RootSIFT descriptors sampled at DoG keypoints, other-

wise the descriptor is constructed in the same manner as

our densely sampled VLAD. Second, we compare with the

standard sparse Fisher vector [22] (Sparse FV), which was

shown to perform well for place recognition [40]. The

Fisher vector is constructed using the same upright Root-

SIFT descriptors as the Sparse VLAD baseline. Follow-

ing [22], the extracted SIFT descriptors are reduced to 64
dimensions by PCA. A 256-component Gaussian mixture

model is then trained from 25M descriptors randomly sam-

pled from the database images. As in [22], the resulting

256 × 64 dimensional Fisher vector is reduced to 4, 096
dimensions using PCA, followed by whitening and L2 nor-

malization [19]. Finally, we also compare results to the bag-

of-visual-words baseline. We construct the bag-of-visual-

words descriptor (Sparse BoVW) using the same upright

RootSIFT descriptors as used in the Sparse VLAD base-

line. A vocabulary of 200,000 visual words is built by ap-

proximate k-means clustering [31, 33]. The resulting bag-

of-visual-word vectors are re-weighted using adaptive as-

signment [40].

Benefits of the dense descriptor and synthesized views.

First, in figure 6 we evaluate the benefits of having (i) dense

descriptors (Dense VLAD) and (ii) additional synthesized

views (Dense VLAD SYNTH). We compare performance

with the standard Fisher vector descriptor based on local

invariant features (Sparse FV), which was found to work

well for place recognition [40]. We show results for all

queries (figure 6(a)), but to clearly illustrate the differences

we also separate the query images to daytime (figure 6(b)),

and sunset/night queries (figure 6(c)). While having the



Query image Matched synth. view (ours) Match by baseline (incorrect) Street-view of the query place

Figure 8. Example place recognition results for our method (Dense VLAD SYNTH) compared to baseline using only sparsely

sampled feature points (Sparse FV). (Left) Query image. (2nd column) The best matching synthesized view by our method (correct).

(3rd column) The best matching street-view image by the baseline (Sparse Fisher vectors without synthesized views). (4th column)

The original street-view image at the closest position to the query. Note that our method can match difficult queries with challenging

illumination conditions.

dense descriptor (Dense VLAD) already improves perfor-

mance compared to the baseline (Sparse FV), it is the com-

bination of the dense descriptor with synthetic virtual views

(Dense VLAD SYNTH) which brings significant improve-

ments for queries with difficult illuminations (figure 6(c)),

clearly illustrating the importance of both components of

our approach.

Comparison to sparse baselines. In figure 7(a), we show a

comparison of our method (Dense VLAD SYNTH) to sev-

eral baselines that use sparsely sampled local invariant fea-

tures. For VLAD computed from (sparse) DoG keypoints,

adding synthetic virtual views (Sparse VLAD SYNTH)

helps (compared to Sparse VLAD). In contrast, adding syn-

thetic virtual views to Fisher vector matching (Sparse FV

SYNTH) does not improve over the standard FV without

virtual views (Sparse FV). Overall, our method significantly

improves over all sparse baselines.

Analysis of descriptor dimensionality. In figure 7(b) we

investigate how the place recognition performance changes

with reducing the dimensionality of the Dense VLAD de-

scriptor from 4, 096 to 2, 048, 1, 024 and 512 dimensions.

We observe a drop in performance specially for the low-

est dimension. This suggests, that having a sufficiently

rich representation is important for matching across large

changes in appearance.

How many virtual views? In figure 7(c) we evaluate the

required sampling of virtual views. First, we subsample the

virtual views spatially from 5 × 5 meter grid (used in our

method so far) to 10 × 10 meter grid. The spatial subsam-

pling to 10× 10 can reduce the number of virtual views by

75% with only a relatively small drop in place recognition

performance. Then we subsample the number of yaw direc-

tions to only 6 per camera position, one every 60◦ (Dense

VLAD SYNTH 60deg) compared to 12 yaw directions, one

every 30◦ used in our method. In this experiment we keep

the spatial sampling to 5 × 5 meters. Although the angular

subsampling reduces the number synthetic views by only

50% it results in a fairly significant drop in performance,

especially at the top 1 position.

Scalability. For the 24/7 Tokyo dataset, our method syn-

thesizes 597, 744 virtual views compared to 75, 984 per-

spective street-view images in the same area. Hence, our

method needs to index about 9 times more images com-

pared to baselines without virtual view synthesis. We be-

lieve scaling-up towards place recognition in an entire city

can be achieved with standard compression techniques such

as Product Quantization (PQ) [20]. For example, the largest

current place recognition benchmark by Chen et al. [8] that



Query image Matched synth. view (ours) Match by baseline (incorrect) Street-view of the query place

Figure 9. Example place recognition results with synthesized views (our method) compared to using only the original Google street-

view images. (Left) Query image. Note the difficult illumination. (2nd column) The best matching image (correct) by our method (Dense

VLAD descriptor with the database expanded by synthesized views). (3rd column) The best matching image (incorrect) by Dense VLAD

matching but using only the original street-view images. (4th column) The original street-view database image at the closest position to

the query. Our method (2nd column) that uses virtual views with very similar viewpoints to the query can localize queries with difficult

(night) illumination, thus enabling true 24/7 localization. This is not possible using the original street-view images (last column), which

depict the same places but from quite different viewpoints. Please see additional results on the project webpage [16]

Figure 10. Examples of challenging query images that remain

hard to localize.

covers a significant portion of the city of San Francisco con-

tains 1M perspective images. We estimate that starting from

a database of this size, but generating 9 times more virtual

views with our SYNTH method, and compressing the re-

sulting descriptors with PQ, would only require 2.9GB.

Qualitative results. Figures 8 and 9 show examples of

place recognition results. Notice that query images (left

column) include large changes in both viewpoint and illu-

mination compared to the available street-view for the same

places (right column). The synthesized views (2nd column)

at new positions significantly reduce the variation in view-

point and thus enable matching across large illumination

changes, as discussed in section 3.

Limitations. Figure 10 shows examples of queries which

remain very difficult to localize. The typical failure modes

are (i) very dark night time images with limited dynamic

range, (ii) places with vegetation, which is hard to uniquely

describe using the current representation, and (iii) places

where view synthesis fails often due to complex underlying

3D structure not captured well by the approximate depth

maps available with street-view imagery.

6. Conclusion

We have described a place recognition approach combining

synthesis of new virtual views with a densely sampled but

compact image descriptor. The proposed method enables

true 24/7 place recognition across major changes in scene

illumination throughout the day and night. We have ex-

perimentally shown its benefits on a newly collected place

recognition dataset – 24/7 Tokyo – capturing the same loca-

tions in vastly different illuminations. Our work is another

example in the recent trend showing benefits of 3D structure

for visual recognition. As we build on the widely available

Google street-view imagery our work opens-up the possi-

bility of planet-scale 24/7 place recognition.



Acknowledgments. This work was partly supported by JSPS KAKENHI

Grant Number 24700161, EU FP7-SPACE-2012-312377 PRoViDE, the

ERC grant LEAP (no. 336845), ANR project Semapolis (ANR-13-CORD-

0003) and the Intelligence Advanced Research Projects Activity (IARPA)

via Air Force Research Laboratory, contract FA8650-12-C-7212. The U.S.

Government is authorized to reproduce and distribute reprints for Govern-

mental purposes notwithstanding any copyright annotation thereon. Dis-

claimer: The views and conclusions contained herein are those of the au-

thors and should not be interpreted as necessarily representing the official

policies or endorsements, either expressed or implied, of IARPA, AFRL,

or the U.S. Government.

References
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C. Schmid. Aggregating local image descriptors into com-

pact codes. PAMI, 34(9):1704–1716, 2012.

[23] B. Klingner, D. Martin, and J. Roseborough. Street view

motion-from-structure-from-motion. In ICCV, 2013.

[24] J. Knopp, J. Sivic, and T. Pajdla. Avoding Confusing Fea-

tures in Place Recognition. In ECCV, 2010.

[25] P.-Y. Laffont, Z. Ren, X. Tao, C. Qian, and J. Hays. Transient

attributes for high-level understanding and editing of outdoor

scenes. ACM Trans. Graphics, 33(4), 2014.

[26] S. Lazebnik, C. Schmid, and J. Ponce. Beyond bags of

features: Spatial pyramid matching for recognizing natural

scene categories. In CVPR, pages 2169–2178, 2006.

[27] F. Li and J. Kosecka. Probabilistic location recognition us-

ing reduced feature set. In Proc. Int. Conf. on Robotics and

Automation, 2006.

[28] Y. Li, N. Snavely, D. Huttenlocher, and P. Fua. Worldwide

Pose Estimation Using 3D Point Clouds. In ECCV, 2012.

[29] D. Lowe. Distinctive image features from scale-invariant

keypoints. IJCV, 60(2):91–110, 2004.

[30] K. Matzen and N. Snavely. Scene chronology. In ECCV,

2014.

[31] M. Muja and D. Lowe. Fast approximate nearest neighbors

with automatic algorithm configuration. In VISAPP, 2009.

[32] A. Oliva and A. Torralba. Modeling the shape of the scene:

a holistic representation of the spatial envelope. IJCV,

42(3):145–175, 2001.

[33] J. Philbin, O. Chum, M. Isard, J. Sivic, and A. Zisser-

man. Object retrieval with large vocabularies and fast spatial

matching. In CVPR, 2007.

[34] T. Sattler, B. Leibe, and L. Kobbelt. Improving Image-Based

Localization by Active Correspondence Search. In ECCV,

2012.

[35] T. Sattler, T. Weyand, B. Leibe, and L. Kobbelt. Image Re-

trieval for Image-Based Localization Revisited. In BMVC,

2012.

[36] G. Schindler, M. Brown, and R. Szeliski. City-Scale Loca-

tion Recognition. In CVPR, 2007.

[37] Q. Shan, C. Wu, B. Curless, Y. Furukawa, C. Hernandez, and

S. M. Seitz. Accurate geo-registration by ground-to-aerial

image matching. In 3DV, 2014.

[38] D. Sibbing, T. Sattler, B. Leibe, and L. Kobbelt. SIFT-

Realistic Rendering. In 3DV, 2013.

[39] J. Sivic and A. Zisserman. Video Google: A text retrieval

approach to object matching in videos. In ICCV, 2003.

[40] A. Torii, J. Sivic, T. Pajdla, and M. Okutomi. Visual Place

Recognition with Repetitive Structures. In CVPR, 2013.

[41] T. Tuytelaars and K. Mikolajczyk. Local invariant feature

detectors: a survey. Foundations and Trends in Computer

Graphics and Vision, 3(3):177–280, 2008.



[42] A. Vedaldi and B. Fulkerson. VLFeat: An open and portable

library of computer vision algorithms. http://www.

vlfeat.org/, 2008.

[43] C. Wu, B. Clipp, X. Li, J.-M. Frahm, and M. Pollefeys. 3D

model matching with viewpoint-invariant patches (VIP). In

CVPR, pages 1–8, June 2008.

[44] A. R. Zamir and M. Shah. Accurate Image Localization

Based on Google Maps Street View. In ECCV, 2010.

[45] W. Zhao, H. Jégou, and G. Gravier. Oriented pooling for

dense and non-dense rotation-invariant features. In BMVC,

2013.


