A SUPPLEMENTARY LEGEND AT FOUR-WAY STOP INTERSECTIONS

JULY, 1957 NO. 24

A SUPPLEMENTARY LEGEND AT

FOUR-:AY STOP INTERSECTIONS

TO:
K. B. Woods, Director Joint Highway Research Project

FROM: H. L. Michael, Assistant Director

July 24, 1957
File 8-4-17
Project C-36017Q

Attached is a final report entitled "A Supplementary Legend at Four -Way Stop Intersections' by Billy Kay Cooper, Graduate Assistant on our staff. This report has also been used by Mr. Cooper as his thesis in partial fulfillment of the requirements for the degree of Master of Science in Civil Engineering. The study was approved by the Board on January 24, 1957, and was performed under the direction of Doctor D. S. Berry.

Mr. Cooper attended Purdue University under a fellowship from the Automotive Safety Foundation. As a result this research was conducted at very little cost to the Project.

The purpose of this study was to determine whether the efficiency of fouroway stop intersections could be improved with the addition of the supplementary legend "4oilay" on the standard stop sign.

The report is presented for the record.
Respectfully submitted,

Harold L. Michael, Assistant Director
HLM: bjk

Attachment

```
cc: D. S. Berry
    J. F. McLaughlin
    A. K. Branham
    H. L. Michael
    J. R. Cooper
    R. D. Miles
    W. L. Dolch
    R. E. Mills
    W. H. Goetz
    B. H. Petty
    J. T. Hallett
    C. E. Vogelgesang
    F.F. Havey J. L. Wraling
    G. A. Hawkins J. E. Wilson
    G. A. Leonarde
    K. B. Woods
    E. J. Yoder
```


FINAL REPORT

A SUPPLEMENTARY LEGEID AT

FOUR-WAI STOP INTEFSECTIONS

```
bg
    Billy Kay Coopsi
```



```
    Projecis C-36-274
    Flle: }8-4=1
```

 Puside Univaratis
 Iatayette, Indiana
 July 24. 2957
 Digitized by the Internet Archive in 2011 with funding from
LYRASIS members and Sloan Foundation; Indiana Department of Transportation

ACKNOKLEDGAENT

The author wishes to acknowledge tho assistance of Dr. Donald S. Bary, Professor of Transportation Engineering, undor whose supervioion this thesis mes prepared He $21 s 0$ Mathes to thenk Profezsor C. R. Hf.cks and Janes Ho Stapleton, both of the Strtistics Deparbanat, who devoted much tino to the statistical dssign and analyste of the data and reviem of tho maruscript. The holp and ancouregement of the stati of the Joint Highway aswarch Project \{as bson invaluable 1 n the proparation of this thems.

TABLE OF CONTENTS

Page
LIST OF TABLES ! 1 V
IIST OF IIIUSTRATIONS. V
ABSTRACT vi
INTRODUCTIOR 1
Dexinitions 2
PURPOSE AND SCOPE 4
Observarce of Stop Skgs 4
Accoptance or Rejection of Rine Lsig 7
PROIEDURE 8
Obs:rvance of Stop Stgne 8
Accejpanco or Rejection of The Lag 8
STATISTICAT MOAISIS 15
Observance of Ston Signs 15
Accoptance us Refection of Thne Leg 21
Gonerel 21
Dobermination of Critelcad Lag 22
Analysis of biniance 22
Confinence Incerval 28
COMPARISOR :VITH OTHER STUDIWS 33
CONCLUSIONS AND RECOM THLATIONS 34
Deccuesion 35
AIBITOGRJPHY 37
Goneral Roforenceo 37
APFENDIX 39

LTET OF CAETES

Page

1. Driwen Obesivabee of stop Signs 26
2. Sumary of Csiticel Zags (Intersection A) 25
3. Sumazy of (xtitcol jugs (Intcrection B) 25
4. Surnasy of tho Aratygie of Vartacce 29
 39
 40
5. Field Datam-ntersection Ambetcre Stuzymiocal Vohicieg. 41
 42
 43

 45
 86
 4.7
 4.8
 69
6. Ficld Datamatnersection E-Betero Studym-Foresgn voinclos. 50
 51
 52
 53
7. Ficla Data-Intergection EmAltcr Study-mpreagn Vohicles. 56

IIST OF ILLUSTRATIONS

T5Gt of Thgires Page

1. Plan Vzow of Intersection A 12
2. Plan Viow of Intergection B 14
3. Froquerey Polygens of Driver Observance of Shop Signs for Local Hotorists at Intursection A 17
4. Frequency Polygors of Dresver Observance of Stop Sigra for Foreign liotorists at Intozroction A 18
5. Frequency Polygona of Danvor Dhservance of Stop signs foz Loerl Hotorisis at Intarsaction B 19
6. Frequency Polggons of Driver Cbsemwance of Stop Slage for Forelgn Motorists at Intoreection B 20
7. Critical Jag Disuribution at Interuction A 23
So. Critical Lag DREMibrion at Intersoction B 24
8. Distribution ox Man Critical Iag 31
15St or Plates
I. Standard Stop Sign for Eexore Study 5
II. Stop Sigh with Supplenoniany I. Gernd 6
III. Intorsection A 11
IV. Intersentjon B 13

Cooper, Billy Kag, H.S.C.E。, Purdue Univarilty, Augagt 2957. A Supplomentary Iogerd at Four-War Stop Intorgections. Major Professor: Doctor Donald S. Berry.

The purpose of this study was to dotermine whother the efflefency of fouroway atop intersection could be improved with the addition of the supplomentary logend "4-Fay" on the standard SIOP zign.

Standasd stop signe wore used for the "Bafore" study. The supple montary legend was paintod in the uppos panel of the oxisting signs for the "After" study.

Two observers were placed at the intersection so that each could obsorve two approaches to the intorsection. A stop match mes utjlized for measuping tho accepted ur rojected tine lag in the traffic stream by both local and foroign notorists. The observass also recorded driver observance of btop signa.

Sone of the more lmportant findings are as folloms: The extical lag of intorsections, which are almilar to the intarsectione included in this study, can usually bo peduced by adding the supplementary legend, thus increasing the possible cspacity: the addition of the supplamentary legend nill genezally decresse the observance of stop signs; an iribersection has appraxinateif the same critical lag for different poriode of the days different days of the rook and different mecks; local motorists accept a shorter time lag than foreign motorists; and each intersection has a different cxitical lag which depends upon many variables.

INTRRODUCTION

One of the more important olementg limiting the capecity of any facility, ospecially that of city streets, is the intersection at grade (1) \because. In the application of any type of traffic control at these intersections, care should be takon to ovaluate properly the effects of the proposed traffic control deviee on the movement of vehicles and podestrians. However, the proper application of traffic control devices, despite the existence of som accepted standards, is still subject to much uncertainty and even to open disagroement.

The stoposign is considered a usefui, important tool of the traffic onginear in reducing accidents and promoting orderly traffic flom. Littlo effort, homever, has been expended to study the ranifications involved in the various uses of the stop-sign. Relative inexpersiveness of $¥ t o p-B i g n$ Installations has contributed materialy to this larness of effort.

One use is the foummay stop, when eraffic on all four approaches to an intorsection is required to halt. This form of traffic control is boing used, more and more, by traffic engineors to regulate trafic. The standard stop sign, now in use at fourmpay stop interasctions, does not Indicate to the motorest that the valiclea on the other etreet also have to stop before entoring the intersection. There are indications that this failure of the driver to know what is happoning at the intersection may casse confusion and adied delay which will result in a lower cspacity.

[^0]Observations of the bohavior of motorists and their response to fourway stop control havo shom same uncertainty as to their right-ofoway privileges and even lack of recognition of the four-way stop control being in offoct. This lack of recognition has created a groming demand far acqualnting drivers with the control they are entoring by adding the aupplementiary message "4-Way" on each approach to the interaection (2). The addition of the supplementary logend should holp to prove or disprove tho argument that if a motoriat is stopped on an approach at a fourmay stop and a vehicle is in the crose flom but has not yot come to a stop then the firse-vehicles mill proceed through the intersection if he knows he is protected on all approaches by stop signs. If the motorist is unaware of the fourmay stop then he may be dalayod until the othor vom hicle comes to a full stop. Careful analysis of both stop sign observance and tims lag accoptance at a fournmay stop is needed to holp solvo thie problen.

Dofinitions

"Beforo" tudy-me sindy made of the intersection before the supple montary logand mas added.
"Aftes" atudy-A study mads, under the same conditions as the "Bafore" study, aftor the supplenentary legend had beer addod.

Stop ilns-An imaginasy line on the approach of an intersection at which a driver stops in observance to his stop sign.

Opposing vehiclo-A vchicle which io entering the intaraection from another approach and mey hinder the desired movement of the motorist.

Time Lag - The intarval in seconds batwoes the arrival of a vehicle at Its stop Lins and the later arrival of an opposing vehicle at its stop Line.

Accepted lag-The time lag or time advantage for the motorist who entere the intersection wichout waiting for the opposing vehicle to stop.

Rejected lag-The time lag or time adventage for the motorist who waits for an opposing vehicle to stop before he starts to onter the intersection.

Foreign vehicles-A vehicle bearing the license plate of any state other than Indiana.

Local vohicles-A vehicle bgaring the license plate of the State of Indiana.

PURPOSE AND SCOPE

The purpose of this study is to detemine driver reaction and delay at fourmay stop intersections before and after a supplementary logend "4-Way" is added to the existing etandard STOP signs.

Observance of Stop SLans

The purpose of the observance study was to detarmine driver observance and reaction by both local and foreign motorists at four-way stop intersections bofor* and aftor the supplementary logend "4-Way" mas installed.

The oxisting standard stop signs mere used for the "Borore" study (see Plate I). The aupplenentary Iegend "Lotiay" mes puintod dirocty above the word STOP on the existing signs for the "After" study (8ee Plate II).

Tho field study was made at two oxisting fourway atop intersections In Lafayotte, Indians. The firse wes at tho intersection of Union Street (S.R.25) and North Sixth Street and will hereafter be referped to as Intersection A (seo Plato III and Figure 1). The socond was tho intergection of North Fourtoesith Stratt (S.R. 25) and Greonbueh Stroot and will be Feforred so as Intergection B (sen Plate IV and Figure 2).

Intsractions of city streoto with state highvay city routes were selected bscause part of this study is to observe the reaction of foreign or out -0 fostata motorists.

Plato I - Eriating Standard Scop Sign - Beioro Study

Pleto II - Stop Stg with Suppicnentary Logend - Aftor Study

The resulte of the observance atudy will indicate how the observance of the two types of motoriate vary and will also indicate if the observance of signs decreases with the addition of the supplementary logend.

Accopesince or Rejection of Tins Iag

The puspose of thie study was to determine whother whe motorist will accept a shorter time lag in the opposing traffic stream after the supplementary logend "4-ïay" is added. The study included both local and foreign vehicles.

By accepting a shorier tine lag the drivers will be showing that they ase lose confused as to the behavior of the opposing traffic, be having less delay, and will therefore bo increasing the practical capacity of the intersection. If the observance of the stop signs is good initially and it does not decrease significantly, then the additional messages on the atop aigns do not have any adverge effects.

Intersections A and B ware also used for this skudy.

PROCEDURE

Obssrvanco of Stop Sims

The observance of atop signs at Intorsections A and B in Lafayetto, Indiana, was made in a "bofore" and "after" study. Two obsorvara mero stationed so that each could observe two approachos to the intersection and record tho actions of the drivers as they approached the stop sign (3). Propared field shcets wore used to record drivers tho made voluntary full stop, mere stopped by traffic, entared slow (0 to 3 mph) or entered fast
 The totals of each approach for an intersection wore combined to give the observance of stop signs for the intessection as a whole.

The only equipment noeded wes a clipboard and prepared field shoots. Speeds of vehiclos which did not stop were detarnined by visual inspection.

Acceptance os Roioction of Timo Las

Each motorist approaching a four-may stop intersection is faced with a tine lag, which is the time-incerval botmeen his arrival at his stop Ins and the later arrival of a vehicle on the intersecting street. If the motorist enters the intsrsection before the opposing vehicle stops, ho is said to accept his lag. Howevar, if he waits until the opposing vehiele has stopped bofore ontering the intersection, he is said to reject his lag (4).

It is reasonable to expect that more drivers facing long lage will accopt them than drivera facing ahort laga. This suggasta the idea of arranging the lags according to their size and noting the rolative numbers of each sizo accepted and rejected. This idea mas ueed in preparing field sheats for the study. Lag cell lengths were broken down into 0.5 second intervals.

Two observers were stationed so that each could observe two approaches to the intersection. The time lag was determined by timing, with a stop watch, the interval betmeen the time one vehicle reaches its "stop" line, and the time the vehicie from the intersecting street reachos its respective "stop" line (5). The motorist which reached the stop line first was recorded as having accepted or rejected the time lag and also as being local or foreign.

Both the "before" and "after" studies were made during two different periods of the day, two different days of the wook and two different weoks. This procedure was followed for both intersactions. This method permits a comparison of time lags for each period of the day, day of the weak, and each week to deternine whether there is a significant difference due to time periods alone.

The "before" atudies mere mede in karch and the "after" studies were made in April, two weeks after the supplementary legand hed bean added.

Intersection A has a peak hour volume of approximately 800 vehicles with traffic on the two streete about oveniy divided. There are parking restrictions adjacent to the intersection and pedestrian traffic is 1ight. The physical cheracteristics of the intersection are shown in

Figure 1 and Plate III with tho streets in the picture shown in the same diroction as in the scaled draming.

Intaraection B has a peak hour volume of approximately 750 vehicles With traffic on the two streets about evanly divided. There are a lasge number of school children crossing at school closing tino. The physical oharacteriotics of the intorsection are shown in Figure 2 and Plate IV.

Plato III - Intersection A

FIGURE I
PLAN VIEW
INTERSECTION A

Plato IV - Intergection B

FIGURE 2
PLAN VIEW
INTERSECTION B

STATISTICAL ANALYSIS

Obsoxvance of Stop Siges

The number of observations for the before study at intersection A on local motorists was 1,792 wh11 883 observations mere made on foreign motoristi. The after study containod $1 ; 800$ and 800 respectively. The number of obsorvations for the before study at intersection B on local motorists was 1,650 while 812 observations were made on foreign motorists. The after study contained 1,600 and 800 respectively.

It mas assumed for this study that vehicles which had stopped, or entered slow, of mere traveling betmoen 0 and 3 miles per hour, mere observing the atop aigns adequatoly. Therefore, all vehicles which appeared to be entering faster than 3 miles per hour pere classified as "entering fast." This classification was used in making the field atudy.

Table 1 shoms the number and percent of local and foreign fotorists observed at each intersection for both the before and after study. The motorists observed in the study were classified as making a voluntary Iull etop, being stopped by traffic, "entering slow," or "entering fasto"

Frequency polggone shoming the percentages of vehicles observed mere plotted for each observance grouping for both intersections, for both types of vehicles, and for both periods of study (see Figures 3, 4, 5, and 6). The irequency polygons indicate that the driver observance was different at each intersection for both the before and after studies and also for local and foreign motorists.

TABLE 1

DRIVER OBSERVANCE OF STOP SIGNS

Intorsaction A

"Berore"

	Voluntary Full Stop	Scopped by Trafific	Entered SI. 1 In	Entered Fast
Local	475	577	665	93
\%	25.5	32.2	37.1	5.2
Foreign	328	289	232	34
\%	37.1	32.7	26.3	3.9
"Arter"				
Local	333	543	807	117
\%	18.5	30.2	44.8	6.5
Foreign	243	210	307	40
\%	30.3	26.3	38.4	5.0

Intorgection B
"Before"

Local	430	593	528	99
\%	26.0	35.9	32.1	6.0
Foroign	295	230	253	34
\%	36.3	28.3	38.2	4.2
		nastor"		
Local	257	553	678	112
\%	16.1	34.6	42.3	7.0
Foraign	258	203	299	40
\%	32.2	25.4	37.4	5.0

VOLUNTARY
FULL STOP
STOPPED BY
TRAFFIC
ENTERED SLOW
ENTERED FAST
VOLUNTARY
FULL STOP
STOPPED BY
TRAFFIC
ENTEREO SLOW
ENTERED FAST

DRIVER OBSERVANCE OF STOP SIGN LOCAL VEHICLES INTERSECTION B

DRIVER OBSERVANCE OF STOP SIGNS FOREIGN VEHICLES
INTERSECTION B

The percentage of local motoriats which violated the stop signe (classiriod as "ontering fast") at Intorsection A incraased from 5.2 percent to 6.5 percent after the supplementary legand was addod. Similarly, the percantage of forelgn motorists which violated the atop algne increased from 3.9 percent to 5.0 percent. At Intersection B_{3} the percentage of local motorists which violated the stop signs increased from 6.0 percent to 7.0 percent. The percentage of foreign motorists that Violated the 8 top signs increased from 4.2 percent to 5.0 percent.

Both intorsections showed these slight increases in violations of the atop signs with the addition of the supplenentary legend "4-ifay." Homovor fince each intersection is controlled by a four-may stop and the motoristo have their vehicles under control, this slight increase in "rolling stops" should not have any adverse offecte on the trapilc operation of the intersection.

Accoptance or Rojection of Tha Lag

Genspal

A motoriet who approaches a four-may stop intersection may proceod immediately into the intersection after his stop, or he may wift ios an opposing vehicle to sop or go through. Which choice he will make depends principally on how fas amey (in time, rather than in distance) the nearest opposing rehiclo is from the intersection. If the nearest opposing vohicle is only two seconds amay, he may decide to mait. In such a case, ho has faced a time lag of two seconds and has rejected it. This case nould bo tabulated as a 2asecond "rejected lag."

If the interval from the arrival of a motoriat until the arrival of the next opposing vehicle were ten seconds, the motoriat mould in all probability accept the lowsecond lag, thit is, he would enter the intersection before the opposing vehicle stopped.

It is desirable to have a single quantity which can be used to aumarize the entiry pattern of acceptance and rejection of laga at an intersoction. The critical lag serves this purpose, and is defined in this study as follows:

The critical lag L is the size time lag which has the proparty that the number of accopted lags shorter than L is the seme as the number of rejected lage longer than L.

Dotormination of Critical Lag

The critical lag is deterained by plotting two curoulative distribution curves on the same graph: the number of accepted time lags shorter thes t and the number of rejected lags longer than t. The value of t for which these two curvea intersect is the critical lag L.

Figure 7 and 8 present typical lag curves for intersection A and B. These eurves wore plotted uadng data from tables in the Appendices. Ing curves were plotted for each moming and afternoon time period and each Tuesday and Thursday of two different weeks for both local and foreign motorista. Tables 2 and 3 present a sumnary of critical lags by intersection, time, vehicle type, day of the week, and week for the before and after studies.

Analysis of Variance

A sumary of the analysis of variance carried out on the critical
lag valuss is shown in Table 4.

DISTRIBUTION OF ACCEPTED AND REJECTED LAGS INTERSECTION A

LOCAL VEHICLES

FOREIGN VEHICLES

DISTRIBUTION OF ACCEPTED AND REJECTED LAGS INTERSECTION B

LOCAL VEHICLES

FOREIGN VEHICLES

BEFORE

TABLE 2

SUMRARY OF CRITICAL LAGS IN SECONDS

Intersection A
"Before"
Flust iveok

Time	Vehicle Type	Tuezday	Thursday
PM	Local	3.05	3.00
	Forelign	3.50	3.40
A ${ }^{\text {a }}$	Local	3.15	3.04
	Forelg	3.57	3.45
Second Weak			
BM	Local	3.07	2.95
	Foreign	3.42	3.44
All	Local	3.00	2.90
	Foreign	3.52	3.58
"After"			
First Wook			
Psin	Local	2.92	2.75
	Forezen	3.02	3.13
AMB	Local	2.85	2.78
	Foreiga	3.04	3.10
Second :Vek			
PH	Local	3.04	2.76
	Forelen	3.05	3.17
AM	Local	3.01	2.84
	Forelen	3.15	3.06

TABLE 3

SUMRARY OF CRITICAL LAGS IN SECONDS

Intarsection B

"Boiora"

FLrst Geok

Time	Vohtele Typo	Tuesday	Thursday
PM	Local	3.20	3.15
	Forelign	3.90	3.90
AM	Iocal	3.22	3.20
	Foraiga	3.90	3.80
	Sec		
PM	Local	3.13	3.05
	Forelga	3.75	3.80
AM	Local	3.25	3.20
	Forelgn	3.95	3.85
		.	
	Fir		
\%	Lecal	2.92	3.00
	Foralgn	3.20	3.15
AM	Looal	2.85	2.80
	Foroiga	3.23	3.12
	Sec		\cdots
PN	Local	2.95	2.90
	Forolga	2.98	3.02
AM	Local	2.75	2.82
	Foreagn	2.85	3.15

Due to the fact that the intorgections are considered as fired locations, the results of the analysis can only bs used to reach conclusions about those particular intergections and no othere. Since this is the case, each source of varlation must be compared against the orror variance to test for significance.

The resulte of the analysis of variance indicate that there is a significant difference between critical lags at different intersections, vehicle types, and sign types. However, there is no significant difference due to time of day. The results also indicate that the interaction oifect betwaen the combinations of interssctions and tine, and time and vehitile is non-significant. Howevar, the interaction of the following factore is significant: intereection and vehicle, intersection and sign, time and sign, and vehicle and sign.

A significant interaction would masn that there is a significant effest of the combination of factors over and above what would be expected of their average affects, that $i s_{\text {, the factors combine to produce an added }}$ affact not due to one of them alone. The significent interaction betroen intersections and vehicle types shows thet the difference between vehicle types at Intersection B 18 greater than the difference at Intorsection A. An intoraction betmeen intersections and signs indicates that there is a greater difference in the before and after study at Intersoction B than at Interecction A. The interaction of time and sign was oniy slightly significant. This shows that there was a very small difference in the before and after study for the morning and afternoon time periods. The algnificant intoraceion beemeen vehicle type and aign shows that the
difforence botween the before and aitor study on foreign vehiclos mas greater than the difference for local vohicles.

The facts arising from the analysis of variance of critical lags indicates that there vas a significant decrease in the critical lag for both intorsecticins. However, Intorsection A has an ovarall shortor critLeal lag than Intorsaction B. This difference seems rsasonable since the sight distance at Intereection A is greater than at Interection B. There was also a pronounced difference betmeen ceptical lags for local and for forelgn motorists. It is reasonable to asaum that local motosists, who pass through the intersection frequently, would accopt a shorter lag than the unfomilias outwofatate motorlst; thasefore, the addition of the aupplomentary legend would tend to aid the forolgn motorist to an evon greater axtont than the $20 c a l$ rotorist. This fact indicater that the addition of the supplomentary legend at fouromas stop intersections on rupal highways would bo even more desirablo than intersections of city streets bince a greater percentege of the trafilc mould ba foreign motorista.

Confidence Intorval

Figure 9 shome the mean aritical lags for the bofore and after study on both local and foreign vehicles for intorsections A and B. These sample mesn are unblased estinates of the true noans. Howevers it is desirable to establish confidence intervals for estimating the true difference between the before and after means for both local and foreign vehicles at Intarsection A and B_{0} Choosing a 95 percent confidence in terval, the results aro 28 follows:

TABIE 4

ANALYSIS OF VARIANCE

TABLE 4 (Continued)

Note: Since the $M S$ column is equal to the SS colunn it has been cmitted.

FIGURE 9

DISTRIBUTION OF MEAN CRITICAL LAG

local vehicles			FOREIGN VEH.	average
A	BEFORE AFTER	$\begin{aligned} & \text { प17llllts } \\ & \text { 2lllllot } \end{aligned}$		$\begin{aligned} & 171717110 \\ & 1717117 \pi \end{aligned}$
B	before after		$\begin{aligned} & 1711171714 \\ & 11711117 \lambda \end{aligned}$	$\begin{aligned} & \angle 17117171 \\ & \angle 177111 \pi \end{aligned}$
$\stackrel{0}{\gtrless}$	eefore after			
		$\begin{aligned} & 1 \\ & { }^{2}{ }^{2}{ }^{2}{ }^{3}{ }^{3} \end{aligned}$	g in secondos	1

```
            Intorsoction A - Local Vohicloc
(3.020-2.869) = 0.088 Intorval (0.063y 0.239)
    Intergection A - Foroign Vohicles
(3.485-3.090) = 0.088 Intarval (0.307, 0.483)
    Intersoction B - Local Vohiclos
(3.175-2.874) =0.088 Intorval (0.213, 0.399)
    Intersoction B - Foreign Vehicles
(3.856-3.088) =0.088 Interval (0.680,0.856)
    Te have }95\mathrm{ percont confidence that the true difference botwsen means
will be in intervals as shown above.
```


COMPARISON WITH OTHER STUDIES

In the stato of Illinois. a study was made of resuite obtained by adding the supplementary legend "4-Whay" in the upper panel above the word STOP on each approach to ton, four-way stop intersoctions. After irequent observations by traffic onginears and stato police, it was found the resulte wora so favorable that the new sign was adopted as standard for fourmay stop installations throughout the state. A brief survey of puive lic opinion was also takeri and to the question, "Is the '4-Way' message on the atop algn of value in elininating confusion?" 92 percent of the total motorists anewered YES, and the other 9 percent answered NO (6).

A study was diso made at Hartford, Connecticut, by Mr. J. Ro Doughty, on the merit of placing a amall plaque dirsctly below the existing atop sigh with the logend "4-Way" on the plaque. The results of this study indicated that the supplamentary legend increased driver observance and decreased the critical lag. This study combined both vehicie typers time of day, days of weok and also weeks to determine the critical lag (7).

CONCLUSIONS AND RECOMAENDATLONS

It is important to renember that this study has been based on obaervations made at two particular intersections in Lafagette, Indiana; therefore, the following conslusion apply only to the lafayette area.

1. The addition of the supplanentary legend "LuFay" mill generally increase slightiy the percentage of drivers excooding throe miles per hous when passing stop signs. Hosever, this increase probably would not cause any adverse effocts.
2. The critical lag of an intersection can usually be decreased With the addition of the supplementary legend, thus decreasing delay.
3. An intersection has approximately the same critical lag for di different periode of the day, difforent days of the week and different พөeks.
4. Local motoriges accept a shorter time lag than drivers of vehicles regiestered outside the state.
5. Each intersection has a different critical lag which depends on many varlables.

These observations mere made on traffic volumes considerably belon the capacity of the intersections. Since the critical lag is roduced U.2'7 to 0.53 seconde per vehiclo at Intersections A and B respectively, it is reasonable to assume that the capacity of the intersections under highor volume conditions mould be inereased. It is recommended that studies bo made of the effect on capzcity under higher volume conditions.

Another factor of vast importance in this study is drivor obsorvanco of stop eigns. Hiany contend that a motorist who does not come to a complete stop has violated the control. However, a motoriat that makes a rolling stop (0 to 8 miles por hour) hes his vehicles under control and would not aeem to create additional hazards. Perhaps the full stop rule at four-may atop interbections can be revised by a change of sign type. It is recommended that further study be directed toward a different type
 With "4mag" on the upper panel, "STOP" in the center and "Rolling" on tho lomer panel.

Discusaion

The critical lag is a single value which indicates how large a time adrantage the typical driver needs to decide to enter an intersection. It represento the behavior of the eypcial motoriat, because it is defined in such a way that the drivers who are more cautioue than the average are axactly counterbalanced by the drivers who are bolder than the average; therefore, the critical lag is an indication of the average dolay incurred by the typical motorisi at a founmay atop intersection. Since the critical lag at both intersactions was decreased by 0.27 to 0.53 seconds, the average doley was decreasod by the me amount. However, this decrease in delay oniy applies to motorists who were affected by opposing vehicles which represented approximately 50 parcent of the total volume. The remaining volume was not affected by opposing vehicles. There is an indication that theso motorlate bad loss delay because the observance study showed that there was a silght decrease in the percent of motoriate who
make a full stop.
Since this investigation of the improvenent of fourmay atop intersoctions was mado over a period of only three months, it was impossible to compare the bofore and after accident experience. This information would help balance the maw argumenta that may arise over adding the legend.

BI ELIQGRAPMY

BIBLIOGRAPHI

1. Highmay Capacity Manual, Comittoe on Highray Cepacity, Highway Research Board, Vashington, D.C.s po 66, 1956.
2. Harrison, H. Ho, "Four-itay Stops," Traffic Engineoring Institute of Traffic Engincers, Vol. 19, po 213, February, 1949.
3. Yanual of Terfic Enginearing Studies, The Accident Prevention Deo partment of the Association of Casualty and Surety Companiess Now York Cityo p. 31, 1953.
4. Raff, LI. S., A Volume Warrant for Urban Stop Sipns. The Eno Foundations for Highway Traffic Control, Saugatuck, Connecticut, p. 27, 1950。
5. MeEschern, Co, "A Study of the Fouralitay Stop Control at Urban Intorsections," A Thesia, Burear of Highway Traffic, Fale Univoraity, How Haven, Connecticut, p. 42, 1948.
6. Harrison, op. cit., pp. 212-214.
7. Doughty, J. Ro, "A Supplementary Hessage at Fourway Stop Intorsections," A Thesis, Bureau of Highmay Traffic, Yale University, Hew Haven, Connecticut, 1955.

1 Goneral Reforoncos

1. Barry, $D_{0} S_{0}$ and Davis, H_{0} Eo, "A Summary of Developments and Rosoarch in Trafric Signs, Signals, and Laskings," An ITTE paper presented at the 1955 California Traffic Safety Conforence.
2. Corder, Lo, Miseans of Evaluating Intersection Improvement, "Highmay Research Absiracts, Vol. 17, No. 3, Larch, 1948.
3. Greonshields, Bo Do, Traficic Poriormance at Urban Street Intersections, Fale Bureau of Highmay Treffic, 1947.
4. Holmes, E. H., "The Effect of Control Hethods on Traffic Flow," Public Roade, February, 1934.
5. Koneipp, J. Mo, "Efficiency of Four-May Stop Control at Urban Intersections," Traific Enginoering, Institute of Traffic Engineers, June, 1951.
6. Raff, if. Su, "Spacerime Rolationshipa at Stop Intersoctions," Procoodings, Institute of Traific Enginoers, 1949.
7. Rivett, Io, "A Simple kethod for Tabulating Trafic Dolay," Traffic Enginoaring, Inctitute of Traffic Engineers, September, 1940.
8. Wast, M. Ho, "Economic Value of Time Savings in Traffic:" Procaainge, Institute of Trafilc Enginoers, 1946.
9. Wilkio, L. Go, "58,732 Notorists Chackod at Stop Signs," Traffic Engineering, Instituto of Trafic Engineers, April. 1954.

APPEMDIX

TABLE 5

INTERSEGTION A: FTRST MGEK - BEFORE
LOCAL VEHICLES
PK - TUESDAY AM - TUESDAY

Lag Coll
Longth
$0.0=0.9$
$1.0=1.4$
$1.5=1.9$
$2.0-2.4$
$2.5-2.9$
$3.0=3.4$
$3.5-3.9$
$4.0=4.4$
$4.5=4.9$
$5.0-5.4$
$5.5=5.9$
$6.0=6.4$
$6.5=6.9$
$7.0-7.4$
$7.5=7.9$
$8.0-8.4$
$8.5=8.9$
$9.0=9.4$
$9.5=9.9$
10.06

No. Accopted
0
5
7
8
8
9
11
14
15
11
9
8
5
6
3
2
3
2
3
5

No.
Rojected
23
15
12
11
10
9
6
5
3
3
2
2
1
1
1
0
0
0
0
0

No. Accepted	No Rejectod
0	20
4	15
6	12
8	10
9	9
9	8
10	7
14	6
12	3
9	3
7	2
8	1
5	1
4	0
2	0
2	0
1	0
0	0
0	

PRA - THURSDAY
AM - THURSDAY
$0.0=0.9$
$1.0=1.4$
$1.5=1.9$
$2.0=2.4$
$2.5=2.9$
$3.0-3.4$
$3.5=3.9$
$4.0=4.4$
$4.5=4.9$
$5.0=5.4$
$5.5=5.9$
$6.0=6.4$
$6.5=6.9$
$7.0-7.4$
$7.5=7.9$
$8.0=0.4$
$8.5-8.9$
$9.0=9.4$
$9.5-9.9$
10.0

TABLE 6

INTERSECIION A: FIRST WEEK - BEFORE
FOREIGN VEHICLES
PM - TUESDAY AK - TUESDAY

Lag Coll
Longth
$0.0=0.9$
$1.0-1.4$
$1.5-1.9$
$2.0-2.4$
$2.5-2.9$
$3.0-3.4$
$3.5=3.9$
$4.0=4.4$
$4.5-5.9$
$5.0-5.4$
$5.5-5.9$
$6.0-6.4$
$6.5-6.9$
$7.0-7.4$
$7.5-7.9$
8.0 .8 .4
$8.5-8.9$
$9.0-9.4$
$9.5-9.9$
$10.0=$

No. Acsepted	No. Rojected
0	14
2	7
3	6
4	6
5	6
5	6
6	7
7	4
7	4
7	2
6	2
6	1
6	0
5	1
4	0
1	0
1	0
1	0
0	0
0	0

No. Accopted	No. Reisctod
0	8
1	7
2	6
2	8
3	7
3	7
5	5
5	3
6	3
9	1
10	1
6	0
3	0
2	1
2	0
1	0
0	0
0	0
0	0
0	0

0	27	0	19
1	10	1	11
3	9	3	10
3	7	4	10
5	7	3	9
6	6	5	9
8	6	7	6
8	4	7	3
9	3	8	3
9	2	8	2
9	1	9	0
6	0	7	1
5	1	6	0
3	0	7	1
3	0	6	1
2	0	2	0
1	0	1	0
0	0	0	0
0	0		0
0	0	0	0

TABLE 7
INTERSECTION A: SECOND WEEK - BEFORE
LOCAL VEHICLES

	PM - TUESDAY		AM - TUESDAY	
Lag Cell Length	No. Accepted	No . Rofected	No. Accopted	No. Rejected
0.000.9	1	23	0	32
1,001.4	3	15	3	12
1.5-1.9	7	14	6	9
2.0-2.4	9	12	6	8
2.5-2.9	10	11	7	7
$350-3.4$	11	8	8	7
3.5-3.9	13	8	9	5
4.004 .4	15	5	9	4
4.5-4.9	13	4	9	3
5.005 .4	11	4	10	2
5-5-5.9	9	3	10	1
6.0-6.4	7	2	9	1
6.506 .9	7	2	9	0
7.0-7:4	5	1	6	1
7-5-7.9	3	1	5	0
8.0 .8 .4	2	0	5	0
8.5-8.9	C	0	3	0
9,0.9.4	\pm	0	2	0
9.509.9	1	0	1	0
$10_{0} 0=$	2	0	1	0
	PM - THURSDAY		AM - MTURSDAI	
0,0-0.9	0	30	2	36
$1,0=-10,4$	4	14	4	13
1.5-1.,9	8	16	6	12
2,0-2.4	10	12	6	10
2,5-2:9	10	12	8	8
3.00314	11	9	10	7
3.5-3.9	13	6	10	5
400.404	14	5	21	3
4050409	12	5	12	3
5,0-5.4	12	3	10	2
5.5-5.9	20	2	11	1
$6.0=6.4$	9	1	9	1
$6.5-6.9$	7	3	7	1
7.0.7.4	5	0	5	1
7.5-7.9	4	0	3	1
$8.0=8.4$	3	0	2	0
$8.5-8.9$	2	0	1	0
9,0009.4	1	0	1	0
$9.5-9.9$	1	0	0	0
10, $0=$	0	0	4	0

FOREIGN VEHICLES

	PH - TUESDAY		$A M \sim T U E S D A Y$	
Lag Coll Length	No. Accepted	: ${ }^{2}$ Rejactod	AO。 Accepted	No. Rejected
0.0-0.9	0	17	0	12
1.001 .4	2	8	2	5
1.5-1.9	1	8	2	5
2.0-2,4	3	7	1	5
2,5-2.9	3	7	2	6
3.0-3.4	4	7	2	4
3.5-3.9	6	5	2	4
4.0-4.4	8	4	3	3
4.504 .9	8	1	2	1
5.0.5-4	9	2	4	0
5,5-5,9	10	0	4	1
6,0 0 , 4	7	0	5	0
6.5-6:9	4	0	4	0
7.0=7-4	2	1	7	0
7.5-7.9	2	0	5	1
8.0.8.4	0	0	6	0
8.5-8.9	1	0	5	0
9.009.4 4	0	0	2	0
$\begin{aligned} & 9.5=9.9 \\ & 10,0= \end{aligned}$	2	0	2	0
	2	0	2	0
	PM = IHURSDAY		AM = THURSDAY	
0.000 .8	0	13	0	13
200-1.4	2	7	3	5
$1.5=1.9$	2	8	2	6
$2.0=2.4$	2	7	2	5
2,5-2, 9	3	6	3	5
3.0-3.4	2	5	4	4
$3.5=3.9$	3	4	3	4
$400=404$	4	3.	4	3
4, 5-4, 9	4	1	4	2
50.0 .504	4	2	5	2
$5.5-5.9$	8	0	4	2
$6.0=6.4$	9	1	5	2
6.5-6.9	10	0	4	1
7.0-7. ${ }^{\text {d }}$	9	0	5	0
7.5-7.9	8	0	4	0
8,0-8:4	7	2	6	0
8.5-8,9	4	0	4	1
$9.0=9=13$	2	0	4	0
9.5-9:9	2	0	1	0
1000	1	0	1	0

Table 9
 INTERSIBCTION A: FIRST VEEE - AFTWR

LOCAL VEHICLES

	PM - TUESDAY		AM = TUESDAI	
$\begin{gathered} \text { Iag Coll } \\ \text { Iongth } \end{gathered}$	No. Accopted	No. Rejeated	No. Accapted	Niso. Refectea
0,000.9	8	18	5	16
200-1.4	6	7	4	7
1.5:1.9	4	6	4	6
2,002.4	8	5	3	6
2.5-2.9	6	5	6	5
3.0.3.4s	10	5	4	6
3.5-3.9	6	5	8	3
40 O 404	6	3	4	3
4050409	7	5	9	2
5,0-5.4	6	4	5	2
5.505 .9	8	2	5	1
$6.0=6.4$	9	3	7	2
6,506.9	6	2	5	0
7.0-704	7	1	6	1
7.507.9	5	1	5	0
8000804	4	0	4	1
8.508 .9	4	0	3	0
900-904	2	0	4	0
9.50909	3	0	1	0
10,0	2	0	2	0
	PM - MHURSDAY		AR - THUREDAL	

0,000.9	21	28	7	15
1.001.4	7	10	4	10
1.502.9	4	11.	4	11
2,002,4	7	9	5	9
2.502.9	6	; 11	4	9
30.0304	9	7	6	8
3.503.9	7	6	7	5
400.404	9	4	5	4
4.50409	9	4	8	2
5.00504	8	4	6	1
5.505 .9	7	2	6	0
$6.0-6.4$	7	1	9	0
6.506 .9	7	0	9	1
$7.0-704$	5	1	8	0
7.50709	6	0	2	0
$80.0-804$	3	0	3	0
$8.5-8.9$	2		3	0
900.934	1	0	2	0
9.509.9	0	0	3	0
10.0	1	0	2	0

INTERSECTION A: FIRST HEEK $=A F T E R$

FOREIGN VEHICLES

PM - TUESDAY AM - TUESDAI

Lag Cell Longth
$0.000: 9$
1.00 .14
1.50109
2:0.204
2.402 .9
3:0-3.4
3.503 .9
400404
4.5 * 4.9
5.0 .504
5.50509
$6,0=6.4$
6.506 .9
70007.4
7.5-7:9
8,0-80)
8.508 .9
9:009:4
9.5-9.9
10.0

No. Acrepied	NO. Pojected
3	20
4	6
3	5
4	5
3	4
5	4
2	3
6	2
5	2
2	3
4	2
3	2
5	1
6	0
3	1
2	0
1	0
0	0
1	0
1	0

PM = THUBSDAI

No. Accapted	Ho, 0
2	10
2	6
3	5
4	3
2	6
4	4
3	2
2	2
5	1
2	1
4	0
2	1
2	0
3	0
6	1
2	0
0	0
1	0
0	0

$$
\text { ANI } \propto \text { THURSDAI }
$$

0:000.9	0	16	1	18
10010	4	7	2	6
165-1.9	4	7	1	5
2.0.20\%	3	5	3	3
2.502.9	5	5	3	4
3.003 .4	5	3	2	3
3.503 .9	3	3	4	2
400 cho 4	5	2	5	2
4.504 .9	4	3	4	1
5:0.504	6	2	5	1
505-5.9	3	2	3	1
6.00604	5	1	4	0
6.506 .9	4	2	4	1
7.00764	5	1	3	0
7.5-7:9	3	0	2	1
8.00804	2	1	4	0
$8.5-8.9$	1	0	3	0
9:00924	2	0	2	0
9.5509 .9	1	0	1	0
10.0	1	0	1	0

Table 11
 INTERSECTION A: SECOND IDREK - AFTER

LOCAL VEIICITS
FRI - TUESDAX AM - TUESDAY

Lag Cell
Length
$0.0=0.9$
$1.0-1.4$
$1.5-1.9$
$2.0=2.4$
$2.5-2.9$
$3.0-3.4$
$3.5-3.9$
$4.0-4.4$
4054.9
$5.0=5.4$
5.505 .9
$6.0-6.4$
$6.5=6.9$
$7.0-7.4$
$7.5-7.9$
$8.0-8.4$
$8.5=8.9$
$9.0=9.4$
$9.5-9.9$
10.0

No。 Accepted	No. Rejected
2	14
3	7
2	6
4	5
2	6
5	3
4	3
3	2
7	3
4	0
3	1
5	0
6	0
4	1
5	0
6	0
3	0
2	0
1	0
0	0

[^1]$0.0=0.9$
$1.0=1.4$
$1.5-1.9$
$2.0-2.4$
$2.5-2.9$
$3.0-3.4$
$3.5-3.9$
$400-4.04$
$405-4.9$
$5.0-5.4$
5.505 .9
$6.0-6.4$
$6.5=6.9$
$7.0-7.4$
$7.5-7.9$
$8.0-8.4$
$8.5=8.9$
$9.0-9.4$
$9.5=9.9$
10.0

Table 12

INTERSECIION A: SECOND IEEK - AFTER
FOREIGN VIHICITS

PN - TUESDAY
Iag Coll
Length
$0.0=0.9$
$1.0-1.4$
$1.5=1.9$
$2.0-2.4$
$2.5-2.9$
$3.0-3.4$
$3.5-3.9$
$4.0-4.4$
$4.5=4.9$
$5.0-5.4$
$5.5-5.9$
$6.0=6.4$
$6.5=6.9$
$7.0=7.4$
$7.5-7.9$
$8.0-8.4$
$8.5-8.9$
$9.0=9.4$
$9.5=9.9$
$10.0=$

No. Accepted	No. Rejected
4	10
2	6
4	5
3	6
4	5
4	4
5	2
4	2
5	1
4	2
6	2
3	2
8	0
3	1
6	0
3	1
3	0
4	2

PH - MHURSDAY

No. Accepted	No. Rejected
0	10
2	3
1	5
2	5
4	4
3	4
4	2
2	1
3	2
4	1
4	0
5	1.
2	0
2	1
3	1
2	0
1	0
2	0
1	0
1	0

AR - THURSDAY
$0.0=0.9$
$1.0-1.4$
$105=1.9$
$2.0-2.4$
$2.5-2.9$
$3.0-3.4$
$3.5-3.9$
$4.0-4.4$
$4.5=409$
$5.0-5.4$
$5.5-5.9$
$6.0-6.4$
$6.5=6.9$
$7.0-7.4$
$7.5-7.9$
$8.0-8.4$
$8.5-8.9$
$9.0-9.4$
$9.5-9.9$
10.00
7 4
4
5

Tablo 13

INTERSECTION B: FTRST WREK - BEFORE
LOGAL VEHICLES
PHI - TUESDAY AM \propto TUESDAY

Lag Call Length
0,0-0.9
1.001 .4
1.5-1.9
2.0-2.4
2.5-2.9
3.003 .4
3.5-3.9
4000404
405-4.9
500.504
5.505 .9
$600-6.4$
6.5-6.9
7.00704
7.5-7.9
$8.0-8.4$
8.5-8.9
9,009.4
9.5-9.9
10,0

No. Accepted	No. Rojected
0	13
7	18
12	16
13	15
14	16
12	13
10	8
16	10
13	6
9	5
7	3
5	4
6	2
4	1
2	1
3	2
1	
0	0
2	1
5	0

No.	No.
Accopted	Rejected
O	14.
3	13
5	17
6	9
8	10
7	9
9	8
6	4
9	5
6	2
5	1
3	1
4	1
2	0
2	0
1	0
2	0
1	0
1	0
3	0

AM - THURSDAY

0, $0=0.9$	0
10-104	7
1.5-1.9	11
2.0-2.4	12
2.5-2.9	10
30-3.4	13
3.5-3.9	11
$400-404$	19
4.0-4.9	10
5,0-5043	12
5.5-5.9	10
$6.0-6.4$	9
6.5-6.9	6
7.0-704	4
7.5-7.9	5
$8.0-9.4$	3
8.5-8.9	4
9.0-9.4	6
905-9.9	7
10,00	6

Table 14
 INTERSECTION B: FIRGT VEEK - BEFORT
 FOREIGN VEHICLES

	PM - TUESDAY		ALI - TUESDAY	
Lag Cell Leneth	No。 Accepted	No. Rejected	No. Accepted	No. Rejected
0.000.9	0	16	0	12
1.001 .4	1	14	0	11
1.5-1.9	4	9	1	10
2.0-2.4	5	8	2	8
2.5-2.9	4	7	3	6
3.003.43	7	8	3	4
3.5-3.9	8	9	4	5
4000404	12	6	5	4
405-409	8	5	6	4
500-5.4	10	6	5	2
$5.5-5.9$	6	4	3	1
6.0-6.4	7	3	3	1
6.5-6.9	4	2	1	0
7.0-704	5	3	2	0
7.5-7.9	3	1	1	0
8.008 .4	2	0	0	0
8.5-8.9	1	0	1	0
9.0-904	1	0	0	0
9.5-9.9	0	0	0	0
10.00	6	0	0	0

0.0.0.9	0	18	0	11
$1.0-1.4$	1	19	0	10
1.501.9	4	7	1	9
2.0-2.4	4	6	1	9
2.5-2.9	5	8	2	6
3.003 .4	6	7	2	5
3.5-3.9	7	7	3	3
400-4.4	10	6	4	2
405-4.9	9	5	5	2
50005.4	9	4	6	1
5.5-5.9	6	3	4	1
$6.0-6.4$	5	2	4	1
$6.5-6.9$	5	3	3	0
700-7.4	4	2	2	0
7.5-7.9	2	1	0	0
$8.0-804$	3	1	1	0
$8.5-8.9$	2	0	0	0
900-9.4	1	0	0	0
9.509 .9	0	0	0	0
10.00	5	0	0	0

Table 15
INTERSECTION B: SECOND V IEEK - BEFORE

LOCAL VEHICIES

Table 16

INTERSECTION B: SECOND WEEK - BEFORE

FOREIGIN VEHICLES

Table 17
INTERSECIION B: FIRST FHTK - AFTER

LOCAL VEHICLES

	PIA - TUESDAY		ALI - TUESDAY	
Leg Cell Length	No. Accopted	No. Rojected	No. Accapted	No. Rejected
0.000 .9	10	22	7	11
1.0-1.4	9	10	8	6
1.5-1.9	9	9	8	8
2.0-2.4	10	7	9	6
2.5-2.9	9	7	14	8
3.0-3.4	12	6	8	7
3.5-3.9	13	7	11	8
$400-404$	13	4	6	3
405-409	11	5	9	5
5.0-5.4	9	4	2	5
5.5-5.9	7	5	4	2
$6.0-6.9$	13	2	1	4
6.50 .6 .9	5	4	2	2
7.0-704	8	2	1	2
7.5-7.9	4	3	2	2
$8.0-804$	6	1	1	1
8.5-8.9	1	2	0	0
9.0-9.4	4	1	1	0
9.5-9.9	1	0	1	0
10,00	0	0	1	0
	FI - THURSDAY		AM - THURSDAY	
0.000.9	13	21	4	1.9
$1.0-1.4$	9	9	6	8
1.5-1.9	10	8	4	8
$200-2.4$	13	9	7	6
2.5-2.9	13	8	4	6
3.0-3.4	13	7	7	4
3.5-3.9	12	8	9	3
$400-404$	11	4	17	5
4.5-409	12	7	7	1
500-5.4	8	4	8	5
$5.5-5.9$	10	6	6	1
$6.0-6.4$	7	3	5	2
6.5-6.9	6	5	2	1
$7.0-7.4$	4	3	1	0
7.5-7.9	8	4	2	0
$8.0-8.4$	3	1	1	0
8.5-8.9	3	3	0	0
9.0-9.4	2	1	1	0
9.509 .9	1	1	0	0
10.00	0	0	0	0

Table 18
INTERSECITON B\% FIRST HEEK - AFTER
FOREIGN VIIICITS
PR T TUESDAY
AII - TUESDAY

Lag Cell Lengeh
0.000.9
1.0-1.4
1.5-1.9
$2.0-2.4$
2.502.9
3.0-3.4
3.5-3.9
$4000 / 404$
405-409
5.0-5.4
5.505 .9
6.00504
$6.5=6.9$
7.0-704
7.5-7.9
$8.0-804$
8.5-8.9
9,0-904
9.5-9.9
10,00

No.	No.
Accepied	$\frac{\text { Rejucted }}{}$
2	3
6	7
2	4
4	6
3	5
5	3
2	3
6	2
3	1
7	2
6	1
5	2
7	2
4	0
3	0
1	0
1	0
1	0
0	0

No. Accepted	No. Rejected
4	9
2	4
3	5
3	3
4	6
3	4
2	3
5	1
2	3
4	2
2	1
3	2
4	1
3	2
3	0
2	0
2	0
1	0
1	0
1	0

0.0
1.5
2.0
-5-20
$3.0-3$
3.5-3.
400040
40
6.
7.
7.5
8.0
8.50080
9.0-9.
-9

Table 19

INTIRRSECTION B: SECOND WEEK - AFITR

IOCAL VIHICIES

PR © TUESDAY

Lag Cell Length
0,000.9
1.001 .4
1.5-1.9
$2.0-2.4$
2.5-2.9
3.003. 4
3.5-3.9
$400-4.4$
4.0-4.4.9
5.0-5.4
5.5-5.9
$6,006.4$
$6.5=6.9$
7.0-704
7.5-7.9
$800-80 \%$
8.5-8.9
9.0-9.4
9.509.9
10.0

No. Accepted	No. Rojected
8	$1 l_{3}$
4	9
6	9
4	8
7	7
9	7
7	6
9	6
8	4
7	2
4	2
3	0
1	0
1	0
0	0
1	0
0	0
0	0
0	0
0	0

No. Accouted.	No. Reiected
6	13
6	6
7	8
3	6
9	7
9	6
8	6
6	6
6	4
5	4
3	1
2	1
1	1
1	0
0	0
1	0
1	0
0	0
0	0
0	0

FM - THURSDAY

$$
A B I=T H U R S D A Y
$$

0.0-0.9
1.501.9
2.0-202
2.5-2.9
3.003 .4
3.5-3.9
$4.00-404$
4, 50409
500050 el
5.5-5.9
6.006 .4
6.506 .9
7.0-704
7.5-7.9
$8.0-8.4$
$8.5-8.9$
90009.4
$9.5-9.9$
10.0

Table 20

INTERSECTION B\& SECOND TREK - AFHER

FOREIGI VEHICIES

PII - TVESDAY
AR - TUESDAY

Lag Cell Iength	No. Accepted	No. Rejected	No. Acceptrd	No. Rojected
0.0 $=0.9$	ह	19	4	
100.104	4	9	3	5
1.5-1.9	7	\%	2	5
2.0-2.4	3	8	3	4
2.5-2.9	7	8	2	5
3.003 .4	4	7	3	4.
3.5-3.9	5	4	4	2
400404	6	6	4	3
405-4.9	4	3	5	2
$5.0-504$	5	4	3	2
5.500509	4	1	5	0
6.00604	5	2	5	3
$6.5-6.9$	5	1	3	0
7000704	4	0	3	1
7.5-7.9	6	2	4	0
$8.0=804$	3	0	2	0
8.508 .9	4	0	3	0
900-9.4	3	0	1	0
9.5-9.9	2	0	0	0
10.00	1	0	2	0
	PRI - IHURSDAY		AM - THURSDAY	
0.000 .9	5	1	2	17
1.001.4	2	9	2	8
1.51.9	5	7	1	6
$2.0-2.4$	3	6	3	6
2.5-2.9	4	7	2	7
3.003 .4	5	5	3	5
3.5-3.9	3	6	2	3
$400-204$	6	3	4	2
405-409	5	3	3	2
50-5.4	2	1	5	0
5.5-5.9	5	0	6	1
$6.0=6.4$	2	1	5	
6.506 .9	3	0	7	0
70-704	1	1	6	7
7050709	2	0	4	0
$8.0-804$	7	0	2	0
8.50809	2	0	2	0
9.5-9.9	1	0	1	0
10,0-	0	0	2	0

[^0]: * Numbert in parwriberee refer to the Bibliography.

[^1]: 12

