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Summary

Partial expected value of perfect information (EVPI) quantifies the eco-

nomic value of removing uncertainty concerning parameters of interest in a

decision model. EVPIs can be computed via Monte Carlo methods. An outer

loop samples values of the parameters of interest, and for each of these, an

inner loop samples the remaining parameters from their conditional distribu-

tion. This nested Monte Carlo approach can result in biased estimates if very

small numbers of inner samples are used and can require a large number of

model runs for accurate partial EVPI estimates. We present a simple algo-

rithm to estimate the EVPI bias and EVPI confidence interval for a specified

number of inner and outer samples. The algorithm uses a relatively small

number of model runs (we suggest approximately 600), is quick to compute,

and can help determine how many outer and inner iterations for a desired

level of accuracy. This algorithm is tested using three case studies: two illus-

trative cost-effectiveness models of different complexity, with easily computed

partial EVPIs, and a much more complex health economic model of multiple

sclerosis. The first two case studies demonstrate that our algorithm produces

robust estimates of the EVPI bias and EVPI confidence interval for different

numbers of inner and outer samples. In the complex case study, such large

Monte Carlo sample sizes are required that estimation is not feasible due

to computational time and alternative computational methods are required.

This algorithm to establish numbers of model runs required for partial EVPI

estimation will be of use in any decision model when parameter uncertainty

is important.
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1 Introduction

It is common practice to use decision models to estimate the expected net benefit of

alternative strategy options open to a decision maker (Raiffa, 1968), (Brennan and

Akehurst, 2000). Invariably in health economic cost-effectiveness models, the input

parameters’ true values are not known with certainty. A probabilistic sensitivity

analysis will then be required to investigate the consequences of this input parameter

uncertainty (Briggs and Gray, 1999). Simple Monte Carlo propagation of input

uncertainty through the model can provide an estimate of the distribution of net

benefit, thus giving its expected value, and the probability that the incremental net

benefit will be positive (Van Hout et al., 1994).

More detailed analysis can compute the partial expected value of perfect infor-

mation (partial EVPI), that is, the value to the decision maker of learning the true

value of the uncertain parameter input before deciding whether to adopt the new

treatment (Raiffa, 1968), (Claxton and Posnett, 1996). Partial EVPIs are recom-

mended because they quantify the importance of different parameters using decision-

theoretic arguments (Claxton, 1999), (Meltzer, 2001), and thus can quantify the so-

cietal value of further data collection to help design and prioritise research projects

(Claxton and Thompson, 2001), (Chilcott et al., 2003a). Unfortunately, evaluating

partial EVPIs is computationally demanding. Generally, a two level Monte Carlo
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procedure is needed, requiring many runs of the economic model. A developing lit-

erature has described this more and more clearly (Felli and Hazen, 1998), (Brennan

et al., 2002), (Felli and Hazen, 2003), (Ades et al., 2004), (Yokota and Thompson,

2004), (Koerkamp et al., 2006), (Brennan et al., 2007), (Brennan and Kharroubi,

2007b). The procedure begins with an outer loop sampling values of the parameters

of interest, and for each of these, an inner loop sampling the remaining parameters

from their conditional distribution (Brennan et al., 2002) (Ades et al., 2004).

Increasingly large inner and outer sample sizes will produce increasingly accurate

estimates of partial EVPI. However, the nested Monte Carlo approach can result

in biased estimates if the inner loop sample size is small (Brennan and Kharroubi,

2007a), regardless of the outer loop sample size. Most studies recommend ‘large

enough’ inner and outer samples e.g. 1,000 or 10,000 in order to produce ‘accurate’

partial EVPI estimates, but none discuss in detail the choice of sample sizes in

relation to bias or confidence interval widths.

In this paper we present an algorithm for determining the inner and outer loop

sample sizes needed to estimate a partial EVPI to a required level of accuracy. We

first review the theory of estimating partial EVPIs via Monte Carlo. We propose

using normal approximations for conditional expected net benefits to estimate the

bias and variance of a Monte Carlo estimate for a specified number of inner and

outer loops. We set out an algorithm, using a moderate number of model runs,

to produce an estimate of the bias and confidence interval widths for partial EVPI

estimates, and hence to help determine the inner and outer sample sizes needed. The
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results of applying and testing the algorithm’s performance in three case studies are

given, followed by a discussion of how this approach can be applied more generally

to support Monte Carlo estimation of partial EVPI.

If the decision model is complex, requiring substantial computation time for each

model run, then it may not be feasible to do the number of model runs required

for our algorithm, or the algorithm may suggest that an infeasible number of model

runs are required for sufficiently accurate partial EVPI estimates. In this case, one

can use instead a Gaussian process meta-model, which approximates the economic

model, enabling more efficient Monte Carlo sampling, but with the disadvantages

that it is far more complex to program initially and is not always feasible for models

with large numbers of uncertain input parameters (e.g., in excess of 100) (Oakley,

2009), (Oakley and O’Hagan, 2004), (Stevenson et al., 2004)

2 Methods

2.1 Evaluating Partial EVPI via Monte Carlo Sampling

Suppose we have T treatment options, and our economic model computes the net

benefit NB(t,x) for treatment t = 1, . . . , T , when provided with input parameters x.

We denote the true, uncertain values of the input parameters by X = {X1, . . . , Xd},

so that the true, uncertain net benefit of treatment t is given by NB(t,X). When

considering the partial EVPI of a particular parameter Xi, we use the notation

X−i = {X1, . . . , Xi−1, Xi+1, . . . , Xd} to denote all the inputs in X except Xi. For
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any input X, we use subscripts to denote a particular input parameter (or group

of parameters) in the economic model, and a superscript to denote a randomly

sampled value of that input. Note that all of the equations presented, and indeed

the proposed algorithm, are the same if we are considering a group of parameters

Xi rather than a single scalar parameter.

We use the notation NB(t,X) = NB(t,Xi,X−i) and for expectations EX, EXi

and EX−i|Xi
denote expectations over the full joint distribution of X, the marginal

distribution of Xi, and the conditional distribution of X−i|Xi respectively.

The partial EVPI for the ith parameter Xi is given by

EV PI(Xi) = EXi

[
max

t
EX−i|Xi

{NB(t,Xi,X−i)}
]
−max

t
EX{NB(t,X)}. (1)

The second term in the RHS of (1) can be estimated by Monte Carlo. We sample

X(1), . . . ,X(N) from the distribution of X, evaluate NB(t,X(n)) for t = 1, . . . , T and

n = 1, . . . , N , and then estimate NB∗ = maxt EX{NB(t,X)} by

N̂B∗ = max
t

1

N

N∑
n=1

NB(t,X(n)).

We do not consider the choice of N in this paper. In practice, it is usually feasible

to have N sufficiently large such that N̂B∗ is an accurate estimate of NB∗, and can

be used in the partial EVPI estimate of any parameter or group of parameters.

In this paper we concentrate on estimating the first term in the RHS of (1). We

define the maximum conditional expected net benefit given Xi as

m(Xi) = max
t

EX−i|Xi
{NB(t,Xi,X−i)} ,

and hence, the first term on the RHS of equation (1) can be written as EXi
{m(Xi)}.
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Typically, we cannot evaluate m(Xi) analytically, and so we estimate it using

Monte Carlo. We randomly sample J values of X−i from the conditional distribution

of X−i|Xi to obtain X
(1)
−i , . . . ,X

(J)
−i . We run the economic model for each of the J

sampled inputs to obtain NB(t,Xi,X
(j)
−i ) for t = 1, . . . , T and j = 1, . . . , J , and

estimate m(Xi) by

m̂(Xi) = max
t

1

J

J∑
j=1

NB(t,Xi,X
(j)
−i ). (2)

We now approximate EXi
{m(Xi)} by EXi

{m̂(Xi)}, and estimate EXi
{m̂(Xi)} by

randomly sampling K values X
(1)
i , . . . , X

(K)
i from the distribution of Xi and com-

puting the estimator

ÊXi
{m̂(Xi)} =

1

K

K∑
k=1

m̂{X(k)
i }. (3)

We refer to the process of obtaining the maximum conditional net benefit estimator

m̂{Xi} for a single given Xi using J samples from the distribution of X−i|Xi as the

inner level Monte Carlo procedure. The process of calculating (3) (given the values

m̂(Xi,1), . . . , m̂(Xi,K)) using the K samples X
(1)
i , . . . , X

(K)
i is the outer level Monte

Carlo procedure. The Monte Carlo estimate for the partial EVPI for parameter Xi

is therefore

̂EV PI(Xi) = ÊXi
{m̂(Xi)} − N̂B∗

=
1

K

K∑
k=1

max
t

 1

J

J∑
j=1

NB
(
t,X

(k)
i ,X

(j,k)
−i

)


−max
t

1

N

N∑
n=1

NB(t,X(n)), (4)

where X
(j,k)
−i is the jth sample from the distribution of X−i|Xi = X

(k)
i . The inner

and outer level sample sizes, J and K respectively, mean that the total number of
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runs of the economic model required for the partial EVPI estimate is J ×K (given

N̂B
∗
). The objective in this paper is to determine what values of J and K should

be used in order to obtain a sufficiently accurate estimate of the partial EVPI.

2.2 Uncertainty and Bias in Monte Carlo Estimates of Par-

tial EVPI

Any Monte Carlo estimate of an expectation is subject to uncertainty due to random

sampling, and the larger the number of samples, the more this uncertainty is reduced.

We assume that N is sufficiently large such that uncertainty in NB∗ is small relative

to uncertainty in EXi
{m(Xi)}. If K is sufficiently large then a normal approximation

will apply, and a 95% confidence interval for EV PI(Xi) is given by

 ̂EV PI(Xi)− 1.96

√
V ar{m̂(Xi)}

K
, ̂EV PI(Xi) + 1.96

√
V ar{m̂(Xi)}

K

 . (5)

This interval appears to suggest that to obtain a sufficiently accurate estimate of

the partial EVPI, we just need K to be large, as the width of the confidence interval

will decrease as K increases. Unfortunately, this is not the case because, as we now

show, m̂(Xi) is an upwards biased estimator of m(Xi), and so ̂EV PI(Xi) is a biased

estimator of EV PI(Xi). The bias is independent of K, but it depends on J , and

can be reduced to an acceptably small level if we choose J sufficiently large.

We define the conditional expected net benefit given a particular Xi for each

treatment t as

µt(Xi) = EX−i|Xi
{NB(t,Xi,X−i)}
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and its estimator based on J random samples as

µ̂t(Xi) =
1

J

J∑
j=1

NB(t,Xi,X
(j)
−i ).

In our estimate of EVPI in equation (4), we estimate the maximum conditional

expected net benefit over the T treatments given a particular Xi,

m(Xi) = max{µ1(Xi), . . . , µT (Xi)},

by the maximum of the Monte Carlo estimates for each treatment

m̂(Xi) = max{µ̂1(Xi), . . . , µ̂T (Xi)}.

The problem is that, although µ̂t(Xi) is an unbiased estimator of µt(Xi), i.e. EX−i|Xi
{µ̂t(Xi)} =

µt(Xi), when the maximisation is applied to the estimators then m̂(Xi) is not an

unbiased estimator of m(Xi). It is upwards biased i.e. it tends to over-estimate

m(Xi). This is because for any set of random variables Z1, . . . , Zn, it is straightfor-

ward to show that E{max(Z1, . . . , Zn)} ≥ max{E(Z1), . . . , E(Zn)}, which follows

from Jensen’s inequality. Applying this to the estimator m̂(Xi), we have

EX−i|Xi
{m̂(Xi)} = EX−i|Xi

[max{µ̂1(Xi), . . . , µ̂T (Xi)}]

≥ max
[
EX−i|Xi

{µ̂1(Xi)}, . . . , EX−i|Xi
{µ̂T (Xi)}

]
= max{µ1(Xi), . . . , µT (Xi)}

= m(Xi).

That is, EX−i|Xi
{m̂(Xi)} ≥ m(Xi). Thus, we expect m̂(Xi) to overestimate m(Xi)

for any value of Xi and consequently we expect ̂EV PI(Xi) to overestimate the true

partial EVPI.
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2.3 A multivariate normal approximation for conditional

expected net benefit estimators

To quantify the bias in the estimator m̂(Xi) we can investigate the sampling dis-

tribution (the probability distribution, under repeated sampling of the popula-

tion) of the vector of Monte Carlo estimators for conditional expected net benefit

µ̂(Xi) = {µ̂1(Xi), . . . , µ̂T (Xi)}′. If J is sufficiently large then, a multivariate normal

approximation with T dimensions will apply. Thus we have

µ̂(Xi) ∼ NT

{
µ(Xi),

1

J
V (Xi)

}
, (6)

where µ(Xi) = {µ1(Xi), . . . , µT (Xi)}′ and element p, q of the matrix V (Xi) is given

by

Vp,q(Xi) = CovX−i|Xi
{µ̂p(Xi), µ̂q(Xi)} .

The bias, EX−i|Xi
{m̂(Xi)} −m(Xi), will depend on µ(Xi), V (Xi) and J , and will

decrease as J increases.

We illustrate this with a simple example. Suppose we have two treatments T = 2,

with

µ̂(Xi) =

 µ̂1(Xi)

µ̂2(Xi)

 ∼ N2


 9000

10000

 ,
1

J

 15002 4752

4752 15002


 .

In figure 1 we plot the density functions of µ̂1(Xi) and µ̂2(Xi) for J = 1 and J = 100.

When J = 1, there is considerable overlap between the two densities, with the result

that E[max{µ̂1(Xi), µ̂2(Xi)}] (marked as the vertical line) is noticeably greater than

max[E{µ̂1(Xi)}, E{µ̂2(Xi)}] = 10000. When J = 100, the overlap is reduced and

E[max{µ̂1(Xi), µ̂2(Xi)}] is much closer to 10000, i.e. the bias is negligible.



Partial EVPI Sample Sizes, Oakley et al. 11

6000 7000 8000 9000 10000 11000 12000 13000
0

1

2

3

4
x 10

−4

J=1

6000 7000 8000 9000 10000 11000 12000 13000
0

1

2

3
x 10

−3

Net benefit

J=100

Figure 1: The sampling distributions of µ̂1(Xi) (solid line) and µ̂2(Xi) (dashed line)

for J = 1 and J = 100 . The vertical line shows the expectation of the maximum

of µ̂1(Xi) and µ̂2(Xi) in each case. The bias is expectation of the maximum minus

the maximum of the two expectations, 10000.

3 Estimating the bias and confidence interval width

in ̂EV PI(Xi) for a specified J and K

We now present an algorithm to estimate the bias and confidence interval width for

a specified J and K. An example code listing for implementing the algorithm in R

(R Development Core Team, 2006) can be downloaded from

www.jeremy-oakley.staff.shef.ac.uk/evpissize.R. (The precise implementa-

tion of our algorithm will depend on the nature of the economic model and the

input distributions)
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There are three stages to the algorithm. In the first stage we run the economic

model a moderate number of times (630 is proposed) to obtain estimates of µ(Xi)

and V (Xi), for different values of Xi. In the second stage, we use these estimates to

sample from the distribution of the conditional expected net benefit estimators µ̂ and

estimate the bias in ̂EV PI(Xi) for different specified J ’s. In the third stage, we es-

timate the variance in the maximum conditional expected net benefits V ar{m̂(Xi)},

enabling us to estimate the width of a (95%) confidence interval for ̂EV PI(Xi) using

equation (5) for different specified K’s.

Stage 1: Estimating µ(Xi) and V (Xi)

1. Draw a small random sample of points (say 21) X
(1)
i , . . . , X

(21)
i from the dis-

tribution of Xi.

2. For each X
(k)
i generate a random sample (say 30) of the remaining inputs from

their conditional distribution X−i|X(k)
i . Denote these by X

(1,k)
−i , . . . ,X

(30,k)
−i .

3. Run the economic model to obtain the net benefits NB(t,X
(k)
i ,X

(j,k)
−i ) for

t = 1, . . . , T ; j = 1, . . . , 30; k = 1, . . . , 21.

4. Estimate µt(X
(k)
i ) by

µ̃t(X
(k)
i ) =

1

30

30∑
j=1

NB(t,X
(k)
i ,X

(j,k)
−i ),

for t = 1, . . . , T ; k = 1, . . . , 21 to obtain

µ̃(X
(k)
i ) =

{
µ̃1(X

(k)
i ), . . . , µ̃T (X

(k)
i )

}
,

for k = 1, . . . , 21.
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5. Estimate V (X
(k)
i ) for k = 1, . . . , 21 by Ṽ (X

(k)
i ) where element p, q of Ṽ (X

(k)
i )

is given by

1

29

30∑
j=1

{
NB(p, X

(k)
i ,X

(j,k)
−i )− µ̃p(X

(k)
i )

} {
NB(q, X

(k)
i ,X

(j,k)
−i )− µ̃q(X

(k)
i )

}

We now have estimates of µ(Xi) and V (Xi) at a range of different values of Xi, and

can now do a simulation to identify a suitable value of J .

Stage 2: Estimating bias and determining J

1. Choose a candidate value of J .

2. For k = 1, . . . , 21:

(a) Approximate the distribution of µ̂(X
(k)
i ) by

µ̂(X
(k)
i ) ∼ NT

{
µ̃(X

(k)
i ),

1

J
Ṽ (X

(k)
i )

}

(b) Generate µ̂(1)(X
(k)
i ), . . . , µ̂(N)(X

(k)
i ) for large N (say 10,000) from the

distribution of µ̂(X
(k)
i ), with

µ̂(n)(X
(k)
i ) =

{
µ̂

(n)
1 (X

(k)
i ), . . . , µ̂

(n)
T (X

(k)
i )

}′
,

for n = 1, . . . , N .

(c) Estimate the bias in m̂(X
(k)
i ) for each of the 21 sampled X

(k)
i by

b̂(X
(k)
i ) =

1

N

N∑
n=1

max
{
µ̂

(n)
1 (X

(k)
i ), . . . , µ̂

(n)
T (X

(k)
i )

}
−max

{
µ̃1(X

(k)
i ), . . . , µ̃T (X

(k)
i )

}
(7)

3. Estimate the expected bias in m̂(Xi) by

b̂(Xi) =
1

21

21∑
k=1

b̂(X
(k)
i ). (8)
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This process is repeated for different J to determine the relationship between J and

the scale of bias. When put into the context of the overall EVPI and the partial

estimate ̂EV PI(Xi), this can help determine a J which produces an acceptably

small bias.

Finally, we consider estimating the width of the confidence interval for the esti-

mator in (3) that will result from choosing an outer sample size K.

Stage 3: Estimating the 95% CI for ̂EV PI(Xi) to determine K

There are two sources of variation in the estimator ̂EV PI(Xi) given in equation

(4). The first is due to variation in the sample X
(1)
i , . . . , X

(K)
i . The second is due to

m̂(X
(k)
i ) being evaluated using a second Monte Carlo simulation: for a given X

(k)
i

the variance of m̂(X
(k)
i ) will be a function of the inner sample size J . We write

m̂(Xi) = m(Xi) + ε(Xi, J),

where ε(Xi, J) is the random error in the estimate m̂(Xi) of m(Xi) based on a Monte

Carlo sample of size J . We now propose an approximate estimate of V ar{m̂(Xi)}

based on two simplifications. Firstly, we suppose that m(Xi) and ε(Xi, J) are inde-

pendent. Secondly, we ignore variation in ε(Xi, J) due to variation in Xi. Specifi-

cally, we consider an average variance of ε(Xi, J), averaging across Xi. We write

V ar{m̂(Xi)} = V ar{m(Xi)}+ V ar{ε(Xi, J)}.

In our case studies, we find that for moderate J the variance of m̂(Xi) is dominated

by the first term V ar{m(Xi)}, suggesting that the two simplifications are reasonable.

We estimate V ar{m(Xi)} as follows.
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1. Compute the average of the maximum conditional net benefits by

m̄(Xi) =
1

K

K∑
k=1

m̂(X
(k)
i ),

2. Estimate V ar{m(Xi)} by

V̂ ar{m(Xi)} =
1

K − 1

K∑
k=1

{
m̂(X

(k)
i )− m̄(Xi)

}2
. (9)

We estimate V ar{ε(Xi, J)} by considering the variance of the Monte Carlo error

for each Xk
(i), and then taking the average for k = 1, . . . , 21:

1. For each X
(k)
i , obtain the sample variance of the bias terms in (7):

V̂ ar
{
b(X

(k)
i )

}
=

1

N − 1

N∑
n=1

{
b(n)(X

(k)
i )− b̂(X

(k)
i )

}2
,

with b̂(X
(k)
i ) given in equation (7), and

b(n)(X
(k)
i ) = max

{
µ̂

(n)
1 (X

(k)
i ), . . . , µ̂

(n)
T (X

(k)
i )

}
−max

{
µ̃1(X

(k)
i ), . . . , µ̃T (X

(k)
i )

}
.

2. Estimate V ar{ε(Xi, J)} by

V̂ ar{ε(Xi, J)} =
1

K

K∑
k=1

V̂ ar
{
b(X

(k)
i )

}

Finally, we estimate the width of a 95% confidence interval for any value of J and

K as

2× 1.96×

√
V̂ ar{m(Xi)}+ V̂ ar{ε(Xi, J)}

K
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3.1 Discussion

The most important purpose of the algorithm is to estimate the bias and determine

J . This is because the size of the bias cannot be observed when we come to actually

estimate a partial EVPI using Monte Carlo sampling. Although it is useful at stage

3 to estimate the width of the confidence interval for ̂EV PI(Xi), it is possible to

observe directly the variability in EVPI estimates as more outer samples are used

in the two-level procedure.

The algorithm uses the normal approximation based on the central limit theorem

in both the confidence interval (5) and the distribution of µ in (6). We would expect

this approximation to be sufficient for practical purposes in most cases. The model

user will want to find J and K such the bias and confidence interval width will be

acceptably small, and so the it will usually be sufficient to estimate the bias and

confidence interval width to within the correct order of magnitude only; very precise

estimates should not be necessary.

In stage 1 of the algorithm, we have to sample from the conditional distribu-

tion of X−i|Xi. While this is straightforward for independent inputs, or suitably

tractable families of multivariate distributions, such sampling may be computation-

ally intensive for more complex joint distributions. For example, we may need to

use Markov chain Monte Carlo to sample from the conditional distribution. Though

this would make the algorithm harder to implement, it would of course make calcu-

lating a partial EVPI more computationally demanding in any case. In particular,

we emphasise that our algorithm only requires the same sampling procedures used
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to compute the partial EVPI itself (plus routine sampling from multivariate normal

distributions).

Alternatives to simple random sampling can be used in stage 1, step 1. If Xi

is a scalar, we could choose evenly spaced points and use an appropriate numerical

integration procedure such as Simpson’s rule as an alternative to the Monte Carlo

estimates in (8) in (9). For example, we would instead calculate

b̂(Xi) =
21∑

k=1

wkfXi
(X

(k)
i )b̂(X

(k)
i ),

where fXi
(.) is the marginal density of Xi, and wk is a weight determined by the

corresponding numerical integration rule. Another alternative is to use a stratified

random sample, for example, Latin Hypercube sampling if Xi is a group of inputs.

4 Case studies

Three case studies have been used to explore the feasibility, accuracy and usefulness

of the proposed algorithm in predicting the bias and confidence interval widths in

EVPI estimates using a specified J and K.

4.1 Case study 1: A simple decision tree model

The first case study concerns a simple hypothetical cost-effectiveness model, which

compares two strategies: treatment with drug T0 versus treatment with drug T1.

Table 1 shows the nineteen uncertain model parameters, with prior mean values

shown for T0 (column a), T1 (column b) and hence the incremental analysis (column
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c). Costs include cost of drug and cost of hospitalisations, that is, the product of

the percentage of patients admitted to hospital, days in hospital, and cost per day.

Thus, mean cost of strategy T0 = $1000 + 10% × 5.20 × $400 = $1208. Health

benefits are measured as QALYs gained and come from two sources: responders

receive a utility improvement for a specified duration, and some patients have side

effects with a utility decrement for a specified duration i.e. QALY for strategy T0 =

70%× responders× 0.3× 3years + 25%side effects×−0.1× 0.5years = 0.6175. The

illustrative willingness to pay i.e. threshold cost per QALY is set at λw = $10000.

(This is a purely illustrative model; the value of λw was arbitrarily chosen and is

lower than the threshold of many western countries). Thus, the net benefit of T0 is

$10000 × 0.6175 − $1208 = $4967. Effectively this is a simple decision tree model

with a net benefit function of sum-product form i.e.

NB(T0) = λw(X5X6X7 + X8X9X10)− (X1 + X2X3X4),

NB(T1) = λw(X14X15X16 + X17X18X19)− (X11 + X12X13X4).

The uncertain parameters are characterised with independent normal distributions.

Standard deviations for the model parameters are shown in columns (d) and (e).

Each parameter can be informed by collection of further data on individual patients.

Given current knowledge, the basic model results show $5405 expected net benefit

for T1 compared with $4967 for T0 (difference = $437.80), which means that our

baseline decision given current information should be to adopt strategy T1. Proba-

bilistic sensitivity analysis (Briggs and Gray, 1999) shows that T1 provides greater

net benefits than T0 on only 54.5% of 1000 Monte Carlo samples. This suggests
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that knowing more about some of the uncertain parameters could affect our deci-

sion. The results of the partial EVPI analyses we have undertaken are described on

an indexed scale, where the overall expected value of perfect information, $1319 per

patient in our model, is indexed to 100.

Our analysis of the accuracy of the algorithm in predicting the expected bias and

confidence interval of EVPI estimates focusses on parameter X5, the % responding

to treatment T0. For inner sample sizes of J=10, 100 and 500 and outer samples

also of K= 10, 100 and 500 we undertake comparisons between the predictions of

our algorithm and the results of re-running the Monte-Carlo estimation of EVPI

1000 different times. By generating 1000 real estimates of EV PI(X5), using for

example J = 10 inner and K = 10 outer samples, we can compute the mean

bias exhibited and the 95% confidence interval exhibited in these EVPI estimates.

We then compare the mean bias exhibited with that predicted by the algorithm

and similarly the confidence interval width exhibited with that predicted by the

algorithm.

4.2 Case study 2: A three state Markov cost-effectiveness

model over 20 periods

The second case-study is an extension of case study 1, whereby the parameter re-

garding the duration of response to each individual drug is replaced with a more

complex Markov transition process, which involves probabilities of moving between

states responding, non-responding and death over a 20 cycle time horizon. Un-
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Table 1: Summary of Model and Parameters for Case Study 1
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certainty regarding the two separate transition matrices for the two treatments is

modelled using Dirichlet distributions. Table 2 shows the distributions for all model

parameters and the mathematical descriptions for the two net benefit functions.

This case study is more complex than case study 1. It has substantial non-

linearity due to the matrix multiplication of the transition matrices over the twenty

cycles. Uncertainty in model parameters in no longer described simply by in-

dependent normal distributions because the Dirichlet distributions are used, and

hence, correlation between the transition matrix parameters is now inherent. Based

on a probabilistic sensitivity analysis using 1 million simulations, treatment T1 is

marginally better than T0 (expected net benefits of $6164.898 versus $6019.102) but

there remains substantial uncertainty with the overall EVPI estimated at $2045.431.

In this case study, the analysis of the accuracy of our algorithm for predicting the

confidence interval and bias for estimated partial EVPI calculations focusses on the

partial EVPI for the subset of parameters associated with the transition matrices

i.e. parameter set X20 to X31.

4.3 Case study 3: A complex cost-effectiveness model

The third case study uses a published health economic model developed on be-

half of the National Institute for Clinical Excellence (NICE) to evaluate the cost-

effectiveness of disease-modifying therapies (interferon-beta 1a, interferon-beta 1b

and glatiramer acetate) versus conventional treatment in the management of multi-

ple sclerosis in the UK. Full details are given elsewhere (Chilcott et al., 2003b), but
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Parameters Treatment T0 Treatment T1
Prior Mean s Prior Mean s

Normally Distributed Parameters
Cost of Drug ($) X1 1000 1 X11 1500 1
Probability of admissions X2 0.10 0.02 X12 0.08 0.02
Days in Hospital X3 5.20 1.00 X13 6.10 1.00
Cost per day ($) X4 400 200 X4 400 200
Probability of initial response X5 0.70 0.10 X14 0.80 0.10
Utility Change if respond X6 0.30 0.10 X15 0.30 0.05
Probability of side effects X8 0.25 0.10 X17 0.20 0.05
Change in utility if side effect X9 -0.10 0.02 X18 -0.10 0.02
Duration of side effect (years) X10 0.50 0.20 X19 0.50 0.20
Markov Transition Matrices and Probabilities
p(responding → responding) X20 0.60 Dirichlet X26 0.60 Dirichlet
p(responding → not responding) X21 0.30 (7,4,2) X27 0.30 (7,4,2)
p(responding → die) X22 0.10 X28 0.10

p(not resp.→ responding) X23 0 Dirichlet X26 0 Dirichlet
p(not resp.→ not responding) X24 0.90 (1,10,2) X27 0.90 (1,10,2)
p(not resp.→ die) X25 0.10 X28 0.10

p(die → die) X22 1.00 X28 1.00
Mathematical Relationships and Functions

M0=

 X21 X21 X22

X23 X24 X25

0 0 1

 M1=

 X26 X27 X28

X29 X30 X315

0 0 1


X22 = 1−X21 −X20 X28 = 1−X27 −X26

X25 = 1−X24 −X23 X31 = 1−X30 −X29

S0 = (X5, 1−X5, 0)T S1 = (X14, 1−X14, 0)T

U0 = (X6, 0, 0)T U1 = (X15, 0, 0)T

NBT0 = λ×
{∑20

p=1

(
S0T × (M0)p × U0

)
+ X8 + X9 + X10

}
− (X1 + X2 ×X3 ×X4)

NBT1 = λ×
{∑20

p=1

(
S1T × (M1)p × U1

)
+ X17 + X18 + X19

}
− (X11 + X12 ×X13 ×X14)

Table 2: Summary of Model and Parameters for Case Study 2
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an overview of the model is as follows.

The model uses the state transition methodology to describe the clinical course

of patients with relapsing/remitting MS (RRMS) and secondary progressive MS

(SPMS) through the Expanded Disability Status Scale (EDSS). The frequency of

MS relapse is superimposed upon each EDSS state. Instantaneous hazard rates

are used to model the progression of patients through each individual EDSS using

an annual cycle length and 20-year time horizon. During any cycle, patients may

progress to a worse health state, remain in their current state, drop off therapy or

die. Alongside these events, patients with RRMS may also develop SPMS. Costs

and health utility scores are assigned to each state; as patients progress through

the model they accrue costs and QALYs. Relative hazard ratios are applied to

each transition rate to simulate the effect of disease-modifying therapies in delaying

disease progression and preventing relapse. The use of disease-modifying therapies

alters the trajectory of patients through the EDSS states and the number of relapses

experienced, ultimately resulting in different profiles of costs and QALYs for each

treatment strategy.

Owing to the time-dependence of the probabilities of transiting between health

states, a single run of the model required around 7 seconds, meaning that proba-

bilistic sensitivity analysis using the model was highly computationally expensive.

In fact, if 10,000 samples were used for both the inner and outer levels, then calcu-

lating the partial EVPI for just 1 of the models 128 uncertain parameters using the

2-level sampling algorithm would require around 22.2 years computation time. Using
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10,000 random samples we estimated the overall EVPI for the model to be £8,855

per patient. One-way sensitivity analyses suggested several model parameters as

important and we chose to focus our analysis of the bias and confidence intervals for

EVPI estimates on the parameter: mean cost associated with the EDSS 9.5 health

state.

5 Results

5.1 Results using Case Study 1

The true EVPI for the parameter of interest X5 is estimated at around $199, which

is 15.1 when indexed against overall EVPI ($1319=100). The results of running the

algorithm to predict bias and confidence intervals are shown in Table 3.

The predicted bias in the Monte Carlo estimate for a given inner sample size is

compared with the actual bias exhibited in Figure 1. The order of magnitude of the

predicted expected bias is very similar to that mean bias actually exhibited using

1000 repeated runs of the two level partial EVPI. The absolute scale of the bias is

quite high for very small numbers of inner samples. For example, with just 10 inner

runs used, the bias in this case study is approximately 15.5 when indexed to the

overall EVPI = 100, which would more than double our estimate for the indexed

partial EVPI for parameter X5. When larger numbers of inner runs are used, the

bias fall substantially with an expected indexed bias of just 0.25 when using J = 500

inner iterations. This suggests that on average, if we used J = 500 iterations we
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J = 10 J = 100 J = 500 J = 1000 J = 5000 J = 10000

Bias (indep’t of K) 15.61 1.58 0.25 0.17 0.05 0.02

95% CI

K = 10 ±43.9 27.7 25.5 25.1 24.9 24.8

K = 100 ±13.9 8.8 8.1 7.9 7.9 7.9

K = 500 ±6.2 3.9 3.6 3.6 3.5 3.5

K = 1000 ±4.4 2.8 2.5 2.5 2.5 2.5

K = 5000 ±2.0 1.2 1.1 1.1 1.1 1.1

K = 10000 ±1.4 0.9 0.8 0.8 0.8 0.8

Table 3: Predicted bias and 95% CI for Monte Carlo partial EVPI estimate in case

study 1 using our proposed algorithm

would estimate the indexed partial EVPI for parameter X5 at 15.35 rather than

15.1. The near equivalence of the predicted versus actuals for the different inner

numbers of iterations tested suggests that our algorithm provides a robust estimate

of the expected bias due to small numbers of iterations, at least in this case study.

Figure 3 shows that the predicted confidence intervals for the partial EVPI es-

timates are similar but slightly wider than the actual confidence intervals exhibited

when using 1000 repeated computations of EV PI(X5). The estimated widths are

of sufficient accuracy to be informative, and as discussed earlier, K can be refined

once we have actually chosen J and obtained a partial EVPI estimate.

With the smallest numbers tested, (K = J = 10), the predicted 95% confidence
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Comparison of Bias Predicted by Proposed Algorithm 

versus Exhibited bias in Case Study 1

-4

0

4

8

12

16

20

10 100 500

J - number of Inner Samples

E
xp

ec
te

d 
bi

as
 

(I
nd

ex
ed

 t
o 

ov
er

al
l 

E
V

P
I 

=
 1

00
)

Predicted bias 

Actual Bias
Exhibited 

 

Figure 2: Comparison of Bias Predicted by Proposed Algorithm versus Exhibited

bias in Case Study 1.

interval for the indexed partial EVPI is ±43.8 i.e. an estimate could be expected to

be biased by 15.5 indexed points as discussed earlier and vary anywhere between (-13

to +74) when indexed to overall EVPI = 100. Clearly using such small numbers to

produce one estimate of EV PI(X5) would give almost meaningless results. As larger

numbers of iterations are used, the predicted confidence intervals for EV PI(X5)

reduce. When K = J = 500 is used, the predicted 95% confidence interval is

15.35 ± 3.6. It may be that even higher numbers of iterations are required if this

level of accuracy is not enough for analysts or decision makers’ needs. Again, the

near equivalence of the predicted versus actuals for the different numbers of outer

and inner iterations tested suggests that our algorithm provides a robust estimate

of the order of magnitude of 95% confidence intervals for partial EVPI estimates, at

least in this case study.
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Comparison of Confidence Intervals Predicted by ProposedAlgorithm 

versus Exhibited Confidence Intervals in Case Study 1
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Figure 3: comparison of Confidence Intervals Predicted by Proposed Algorithm

versus Exhibited Confidence Intervals in Case Study 1.

5.2 Results using Case Study 2

The true EVPI for the parameters of interest X20 to X31 is estimated at $1677, which

is 82 when indexed against overall EVPI ($2045=100), a much larger proportion

of the overall EVPI than the case study 1 example. The results of running the

algorithm to predict bias and confidence intervals are shown in Table 4.

The predicted bias in the Monte Carlo estimate for a given inner sample size is

compared with the actual bias exhibited in Figure 4. Again, the order of magnitude

of the predicted expected bias is very similar to that mean bias actually exhibited

using 1000 repeated runs of the two level partial EVPI.

Figure 5 shows that the predicted confidence intervals for the partial EVPI esti-

mates are narrower than the actual confidence intervals exhibited when using 1000
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J = 10 J = 100 J = 500 J = 1000 J = 5000 J = 10000

Bias (indep’t of K) 2.62 0.27 0.00 -0.02 0.00 -0.00

95% CI

K = 10 ±97.9 94.6 94.3 94.2 94.2 94.2

K = 100 ±31.0 29.9 29.8 29.8 29.8 29.8

K = 500 ±13.8 13.4 13.3 13.3 13.3 13.3

K = 1000 ±9.8 9.5 9.4 9.4 9.4 9.4

K = 5000 ±4.4. 4.2 4.2 4.2 4.2 4.2

K = 10000 ±3.1 3.0 3.0 3.0 3.0 3.0

Table 4: Predicted bias and 95% CI for Monte Carlo partial EVPI estimate in case

study 2 using our proposed algorithm

repeated computations of EV PI(X20:31), but are still reasonably good estimates in

this context, and satisfactorily show the relationship between the choice of K and

the confidence interval width. We re-tested the algorithm using 101 outer samples

in step 1 rather than 21. The results, plotted in figure 6 show considerably closer

alignment between actual and predicted confidence interval widths, as we would

expect.

5.3 Results using Case Study 3

For case study 3, the predicted bias in EVPI estimates produced by our algorithm

for different numbers of inner samples J are shown in Table 3. The analysis suggests
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Figure 4: Comparison of Bias Predicted by Proposed Algorithm versus Exhibited

bias in Case Study 2.

that an inner sample of 1,000 would still produce an appreciable bias (2.42 on the

indexed scale).

In this case study, we tested different versions of our algorithm, extending the

number of inner iterations used within the algorithm from our originally specified

J = 30 up to 40, 50 and 60. We found some small variations but no appreciable

differences in assessing the order of magnitude of the predicted bias when using

greater than 30 inner iterations in our algorithm.

Table 6 shows the estimated the width of a 95% confidence interval for the partial

EVPI for various outer sample sizes, given an inner sample size of J = 1000. We can

see that the confidence intervals are fairly wide here, indicating a relatively large

outer sample size will also be needed, certainly in excess of K = 1000.

The results of our case study 2 analyses, on the basis of 630 model evaluations,

led us to establish that a likely minimum sample size for an accurate 2-level Monte
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Comparison of Confidence Intervals Predicted by ProposedAlgorithm 

versus Exhibited Confidence Intervals in Case Study 2
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Figure 5: Comparison of confidence interval widths predicted by the proposed algo-

rithm versus exhibited confidence interval widths in Case Study 2.

Carlo estimate will be of the order of 1 million model runs. Partial EVPI estimation

using the Monte Carlo approach was clearly infeasible because this would require

81 days computation time. At this point we moved on to utilise the more efficient

Gaussian Process model to approximate partial EVPI, the details of which are given

elsewhere (Tappenden et al., 2004).

6 Discussion

We have presented an algorithm for predicting the expected bias and confidence in-

terval widths for a Monte Carlo estimate of partial EVPI. Testing of the algorithm

against exhibited bias and confidence intervals in our first and second case studies

show that it provides predictions with the correct order of magnitude. Our third case

study provides an example where infeasibly long computation times would be re-
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Figure 6: Comparison of confidence interval widths predicted by the algorithm with

101 outer samples at step 1 versus exhibited confidence intervals in Case Study 2.

quired for accurate EVPI estimates and a Gaussian process meta-model was required

to emulate the original model and produce much quicker model runs (Tappenden

et al., 2004).

The algorithm can be applied generally to any decision model, and is not limited

to economic evaluation of health technologies. It can be applied to patient simulation

models (Brennan et al., 2006), where there is the additional complication of how

many patient simulations per parameter set to use (O’Hagan et al., 2007). It is also

applicable to models with any characterisation of uncertainty and is not limited to

continuous or parametric distributions.

The algorithm is very quick to compute. The time taken to compute predicted

biases and confidence intervals for the 36 options of inner J and outer K samples

in table 2 for case study 1 was just over 8 seconds. This compares with several

days computation to produce the 36,000 runs of actual two level partial EVPIs with
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Inner Predicted Bias Indexed

Samples (overall EVPI=100)

J = 500 £ 456 5.25

J = 1000 £ 214 2.42

J = 5000 £ 45 0.51

J = 10000 £ 20 0.22

Table 5: The predicted size of a bias in a Monte Carlo partial EVPI estimate for

parameter cost associated with health state EDSS 9.5, in case study 2.

Outer Samples K K=100 K=1,000 K=10,000 K=100,000

Absolute Value £ 11, 729 £ 3, 709 £ 1173 £ 371

Indexed to Overall EVPI 132.45 41.88 13.25 4.19

Table 6: Estimated Width of 95% confidence interval for a Monte Carlo partial

EVPI estimate for parameter cost associated with health state EDSS 9.5, for an

inner sample size J = 1000 and outer sample size K.

which to compare the predictions in Figures 2 and 3.

A limitation is that this procedure will be most useful for models that can run

fairly quickly (i.e. a few seconds per model run). For very computationally expensive

models, such as patient simulation models that can take an hour per run, we believe

a Gaussian meta-model approach is currently the only viable option for computing

EVPI.

One implication of considering the uncertainty in EVPI estimates explicitly is
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that decision makers and analysts may need to define some limit on how accurately

they wish to know the true EVPI for parameters of interest. Both case studies

suggest that relatively small numbers of inner and outer loops, such as K = J = 500

and a total of 250,000 model runs, provide a reasonable estimate of the order of

magnitude of the partial EVPI. The diminishing returns of higher numbers of inner

and outer iterations for EVPI accuracy are an unavoidable fact of the Monte Carlo

estimation process. In case study 1 moving from K = J = 500 to K = J = 1000 (an

additional 750,000 models runs taking 4 times longer) reduces the 95% CI from ±3.6

to ±2.5 on the indexed scale. At a further extreme, moving from K = J = 5, 000 to

K = J = 10, 000, an additional 75 million model runs reduces the 95% CI by just

0.3, from ±1.1 to ±0.8.

As partial EVPI calculations become more common in practice, we have a need

to be as efficient as possible in producing estimates (Claxton et al., 2004). We have

tested the algorithm on only two case studies here and further research would be

useful to test the performance of the algorithm in other models. The field of value

of information analysis is widening to consider expected value of sample information

(EVSI) (Ades et al., 2004), (Brennan and Kharroubi, 2007a) and the expected value

of perfect implementation (EVPImp) (Fenwick and Claxton, 2005). In many of these

analyses, the same issue of inner and outer sampling exists and it would be useful to

adapt our algorithm to these contexts and investigate its accuracy and usefulness.

In conclusion, this novel algorithm is easily and generally applied to compute

predicted bias and confidence intervals for Monte Carlo based estimates of partial
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EVPI in decision models. The algorithm is a relatively simple tool, using standard

results concerning uncertainty in Monte Carlo estimates, but extending them into

the context of nested expectations with intervening maxima. Our judgement is that

it should provide robust estimates in all kinds of decision models but further testing

of this may be useful. The algorithm is particularly useful when relatively small

numbers of inner and outer iterations are planned and is recommended for use when

reporting all Monte Carlo based partial EVPI calculations.
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