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Context of  this work: KmP
 Knowledge management solution at scale of Telecom 

Valley Sophia Antipolis (industrial & scientific park)
 http://www-sop.inria.fr/acacia/soft/kmp.html

 Competency management for Telecom Valley to:

1. provide an up-to-date snapshot of  the park;

2. facilitate partnerships between firms of  the park;

3. facilitate collaboration firms ↔ research institutes.

 Public semantic web portal & annotation of  firms

▫ common language to describe and compare needs and 
resources of  firms;

▫ steering committee = 11 firms working on ontologies: 
Amadeus, Philips Semiconductors, France Telecom, HP, IBM, 
Atos Origin, Transiciel, Elan IT, Qwam System Cross Systems



Some uses of  semantics
 Corese conceptual graph ↔ RDF/S search engine

 http://www-sop.inria.fr/acacia/soft/corese/

 Views of  the Telecom Valley on-the-fly:

▫ Combine models of  the economists and data from users

▫ Rules to enrich contributions & bridge different viewpoints 

▫ Semantic query constructors to find partners, build 
consortiums, extract indicators, build statistics, sort and 
group results, etc. [Corby et al.]

 Ontology-based metrics based on graph structure SW

▫ Approximate query: semantic query relaxation [Corby et al.]

▫ Interface inferences: visualization and navigation

▫ Cartography: clustering algorithms to produce SVG
views of  similar competences in the Telecom Valley













Clustering competencies
 Dynamic up-to-date cartography of  competencies in 

technological park and grouped in clusters.

▫ built from visual representations the users are used to;

▫ they came up with a “readable representation of  the 

clusters of  competencies in the technological pole”:
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1: Readability implies an expressivity
 Motivating scenario: requirement on the ontology

 Models from management & economics [Lazaric & Thomas]

 Four facets to describe a competence

▫ E.g. “designing microchips for the 3G mobile market using 

GSM, GPRS and UMTS”

▫ an action (design);

▫ a deliverable (microchip);

▫ a market (3G mobile technology);

▫ a set of  resources (GSM, GPRS, UMTS)

 Each facet is formalized in a module of  the ontology.

~1400 concept types and 90 relation types

Similarity of

competence

≡ similar actions

and resources



2: Readability implies inferences
 Monothetic clustering algorithm     [Jain, Murty & Flynn]

1. chose a market to limit analysis: sub-types are considered, 
ancestors/siblings are discarded.  closure of  subtype;

2. group competences by similarity of  resources (cluster);

3. in each cluster, group competences by similarity of  action 
(bubbles).

 Evaluating conceptual relatedness [Collins & Loftus]

[Rada et al.] [Resnik][Jiang & Conrath][Wu &Palmer]

▫ early works on humans’ semantic memory [Quillian]

▫ many forms of  relatedness e.g. complementarity, similarity

▫ here similarities based on shared definitional features

▫ concept type hierarchy supporting similarity reasoning

▫ apply spreading algorithm to simulate distance



Example in conceptual graphs [Sowa]

 Non binary projection based on a similarity 

S:C²→[0,1]

 When the targeted module of  hierarchy is a tree:

 Used in information retrieval: approximate query
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From distance to clusters
 Cluster competencies and control level of  detail

▫ a dendrogram provides a clustering with chosen granularity

▫ a dendrogram relies on an ultrametric

dist(t1,t2)  max(dist(t1,t'), dist(t2,t'))    for any t'
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Transform hierarchy into dendrogram
 First transformation, maximal distance to the least 

common supertype:

 But no added value compared to the direct use of  the 

ontology depth to control the level of  detail
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Refine transformation
 Take into account depth of  hierarchy below least 

common supertype: a measure of  the loss of  details
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Characteristics of  this distance 
 distCH is an ultrametric (see paper)

▫ distCH(t,t) =0

▫ distCH(t1,t2) = distCH(t2,t1)

▫ distCH (t1,t2) = 0  t1=t

▫ t’ distCH (t1,t2)  max(distCH(t1,t'), distCH(t2,t'))

 Thus distCH generates more levels than distMH and the

proportionally by the square of maximal depth

 One bound per depth i.e. distMax(d+1)< distMin(d)

▫ the clustering respects the ontology hierarchy

▫ children of a shallow class will be grouped first

 A name can be given to every cluster Cl

Name(Cl) = Name (LCST({t ; type t  Cl}))



Ready for cartography
 2 dendrograms from 2 ontologies (resources, actions)

to control the vocabulary used for descriptions
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Display: ontology & angular distance

 The size of  the cluster  radius

 The type of  resources used by

competences in cluster  angle

derived from place of  resource

classes in ontology:

▫ top-down favours structure of  upper modules

▫ bottom-up favours the detailed branches

▫ here: top-down division to divide equally between domains
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Evaluation (1/2)
 Usage & ergonomics

▫ simple widgets & real-time display for levels of  detail

▫ cluttered centre while it contains important information

▫ customize graphical elements (colors, angles, labels)

▫ ability to post-process the results

▫ ability to capture the dynamics (history, previsions)

▫ provide predicted time to compute a clustering

 Complexity & response time (n, m number resources, actions)

▫ Parsing the schema to build the tree: O(n+m)

▫ Initializing depth and angular distribution: O(n+m)

▫ Sorting the dendrogram: O(nlog(n)+ mlog(m))

▫ n' and m' levels of  detail in dendrograms of  resources and actions : 

n'm' queries for clustering

1≤n' ≤596 1≤m' ≤118 1≤ n'm' ≤ 70 328



Evaluation (2/2)
 Pentium 4 M / 1.7GHz / 512 Mb Windows XP Pro

▫ average minimum time (1 query) is 86 milliseconds.
▫ average maximum time (70 328 queries) is 11 minutes.
▫ average typical time (981 queries) is 9 seconds.

 linear regression ~ y= x 8.42+89.24

▫ rapid way to foresee the duration of  a clustering

▫ level above which it is better to rely on reporting in batch
mode rather than real-time calculation; typically above 15 
seconds of  response time i.e. above n'm'=2000
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Conclusion
 KmP: industrialization phase

▫ from 20 pilot companies to 70 user companies

▫ more and more public research centers

▫ taken over by a start-up

 Graph structure of  semantic web formalisms and 

inferences in retrieval, clustering, visualization

▫ proved the characteristics of  the metrics and inferences 

▫ inferences: domain-independent and reusable

▫ other inferences on these graph structures

 Experiments to evaluate and compare simulated 

metrics with the ones humans naturally use.



Thank you.
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