
HAL Id: inria-00438223
https://hal.inria.fr/inria-00438223

Submitted on 17 May 2015

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Semantic Service Substitution in Pervasive
Environments

Noha Ibrahim, Frédéric Le Mouël, Stéphane Frénot

To cite this version:
Noha Ibrahim, Frédéric Le Mouël, Stéphane Frénot. Semantic Service Substitution in Pervasive En-
vironments. International Journal of Services, Economics and Management, Inderscience publishers,
2014, 6 (4), pp.283-309. �10.1504/IJSEM.2014.068244�. �inria-00438223�

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by INRIA a CCSD electronic archive server

https://core.ac.uk/display/49523549?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://hal.inria.fr/inria-00438223
https://hal.archives-ouvertes.fr

Semantic Service Substitution in Pervasive
Environments

N. Ibrahim*, F. Le Mouël** and S.
Frénot**

*University of Grenoble
LIG - Grenoble Informatics Laboratory
F-38402 St Martin d’Heres, Grenoble, France
**University of Lyon
INSA-Lyon, INRIA CITI Lab
F-69621 Villeurbanne, France
E-mail: noha.ibrahim@imag.fr, frederic.le-mouel@insa-lyon.fr (cor-
responding author) and stephane.frenot@insa-lyon.fr

Abstract: A computing infrastructure where “everything is a service”
offers many new system and application possibilities. Among the main
challenges, however, is the issue of service substitution for the appli-
cation execution in such heterogeneous environments. An application
would like to continue to execute even when a service disappears, or
it would like to benefit from the environment by using better services
with better QoS when possible. In this article, we define a generic ser-
vice model and describe the equivalence relations between services con-
sidering the functionalities they propose and their non-functional QoS
properties. We define semantic equivalence relations between services
and equivalence degree between non-functional QoS properties. Using
these relations we propose semantic substitution mechanisms upon the
appearance and disappearance of services that fit the application needs
in a pervasive environment. We developed a prototype as a proof of
concept and evaluated its efficiency over a real use case.

Keywords: service-oriented architecture, service substitution, seman-
tic matching, semantic distance, quality of service, z-score, equivalence
relations

Reference

Biographical notes: Noha Ibrahim holds a ’Diplôme d’Ingénieur’
from the Ecole Nationale Supérieure d’Informatique et de Mathématique
Appliquée de Grenoble (ENSIMAG), and a PhD from National Institute
for Applied Sciences (INSA Lyon). Her dissertation focused on provid-
ing a spontaneous service integration middleware adapted for pervasive
environnements. Noha Ibrahim is currently Associate Professor in the
Grenoble Informatics Laboratory (LIG) where she works on service com-
position framework for optimizing queries and data mining for multime-
dia applications.
Frédéric Le Mouël is currently Associate Professor in the National In-
stitute for Applied Sciences of Lyon (INSA Lyon), Telecommunications
Department - high-ranked school in France, part of the University of
Lyon. He conducts his research in the Center for Innovation in Telecom-

Copyright c© 2015 Inderscience Enterprises Ltd. - author postprint, original at 10.1504/IJSEM.2014.068244

2 Semantic Service Substitution in Pervasive Environments

munication and Integration of Services (INRIA CITI Lab.) where he is
leading the Dynamic Software and Distributed Systems for the Internet
of Things research group (DynaMid Team). He joined Shanghai Jiao
Tong University (SJTU) as Visiting Professor in 2013. His main in-
terests are distributed systems, operating systems, middleware, virtual
machines, programming languages, especially in dynamic and autonomic
environments.
Stéphane Frénot holds a ’Diplôme d’Ingénieur’ from INSA Lyon, and a
PhD from University Lyon I about distributed information systems in
hospitals. Stéphane Frénot is currently Professor at the Center for Inno-
vation in Telecommunication and Integration of Services (INRIA CITI
Lab.), Telecommunications Department of the National Institute for Ap-
plied Sciences of Lyon (INSA Lyon) and in the Rhône-Alpes Complex
Systems Institute (IXXI). He is co-heading the INRIA Dice team and is
particularly interested in data, web, programming and geopolitics.

1 Introduction

A computing infrastructure (Erl, 2005) where “everything is a service” offers
many new system and application possibilities. Among the main challenges, how-
ever, is the issue of service substitution for the application execution in such hetero-
geneous environments. An application would like to continue to execute even when
a service disappears, or it would like to benefit from the services in the environment
by using better services with better quality of service when possible.

A service publishes a functional interface, describing all the operations that
the service can execute. This description is based on semantics and ontologies
(Bittner, Donnelly, and Winter 2005) as pervasive environments (Weiser, 1991;
Satyanarayanan, 2001) are populated with services from different providers and
technologies. Besides the semantic interface description, the interface operations
have non-functional properties corresponding to their quality of service. Many mid-
dleware and architectures proposed solutions for service substitution (Fredj, Geor-
gantas, and Issarny, 2008) or service adaptation (Floch ed., 2006), but very few
described by models, definitions and metrics semantic service substitution adapted
for pervasive environments and based on functional interface matching and quality
of service computing.

The major contributions of the article are in defining and formalising:

• The equivalence relations between services considering the functionalities they
propose via their functional interfaces. We define and formalise the service
model and the service equivalence relations based on the semantic description
of their interfaces and operations. Theses relations allow to define if two
services are functionally equivalent or not.

• The QoS degree equivalence functions between the operations and the ser-
vices. Services can be functionally equivalent but offer and/or require dif-
ferent parameters for quality of service. The QoS equivalence degree gives a

3

metric that indicates how close two services are in terms of their quality of
services.

• Service substitution mechanisms for applications executing in pervasive envi-
ronments. Based on service equivalence relations and QoS equivalence degree,
the pervasive environment can decide to substitute services by functionally
equivalent ones, with better QoS computed via the QoS equivalence degree.
These service substitution are done transparently and spontaneously as ser-
vices appear and disappear in the environment with the users coming and
leaving.

To define, formalise and explain our relations and metrics we adopted the fol-
lowing model. The “DEFINITION” paragraphs define the relations and functions
between concepts, operations and services using simple grammar and language,
whereas the “EXAMPLE” paragraphs illustrate and explain these definitions via a
use case.

We begin in section 2 by exposing the state of the art. We define in section
3 the service equivalence relations and the non-functional QoS degree equivalence
metrics. We then explain in section 4 the semantic service substitution in pervasive
environments. Section 5 details the developed proof-of-concept prototype and its
results. Finally, section 6 concludes and gives perspectives for this work.

2 State of the Art

In pervasive environments, service substitution (Fredj, Georgantas, and Is-
sarny, 2008; Santhanam, Basu, and Honavar 2009) and service similarity problems
(Kokash 2006; BenMokhtar, 2007; Bachir and Fauvet, 2009) have become the new
trends in the service-oriented community after the service discovery and service
composition problems. Once services are deployed, accessed, executed and com-
posed, the pervasiveness of the environment imposes researchers to find solutions
for the service unavailability problem. Indeed, in a pervasive environment, services
can come and go without prior notification and finding the right substitute for a
given service is very often a hard task to achieve. In the literature, we distinguish
three types of service similarity: those concerning the structural part or functional
property of services, those concerning the behavioural part of services and those
that deal with the non-functional properties of services.

Structural similarity between services (Kokash 2006) is a functional matching
algorithm between the interface WSDL descriptions of Web services. The algo-
rithm takes the description of Web services and is able to tell if the two services are
similar using a semantic similarity metric. But this work need to be optimised and
especially the non-functional parts of services need to be taken into account. Perse
(BenMokhtar, 2007) proposes a QoS metric for Web services based on normaliza-
tion functions but this metric is used to dynamically compose services together.
Perse does not consider service substitution as a separate problem from service
composition. Finally, EurekaBESERIAL (Bachir and Fauvet, 2009) proposes an
algorithm that is capable of detecting all the incompatibilities between two inter-
face behaviour for Web services and based on these incompatibilities it introduces

4 Semantic Service Substitution in Pervasive Environments

a similarity function to compare two Web service behaviour but it does not take
into account the non-functional properties of services.

Some works deal with service substitution (Fredj, Georgantas, and Issarny, 2008;
Santhanam, Basu, and Honavar 2009). Siroco (Fredj, Georgantas, and Issarny,
2008) proposes a framework that substitutes stateful Web services, taking into ac-
count the state of a service when executing and ensuring to applications a service
continuity when substituting the service. But Siroco does not deal for now with
non-functional properties. Santhanam, Basu, and Honavar (2009) propose a Web
service substitution based on preferences over non-functional attributes but their
description of non-functional properties is not general enough to take all types of
non-functional properties into consideration. In this article, we do not limit our
model to Web services as all major systems do but propose a general model of
a service, describing its functional and non-functional properties (quantitative or
qualitative) and based on this model we propose different metrics for computing
non-functional service similarities. Than, we propose a mechanism for service sub-
stitution that substitute services not only upon their unavailability as the major
systems do, but also when a new service fits better an application.

3 Service Functional and Non-Functional QoS Equivalence Relations

3.1 Service Model

We define a generic service model as composed of a functional interface and
non-functional QoS properties. A functional interface specifies operations that can
be performed on the service. An operation is described by a concept, a set of
inputs and an output. The QoS non-functional properties describe the operation
capabilities. These capabilities reflect the quality of the functionality expected from
the service, such as dependability (including availability, reliability, security and
safety), accuracy of the operation, speed of the operation, and so on. The service is
also semantically described. The semantic description is upon the operations and
QoS properties and is based upon common ontology concepts.

Consider finite sets of grammatical alphabet Σ, ontologies O, concepts N be-
longings to these ontologies O, operations Op, inputs In, outputs Out, concepts Cpt,
non-functional properties Np, quantitative and qualitative non-functional properties
NpQN , NpQL. Consider the following operators: ∗ (repetition zero or more times), +

(repetition one or more times), | | (the number of occurrences) and 0..1 (repetition
zero or one time).

We define an operation op belonging to Op ⊂ Op as follows:

(op ∈ Op ⇔ ∃ In ⊂ In, ∃ Out ⊂ Out, ∃ cpt ∈ Cpt, ∃ Np ⊂ Np, ∃ NpQN ⊂
NpQN , ∃ NpQL ⊂ NpQL):

5

op : < In∗, Out0..1, cpt, Np∗ >

in : < name, type, semantic >, name ∈ Σ∗

out : < type, semantic >
cpt : < name, semantic >, name ∈ Σ∗

type : < language, name >, {name, language} ∈ Σ∗

semantic : < o, n >, o ∈ O ⊂ O, n ∈ N ⊂ N

np : < Np∗QL, Np
∗
QN >

npQL : < name, semantic >, name ∈ Σ∗

npQN : < name, numericV alue, operator >, name ∈ Σ∗

numericV alue ∈ R
operator : {<, >, ≤, ≥}

where:

• In is the set of the operation op inputs. in is defined as a tuple where name
is the chosen input syntactic name, type is the syntactic input type, and
semantic the input semantic description.

• out ∈ Out is the operation op output. out is defined as a tuple where type
is the output syntactic type, and semantic its semantic description.

• cpt is the concept the operation op defines. The operation op concept cpt
is defined as a tuple, where name is the syntactic name through which the
operation is called and semantic its semantic description.

• Np is the set of non-functional properties characterizing op. Np can be quali-
tative or quantitative. npQN ∈ NpQL is the qualitative non-functional prop-
erties defined as a tuple < name, semantic >. npQN ∈ NpQN is the quanti-
tative non-functional properties defined as a tuple, where numericV alue ∈ R
and operator ∈ {>, <, ≤, ≥}. operator specifies the order applied to
numericV alue. For {>, ≥} the greater the numericV alue is, the best is
the QoS property for the service runtime execution. For {<, ≤} the smaller
the numericV alue is, the best is the QoS property for the service runtime
execution.

The type depends strongly on the programming language the op is defined in,
whereas the semantic is independent of the technology and more related to the set
of defined ontologies O.

Our service model is general enough to respect the SOA specifications, and to
offer a common model to the heterogeneous technologies usually available in perva-
sive environments. The model proposes semantic descriptions relying on common
ontologies, and by that it allows to abstract from the programming languages.

Example 1 We consider three operations (cf. figure 1) and three interfaces (cf.
figure 2) described under the generic service model. Each operation has a set of in-
puts described by a name, a type, and a semantic description, an output described
by a type and a semantic description, and a concept described by a name and a se-
mantic concept. Each operation can have one or several non-functional properties,

6 Semantic Service Substitution in Pervasive Environments

qualitative or quantitative. These three operations (cf. figure 1) and three inter-
faces (cf. figure 2) are used in the following examples to illustrate the upcoming
definitions.

Figure 1 Three operation specifications

Figure 2 Three interface specifications

3.2 Service Equivalence Relations

Service equivalence relations determine whether two services offer the same func-
tionality or not. A service is considered equivalent to another one if it can offer the
same functionality (same interface) even with different non-functional QoS proper-
ties. The aim of this section is to provide definitions of possible relations between
services in order to identify and decide when a service can be replaced by another

7

one. Two relations are introduced: the equivalence (≡) and the almost equivalence
(.) relations. In an equivalence relation, the two equivalent entities can interchange
and be replaced one by the other. The equivalence relation is reflexive, symmetric,
and transitive. In an almost equivalence relation only one entity can replace the
other one. This relation is non reflexive, asymmetric, and transitive. It is based
on sub-concept relations in the ontologies used to describe services of the environ-
ments. The relations tackle two main parts of a service: its functional interface
and its non functional QoS properties. In the rest of this section, we define our
interface equivalence relations and our non-functional QoS equivalence degree.

We define the interface equivalence ≡sem upon the operation equivalence which
itself is defined upon a concept matching MCpt with concepts belonging to a de-
fined ontology. We begin by defining the concept matching of a given ontology.

Concept matching

The matching of two concepts belonging to the same ontology has been widely
studied. We define our matching relation MCpt between concepts belonging to
the same ontology. A concept n belonging to an ontology o (figure 3), can pro-
vide all its immediate sub-concepts n1 and n2 or one of its sub-concepts n1 or
n2. This distinction depends strongly on the ontology definitions and providers.
Some research such as Paolucci (Paolucci et al., 2002) made the assumption that
by selecting a concept n, we implicitly suppose that it provides all its immedi-
ate sub-concepts, others made the other assumption that by selecting a concept
n, it provides at least one of its immediate sub-concepts, but not necessarily all
of them. Consider the set {n1, n2, .., nn} of all the sub-concepts of a concept n
in an ontology o, the assumption of Paolucci (Paolucci et al., 2002) is formalised
as follows: n ≡provide (n1 ∧ n2 ∧ ... ∧ nn) which means that n can replace n1,
n2, etc. Others, do not make strong assumptions as this and suppose that a con-
cept n provides one or more of its sub-concepts but not necessarily all of them,
n ≡provide (n1 ∨ n2 ∨ ... ∨ nn). We fall into the first category, stipulating that a
super-concept offers what its sub-concepts offer, and hence can replace them.

Figure 3 An ontology example

Defining n and m, two concepts belonging to the same ontology o. We define
the four values of concept matching MCpt inspired from Paolucci (Paolucci et al.,
2002) as follows:

Definition 1 — MCpt(n,m) = Exact

If n and m are equivalent concept

8 Semantic Service Substitution in Pervasive Environments

Definition 2 — MCpt(n,m) = PlugIn

If n is a super−concept of m

Definition 3 — MCpt(n,m) = Subsume

If n is a sub−concept of m

Definition 4 — MCpt(n,m) = Fail

If n and m do not verify the above conditions

Example 2 Using our ontology example figure 4, we give an example of MCpt.

Example MCpt(
′′content′′, ′′electronic′′) = PlugIn

MCpt(
′′document′′, ′′URL′′) = PlugIn

MCpt(
′′paper′′, ′′document′′) = Subsume

MCpt(
′′content′′, ′′path′′) = Fail

Figure 4 A document ontology example

These concept matching values are the metrics employed to match operations
and interfaces of services. We first define the values that the matching of operations
can take, and based on these values we define when two operations are equivalent
or almost equivalent.

Semantic operation equivalence

Definition 5 — Comparable Operations ∝
We define two operations opi and opj to be comparable (∝ (opi, opj) = true) if they
have the same number of inputs and the same number of outputs and if it exists a
bijection f over their inputs allowing to compare the inputs parameters two by two.
∀ k, l ∈ {1..|Inopi|}

|Inopi| = |Inopj | ∧ (|Outopi| = |Outopj |)
∧ (∃ f : Inopi → Inopj , ∀ inl ∈ Inopj , ∃! ink ∈ Inopi, f(ink) = inl)

∀ {i, j, l, k} ∈ N, we define the semantic matching, Msem(opi, opj), of two com-
parable operations opi and opj (∝ (opi, opj) = true), considering the semantic
matching of their concepts, inputs and outputs.

We can quickly realize that the semantic matching of these three items - inputs,
outputs, and concepts - can be different, as the concept matching can take multiple

9

values. In a semantic matching, the three items can range from Exact matching to
Fail passing by the PlugIn and Subsume values.

We define the different values a semantic matching Msem between two operations
opi and opj can take as follows:

Definition 6 — Msem(opi, opj) = Exact

Two operations opi and opj verifying (∝ (opi, opj) = true) are Exact semantic
matching if all the matching values between concept, inputs and output are Exact.
∀ k ∈ N:
(MCpt(semcptopi

, semcptopj
) = Exact)

∧ (∀ ink ∈ Inopi , MCpt(semink
, f(semink

)) = Exact)
∧ (MCpt(semoutopi

, semoutopj
) = Exact)

Definition 7 — Msem(opi, opj) = PlugIn

They are PlugIn semantic matching if they are not Exact matching and all the
matching between concept, inputs or output values are Exact or PlugIn. ∀ k ∈ N:
Msem(opi, opj) 6= Exact
∧ (MCpt(semcptopi

, semcptopj
) ∈ {Exact ∨ PlugIn})

∧ (∀ ink ∈ Inopi
, MCpt(semink

, f(semink
)) in {Exact ∨ PlugIn})

∧ (MCpt(semoutopi
, semoutopj

) ∈ {Exact ∨ PlugIn})

Definition 8 — Msem(opi, opj) = Subsume

They are Subsume semantic matching if they are no Exact or PlugIn matching
and at least one matching value between concept, inputs or output is Subsume and
no Fail matching value is found between outputs, concepts, and the corresponding
comparable inputs. ∀ k ∈ N:
Msem(opi, opj) 6= Exact
∧ (Msem(opi, opj) 6= PlugIn)
∧ (MCpt(semcptopi

, semcptopj
) = ¬(Fail))

∧ (∀ ink ∈ Inopi
, MCpt(semink

, f(semink
)) = ¬(Fail))

∧ (MCpt(semoutopi
, semoutopj

) = ¬(Fail))

Definition 9 — Msem(opi, opj) = Fail

They are Fail semantic matching if they have different inputs or outputs numbers
or at least one semantic matching value between concepts, inputs or outputs is Fail.
∀ {k, l} ∈ N:
(|Inopi

| 6= |Inopj
|)

∨ (|Outopi
| 6= |Outopj

|)
∨ (MCpt(semcptopi

, semcptopj
) = Fail)

∨ (∃ ink ∈ Inopi , ∀ inl ∈ Inopj , MCpt(semink
, seminl

) = Fail)
∨(MCpt(semoutopi

, semoutopj
) = Fail)

Example 3 Considering the three operations defined in figure 1

10 Semantic Service Substitution in Pervasive Environments

The semantic matching between these operations give the following values:

MCpt(Printing, Impression) = PlugIn
MCpt(Printing, Printer) = PlugIn
MCpt(Impression, Printer) = Subsume
MCpt(Impression, Printing) = Subsume
MCpt(Printer, Printing) = Subsume
MCpt(Printer, Impression) = PlugIn

The semantic operation matching provides the tools to define when operations
are equivalent or almost equivalent.

Definition 10 — Operation equivalence

We define two operations opi and opj to be semantically equivalent ≡sem if:

(≡sem (opi, opj) = true) ⇔ (Msem(opi, opj) = Exact)

The operation equivalence ≡sem is reflexive, symmetric, and transitive. We
notify that the semantic equivalence satisfies the conditions an equivalence relation
< needs to fulfill.

Definition 11 — Operation almost equivalence

We define two operations opi and opj to be semantically almost equivalent .sem if:

(.sem(opi, opj) = true) ⇔ (Msem(opi, opj) = PlugIn)

The almost equivalence is non reflexive, asymmetric, and transitive. This rela-
tion of almost equivalence specifies that opi is equivalent to opj and can replace it
but that the contrary is not true. opj can not always replace opi.

Example 4 Coming back to our example in figure 1, where we had these matching
values between the three operations Printing, Impression, and Printer:

MCpt(Printing, Impression) = PlugIn
MCpt(Printing, Printer) = PlugIn
MCpt(Impression, Printer) = Subsume
MCpt(Impression, Printing) = Subsume
MCpt(Printer, Printing) = Subsume
MCpt(Printer, Impression) = PlugIn

we can conclude the following almost equivalent relations:

.(Printing, Impression) = true

.(Printing, Printer) = true

.(Printer, Impression) = true

Now that we have defined the operation equivalence relations, we define the in-
terface equivalence relations and by that we define when two services are equivalent
or almost equivalent.

11

Interface equivalence

We define two interfaces to be comparable (∝ (ifci, ifcj) = true) if they have
the same number of operations and if it exists a bijection f over their operations
allowing to compare them two by two:

Definition 12 — Comparable interfaces ∝
We define two interfaces ifci and ifcj to be comparable (∝ (ifci, ifcj) = true) if:

|Opifci | = |Opifcj |
∧ (∃ f : Opifci → Opifcj , ∀ opl ∈ Opifcj , ∃! opk ∈ Opifci , f(opk) = opl)

As for operations we define the semantic matching between two interfaces ifci
and ifcj :

Definition 13 — Msem(ifci, ifcj) = Exact

Two interfaces ifci and ifcj are Exact semantic match if ∝ (ifci, ifcj) = true and:

∀opi ∈ Opifci , Msem(opi, f(opi)) = Exact

Definition 14 — Msem(ifci, ifcj) = PlugIn

They are PlugIn semantic match if ∝ (ifci, ifcj) = true, and:

Msem(ifci, ifcj) 6= Exact
∧ (∀opi ∈ Opifci , Msem(opi, f(opi)) ∈ {Exact ∨ PlugIn})

Definition 15 — Msem(ifci, ifcj) = Subsume

They are Subsume semantic match if ∝ (ifci, ifcj) = true, ifci and ifcj are not
Exact nor PlugIn semantic match and:

Msem(ifci, ifcj) 6= Exact
∧ (Msem(ifci, ifcj) 6= PlugIn)
∧ (∀opi ∈ Opifci , Msem(opi, f(opi)) ∈ {Exact ∨ PlugIn ∨ Subsume})

Definition 16 — Msem(ifci, ifcj) = Fail

They are Fail semantic match if:

∝ (ifci, ifcj) = false
∨ (∃ opi ∈ Opifci , ∀ opj ∈ Opifcj , Msem(opi, opj) = Fail)

It is sufficient to have only one operation opi of ifci that do Fail match with
any operation opj of ifcj to declare that the two services matching fails.

Based on these interface semantic matching definitions, we define the interface
equivalence and almost equivalence.

12 Semantic Service Substitution in Pervasive Environments

Definition 17 — Interface equivalence

We define two interfaces ifci and ifcj to be semantically equivalent ≡sem if:

(≡sem (ifci, ifcj) = true) ⇔ (Msem(ifci, ifcj) = Exact)

The equivalence ≡sem is reflexive, symmetric, and transitive.

Definition 18 — Interface almost equivalence

We define two services ifci and ifcj to be semantically almost equivalent .sem if:

(.sem(ifci, ifcj) = true) ⇔ (Msem(ifci, ifcj) = PlugIn)

As for operations, the almost equivalence is non reflexive, non symmetric, and
transitive. This relation of almost equivalence specifies that ifci is equivalent to ifcj
and can replace it but that the contrary is not true. ifcj cannot always replace ifci.

Example 5 Considering the three interfaces and their semantic descriptions in
figure 2:

The semantic matching between their different operations gives the following
values:

∝ (ifc1, ifc3) = true
∧ (Msem(op1ifc1, op1ifc3) = PlugIn)
∧ (Msem(op2ifc1, op2ifc3) = PlugIn)

We can implies ⇒ (.sem(ifc1, ifc3) = true)

The two interfaces ifc1 and ifc2 are not comparable as they do not have the same
number of operations. Nevertheless, some of their operations are PlugIn semantic.

Many services do not have the same number of operations per interface as
depicted in example 5. To resolve this issue brought by the example. We define
the matching over a set of operations for two interfaces ifci and ifcj .

Definition 19 — MOp
sem(ifci, ifcj) = Exact

Two interfaces ifci and ifcj are Exact semantic matching over a subset of operations
Op, if:

∝Op (ifci, ifcj) = true
∧ (Op ⊂ Opifci , ∀opi ∈ Op, Msem(opi, f(opi)) = Exact)

Definition 20 — MOp
sem(ifci, ifcj) = PlugIn

Two services ifci and ifcj are PlugIn semantic matching over a subset of operations
Op, if:

∝Op (ifci, ifcj) = true
MOp

sem(ifci, ifcj) 6= Exact
∧ (Op ⊂ Opifci , ∀opi ∈ Op, Msem(opi, f(opi)) ∈ {Exact ∨ PlugIn})

13

We thus define interface equivalence and almost equivalence between interfaces
over a subset of operations:

Definition 21 — Interface equivalence over a subset of operations, ≡Op
sem

We define two interfaces ifci and ifcj to be semantically equivalent over a subset of
operations Op:

(≡Op
sem (ifci, ifcj) = true) ⇔ (MOp

sem(ifci, ifcj) = Exact)

Definition 22 — Interface almost equivalence over a subset of operations, .Op
sem

We define two services ifci and ifcj to be semantically almost equivalent over a
subset of equivalence Op:

(.Op
sem(ifci, ifcj) = true) ⇔ (MOp

sem(ifci, ifcj) = PlugIn)

Example 6 Coming back to our example in figure 2. The semantic matching be-
tween the different operations of ifc1 and ifc2 gives the following values:

∝op1ifc1,op2ifc1 (ifc1, ifc2) = true
∧ (Msem(op1ifc1, op1ifc2) = PlugIn)
∧ (Msem(op2ifc1, op3ifc2) = PlugIn)

From these matching values, we can implies ⇒ (.
{op1ifc1, op2ifc1}
sem (ifc1, ifc2) =

true)

The two interfaces ifc1 and ifc2 are almost equivalent upon the two operations
of ifc1.

This equivalence and almost equivalence over subsets of operations is useful for
service substitution issues, as a service can be replaced by another one if certain
operations are specified to be required by applications at a given time.
Many services can be almost equivalent and we need to be able to rank between
these almost equivalence relations. A ranking of the semantic matching values need
to be introduced. This ranking will help ordering services that have semantic al-
most equivalence with different concept values for the respective operations’ inputs,
outputs and concepts. It is also used to rank interfaces and operations that have
Subsume semantic matching. This operations’ ordering allows users and appli-
cations to choose services that best suit their requirements at a given time, and
re-adapt their choice if other services that have a closer semantic equivalence ap-
pear. We introduce a semantic distance Dsem between two interfaces. It calculates
the distance between two interfaces semantic descriptions. The more this value is
closer to zero the more these two services are equivalent.

14 Semantic Service Substitution in Pervasive Environments

Semantic distance

Definition 23 — Concept semantic distance

We first define a normalised concept distance DCpt between two concepts n and m:

DCpt(n,m) : 0 if MCpt(n,m) = Exact
0.2 if MCpt(n,m) = PlugIn
0.8 if MCpt(n,m) = Subsume
1 if MCpt(n,m) = Fail

The closer the distance is to zero, the best is the semantic value matching be-
tween two concepts. An Exact value is preferred to a PlugIn one, which is preferred
to a Subsume one. The choice of values can vary. The idea is to assign different
values and especially values that reflect the importance of the matching result. In
this definition we chose to distinguish to Exact and PlugIn from Subsume and Fail.
Other values more ponderated can be chosen.

Definition 24 — Operation semantic distance

We define the semantic distance between two comparable operations opi and opj
(∝ (opi, opj) = true): (Dsem(opi, opj), i, j ∈ N). This semantic distance is the
sum of the ponderated concept distance of the operation concept, inputs and output
semantic description:

w1 ∗DCpt(semcptopi, semcptopj) + w2 ∗DCpt(semoutopi , semoutopj) +∑|Inopi|
k=1 (wk ∗DCpt(seminkopi

, semf(inkopi)))

where
∑

i∈N(wi) = 1
wi corresponds to the weight we wish to give to the concept, inputs and output.
When matching two operations, the focus may be put on inputs, outputs parameters
or on the concept. wi allows to ponderate the ranking of operations.

Definition 25 — Interface Semantic Distance

The semantic distance between two comparable interfaces (Dsem(ifci, ifci) i, j ∈ N)
is the sum of all the semantic distance between their comparable operations,
ponderated by a weight allowing to focus on some operations rather than others.∑|Opifci

|
k=1 (wk ∗Dsem(opkifci , f(opkifci)))

Example 7 We come back to our example and calculate the semantic distance
Dsem of our three operations:

DCpt(
′′printer′′,′′ printer′′) = 0

DCpt(
′′document′′,′′ URI ′′) = 0.2

DCpt(
′′state′′,′′ state′′) = 0

=> Dsem(printing, printer) = w2 ∗ 0.2

15

DCpt(
′′printer′′,′′ printer′′) = 0

DCpt(
′′document′′,′′ path′′) = 0.2

DCpt(
′′state′′,′′ state′′) = 0

=> Dsem(printing, impression) = w2 ∗ 0.2

The operations Printing is PlugIn matching with Impression and Printer and
has the same semantic distance value to both operations.

DCpt(
′′printer′′,′′ printer′′) = 0

DCpt(
′′path′′,′′ document′′) = 0.8

DCpt(
′′state′′,′′ state′′) = 0

=> Dsem(impression, printing) = w2 ∗ 0.8

The overall value of DCpt(printing, impression) < DCpt(impression, printing)
and is normal as printing is PlugIn of Impression and Impression Subsume of
Printing (see example 3).

Example 8 We come back to our example and calculate the semantic distance
Dsem of our interfaces:

DCpt(op1ifc1, op1ifc3) = 0.2
DCpt(op2ifc1, op2ifc3) = 0.2

=> Dsem(ifc1, ifc3) = w1 ∗ 0.2 + w2 ∗ 0.2

DCpt(op1ifc1, op1ifc2) = 0.2
DCpt(op2ifc1, op3ifc2) = 0.2

=> Dsem(ifc1, ifc2) = w1 ∗ 0.2 + w2 ∗ 0.2

The overall values of DCpt(ifc1, ifc3) and DCpt(ifc1, ifc2) depends on the val-
ues assigned to the weights (w1 and w2).

In our semantic distance calculation example, we gave the three items of an
operation - inputs, output, and concept - the same importance. We can ponderate
the semantic distance by introducing weights to each of the operation items.

The equivalences introduced so far concern the interfaces of services. If two
services can publish the same interface, they can provide different non-functional
properties. If we are able to distinguish services by their functionalities, it is inter-
esting to evaluate how equivalent services are in terms of non-functional QoS prop-
erties. In the following section, we define a metric to calculate the non-functional
QoS equivalence degree for the services that are equivalent and almost equivalent.

3.3 Non-Functional QoS Equivalence Degree

Services can be semantically equivalent, almost equivalent, or having Subsume
matching relations. These equivalence are based on the functional aspect of ser-
vices. Services can offer the same functionalities but with different non-functional
QoS properties. We will define a metric that measures the non-functional QoS de-
gree of equivalence. This metric allows to assign a normalised degree that measures

16 Semantic Service Substitution in Pervasive Environments

the degree of non-functional QoS similarities between two equivalent, almost equiv-
alent, or Subsume matching services. These degrees are used to choose between
diverse services providing different non-functional QoS properties, but offering sim-
ilar functionalities.

The non-functional QoS of an operation is defined as follows:

Definition 26 — non-functional QoS properties

Consider a finite set of grammatical alphabet Σ, ontologies O, concepts N belongings
to these ontologies O, non-functional QoS properties Np, quantitative non-functional
properties NpQN , and qualitative non-functional properties NpQL. Considering an
operation op we define its non-functional QoS as follows:

Np :
{
Np∗QL, Np

∗
QN

}
NpQL = {np1QL, np2QL, .. npkQL} , k = |NPQL|
NpQN = {np1QN , np2QN , .. nptQN} , k = |NPQN |
npQL =< name, semantic >, name ∈ Σ∗

npQN =< name, numericV alue, operator >, name ∈ Σ∗ & numericV alue ∈ R
operator = {<, >, ≤, ≥}
semantic =< o, n >, o ∈ O, n ∈ N

operator specifies the order applied to numericV alue. For {>, ≥} the greater
the numericV alue is, the best is the QoS property for the service runtime execution.
For {<, ≤} the smaller the numericV alue is, the best is the QoS property for the
service runtime execution.

The non-functional equivalence degree QoSDegree(opi, opj) between two func-
tional equivalent operations is evaluated upon their quantitative and qualitative
properties similarities. Two functional equivalent operations offer the same func-
tionality but not necessarily the same non-functional QoS properties. The
QoSDegree(opi, opj) evaluates the degree of similarities of two operations opi and
opj concerning their non-functional QoS properties. We suppose that:
∃ f : Npopi → Npopj where ∀ npkopj ∈ Npopj , ∃! npkopi ∈ Npopi, f(npkopi) =
npkopj .
∀ k ∈ N, npkopi and npkopj deals with the same non-functional QoS property.
If npkopi is a quantitative non-functional QoS we have npkopj also a quantitative
non-functional QoS and namenpkopi

= namenpkopj
.

If npkopi is a qualitative non-functional QoS we have npkopj also a qualitative non-
functional QoS and namenpkopi

= namenpkopj
.

Definition 27 — QoSDegree(opi, opj)

Considering two operations opi and opj, we define the degree of equivalence between
the two operations QoSDegree(opi, opj) as a function that measures how close is opj
from opi in terms of non-functional QoS. We consider the non-functional properties
of opi, NPopi and calculate as follows the degree of equivalence opj has upon these
properties:

QoSDegree(opi, opj) =
∑|Npopi|

k=1 wk ∗ deg(npkopi, npkopj)

17

where, wk is the assigned weight for a particular non-functional QoS property

with the following conditions
∑|Npopi|

k=1 (wk) = 1. The more wk is closer to zero,
the more important is the property Npk. This ponderation allows to decide when
searching for equivalent services if certain non-functional QoS properties are more
important than other for the required service replacement. deg(npkopi, npkopj) are
normalised values between 0 and 1 corresponding to the equivalence degree between
npkopi and npkopj . These values are calculated using the z-score or standardization
of the npk values for quantitative properties and semantic distance for qualitative
properties.

We define deg(npkopi, npkopj) as follows:

• deg(npkopi, npkopj) = deg(npkQNopi , npkQNopj) for the quantitative proper-
ties.

• deg(npkopi, npkopj) = deg(npkQLopi
, npkQLopj

) for the qualitative ones.

We define next how we calculate these two degrees.

Definition 28 — deg(npkQNopi
, npkQNopj

)

deg(npkQNopi
, npkQNopj

) = |η(npkQNopi
) − η(npkQNopj

)|
We define η(npkQN) as the normalization of z-score value of npkQN for quantitative
non-functional QoS.

Definition 29 — η(npQN)

Considering npQN =< name, numericV alue, operator > we define η(npQN) as
follows

if operatornpQN
is ′ <′ : 0 if z-score(npQN) < −2

1 if z-score(npQN) > 2
(z − score(npQN))/4 + 0.5 if 2 > z-score(npQN) > −2

if operatornpQN
is ′ >′ : 1 if z-score(npQN) < −2

0 if z-score(npQN) > 2
0.5 − (z-score(npQN))/4 if 2 > z-score(npQN) > −2

For < the numericV alue is the best when it is the smallest. η(npQN) is closer
to zero for the smallest value of numericV alue and closer to one for the bigger
value of numericV alue, and vice versa for >.

The z-score of a quantitative property npQN , indicates how far and in what
direction, the property deviates from its distribution’s mean, expressed in units of
its distribution’s standard deviation. We use the z-score standardization in order
to provide a way of comparing all the different non-functional QoS by including
consideration of their respective distributions.

18 Semantic Service Substitution in Pervasive Environments

Definition 30 — z-score(npQN)

Considering the quantitative npQN , its corresponding z-score is:

z-score(npQN) = (numericV aluenpQN
− µ(numericV aluenpQN

))/σ(numericV aluenpQN
)

where, µ(numericV aluenpQN
) is the mean of the values of npQN , and

σ(numericV aluenpQN
) is the standard deviation of npQN .

In normal distribution we can distinguish that the 95% of z-score(npQN) values
are comprises between −2 and 2. Based on this, η(npQN) calculates a value be-
tween 0 and 1 taking into account the nature of quantitative non-functional QoS
properties. Indeed the operatornpQN

indicates whether the properties are stronger
with greater values, or with smaller values.

If for the quantitative non-functional QoS properties, we used z-score and nor-
malization to calculate the degree of similarities between two properties, for quali-
tative non-functional QoS we use the semantic distance to compare the concepts of
the qualitative properties npQL. The semantic distance returns a normalised value
between 0 and 1.

Definition 31 — deg(npkQLopi , npkQLopj)

Considering npkQLopi the qualitative non-functional QoS of the operation. We seek
to find the best equivalence for it from a set of equivalent operations. Considering
npkQLopj

=< name, semantic > the qualitative non-functional QoS of the other
operations. we define deg(npkQLopi

, npkQLopj
) as follows:

deg(npkQLopi
, npkQLopj

) = Dsem(nsemanticnpkQLopi
, nsemanticnpkQLopi

)

Example 9 Considering the three operations defined in figure 1. Considering the
Printing operation, it is almost equivalent to Printer and almost equivalent to
Impression. We calculate the non-functional QoS degree of equivalence to deter-
mine which of Printer or Impression replace the best Printing.

First we calculate the values that we need for our degree computing. We detail
the computing for nbpage.

19

µ(nbpage) = 56.66

σ(nbpage) =
√

((60− 56.66)2 + (100− 56.66)2 + (10− 56.66)2) ÷ 3 = 36.84
z-score(nbpageprinting) = (60− 56.66) ÷ 36.84 = 0.09
z-score(nbpageimpression) = (100− 56.66) ÷ 36.84 = 1.176
z-score(nbpageprinter) = (10− 56.66) ÷ 36.84 = −1.26
η(nbpageprinting) = 0.477
η(nbpageimpression) = 0.206
η(nbpageprinter) = 0.816

η(priceprinting) = 0.515
η(priceimpression) = 0.867
η(priceprinter) = 0.186

Dsem(accessprinting, accessprinting) = 0, MCpt(
′wifi′,′ wifi′) = Exact

Dsem(accessprinting, accessimpression) = 0.2, MCpt(
′wireless′,′ wifi′) = PlugIn

Dsem(accessprinting, accessprinter) = 1, MCpt(
′bluetooth′,′ wifi′) = Fail

The QoSDegree of the three operations are:

QoSDegree(Printing, Impression) = w1∗(|η(nbpageprinting) − η(nbpageimpression)|) +
w2∗(|η(priceprinting) − η(priceimpression)|) +w3∗(Dsem(accessprinting, accessimpression))

QoSDegree(Printing, Impression) = w1 ∗ 0.27 + w2 ∗ 0.35 + w3 ∗ 0.2

QoSDegree(Printing, Printer) = w1 ∗ (|η(nbpageprinting) − η(nbpageprinter)|) +
w2∗(|η(priceprinting) − η(priceprinter)|) +w3∗(Dsem(accessprinting, accessprinter))

QoSDegree(Printing, Printer) = w1 ∗ 0.33 + w2 ∗ 0.33 + w3 ∗ 1

If we suppose the three non-functional QoS properties of the same importance
w1 + w2 + w3 = 1, we obtain: QoSDegree(Printing, Impression) = 0.27, and
QoSDegree(Printing, Printer) = 0.55. The Impression operation offers non-
functional QoS that are closer to Printing than Printer if we assign the same
weight to the three non-functional properties.

4 Semantic Service Substitution in Pervasive Environments

An application executing a service in pervasive environments would like to ben-
efit from all the available services. Service substitution based on semantic interface
matching and non-functional QoS properties is something the pervasive environ-
ment can provide to applications. We use the equivalence and almost equivalence
relations to compare services together to know if one service can substitute another
one. And we use the QoS degree equivalence to be sure that the services we provide
to applications fit their needs. When a service appears in the environment, It can
be functionally equivalent to another service being executed by an applications and
with better QoS parameters. The environment will spontaneously substitute the
service of the application with this new service. On the other hand, when a service

20 Semantic Service Substitution in Pervasive Environments

disappear, the environment will look for equivalent or almost equivalent services
with QoS properties similar to the vanishing services and redirect the application
calls to this new service. These two actions of spontaneously substituting services
to applications allow these latter to execute properly despite the environment dy-
namicity.

Service appearance

Considering a set S of finite services in the environment, we denote si the service
that appears. As a first step, the pervasive environment searches for functionally
equivalent or almost equivalent services interfaces in the environment. Indeed, these
services are services that provide the same functionality - the same functional in-
terfaces - as the service si, and can be replaced in the application clients execution
by the service si .

We consider the new service si. We suppose that the service si is equivalent or
almost equivalent to other services in the environment:

∃ sj ∈ S, (≡sem (si, sj) = true) ∨ (.sem(si, sj) = true)

The spontaneous service si substitution succeeds if si can replace sj for the appli-
cation execution and that by providing better non-functional QoS properties than
sj for the applications. By checking the profile of applications, the pervasive envi-
ronment knows the values and the priorities (wi) that the applications would like
to assign to the non-functional QoS properties. The environment can simulate a
service sk, with these values, and calculates the QoSdegree using the wi specified
by the applications. If no wi are assigned, the pervasive environment applies the
following values:

∑
i ∈ N wi = 1. The service substitution succeeds if:

QoSdegree(si, sk) < QoSdegree(sj, sk)

which means that the new service si is closer to sk than sj is to sk in terms of
non-functional QoS properties, sk reflecting the applications needs and preferences
for the non-functional QoS properties of the service they execute.

Example 10 Considering the three operations defined in figure 1.
The Printing service is a new service appearing in the environment and is se-

mantic almost equivalent to the Impression service. The environment considers
applications using the Impression service, and verifies which non-functional QoS
properties are the required by the applications. For example, if the price is impor-
tant, the wprice would be much more important than the waccess and wnbPage, and
the new Printing service fits better for the application. The environment simulates
a new service by assigning it the adequate values of the non-functional QoS proper-
ties required by applications. As an example we can give the following application
required non-functional QoS properties depicted under service sk:

NpQL = {< access, “wireless′′ >}
NpQN = {< nbPage, 50, ′ >′ >, < price, 12, ′ <′ >}

And wprice = 0.6, waccess = 0.2, wnbPage = 0.2

21

First we calculate the values that we need for our degree calculations:

The mean for nbpage property: µ(nbpage) = 55
The standard deviation for nbpage property: σ(nbpage) = 32
The normalised z-score values are: η(nbpageprinting) = 0.46
η(nbpageimpression) = 0.149
η(nbpageprinter) = 0.85
η(nbpagesk) = 0.54

The mean for price property: µ(price) = 11
The standard deviation for price property: σ(price) = 6, 4
The normalised z-score values are: η(priceprinting) = 0.46
η(priceimpression) = 0.85
η(priceprinter) = 0.15
η(pricesk) = 0.539

The semantic distance for the non-functional properties are:
Dsem(accessprinting, accesssk) = 0.8, MCpt(

′wifi′,′ wireless′) = Subsume
Dsem(accessimpression, accesssk) = 0, MCpt(

′wireless′,′ wireless′) = PlugIn
Dsem(accessprinter, accessprinter) = 1, MCpt(

′bluetooth′,′ wireless′) = Fail

Using these values we calculate:

QoSdegree(Printing, sk) = 0.6 ∗ 0.08 + 0.2 ∗ 0.8 + 0.2 ∗ 0.078 = 0.22
QoSdegree(Impression, sk) = 0.6 ∗ 0.391 + 0.2 ∗ 0 + 0.2 ∗ 0.311 = 0.29

We have QoSdegree(Printing, sk) < QoSdegree(Impression, sk), which means
that the new printing service fits better the application requirements.

Service disappearance

Another major issue requiring service substitution is the disappearance of services
form the environment. If a service disappear, the service registry of the environ-
ment is notified. This one asks the environment to come back with all the services
that are equivalent or almost equivalent to this service. If many services are found,
the environment creates sets of services. A set for the services equivalent and an-
other one for the almost equivalence. The equivalence is considered better than
the almost equivalence, as services can be interchanged in an equivalence relation
(symmetric relation).

We denote si the service that disappears and for this service the environment
finds the equivalent or almost equivalent services:

∃ sj ∈ S, (≡sem (sj, si) = true) ∨ (.sem(sj, si) = true)

We define the following:

S≡ : set of sj, (≡sem (sj, si) = true)
S. : set of sj, (.sem(sj, si) = true)

In every set, services are ordered following the QoSdegree function that returns for

22 Semantic Service Substitution in Pervasive Environments

every equivalent services with the service that disappeared their degree of equiva-
lence concerning the non-functional QoS properties related to the service that the
environment would like to replace.

By checking the values on the non-functional QoS properties for each service
of every set, the environment calculates the QoSdegree(sj, si), ∀ sj ∈ S∗, of each
service of a set with the service si. If no ponderation is given by the applications
upon the priority of the properties the environment employs the same value for
wi :

∑
i ∈ N wi = 1. The services within each set are ordered from the best

one (service sj that minimizes QoSdegree(sj, si)) to the worst one (service sk that
maximize QoSdegree(sj, si)):

T≡ : set of ordered sj, (QoSdegree(sj , si) < QoSdegree(sj+1, si), j ∈ [1..|S≡| − 1])
T. : set of ordered sj, (QoSdegree(sj , si) < QoSdegree(sj+1, si), j ∈ [1..|S.| − 1])

When a service si disappears, the environment chooses the best replacement for
the service si by beginning from the most suitable set with the most suitable non-
functional QoS properties.

Example 11 Returning to our example of the Printing, Impression, and Printer
services (cf. figure 1).

If we search to replace the Printing service because of a sudden disappearance
and need to choose between the Impression or the Printer services, the calculated
QoSdegree between these services are different depending on the values assigned to
wi.

QoSDegree(Printing, Impression) = w1∗(|η(nbpageprinting) − η(nbpageimpression)|) +
w2∗(|η(priceprinting) − η(priceimpression)|) +w3∗(Dsem(accessprinting, accessimpression))

QoSDegree(Printing, Impression) = w1 ∗ 0.27 + w2 ∗ 0.35 + w3 ∗ 0.2

QoSDegree(Printing, Printer) = w1 ∗ (|η(nbpageprinting) − η(nbpageprinter)|) +
w2∗(|η(priceprinting) − η(priceprinter)|) +w3∗(Dsem(accessprinting, accessprinter))

QoSDegree(Printing, Printer) = w1 ∗ 0.33 + w2 ∗ 0.33 + w3 ∗ 1

If the service Printing is no longer available, the environment finds the services
Impression and Printer as almost equivalent to Printing. For their non-functional
properties, it is clear that if the environment assigns the same value to the three
wi, the Impression service would have a closer degree to Printing. Nevertheless,
if the application using Printing gives more importance to the price of the printing
service, the environment will assign to w2 a greater importance, and we can notice
the Printer service has a closer degree to Printing than the Impression service.

It can occurs that no equivalent or almost equivalent services are found, in that
case the search may be refined over a set of operations. If the users and applications
of the services that disappeared used a particular operation or set of operations,
the search may be specified over these operations using the equivalence and almost
equivalence service relations defined upon particular operations (≡Op

sem, .
Op
sem).

23

The spontaneous service si substitution over a predefined set of operations Op
succeeds if:

∃ sj ∈ S, (≡Op
sem (sj, si) = true) ∨ (.Op

sem(sj, si) = true)

Example 12 Considering the three services interfaces and their semantic descrip-
tions in figure 2:

We have (.
{op1ifc1, op2ifc1}
sem (ifc1, ifc2) = true), which means that the services

proposing the interface ifc1 with the operations op1ifc1 and op2ifc1 can replace the
operations op1ifc2 and op3ifc2 of service ifc2.

As for the service as a whole, the environment requires to create the sets of
equivalent and almost equivalent services over the predefined set of operations. It
also orders the services within these sets depending on the non-functional QoS
properties of the concerned operations and not the non-functional QoS properties
of all the service.

If no services are found, the environment may consider the services that are
Subsume matching with the service that disappeared. If this replacement can fail
to provide the required functionality as a Subsume matching between services does
not guarantee that the new service can provide all what the other service provided,
it can allows the environment to provide something to the applications even if not
exactly what is required, while awaiting the appearance of the desired services. The
environment proposes these services to the applications, specifying that the services
they seek are no longer available.

In case of complete failure of finding an appropriate service, the service registry
of the environment redirects all the calls to the functional interface of the disappear-
ing service to a proxy. Once a service registers a functional interface responding to
the applications needs, the calls of the proxy can be redirected to this new service.

5 Evaluation of the Semantic Service Substitution

We implemented, as a proof of concept, all the major functionalities of the
service substitution under an OSGi service platform implementation, the Apache
Felix. The service semantic matching is done using online reasoner OWL-S ontolo-
gies (OWLcoalition, 2005) and the matching relations of Paolucci (Paolucci et al.,
2002). The non-functional QoS properties are for now defined in the service de-
scription and we do not yet consider the dynamic changes affecting these properties
while service execution. For the evaluations we developed a use case composed of
100 OSGi services in a small environment deployed on three laptops (Dell Latitude
D410, 1,73 GHz, and 0,99 Go of memory).

The semantic matching is quite heavy (cf. figure 5). The OWL-S API takes
about 12 seconds to compare and matches 8 services owl-s descriptions (MyStudio)
and 55 seconds for about 100 services. The pellet matching engine that reads all
the owl-s files by adding them to the reasoner and extracts the inputs, outputs and
concepts fields is much slower and much more memory consumer than as simple
syntactic matching based for example on introspection methods provided by the
Java language. We conclude that the semantic matching using online semantic

24 Semantic Service Substitution in Pervasive Environments

reasoning is a very heavy process. We can improve the matching time and memory
consuming by employing techniques as in PERSE (BenMokhtar, 2007) that propose
efficient semantic service matching using encoding classified ontologies.

Figure 5 Time execution for semantic service matching

Figure 6 gives the time execution and memory consumption for quantitative
non-functional properties QoSdegree function computing. We suppose that each
service has one quantitative non-functional property. When a service leaves the
environment, the time to adapt to this changes is the time required to compute
and sort the QoS degree of available services publishing the same interfaces (47
milliseconds for 100 services). When a service appears in the environment, the
environment computes the QoS degree of this services to find if it better suits the
applications using equivalent services. If so, the service registry will propose to
applications the new service and the adaptation would be done in no time for the
application, as it is showed figure 6.

Figure 6 Time and memory consumption for QoS degree computing

6 Conclusion

Service substitution is used in runtime reconfiguration in SOA systems in order
to tolerate runtime variations and ensure continuity in service provisioning for the
users. Providing functionally equivalent services to the applications with better
quality of services when services appear and disappear is a challenging problem
as services are provided with different technologies and different characteristics. If
many middleware proposed to semantically compare services and to adapt them
to the application execution, few formalised and defined the service relations and
especially the non-functional QoS properties degree metrics between services. We

25

proposed a metric to compare services, based on semantic interface matching and a
metric for computing the non-functional QoS property similarities between services.
We implemented a prototype under Java OSGi framework as a proof of concept and
evaluated the efficiency of our proposal.

One of the aspects that is not yet tackled by our middleware prototype is the
state of a service (Preuveneers and Berbers, 2008) that disappears while executing.
If a service disappears while executing an application needs, to replace it in a
transparent way, the environment needs not only to find equivalent services in terms
of functional and non-functional QoS properties but to know from which state to
start the execution of the new service, so that the application does not loose what
has been already executed by the previous service. Mechanisms of logging and
checkpoints need to be introduced at the service execution time level to save the
state of a service at runtime. These mechanisms allow the environment to keep a
trace over the state of services and to know when they disappear at which state of
execution they were. Another important issue would be to test our prototype in
large pervasive environments, such as university campus, were thousands of services
may meet and where a real end user experience could be tested to evaluate the
interest of our spontaneous service substitution approach vis à vis to users. Our
approach would surely have problem to scale to these service numbers and a more
smart selection, based not only on semantic ontologies but also on user profiles,
would be appropriate to choose a subset of services to substitute.

References

Ali Aı̈t-Bachir and Marie-Christine Fauvet (2009) ‘Diagnosing and Measuring In-
compatibilities between Pairs of Services’, DEXA ’09: Proceedings of the 20th
International Conference on Database and Expert Systems Applications, pp.229–
243, Linz, Austria.

Thomas Bittner and Maureen Donnelly and Stephan Winter (2005) Ontology and
semantic interoperability, In D. Prosperi and S. Zlatanova (ed.): Large-scale 3D
data integration: Challenges and Opportunities, pp.139–160, CRCpress (Tailor
& Francis).

Thomas Erl (2005) Service-Oriented Architecture (SOA): Concepts, Technology,
and Design, Prentice Hall PTR, Upper Saddle River, NJ, USA.

Jacqueline Floch ed. (2006) Theory of adaptation, Delivrable D2.2, Mobility and
ADaptation enAbling Middleware (MADAM).

Manel Fredj and Nikolaos Georgantas and Valérie Issarny (2008) ‘Dynamic Ser-
vice Substitution in Service-Oriented Architectures’, SCC ’08: Proceedings of the
IEEE Conference on Services Computing, pp.101–104, Honolulu, Hawaii, USA.

Natalia Kokash (2006) ‘A Comparison of Web Service Interface Similarity Mea-
sures’, Proceeding of the 2006 conference on STAIRS 2006, pp.220–231, Amster-
dam, The Netherlands.

Sonia Ben Mokhtar (2007) Semantic Middleware for Service-Oriented Pervasive
Computing, PHD thesis, University of Paris 6.

26 Semantic Service Substitution in Pervasive Environments

Massimo Paolucci and Takahiro Kawamura and Terry R. Payne and Katia Sycara
(2002) ‘Semantic matching of Web Services capabilities’, ISWC ’02: Proceed-
ings of the First International Semantic Web Conference on The Semantic Web,
pp.333–347, London, UK.

Davy Preuveneers and Yolande Berbers (2008) ‘Pervasive Services on the Move:
Smart Service Diffusion on the OSGi Framework’, UIC ’08: Proceedings of the
5th international conference on Ubiquitous Intelligence and Computing, pp.46–
60, Oslo, Norway.

Ganesh Ram Santhanam and Samik Basu and Vasant Honavar (2009) ‘Web Ser-
vice Substitution Based on Preferences Over Non-functional Attributes’, SCC
’09: Proceedings of the IEEE International Conference on Services Computing,
pp.210–217, Bangalore, India.

Mahadev Satyanarayanan (2001) ‘Pervasive Computing: Vision and Challenges’,
IEEE Personal Communication, Vol. 8, No. 4, pp.10–17, August.

The OWL Services Coalition (2003) OWL-S: Semantic Markup for Web Services,
White paper, OWL Services Coalition.

Mark Weiser (1991) ‘The computer for the 21st century’, Scientific American, Vol.
265, No. 3, pp.94–104.

