
Purdue University
Purdue e-Pubs
Department of Electrical and Computer
Engineering Faculty Publications

Department of Electrical and Computer
Engineering

January 2008

A novel low overhead fault tolerant Kogge-Stone
adder using adaptive clocking
Swaroop Ghosh

Patrick Ndai

Kaushik Roy

Follow this and additional works at: http://docs.lib.purdue.edu/ecepubs

This document has been made available through Purdue e-Pubs, a service of the Purdue University Libraries. Please contact epubs@purdue.edu for
additional information.

Ghosh, Swaroop; Ndai, Patrick; and Roy, Kaushik, "A novel low overhead fault tolerant Kogge-Stone adder using adaptive clocking"
(2008). Department of Electrical and Computer Engineering Faculty Publications. Paper 56.
http://dx.doi.org/http://dx.doi.org/10.1109/DATE.2008.4484707

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Purdue E-Pubs

https://core.ac.uk/display/4952135?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://docs.lib.purdue.edu?utm_source=docs.lib.purdue.edu%2Fecepubs%2F56&utm_medium=PDF&utm_campaign=PDFCoverPages
http://docs.lib.purdue.edu/ecepubs?utm_source=docs.lib.purdue.edu%2Fecepubs%2F56&utm_medium=PDF&utm_campaign=PDFCoverPages
http://docs.lib.purdue.edu/ecepubs?utm_source=docs.lib.purdue.edu%2Fecepubs%2F56&utm_medium=PDF&utm_campaign=PDFCoverPages
http://docs.lib.purdue.edu/ece?utm_source=docs.lib.purdue.edu%2Fecepubs%2F56&utm_medium=PDF&utm_campaign=PDFCoverPages
http://docs.lib.purdue.edu/ece?utm_source=docs.lib.purdue.edu%2Fecepubs%2F56&utm_medium=PDF&utm_campaign=PDFCoverPages
http://docs.lib.purdue.edu/ecepubs?utm_source=docs.lib.purdue.edu%2Fecepubs%2F56&utm_medium=PDF&utm_campaign=PDFCoverPages

 A Novel Low Overhead Fault Tolerant Kogge-Stone Adder Using

Adaptive Clocking
Swaroop Ghosh, Patrick Ndai and Kaushik Roy

School of Electrical and Computer Engineering, Purdue University, West Lafayette, IN 47907
< ghosh3, pndai, kaushik>@ecn.purdue.edu

Abstract— As the feature size of transistors gets smaller,

fabricating them becomes challenging. Manufacturing process

follows various corrective design-for-manufacturing (DFM) steps to

avoid shorts/opens/bridges. However, it is not possible to completely

eliminate the possibility of such defects. If spare units are not

present to replace the defective parts, then such failures cause yield

loss. In this paper, we present a fault tolerant technique to leverage

the redundancy present in high speed regular circuits such as

Kogge-Stone adder (KSA). Due to its regularity and speed, KSA is

widely used in ALU design. In KSA, the carries are computed fast by

computing them in parallel. Our technique is based on the fact that

even and odd carries are mutually exclusive. Therefore, defect in

even bit can only corrupt the even Sum outputs whereas the odd

Sums are computed correctly (and vice versa). To efficiently utilize

the above property of KSA in presence of defects, we perform

addition in two- clock cycles. In cycle-1, one of the correct set of bits

(even or odd) are computed and stored at output registers. In cycle-2,

the operands are shifted by one bit and the remaining sets of bits

(odd or even) are computed and stored. This allows us to tolerate the

defect at the cost of throughput degradation while maintaining high

frequency and yield. The proposed technique can tolerate any

number of faults as long as they are confined to either even or odd

bits (but not in both). Further, this technique is applicable for any

type of fault model (stuck-at, bridging, complete opens/shorts). We

performed simulations on 64-bit KSA using 180nm devices. The

results indicate that the proposed technique incur less that 1% area

overhead. Note that there is very little throughput degradation

(<0.3%) for the fault-free adders. The proposed technique utilizes

the existing scan flip-flops for storage and shifting operation to

minimize the area/performance overhead. Finally, the proposed

technique is used in a superscalar processor, whereby the faulty

adder is assigned lower priority than fault-free adders to reduce the

overall throughput degradation. Experiments performed using

Simplescalar for a superscalar pipeline (with four integer adders)

show throughput degradation of 0.5% in the presence of a single

defective adder.

Keywords: Stuck-at faults, Fault tolerant adder, Adaptive clocking,

Kogge-Stone adder, Scheduling.

I. INTRODUCTION

Sub-wavelength lithography, line edge roughness (LER),

chemical mechanical polishing (CMP), etching etc cause large

variation in transistor and wire geometries. These variations change

the strength of transistors (systematically as well as randomly)

causing variations in path delays. Manufacturing subtleties such as

poor patterning, narrow metal region near via, missing salicide

between metal and poly etc introduce resistive bridging in the circuit.

Such resistive paths combined with process variation induced delay

defects can deter a node from switching. Under a strict timing

constraint and at lower operating supply, the delayed switching

behaves as stuck-at 0 or stuck-at 1. Similar behavior is observed for

stuck open defects (that appears due to electro-migration, poor

printing etc) which introduce inline resistance in the wire, increasing

both rise and fall times. The possibilities of such defects are

increasing with aggressive scaling of transistor geometries, supply

voltage and, increasing operating frequency requirements. Designing

robust circuits in the presence of a large number of possible

timing/open/short defects to meet a yield target is a challenging task.

A possible technique to overcome the small delay defects would be

to scale up the supply voltage or to reduce the operating frequency.

However, this would either increase the power consumption or slow

down the performance of the chip, making the chip unworthy to be

shipped. Further, such techniques are not fruitful under large timing

defects or complete open or short faults.

Several clever techniques have been proposed in past to tolerate

delay defects. In [1], the authors isolate the critical paths of random

logic circuits and reduce their activation probability by proper

synthesis and sizing. If the chip suffers from timing failures in

critical paths, the output is evaluated in two-clock cycles. This

allows them to maintain high yield and rated clock frequency at the

cost of slight throughput degradation. However, it does not address

the large delay defect and general fault model scenario that is under

consideration in this paper. In [2], the authors proposed a stuck-at

tolerant Kogge-Stone Adder. The idea is to add an extra Han-

Carlson (HC) stage which computes the even bits from odd bits (or

vice versa) for defective adders. Therefore, stuck-at faults are

tolerated at the cost of area/delay overhead (due to HC stage and

multiplexers). Quadruple time redundancy [3] and triple modular

redundancy [4] techniques have also been proposed in order to detect

and correct errors at the cost large area overhead.

In this paper, we achieve fault tolerance by adopting a different

perspective. We utilize the inherent spatial redundancy present in

high-speed circuits such as Kogge-Stone adder in an efficient

manner in order to tolerate any type of defect. Our technique is based

on the fact that the even and odd carries are mutually exclusive.

Therefore, any defect in the even bits can only corrupt the even Sum

outputs while the odd Sums are computed correctly (and vice versa).

For example, in a 4-bit KSA, a defect in bit-1 can introduce errors

only in Sum1 and Sum3. The other Sum outputs (i.e Sum0 and Sum2)

are computed in parallel and will be fault-free. To efficiently utilize

the above property of KSA in presence of defects, we add little

overhead in the adder during design time. The adder operates

normally (in single clock cycle) if it is found to be fault-free after the

manufacturing test. However, if the adder is faulty, the addition is

performed in two clock cycles. In cycle-1, one of the correct set of

bits (even or odd) are computed and stored at the output registers. In

cycle-2, the operands are shifted by one bit and the remaining sets of

bits (odd or even) are computed and stored. This allows us to tolerate

any kind of defect at the cost of throughput degradation due to

increased latency operations while maintaining rated frequency and

yield. The fault-free adders operate without any throughput

degradation. To alleviate the throughput loss we schedule the faulty

adder occasionally by proper micro-architectural techniques. The

overall flowchart is shown in Fig. 1(a). Note that we have not

considered the test and diagnosis of faults in this work but it is

integral part of the overall fault tolerant methodology.

As evident from the above discussions, the proposed technique

requires addition of multiplexers at the inputs and outputs for

shifting the operands and storing the correct output. In this work, we

reuse the multiplexers present in scan flops to reduce the area

overhead for shift. The storage of even/odd bit Sum outputs is also

controlled by output multiplexers (which are reused from scan flops).

This will be discussed in detail in Section III.

978-3-9810801-3-1/DATE08 © 2008 EDAA

The timing diagram of this scheme is elucidated in Fig. 1(b) for

three pipelined instructions in a superscalar pipeline (which

usually has many adders for parallel instruction issue). For the

sake of simplicity, let us assume that these instructions are scheduled

to three different adders present in the execution unit. The second

adder is defective and is always evaluated in two clock cycles

whereas the fault-free adders are evaluated in single-clock cycle. The

timing diagram shows the scenario when the first instruction is

scheduled to adder-1, second instruction is scheduled to adder-2 and

so on. The first and third instruction can be evaluated in one clock

cycle however, adaptive clocking is performed during the execution

of second instruction for correct functionality of the pipeline (Fig.

1(b)). Note that, the second instruction is fired at cycle-2 but

completely evaluated only at the end of cycle-3. The even bits are

computed in cycle-2 (with operand-2) and registered while the odd

bits are discarded. In cycle-3, the odd bits are computed correctly

and stored (with operand-2 left shifted by one bit) assuming that the

defect is located in odd bit. Note that the even bits are discarded in

cycle-3.

In the above toy example, the average cycles-per-instruction

(CPI) is 1.33 since three instructions are executed in 4 cycles. Note

that here we assumed that adder-2 is scheduled even when other

adders are free just for the sake of illustration. In reality, the faulty

adder should be scheduled only when all other adders are busy (to

minimize the throughput penalty). For example, if adder-1 and

adder-3 are busy in every cycle then ideally two instructions can be

scheduled to adder-2 to be finished in 4 cycles (Fig. 1(b)). This will

allow to process ten instructions (four instructions each by adder-

1/adder-3 and two instruction by adder-2) leading to CPI of 0.4. The

ideal CPI would be 0.33 (=4/12) when all adders are fault-free. On

the other hand, if the defective adder is completely eliminated then

the CPI would become 0.66 (=8/12). Therefore, better throughput

(0.40 compared to 0.66) can be gained by the proposed fault tolerant

technique. The CPI computations performed here are simply for

illustration. To accurately compute CPI, we would have to take into

account the fact that there will not be sufficient Instruction Level

Parallelism (ILP) to keep all the four adders in the execution unit

busy at all times. This simply means that in some cycles, there will

be fewer than four instructions ready to execute, and thus having

only three adders or having a single defective adder that completes

instructions after two cycles will result in less CPI degradation than

computed above. Nevertheless, the CPI computations above give a

general trend. We provide much more detail in Section IV by using

SPEC 2000 benchmarks to simulate realistic workloads.

Note that the proposed fault tolerant technique is significantly

different from Recomputation with Shifted Operands (RESO) [5] [6],

which is a concurrent error detection technique. In RESO, if an

arithmetic logic unit (ALU) performs a function f, and x is an input

to the function, then an error in the ALU can be detected by

comparing f(x) with the output of (f(x<<1)>>1). For a given data

input, the result of function f is stored in a register and compared

against the result obtained using shifted operands. In the proposed

technique, the shifting of operands is done occasionally (by proper

micro-architectural technique) to correct the effect of fault and not to

detect it. In summary, we make following contribution in this paper:

•••• We propose a novel and low overhead fault tolerant Kogge-

Stone adder. The faults are tolerated by utilizing the inherent

redundancy of the adder in time efficient manner. The proposed

technique is applicable for any type of defect and not limited by

a particular fault model.

•••• We propose a micro-architectural technique to utilize the faulty

adder with minimum throughput degradation.

The rest of the paper is organized as follows. In Section II, we

analyze the impact of faults on the Kogge-Stone Adder. The fault

tolerant KSA is described in detail in Section III. The micro-

architectural solution to optimize the throughput degradation in

presence of faulty adder and two-cycle operations is presented in

Section IV. The related work on fault tolerant adder is discussed in

Section V and finally, the conclusions are drawn in Section VI.

 II. IMPACT OF FAULTS ON KSA

Kogge-Stone adders are popular choice in high speed ALU

design due to its faster operation, regular structure and balanced

loading in internal nodes compared to other sparse tree adders. In

this section, first we briefly discuss the design, operation and general

properties of KSA that are relevant from fault tolerance point of

view. Next, we elaborate the impact of faults in the intermediate

computations and their effect on the overall Sum generation.

A. Basic structure of KSA

KSA belongs to the family of fastest parallel prefix adders with

complexity of log2N (where N is the width of the adder) meaning

thereby that the addition can be done in log2N stages. The basic

structure of 8-bit radix-2 Kogge-Stone adder [7] is illustrated in Fig.

2(a). It operates on the principle of block propagate(p) and block

generate(g) [8]. The block propagate determines whether the input

carry can propagate through the block of bits or not. The block

generate determines if the block of bits can generate a carry or not.

If a and b are input operands of the adder, the propagate/generate

and carry in (Ci)/carry out (Ci+1) are related as follows

1; ; (1)i i i i i i i i i ip a b g a b C g p C
+

= ⊕ = • = +

In absence of carry input to the adder core (i.e., C-1 = 0), the

generate signal become the carry inputs for the intermediate carry

computations. In 8-bit KSA, the carry is computed in k=3 stages

1. Design the FT Adder

2. Perform manufacturing test

3. Enable the fault
correction circuit and

set FAULT bit for

proper scheduling

4. Perform two cycle
operation with normal/

shifted operands

Test passed?

3. Disable the fault
correction circuit

4. Perform normal

operation

No Yes

Adder-2

CLK

Tc 2Tc

Adder-1

Instruction 1 Instruction 2 Instruction 3

Tc

cycle 1 cycle 2 cycle 3 cycle 4

Even bits Odd bits

Adder-3

Operands-1 Operands-2 Operands-2 << 1 Operands-3

Adder-2

CLK

TcTc 2Tc

Adder-1

Instruction 1 Instruction 2 Instruction 3

TcTc

cycle 1 cycle 2 cycle 3 cycle 4

Even bits Odd bits

Adder-3

Operands-1 Operands-2 Operands-2 << 1 Operands-3

(a) (b)

Fig. 1 (a) Proposed fault tolerant methodology, (b) timing diagram for three adders in the execution unit (Tc is the clock period)

(where k= log2N). In 1st stage (k=1), carries and propagates of 2-bit

block sizes are computed in parallel. In 2nd stage (k=2),

carries/propagates of 4-bit block sizes are computed by using 2-bit

carries/propagates from stage-1. Therefore, carry till 4th bit gets

computed in this stage. In the final stage (k=3), the carry of 8th bit is

computed by using 4th carry and block propagate signal of bit-4

through 7. The carries of other bit positions are also computed in

parallel. Once the carry is available, the Sum output is computed by

evaluating
i i iS p C= ⊕ . In Fig. 2(a), the black boxes denote the

computation of propagate/generate whereas the grey boxes denote

computation of generate only.

The stage-wise propagation of carries is further illustrated in Fig.

2(a) by expanding two of the stages (k=0, 1) of KSA. The solid

arrows denote presence of carry whereas the dashed arrows denote

absence of carry. The bit-wise propagates/generates are computed in

setup stage (k=0). In 1st stage, they are combined in pairs to produce

group carries. Three situation are illustrated in Fig 2(a): (i) (p,

g)=(1,1) are asserted and the group carry is generated, (ii) (p,

g)=(0,1) and the carry is sunk in, (iii) (p, g)=(1,0) so there is no

group carry. The stage-wise group carries for the entire 8-bit adder

are shown in Fig. 2(b). It can be observed from this diagram that

carry output of 7th bit depends only on carry output of bits 3 and 1.

Similarly, carry output of 6th bit depends only on carry output of bit

2. Therefore, even and odd carries are computed independent of each

other resulting in area overhead compared to other sparse tree adders.

However, the advantage comes from the regularity in layout,

balanced fan-out and speed. As we explore in the next paragraphs,

this kind of structure also yields fault tolerance due to independent

(or parallel) computation of even/odd bits that is done in order to

achieve speed.

In the following subsections, we will elaborate the impact of

faults in the KSA. For the sake of simplicity we assume that the

faults are confined between stages 1 to log2N. Moreover, the setup

stage (i.e., k=0) is assumed to be fault-free.

B. Faults in propagate

A stuck-at 0 fault in propagate may block the carry from

propagating to the output. On the other hand, a stuck-at 1 fault may

undesirably propagate the carry where it should kill the carry. In

both situations, the wrong computation will appear at the Sum output.

For example, let us consider an 8-bit KSA (Fig. 2(a)) to observe the

impact of faults in the propagate signals

3:0 3:2 1:0 4:1 4:3 2:1

5:2 5:4 3:2 6:3 6:5 4:3

; ; (2)

 and

P P P P P P

P P P P P P

= =

= =

where Pi:j is the block propagate between ith and jth bits.

From equation 2 it is evident that a fault (of any type) in P3:2 can

only affect P3:0 and P5:2 whereas P4:1 and P6:3 are computed correctly.

Similarly, a fault in P4:3 can only affect P4:1 and P6:3. Note that, P3:0,

P4:1, P5:2 and P6:3 are neighboring group propagate signals in bit-3,

bit-4, bit-5 and bit-6 (i.e., odd, even, odd, even fashion). Therefore,

this example further illustrates the fact that fault in even bit

propagate can affect only the even bit propagates (and

consecutively the Sum outputs) and vice versa is true for odd bits.

Fig. 3(a) elucidates the fault in P3:2 further. The fault corrupts the P3:0

first (at k=2) and P5:2, P7:2 next (at k=3). These faults corrupt the odd

Sum outputs (i.e., Sum3, Sum5 and Sum7) in the final stage.

C. Faults in generate

Similar to faults in propagate, a stuck-at 0 fault in generate may

kill a carry from generating whereas a stuck-at 1 fault may

undesirably produce an intermediate carry. Other types of faults (e.g.,

complete short/open) will manifest differently. For example, in the

8-bit KSA (Fig. 2(a)), the carry-outs C5, C6 and C7 are given by

5 5:2 5:2 1:0 5:4 5:4 3:2 5:4 3:2 1:0

6 6:3 6:3 2:0 6:5 6:5 4:3 6:5 4:3 2:0

6:5 6:5 4:3 6:5 4:3 2:1 2:1 0

=() () (3)

=() ()

 () ()()

C G P G G P G P P G

C G P G G P G P P G

G P G P P G P G

= + + +

= + + +

= + + + (4)

7 7:4 7:4 3:0 7:6 7:6 5:4 7:6 5:4 3:0

7:6 7:6 5:4 7:6 5:4 3:2 3:2 1:0

=() ()

 =() ()() (5)

C G P G G P G P P G

G P G P P G P G

= + + +

+ + +

From the above expressions, it is evident that a fault in G3:2 can

affect only carry-outs C5 and C7 whereas C6 can be computed

correctly (since C6 is independent of G3:2 term). Fig. 3(b) illustrates

the fault in G3:2 further. The fault corrupts the C3 first (at k=2) and

C5, C7 next (at k=3). These faults corrupt the odd Sum outputs (i.e.,

Sum3, Sum5 and Sum7) in the final stage.

Note that the conclusions drawn above for the faulty propagate

and generate signals are general and not dependent on any

particular fault model.

A

01234567

k=0

k=1

propagate signalsgenerate signals

1:02:13:24:35:46:57:6

3:04:15:26:37:4

4:05:06:07:0

2:0

01234567

01234567

k=0

k=1

k=2

k=3

B

Sum

(i)(ii)(iii)

A

01234567

k=0

k=1

propagate signalsgenerate signals

1:02:13:24:35:46:57:6

3:04:15:26:37:4

4:05:06:07:0

2:0

01234567

01234567

k=0

k=1

k=2

k=3

B

Sum

A

01234567

k=0

k=1

propagate signalsgenerate signals

1:02:13:24:35:46:57:6

3:04:15:26:37:4

4:05:06:07:0

2:0

01234567

01234567

k=0

k=1

k=2

k=3

B

Sum

(i)(ii)(iii)

01234567
k=0

k=1

k=2

k=3

01234567

evenoddevenoddevenoddevenodd

01234567
k=0

k=1

k=2

k=3

01234567

evenoddevenoddevenoddevenodd

(a) (b)

Fig. 2 (a) A basic 8-bit radix-2 Kogge-Stone adder [7] (stages k=0 and k=1 are expanded to show carry paths for three scenarios) and, (b)

simplified notation of KSA in terms of carry paths

01234567
k=0

k=1

k=2

k=3

01234567

evenoddevenoddevenoddevenodd

01234567
k=0

k=1

k=2

k=3

01234567

evenoddevenoddevenoddevenodd

01234567
k=0

k=1

k=2

k=3

01234567

evenoddevenoddevenoddevenodd

01234567
k=0

k=1

k=2

k=3

01234567

evenoddevenoddevenoddevenodd

01234567
k=0

k=1

k=2

k=3

01234567

evenoddevenoddevenoddevenodd

01234567
k=0

k=1

k=2

k=3

01234567

evenoddevenoddevenoddevenodd

Fig. 3 (a) Effect of fault in propagate and, (b) effect of fault in

generate

III. FAULT TOLERANT KSA

In this section, we describe the proposed fault tolerant Kogge-

Stone adder followed by the simulation results.

A. Structure of fault tolerant Kogge-Stone adder

The overall structure for an 8-bit fault tolerant adder example is

illustrated in Fig. 4. It can be observed that following components

are required for fault tolerance:

1. Multiplexers at the inputs: Multiplexers are required at the inputs

for shifting the operands to the left side by 1-bit during second cycle

(for the faulty adder). We observe that scan flip-flops [9] are

generally used for testability purpose where the test patterns are

shifted sequentially in test mode, applied to the circuit-under-test and

responses are scanned out to attain required fault coverage. The scan

flops utilize multiplexer at the D-input to clock-in either test data or

normal data (based on the Scan Shift Enable signal). In this work, we

reuse these multiplexers for shifting the operands. This is achieved

by simply ORing the scan shift enable signal with the operand shift

enable to control the scan flop multiplexers (Fig. 4).

2. Extra bit computation: An extra computation column is added in

the Kogge-Stone tree to make sure that even if the fault affects Sum7,

the correct Sum can be computed by this column and restored in

cycle-2. This extra column (un-shaded in Fig. 4) contributes towards

the area overhead.

3. Application of non-controlling values in LSB and MSB: During

cycle-2, non-controlling values must be applied to the LSB so that

(p0,g0) = (1,0). This is required since LSB is not used for

computation during cycle-2 in faulty adders. Forcing p0=1 makes the

group propagate signal (i.e., the product of individual propagates)

independent of p0. Similarly, g0=0 is required to suppress false carry

input from the LSB. Both of these conditions are achieved by

providing 10 or 01 inputs through the multiplexer. The MSB from

extra column (i.e., 8th bit) output is ignored during cycle-1. However,

a 10 or 01 input can be forced to ensure non-controlling p/g values

during cycle-1 of fault-free as well as faulty adders.

4. Multiplexers at output: Multiplexers are required at the outputs for

shifting the partially correct Sums to the right side by 1-bit during

second cycle in faulty adder. We again leverage the scan flop’s for

the shifting of outputs. Note that the Sums are shifted right to

preserve the bit ordering. For example, in Fig. 4, Sum4 and Sum6 are

faulty in cycle-1 whereas other Sums are computed correctly. After

right shifting the Sums in cycle-2 and re-computation, the correct

computations (Sum1, Sum3, Sum5, Sum7) from cycle-1 is stored in

Sum0, Sum2, Sum4, Sum6 registers whereas the new computations are

CLK

Tc
2Tc

gCLK

Instruction 1 Instruction 2 Instruction 3

Tc

cycle 1 cycle 2 cycle 3 cycle 4

Shift

enable

Even bits Odd bits

Operands-1 Operands-2 Operands-2 << 1 Operands-3

addition

adder

enable

CLK

TcTc
2Tc

gCLK

Instruction 1 Instruction 2 Instruction 3

TcTc

cycle 1 cycle 2 cycle 3 cycle 4

Shift

enable

Even bits Odd bits

Operands-1 Operands-2 Operands-2 << 1 Operands-3

addition

adder

enable

Fig. 5 Detailed timing diagram

 TABLE I: PROCESSOR CONFIGURATION

Processor 8-way issue, 128 RUU, 64 LSQ, 4 integer

ALUs, 1 integer mul/div units, 4 FP ALUs,

4 FP mul/div units, 2 Wr/Rd ports

Branch Prediction Combined, 16-entry RAS, 512-set 4-way

BTB, 8 cycle mis-prediction penalty

Caches 64KB 2-way 2 cycle I/D L1, 2MB 2-way

18 cycle L2

Main Memory 300 cycle latency, 32-byte wide bus

1:02:13:24:35:46:57:6

3:04:15:26:37:4

4:05:06:07:0

2:0

gclk

g
cl
k

g
cl
k

cl
k

cl
k

A
d
d
e
r
C
o
re

Output

Registers

Input
Registers

S
h
if
t
E
n
a
b
le

S
h
if
t
E
n
a
b
le

cl
k

o
d
d
/e
v
e
n
 c
o
n
tr
o
l

(p
ro
g
ra
m
m
a
b
le
)

S
h
if
t
e
n
a
b
le

g
e
n
e
ra
ti
o
n
 l
o
g
ic

Scan shift
enable

Sum0Sum1
Sum2Sum3

Sum4Sum5
Sum6Sum7

Sum-1

A0/ B0A1/ B1A2/ B2A3/ B3A4/ B4A5/ B5A6/ B6A7/ B710 or 01 10 or 01

D Q D Q●

adder

enable

CLK

F
F

F
F shift

enable

(5)

(3)(3)

(6)

(2)

(4)

(1)

1:02:13:24:35:46:57:6

3:04:15:26:37:4

4:05:06:07:0

2:0

gclk

g
cl
k

g
cl
k

cl
k

cl
k

A
d
d
e
r
C
o
re

Output

Registers

Input
Registers

S
h
if
t
E
n
a
b
le

S
h
if
t
E
n
a
b
le

cl
k

o
d
d
/e
v
e
n
 c
o
n
tr
o
l

(p
ro
g
ra
m
m
a
b
le
)

S
h
if
t
e
n
a
b
le

g
e
n
e
ra
ti
o
n
 l
o
g
ic

Scan shift
enable

Sum0Sum1
Sum2Sum3

Sum4Sum5
Sum6Sum7

Sum-1

A0/ B0A1/ B1A2/ B2A3/ B3A4/ B4A5/ B5A6/ B6A7/ B710 or 01 10 or 01

D Q D Q●

adder

enable

CLK

F
F

F
F shift

enable

(5)

(3)(3)

(6)

(2)

(4)

(1)

Fig. 4 Block diagram of the proposed 8-bit fault tolerant Kogge-Stone adder (the redundant stage is un-shaded). The components

required for fault tolerance are numbered for the sake of clarity. The effect of fault in 3rd bit is also shown

clocked-in to the Sum-1, Sum1, Sum3, Sum5 registers. The final Sum

of the addition can be obtained from Sum-1 through Sum7 registers.

5. Generation of shift enable signal: The shift enable signal is

generated by a mono-pulse generation circuitry as shown in the inset

of Fig 4. A mono-shot pulse is generated whenever the adder is

scheduled (i.e., adder enable =1). The operands are shifted left and

the outputs are shifted right whenever the shift enable is asserted.

6. Clocking of output registers: If manufacturing test determines that

the fault is located in even bits then the corresponding even registers

should be programmed (Fig. 4) to receive gated clock (gclk) whereas

the odd registers are programmed to receive the normal clock (clk).

This is done to prevent destruction of correct data in even bit

registers (that were computed in cycle-1) during cycle-2. Similarly,

programming bit should be configured if the fault is located in odd

bits. The gclk is generated by ANDing the normal clock with shift

enable signal. The timing diagram of shift enable and gclk is shown

in Fig. 5 for the example discussed in Section-I.

The area overhead in the proposed fault tolerant adder is minimal

and essentially comes from the extra computation stage, shift

enable/gated clock generation logic and 1-bit programmable register

for clocking the output flops. It should also be noted that the

proposed technique is generic and can be extended to design fault

tolerant sparse-tree adders (e.g., Han-Carlson, Brent-Kung [8] etc).

Since these adders have less redundancy present, the fault tolerance

can be achieved by performing more than two shifts and re-

computations.

B. Simulation results

We implemented the 64-bit fault-tolerant KSA in Verilog. We

synthesized the circuit in Synopsys Design Compiler [10] using

180nm IBM technology. To estimate the overhead due to the fault

recovery features, we provided the same constraints to both the

nominal circuit and the proposed circuit. The total area overhead was

0.9%, and this was due to the additional computation column and the

logic required for modifying the clocking. The performance

overhead of the fault-free adder (during normal operation) was 0.3%,

which was primarily due to the additional load on the clock network.

IV. APPLICATION IN SUPERSCALAR PIPELINE

In last section, we proposed the fault tolerant Kogge-Stone

Adder which uses two-clock cycles to tolerate the faults. In this

section, we present a micro-architectural solution to minimize the

throughput penalty if faulty adders are present in a superscalar

pipeline.

In superscalar processors, there are typically several functional

units (integer ALUs, integer multipliers, floating point ALUs, etc) of

the same type. Consider a processor that has a faulty integer ALU. In

this case, the designers would either have to discard the faulty chip,

or disable the faulty functional unit. The first option results in a

significant yield impact, particularly as the number of faults increase

as expected in scaled technologies. The second solution, that is, to

disable the faulty ALU, is significantly more attractive since it

allows the faulty chip to be salvaged, albeit at a significant

throughput penalty due to the availability of fewer ALUs.

For this work, we assume that the faulty functional unit is the

adder core of the integer ALU. Instead of completely disabling the

faulty adder, we use it for computation, but employ adaptive

clocking to allow it to perform computations in two-clock cycles.

There are two major challenges to employing this scheme. The first

one is to ensure that most of the instructions are not executed by this

faulty functional unit. Here, we assign the lowest priority to this

faulty ALU, such that we only use it for computation whenever all

other non-faulty ALUs are in use. In addition to this, we must ensure

that dependent instructions are not woken up before the faulty adder

has completed the computation.

Both these tasks require some slight modification to the schedule

and issue logic of the superscalar processor. The schedule and issue

logic is responsible for issuing of instructions to the functional units.

Whenever an instruction is ready to be issued (all its other dependent

instructions have completed), the scheduler locates an available

functional unit. If a functional unit is available, the scheduler issues

the instruction to the functional unit, and informs the wake-up logic

to wakeup instructions that are dependent on the one that has been

issued after a given number of cycles. In addition, each functional

unit has a REQUEST signal to indicate that it is available for

execution.

In order to implement the modification to the scheduling policy,

each functional unit requires an additional status bit to indicate when

it is faulty. The scheduler checks this FAULT bit in addition to the

REQUEST signal. If the FAULT bit is set, the scheduler wakes up

dependent instructions after two-clock cycles. Note that the FAULT

bit is set during test and does not change during execution, thus the

performance and power overhead is small.

We modified Simplescalar [11] to accommodate the changes in

the scheduling policy. We used ref inputs, fast forwarded 500

Proposed Scheme vs Disabling Faulty ALU

0.75

0.8

0.85

0.9

0.95

1
a
v
g

a
m

m
p

a
p
p
lu

a
rt

a
p
s
i

b
z
ip

c
ra

ft
y

e
o
n

e
q
u
a
k
e

fa
c
e
re

c

fm
a
3
d

g
a
lg

e
l

g
a
p

g
z
ip

lu
c
a
s

m
c
f

m
e
s
a

m
g
ri
d

p
a
rs

e
r

p
e
rl
b
m

k

s
ix

tr
a
c
k

tw
o
lf

v
p
r

w
u
p
w

is
e

Benchmark

R
e
la

ti
v
e
 T

h
ro

u
g

h
p

u
t

.
ALU4 Disabled .

Proposed

Fig. 6 Simplescalar results. The throughput improvement (compared to scenario when faulty adder is completely discarded) for

SPEC2000 benchmarks are shown

million instructions and simulated 1 billion instructions for 23 of 25

benchmark in the SPEC 2000 toolset (we had difficulty simulating

vortex and swim). The processor configuration is shown in Table 1.

As shown in the configuration, the integer execution unit consists of

four integer ALUs. Assuming that one of the ALUs had a faulty

adder core, we simulated two scenarios: (a) disabling the faulty ALU,

and (b) applying the proposed scheduling policy as described above.

Fig. 6 shows our results for SPEC2000 benchmarks. In virtually

all benchmarks, disabling a faulty ALU results in 5-10% IPC loss.

However, by applying our scheme, the IPC loss is reduced to below

0.5%. In most benchmarks, there was less than a 0.1% decrease in

IPC. The average improvement in throughput by using our technique

(instead of disabling the faulty adder) is found to be ~7.14%. Note

that although we have considered only one faulty adder out of four

available adders in the pipeline, the proposed technique can be easily

extended when more than one faulty adder is present.

V. RELATED WORK

Several techniques have been proposed in past to tolerate various

kinds of defects in arithmetic and logic circuits. In [1], the authors

isolate the critical paths of random logic circuits by proper synthesis

and sizing. If the chip suffers from timing failures in critical paths,

the output is evaluated in two-clock cycles. This allows them to

maintain high yield and rated clock frequency at the cost of slight

throughput degradation due to occasional two-cycle operations.

However, it does not address the large delay defects or open/short

scenario that is under consideration.

In [2], the authors proposed a stuck-at tolerant Kogge-Stone

Adder. The idea is to add an extra Han-Carlson (HC) stage which

computes the even bits from odd bits (or vice versa) for defective

adders. Therefore, stuck-at faults are tolerated at the cost of

area/delay overhead (due to HC stage and multiplexers). The authors

quote a 16% increase in delay during fault-correcting mode. If

applied in a superscalar data path, this would require a 16% in

reduction in frequency, and consequently a significant reduction in

throughput. In fact, the throughput degradation introduced by

performing the fault correcting in [2] is worse than the throughput

loss that would be seen if the adder was entirely disabled. Therefore,

it would be difficult to apply [2] directly to a high speed data path.

The popular fault tolerant technique, Triple Modular

Redundancy (TMR) [4] assumes that only 1-out-of-3 adders can be

faulty at a time. Therefore, it instantiates the adder thrice and uses a

voter to produce the majority output. This leads to large area/delay

overhead. To avoid the area overhead, Time Shared Triple Modular

Redundancy (TSTMR) [12] divides the operands (of width N) into

three parts and uses three / 3N   size adders to compute the addition

and a voter to choose 1-out-of-3 output. Therefore the entire addition

requires three clock cycles. Since operand widths are usually

divisible by four, Quaternary Time Redundancy (QTR) [3] adder is

proposed to utilize this fact and improve the area/delay overhead

compared to TSTMR. In this technique the operands are divided-by-

four and one quarter is instantiated three times with a majority voter.

The entire computation is performed in four clock cycles. Note that

all of the above techniques (i.e., TMR, TSTMR and QTR) are

concurrent error detection/correction techniques.

VI. CONCLUSIONS

Defects can significantly impact the yield of high performance

design. With aggressive scaling and lithographic limitations, a large

number of defects can be observed that can manifest themselves as

stuck-0/stuck-1, opens or shorts. Hence, to improve yield we

presented a technique to utilize the inherent spatial redundancy

present in high-speed circuits in order to tolerate any kind of fault.

We apply this technique to a Kogge-Stone adder to achieve fault

tolerance even in presence of faults. The faulty adder is operated in

two-clock cycles (instead of one-clock cycle) for complete

computation of correct Sum. The results show that the proposed

technique has very low overhead in terms of area and delay. It can be

used to tolerate any number of faults as long as they are confined to

either even or odd bits with small area and performance overhead.

We proposed a micro-architectural solution to utilize the faulty adder

efficiently in a superscalar pipeline and minimize the throughput

degradation (due to two-cycle operations). The technique can also be

extended to other sparse tree adders where the defect can be

tolerated by adaptive 1-cycle (for good adders) and N-cycle (for

faulty adders) operations (where N>=2).

VI. ACKNOWLEDGEMENTS

The authors acknowledge the support of the Gigascale

Systems Research Focus Center, one of five research centers

funded under the Focus Center Research Program, a

Semiconductor Research Corporation program.

REFERENCES

[1] S. Ghosh et al., “Tolerance to small delay defects by adaptive

clock stretching,” IOLTS, 2007.

[2] P. Ndai et al., "Fine-grained redundancy in adders," ISQED,

2007.

[3] W. J. Townsend et al., "Quadruple time redundancy adders,"

DFT, 2003.

[4] B. W. Johnson, “Design and analysis of fault tolerant digital

systems,” Addison Wesley Publishing Company, 1989.

[5] J. H. Patel et al., “Concurrent error detection in ALUs by

recomputing with shifted operands,” Trans. Comput., 1982.

[6] K. Wu et al., “Algorithm level RE-computing with shifted

operands - a register transfer level concurrent error detection

technique,” ITC, 2000.

[7] P. M. Kogge et al, “A parallel algorithm for the efficient

solution of a general class of recurrence equations,” TComp,

1973.

[8] J. Rabaey, “Digital Integrated Circuits: A Design Perspective”,

Prentice Hill, Second Edition, 2003.

[9] M. Breuer, “Digital system testing and testable design,” IEEE

Press, 1995.

[10] Synopsys Design Compiler, www.synopsys.com.

[11] T. Austin et al., “Simplescalar: An infrastructure for computer

system modeling,” Computer, 2002.

[12] Y. M. Hsu, “Concurrent error correcting arithmetic processors,”

PhD dissertation, University of Texas at Austin, 1995.

	Purdue University
	Purdue e-Pubs
	January 2008

	A novel low overhead fault tolerant Kogge-Stone adder using adaptive clocking
	Swaroop Ghosh
	Patrick Ndai
	Kaushik Roy

