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Abstract— As the feature size of transistors gets smaller, 

fabricating them becomes challenging. Manufacturing process 

follows various corrective design-for-manufacturing (DFM) steps to 

avoid shorts/opens/bridges. However, it is not possible to completely 

eliminate the possibility of such defects. If spare units are not 

present to replace the defective parts, then such failures cause yield 

loss. In this paper, we present a fault tolerant technique to leverage 

the redundancy present in high speed regular circuits such as 

Kogge-Stone adder (KSA). Due to its regularity and speed, KSA is 

widely used in ALU design. In KSA, the carries are computed fast by 

computing them in parallel. Our technique is based on the fact that 

even and odd carries are mutually exclusive. Therefore, defect in 

even bit can only corrupt the even Sum outputs whereas the odd 

Sums are computed correctly (and vice versa). To efficiently utilize 

the above property of KSA in presence of defects, we perform 

addition in two- clock cycles. In cycle-1, one of the correct set of bits 

(even or odd) are computed and stored at output registers. In cycle-2, 

the operands are shifted by one bit and the remaining sets of bits 

(odd or even) are computed and stored. This allows us to tolerate the 

defect at the cost of throughput degradation while maintaining high 

frequency and yield. The proposed technique can tolerate any 

number of faults as long as they are confined to either even or odd 

bits (but not in both). Further, this technique is applicable for any 

type of fault model (stuck-at, bridging, complete opens/shorts). We 

performed simulations on 64-bit KSA using 180nm devices. The 

results indicate that the proposed technique incur less that 1% area 

overhead. Note that there is very little throughput degradation 

(<0.3%) for the fault-free adders. The proposed technique utilizes 

the existing scan flip-flops for storage and shifting operation to 

minimize the area/performance overhead. Finally, the proposed 

technique is used in a superscalar processor, whereby the faulty 

adder is assigned lower priority than fault-free adders to reduce the 

overall throughput degradation. Experiments performed using 

Simplescalar for a superscalar pipeline (with four integer adders) 

show throughput degradation of 0.5% in the presence of a single 

defective adder.  

Keywords: Stuck-at faults, Fault tolerant adder, Adaptive clocking, 

Kogge-Stone adder, Scheduling. 

I. INTRODUCTION 

Sub-wavelength lithography, line edge roughness (LER), 

chemical mechanical polishing (CMP), etching etc cause large 

variation in transistor and wire geometries. These variations change 

the strength of transistors (systematically as well as randomly) 

causing variations in path delays. Manufacturing subtleties such as 

poor patterning, narrow metal region near via, missing salicide 

between metal and poly etc introduce resistive bridging in the circuit. 

Such resistive paths combined with process variation induced delay 

defects can deter a node from switching. Under a strict timing 

constraint and at lower operating supply, the delayed switching 

behaves as stuck-at 0 or stuck-at 1. Similar behavior is observed for 

stuck open defects (that appears due to electro-migration, poor 

printing etc) which introduce inline resistance in the wire, increasing 

both rise and fall times. The possibilities of such defects are 

increasing with aggressive scaling of transistor geometries, supply 

voltage and, increasing operating frequency requirements. Designing 

robust circuits in the presence of a large number of possible 

timing/open/short defects to meet a yield target is a challenging task. 

A possible technique to overcome the small delay defects would be 

to scale up the supply voltage or to reduce the operating frequency. 

However, this would either increase the power consumption or slow 

down the performance of the chip, making the chip unworthy to be 

shipped. Further, such techniques are not fruitful under large timing 

defects or complete open or short faults.  

Several clever techniques have been proposed in past to tolerate 

delay defects. In [1], the authors isolate the critical paths of random 

logic circuits and reduce their activation probability by proper 

synthesis and sizing. If the chip suffers from timing failures in 

critical paths, the output is evaluated in two-clock cycles. This 

allows them to maintain high yield and rated clock frequency at the 

cost of slight throughput degradation. However, it does not address 

the large delay defect and general fault model scenario that is under 

consideration in this paper. In [2], the authors proposed a stuck-at 

tolerant Kogge-Stone Adder. The idea is to add an extra Han-

Carlson (HC) stage which computes the even bits from odd bits (or 

vice versa) for defective adders. Therefore, stuck-at faults are 

tolerated at the cost of area/delay overhead (due to HC stage and 

multiplexers). Quadruple time redundancy [3] and triple modular 

redundancy [4] techniques have also been proposed in order to detect 

and correct errors at the cost large area overhead. 

In this paper, we achieve fault tolerance by adopting a different 

perspective. We utilize the inherent spatial redundancy present in 

high-speed circuits such as Kogge-Stone adder in an efficient 

manner in order to tolerate any type of defect. Our technique is based 

on the fact that the even and odd carries are mutually exclusive. 

Therefore, any defect in the even bits can only corrupt the even Sum 

outputs while the odd Sums are computed correctly (and vice versa). 

For example, in a 4-bit KSA, a defect in bit-1 can introduce errors 

only in Sum1 and Sum3. The other Sum outputs (i.e Sum0 and Sum2) 

are computed in parallel and will be fault-free. To efficiently utilize 

the above property of KSA in presence of defects, we add little 

overhead in the adder during design time. The adder operates 

normally (in single clock cycle) if it is found to be fault-free after the 

manufacturing test. However, if the adder is faulty, the addition is 

performed in two clock cycles. In cycle-1, one of the correct set of 

bits (even or odd) are computed and stored at the output registers. In 

cycle-2, the operands are shifted by one bit and the remaining sets of 

bits (odd or even) are computed and stored. This allows us to tolerate 

any kind of defect at the cost of throughput degradation due to 

increased latency operations while maintaining rated frequency and 

yield. The fault-free adders operate without any throughput 

degradation. To alleviate the throughput loss we schedule the faulty 

adder occasionally by proper micro-architectural techniques. The 

overall flowchart is shown in Fig. 1(a). Note that we have not 

considered the test and diagnosis of faults in this work but it is 

integral part of the overall fault tolerant methodology.  

As evident from the above discussions, the proposed technique 

requires addition of multiplexers at the inputs and outputs for 

shifting the operands and storing the correct output. In this work, we 

reuse the multiplexers present in scan flops to reduce the area 

overhead for shift. The storage of even/odd bit Sum outputs is also 

controlled by output multiplexers (which are reused from scan flops). 

This will be discussed in detail in Section III. 
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The timing diagram of this scheme is elucidated in Fig. 1(b) for 

three pipelined instructions in a superscalar pipeline (which 

usually has many adders for parallel instruction issue). For the 

sake of simplicity, let us assume that these instructions are scheduled 

to three different adders present in the execution unit. The second 

adder is defective and is always evaluated in two clock cycles 

whereas the fault-free adders are evaluated in single-clock cycle. The 

timing diagram shows the scenario when the first instruction is 

scheduled to adder-1, second instruction is scheduled to adder-2 and 

so on. The first and third instruction can be evaluated in one clock 

cycle however, adaptive clocking is performed during the execution 

of second instruction for correct functionality of the pipeline (Fig. 

1(b)). Note that, the second instruction is fired at cycle-2 but 

completely evaluated only at the end of cycle-3. The even bits are 

computed in cycle-2 (with operand-2) and registered while the odd 

bits are discarded. In cycle-3, the odd bits are computed correctly 

and stored (with operand-2 left shifted by one bit) assuming that the 

defect is located in odd bit. Note that the even bits are discarded in 

cycle-3.   

In the above toy example, the average cycles-per-instruction 

(CPI) is 1.33 since three instructions are executed in 4 cycles. Note 

that here we assumed that adder-2 is scheduled even when other 

adders are free just for the sake of illustration. In reality, the faulty 

adder should be scheduled only when all other adders are busy (to 

minimize the throughput penalty). For example, if adder-1 and 

adder-3 are busy in every cycle then ideally two instructions can be 

scheduled to adder-2 to be finished in 4 cycles (Fig. 1(b)). This will 

allow to process ten instructions (four instructions each by adder-

1/adder-3 and two instruction by adder-2) leading to CPI of 0.4. The 

ideal CPI would be 0.33 (=4/12) when all adders are fault-free. On 

the other hand, if the defective adder is completely eliminated then 

the CPI would become 0.66 (=8/12). Therefore, better throughput 

(0.40 compared to 0.66) can be gained by the proposed fault tolerant 

technique. The CPI computations performed here are simply for 

illustration. To accurately compute CPI, we would have to take into 

account the fact that there will not be sufficient Instruction Level 

Parallelism (ILP) to keep all the four adders in the execution unit 

busy at all times. This simply means that in some cycles, there will 

be fewer than four instructions ready to execute, and thus having 

only three adders or having a single defective adder that completes 

instructions after two cycles will result in less CPI degradation than 

computed above. Nevertheless, the CPI computations above give a 

general trend. We provide much more detail in Section IV by using 

SPEC 2000 benchmarks to simulate realistic workloads. 

Note that the proposed fault tolerant technique is significantly 

different from Recomputation with Shifted Operands (RESO) [5] [6], 

which is a concurrent error detection technique. In RESO, if an 

arithmetic logic unit (ALU) performs a function f, and x is an input 

to the function, then an error in the ALU can be detected by 

comparing f(x) with the output of (f(x<<1)>>1). For a given data 

input, the result of function f is stored in a register and compared 

against the result obtained using shifted operands. In the proposed 

technique, the shifting of operands is done occasionally (by proper 

micro-architectural technique) to correct the effect of fault and not to 

detect it. In summary, we make following contribution in this paper: 

•••• We propose a novel and low overhead fault tolerant Kogge-

Stone adder. The faults are tolerated by utilizing the inherent 

redundancy of the adder in time efficient manner. The proposed 

technique is applicable for any type of defect and not limited by 

a particular fault model. 

•••• We propose a micro-architectural technique to utilize the faulty 

adder with minimum throughput degradation.   

The rest of the paper is organized as follows. In Section II, we 

analyze the impact of faults on the Kogge-Stone Adder. The fault 

tolerant KSA is described in detail in Section III. The micro-

architectural solution to optimize the throughput degradation in 

presence of faulty adder and two-cycle operations is presented in 

Section IV. The related work on fault tolerant adder is discussed in 

Section V and finally, the conclusions are drawn in Section VI. 

 II. IMPACT OF FAULTS ON KSA 

Kogge-Stone adders are popular choice in high speed ALU 

design due to its faster operation, regular structure and balanced 

loading in internal nodes compared to other sparse tree adders. In 

this section, first we briefly discuss the design, operation and general 

properties of KSA that are relevant from fault tolerance point of 

view. Next, we elaborate the impact of faults in the intermediate 

computations and their effect on the overall Sum generation. 

A. Basic structure of KSA 

KSA belongs to the family of fastest parallel prefix adders with 

complexity of log2N (where N is the width of the adder) meaning 

thereby that the addition can be done in log2N stages. The basic 

structure of 8-bit radix-2 Kogge-Stone adder [7] is illustrated in Fig. 

2(a). It operates on the principle of block propagate(p) and block 

generate(g) [8]. The block propagate determines whether the input 

carry can propagate through the block of bits or not. The block 

generate determines if the block of bits can generate a carry or not. 

If a and b are input operands of the adder, the propagate/generate 

and carry in (Ci)/carry out (Ci+1) are related as follows 

1;   ;                                      (1)i i i i i i i i i ip a b g a b C g p C
+

= ⊕ = • = +

 

In absence of carry input to the adder core (i.e., C-1 = 0), the 

generate signal become the carry inputs for the intermediate carry 

computations. In 8-bit KSA, the carry is computed in k=3 stages 
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(a)                                                                                                             (b) 

Fig. 1 (a) Proposed fault tolerant methodology, (b) timing diagram for three adders in the execution unit (Tc is the clock period) 

 



(where k= log2N). In 1st stage (k=1), carries and propagates of 2-bit 

block sizes are computed in parallel. In 2nd stage (k=2), 

carries/propagates of 4-bit block sizes are computed by using 2-bit 

carries/propagates from stage-1. Therefore, carry till 4th bit gets 

computed in this stage. In the final stage (k=3), the carry of 8th bit is 

computed by using 4th carry and block propagate signal of bit-4 

through 7. The carries of other bit positions are also computed in 

parallel. Once the carry is available, the Sum output is computed by 

evaluating
i i iS p C= ⊕ . In Fig. 2(a), the black boxes denote the 

computation of propagate/generate whereas the grey boxes denote 

computation of generate only.  

The stage-wise propagation of carries is further illustrated in Fig. 

2(a) by expanding two of the stages (k=0, 1) of KSA. The solid 

arrows denote presence of carry whereas the dashed arrows denote 

absence of carry. The bit-wise propagates/generates are computed in 

setup stage (k=0). In 1st stage, they are combined in pairs to produce 

group carries. Three situation are illustrated in Fig 2(a):  (i) (p, 

g)=(1,1) are asserted and the group carry is generated, (ii) (p, 

g)=(0,1) and the carry is sunk in, (iii) (p, g)=(1,0) so there is no 

group carry. The stage-wise group carries for the entire 8-bit adder 

are shown in Fig. 2(b). It can be observed from this diagram that 

carry output of 7th bit depends only on carry output of bits 3 and 1. 

Similarly, carry output of 6th bit depends only on carry output of bit 

2. Therefore, even and odd carries are computed independent of each 

other resulting in area overhead compared to other sparse tree adders. 

However, the advantage comes from the regularity in layout, 

balanced fan-out and speed. As we explore in the next paragraphs, 

this kind of structure also yields fault tolerance due to independent 

(or parallel) computation of even/odd bits that is done in order to 

achieve speed. 

In the following subsections, we will elaborate the impact of 

faults in the KSA. For the sake of simplicity we assume that the 

faults are confined between stages 1 to log2N. Moreover, the setup 

stage (i.e., k=0) is assumed to be fault-free.      

B. Faults in propagate 

A stuck-at 0 fault in propagate may block the carry from 

propagating to the output. On the other hand, a stuck-at 1 fault may 

undesirably propagate the carry where it should kill the carry. In 

both situations, the wrong computation will appear at the Sum output. 

For example, let us consider an 8-bit KSA (Fig. 2(a)) to observe the 

impact of faults in the propagate signals 

3:0 3:2 1:0 4:1 4:3 2:1

5:2 5:4 3:2 6:3 6:5 4:3

;       ;                                                            (2)

 and 

P P P P P P

P P P P P P

= =

= =

 

where Pi:j is the block propagate between ith and jth bits.  

From equation 2 it is evident that a fault (of any type) in P3:2 can 

only affect P3:0 and P5:2 whereas P4:1 and P6:3 are computed correctly. 

Similarly, a fault in P4:3 can only affect P4:1 and P6:3. Note that, P3:0, 

P4:1, P5:2 and P6:3 are neighboring group propagate signals in bit-3, 

bit-4, bit-5 and bit-6 (i.e., odd, even, odd, even fashion). Therefore, 

this example further illustrates the fact that fault in even bit 

propagate can affect only the even bit propagates (and 

consecutively the Sum outputs) and vice versa is true for odd bits. 

Fig. 3(a) elucidates the fault in P3:2 further. The fault corrupts the P3:0 

first (at k=2) and P5:2, P7:2 next (at k=3). These faults corrupt the odd 

Sum outputs (i.e., Sum3, Sum5 and Sum7) in the final stage. 

C. Faults in generate 

Similar to faults in propagate, a stuck-at 0 fault in generate may 

kill a carry from generating whereas a stuck-at 1 fault may 

undesirably produce an intermediate carry. Other types of faults (e.g., 

complete short/open) will manifest differently. For example, in the 

8-bit KSA (Fig. 2(a)), the carry-outs C5, C6 and C7 are given by  

5 5:2 5:2 1:0 5:4 5:4 3:2 5:4 3:2 1:0

6 6:3 6:3 2:0 6:5 6:5 4:3 6:5 4:3 2:0

6:5 6:5 4:3 6:5 4:3 2:1 2:1 0

=( ) ( )                               (3)

=( ) ( )

    ( ) ( )( )                             

C G P G G P G P P G

C G P G G P G P P G

G P G P P G P G

= + + +

= + + +

= + + +         (4)

7 7:4 7:4 3:0 7:6 7:6 5:4 7:6 5:4 3:0

7:6 7:6 5:4 7:6 5:4 3:2 3:2 1:0

=( ) ( )

     =( ) ( )( )                                    (5)

C G P G G P G P P G

G P G P P G P G

= + + +

+ + +

From the above expressions, it is evident that a fault in G3:2 can 

affect only carry-outs C5 and C7 whereas C6 can be computed 

correctly (since C6 is independent of G3:2 term). Fig. 3(b) illustrates 

the fault in G3:2 further. The fault corrupts the C3 first (at k=2) and 

C5, C7 next (at k=3). These faults corrupt the odd Sum outputs (i.e., 

Sum3, Sum5 and Sum7) in the final stage. 

Note that the conclusions drawn above for the faulty propagate 

and generate signals are general and not dependent on any 

particular fault model.  
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Fig. 2 (a) A basic 8-bit radix-2 Kogge-Stone adder [7] (stages k=0 and k=1 are expanded to show carry paths for three scenarios) and, (b) 

simplified notation of KSA in terms of carry paths 
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Fig. 3 (a) Effect of fault in propagate and, (b) effect of fault in 
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III. FAULT TOLERANT KSA 

In this section, we describe the proposed fault tolerant Kogge-

Stone adder followed by the simulation results. 

A. Structure of fault tolerant Kogge-Stone adder  

The overall structure for an 8-bit fault tolerant adder example is 

illustrated in Fig. 4. It can be observed that following components 

are required for fault tolerance: 

1. Multiplexers at the inputs: Multiplexers are required at the inputs 

for shifting the operands to the left side by 1-bit during second cycle 

(for the faulty adder). We observe that scan flip-flops [9] are 

generally used for testability purpose where the test patterns are 

shifted sequentially in test mode, applied to the circuit-under-test and 

responses are scanned out to attain required fault coverage. The scan 

flops utilize multiplexer at the D-input to clock-in either test data or 

normal data (based on the Scan Shift Enable signal). In this work, we 

reuse these multiplexers for shifting the operands. This is achieved 

by simply ORing the scan shift enable signal with the operand shift 

enable to control the scan flop multiplexers (Fig. 4).  

2. Extra bit computation: An extra computation column is added in 

the Kogge-Stone tree to make sure that even if the fault affects Sum7, 

the correct Sum can be computed by this column and restored in 

cycle-2. This extra column (un-shaded in Fig. 4) contributes towards 

the area overhead.   

3. Application of non-controlling values in LSB and MSB: During 

cycle-2, non-controlling values must be applied to the LSB so that 

(p0,g0) = (1,0). This is required since LSB is not used for 

computation during cycle-2 in faulty adders. Forcing p0=1 makes the 

group propagate signal (i.e., the product of individual propagates) 

independent of p0. Similarly, g0=0 is required to suppress false carry 

input from the LSB. Both of these conditions are achieved by 

providing 10 or 01 inputs through the multiplexer. The MSB from 

extra column (i.e., 8th bit) output is ignored during cycle-1. However, 

a 10 or 01 input can be forced to ensure non-controlling p/g values 

during cycle-1 of fault-free as well as faulty adders.    

4. Multiplexers at output: Multiplexers are required at the outputs for 

shifting the partially correct Sums to the right side by 1-bit during 

second cycle in faulty adder. We again leverage the scan flop’s for 

the shifting of outputs. Note that the Sums are shifted right to 

preserve the bit ordering. For example, in Fig. 4, Sum4 and Sum6 are 

faulty in cycle-1 whereas other Sums are computed correctly. After 

right shifting the Sums in cycle-2 and re-computation, the correct 

computations (Sum1, Sum3, Sum5, Sum7) from cycle-1 is stored in 

Sum0, Sum2, Sum4, Sum6 registers whereas the new computations are 
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Fig. 5 Detailed timing diagram  

 

   TABLE I: PROCESSOR CONFIGURATION 

Processor 8-way issue, 128 RUU, 64 LSQ, 4 integer 

ALUs, 1 integer mul/div units, 4 FP ALUs, 

4 FP mul/div units, 2 Wr/Rd ports 

Branch Prediction Combined, 16-entry RAS, 512-set 4-way 

BTB, 8 cycle mis-prediction penalty 

Caches 64KB 2-way 2 cycle I/D L1, 2MB 2-way 

18 cycle L2 

Main Memory 300 cycle latency, 32-byte wide bus 
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Fig. 4 Block diagram of the proposed 8-bit fault tolerant Kogge-Stone adder (the redundant stage is un-shaded). The components 

required for fault tolerance are numbered for the sake of clarity. The effect of fault in 3rd bit is also shown  

 



clocked-in to the Sum-1, Sum1, Sum3, Sum5 registers. The final Sum 

of the addition can be obtained from Sum-1 through Sum7 registers.  

5. Generation of shift enable signal: The shift enable signal is 

generated by a mono-pulse generation circuitry as shown in the inset 

of Fig 4. A mono-shot pulse is generated whenever the adder is 

scheduled (i.e., adder enable =1). The operands are shifted left and 

the outputs are shifted right whenever the shift enable is asserted.  

6. Clocking of output registers: If manufacturing test determines that 

the fault is located in even bits then the corresponding even registers 

should be programmed (Fig. 4) to receive gated clock (gclk) whereas 

the odd registers are programmed to receive the normal clock (clk). 

This is done to prevent destruction of correct data in even bit 

registers (that were computed in cycle-1) during cycle-2. Similarly, 

programming bit should be configured if the fault is located in odd 

bits. The gclk is generated by ANDing the normal clock with shift 

enable signal. The timing diagram of shift enable and gclk is shown 

in Fig. 5 for the example discussed in Section-I.  

The area overhead in the proposed fault tolerant adder is minimal 

and essentially comes from the extra computation stage, shift 

enable/gated clock generation logic and 1-bit programmable register 

for clocking the output flops. It should also be noted that the 

proposed technique is generic and can be extended to design fault 

tolerant sparse-tree adders (e.g., Han-Carlson, Brent-Kung [8] etc). 

Since these adders have less redundancy present, the fault tolerance 

can be achieved by performing more than two shifts and re-

computations. 

B. Simulation results  

We implemented the 64-bit fault-tolerant KSA in Verilog. We 

synthesized the circuit in Synopsys Design Compiler [10] using 

180nm IBM technology. To estimate the overhead due to the fault 

recovery features, we provided the same constraints to both the 

nominal circuit and the proposed circuit. The total area overhead was 

0.9%, and this was due to the additional computation column and the 

logic required for modifying the clocking. The performance 

overhead of the fault-free adder (during normal operation) was 0.3%, 

which was primarily due to the additional load on the clock network.  

IV. APPLICATION IN SUPERSCALAR PIPELINE  

In last section, we proposed the fault tolerant Kogge-Stone 

Adder which uses two-clock cycles to tolerate the faults. In this 

section, we present a micro-architectural solution to minimize the 

throughput penalty if faulty adders are present in a superscalar 

pipeline. 

In superscalar processors, there are typically several functional 

units (integer ALUs, integer multipliers, floating point ALUs, etc) of 

the same type. Consider a processor that has a faulty integer ALU. In 

this case, the designers would either have to discard the faulty chip, 

or disable the faulty functional unit. The first option results in a 

significant yield impact, particularly as the number of faults increase 

as expected in scaled technologies. The second solution, that is, to 

disable the faulty ALU, is significantly more attractive since it 

allows the faulty chip to be salvaged, albeit at a significant 

throughput penalty due to the availability of fewer ALUs. 

For this work, we assume that the faulty functional unit is the 

adder core of the integer ALU. Instead of completely disabling the 

faulty adder, we use it for computation, but employ adaptive 

clocking to allow it to perform computations in two-clock cycles. 

There are two major challenges to employing this scheme. The first 

one is to ensure that most of the instructions are not executed by this 

faulty functional unit. Here, we assign the lowest priority to this 

faulty ALU, such that we only use it for computation whenever all 

other non-faulty ALUs are in use. In addition to this, we must ensure 

that dependent instructions are not woken up before the faulty adder 

has completed the computation. 

Both these tasks require some slight modification to the schedule 

and issue logic of the superscalar processor. The schedule and issue 

logic is responsible for issuing of instructions to the functional units. 

Whenever an instruction is ready to be issued (all its other dependent 

instructions have completed), the scheduler locates an available 

functional unit. If a functional unit is available, the scheduler issues 

the instruction to the functional unit, and informs the wake-up logic 

to wakeup instructions that are dependent on the one that has been 

issued after a given number of cycles. In addition, each functional 

unit has a REQUEST signal to indicate that it is available for 

execution. 

In order to implement the modification to the scheduling policy, 

each functional unit requires an additional status bit to indicate when 

it is faulty. The scheduler checks this FAULT bit in addition to the 

REQUEST signal. If the FAULT bit is set, the scheduler wakes up 

dependent instructions after two-clock cycles. Note that the FAULT 

bit is set during test and does not change during execution, thus the 

performance and power overhead is small.  

We modified Simplescalar [11] to accommodate the changes in 

the scheduling policy. We used ref inputs, fast forwarded 500 
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Fig. 6 Simplescalar results. The throughput improvement (compared to scenario when faulty adder is completely discarded) for 

SPEC2000 benchmarks are shown 



million instructions and simulated 1 billion instructions for 23 of 25 

benchmark in the SPEC 2000 toolset (we had difficulty simulating 

vortex and swim). The processor configuration is shown in Table 1. 

As shown in the configuration, the integer execution unit consists of 

four integer ALUs. Assuming that one of the ALUs had a faulty 

adder core, we simulated two scenarios: (a) disabling the faulty ALU, 

and (b) applying the proposed scheduling policy as described above.  

Fig. 6 shows our results for SPEC2000 benchmarks. In virtually 

all benchmarks, disabling a faulty ALU results in 5-10% IPC loss. 

However, by applying our scheme, the IPC loss is reduced to below 

0.5%. In most benchmarks, there was less than a 0.1% decrease in 

IPC. The average improvement in throughput by using our technique 

(instead of disabling the faulty adder) is found to be ~7.14%. Note 

that although we have considered only one faulty adder out of four 

available adders in the pipeline, the proposed technique can be easily 

extended when more than one faulty adder is present.   

V. RELATED WORK 

Several techniques have been proposed in past to tolerate various 

kinds of defects in arithmetic and logic circuits. In [1], the authors 

isolate the critical paths of random logic circuits by proper synthesis 

and sizing. If the chip suffers from timing failures in critical paths, 

the output is evaluated in two-clock cycles. This allows them to 

maintain high yield and rated clock frequency at the cost of slight 

throughput degradation due to occasional two-cycle operations. 

However, it does not address the large delay defects or open/short 

scenario that is under consideration.  

In [2], the authors proposed a stuck-at tolerant Kogge-Stone 

Adder. The idea is to add an extra Han-Carlson (HC) stage which 

computes the even bits from odd bits (or vice versa) for defective 

adders. Therefore, stuck-at faults are tolerated at the cost of 

area/delay overhead (due to HC stage and multiplexers). The authors 

quote a 16% increase in delay during fault-correcting mode. If 

applied in a superscalar data path, this would require a 16% in 

reduction in frequency, and consequently a significant reduction in 

throughput. In fact, the throughput degradation introduced by 

performing the fault correcting in [2] is worse than the throughput 

loss that would be seen if the adder was entirely disabled. Therefore, 

it would be difficult to apply [2] directly to a high speed data path. 

The popular fault tolerant technique, Triple Modular 

Redundancy (TMR) [4] assumes that only 1-out-of-3 adders can be 

faulty at a time. Therefore, it instantiates the adder thrice and uses a 

voter to produce the majority output. This leads to large area/delay 

overhead. To avoid the area overhead, Time Shared Triple Modular 

Redundancy (TSTMR) [12] divides the operands (of width N) into 

three parts and uses three / 3N   size adders to compute the addition 

and a voter to choose 1-out-of-3 output. Therefore the entire addition 

requires three clock cycles. Since operand widths are usually 

divisible by four, Quaternary Time Redundancy (QTR) [3] adder is 

proposed to utilize this fact and improve the area/delay overhead 

compared to TSTMR. In this technique the operands are divided-by-

four and one quarter is instantiated three times with a majority voter. 

The entire computation is performed in four clock cycles. Note that 

all of the above techniques (i.e., TMR, TSTMR and QTR) are 

concurrent error detection/correction techniques.        

VI. CONCLUSIONS 

Defects can significantly impact the yield of high performance 

design. With aggressive scaling and lithographic limitations, a large 

number of defects can be observed that can manifest themselves as 

stuck-0/stuck-1, opens or shorts. Hence, to improve yield we 

presented a technique to utilize the inherent spatial redundancy 

present in high-speed circuits in order to tolerate any kind of fault. 

We apply this technique to a Kogge-Stone adder to achieve fault 

tolerance even in presence of faults. The faulty adder is operated in 

two-clock cycles (instead of one-clock cycle) for complete 

computation of correct Sum. The results show that the proposed 

technique has very low overhead in terms of area and delay. It can be 

used to tolerate any number of faults as long as they are confined to 

either even or odd bits with small area and performance overhead. 

We proposed a micro-architectural solution to utilize the faulty adder 

efficiently in a superscalar pipeline and minimize the throughput 

degradation (due to two-cycle operations). The technique can also be 

extended to other sparse tree adders where the defect can be 

tolerated by adaptive 1-cycle (for good adders) and N-cycle (for 

faulty adders) operations (where N>=2).   
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