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ABSTRACT 

 

This paper presents the application of the expectation-maximization/maximization of the posterior marginals 

(EM/MPM) algorithm to signal detection for functional MRI (fMRI). On basis of assumptions for fMRI 3-D image 

data, a novel analysis method is proposed and applied to synthetic data and human brain data. Synthetic data analysis is 

conducted using two statistical noise models (white and autoregressive of order 1) and, for low contrast-to-noise ratio 

(CNR) data, reveals better sensitivity and specificity for the new method than for the traditional General Linear Model 

(GLM) approach.  When applied to human brain data, functional activation regions are found to be consistent with those 

obtained using the GLM approach. 

 

Keywords: fMRI, EM/MPM algorithm, posterior probability map, white noise model, AR(1) model 

 

 

1.  INTRODUCTION  

 

Functional MRI (fMRI) is a form of neuroimaging, based on changes in blood flow and blood oxygenation, which 

can permit identification of those parts of the brain activated by sensation, cognition or activity.  The conventional fMRI 

analysis approaches, like general linear model (GLM) [1] or cross-correlation [2], are univariate in the spatial domain. 

In other words, they determine activated regions through matching of time-series images to a given reference waveform 

voxel by voxel. Although the resulting mapping image will be analyzed spatially, some valuable spatial information 

may have been lost during the voxel-by-voxel matching.  The proposed EM/MPM method for event-related fMRI 

identifies the activated region based on spatial and temporal information together. Firstly, it estimates the peak time by 

fitting the time series data to a given hemodynamic response model. Secondly, it segments the activation regions in an 

averaged peak-time image which preserves spatial information.  

It is assumed that there are two states for every voxel in time series: activated or non-activated. Without 

considering the effect of noise and anatomical differences in the human brain, the intensity of those non-activated 

voxels in time-series images should be comparable across states, but those activated voxels will exhibit intensity 

Computational Imaging VI, edited by Charles A. Bouman, Eric L. Miller, Ilya Pollak, 
Proc. of SPIE-IS&T Electronic Imaging, SPIE Vol. 6814, 68140D, © 2008 SPIE-IS&T · 0277-786X/08/$18

SPIE-IS&T/ Vol. 6814  68140D-1

Downloaded from SPIE Digital Library on 28 Jun 2011 to 128.210.125.16. Terms of Use:  http://spiedl.org/terms



variation corresponding to the hemodynamic response. Therefore, for every image in which activated and non-activated 

voxels coexist, the image may be deemed to be made up of two different phases.  The signal detection problem now is 

changed into an image segmentation problem. So we can identify activated regions with only two fMRI images (an 

activated image + a resting image), at least in theory. Considering the low contrast-to-noise rate (CNR) for fMRI data, it 

is improbable with only those two images. We need to find a way to increase CNR for segmentation. Averaging the 

peak-time images in multiple events may be a solution for increasing CNR. But it is dependent on the fMRI noise in 

time series. Thus, we need to discuss how two different temporal noise models affect CNR in section 2. In section 3, we 

will discuss EM/MPM algorithm. Finally, we will apply this new method to synthetic data and human brain data and 

compare the results to those derived from GLM. 

 

2.  CONTRAST-TO-NOISE RATIO AND NOISE MODELS 

 

2.1 Contrast-to-Noise Ratio 

     The contrast for one activated image is defined as the difference of signal intensity between activated and non-

activated voxels if the activated image is only composed of these two types of voxels.  The noise is defined as the 

standard deviation of non-activated voxels. If the noise in activated images is assumed unvaried, the peak-time image 

has the largest contrast-to-noise ratio in all image of one response. In our method, the peak time is estimated through 

matching fMRI data to a Gamma-variate model [3][4]. Usually, the CNR of one peak-time image is still not large 

enough for segmentation. In order to improve CNR, we average peak-time images over multiple events. In the 

following two subsections, we will discuss the relationship between CNR and averaging peak-time images over events.   

  

2.2 White Noise Model 

     If the fMRI noise in the temporal domain is a white noise, each voxel in a time series is represented as 

                                                                           Yi = Hi + εi                                                                                       (1) 

where Yi  is the measured fMRI voxel value at the ith time point; Hi is hemodynamic response signal at the ith time 

point; εi is a random error term with Gaussian distribution N(0, σ2); εi and εj (i ≠ j) are uncorrelated. Let K be the 

number of events, each producing a hemodynamic response assumed to be of length L. If the peak time tp for every 

event-related response is unvaried, then 
i

i

Y Y= ∑   (i = tp , tp+L , … , tp+L(K-1)) is a Gaussian distribution with mean 
ptH  

and variance σ2 /K. So the CNR of Y  is K  times the CNR of
t p

Y .   

 

2.3 AR(1) Noise Model 

      A more appropriate model for the noise observed in an fMRI time-series is an autoregressive model of order 1 [5]. 

Each voxel in the time series is then represented as 

                                                                                  Y H wi i i iη= + +                                                                               (2) 
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where   

                                                                                      1w wi i iρ ε= +−                                                                                 (3) 

Yi and Hi  are same as in the white noise model. wi  is the AR(1) physiological noise with correlation coefficient ρ and 

iε is a zero-mean white Gaussian noise with variance 2σε . iη is the scanner noise, which is assumed to be N(0, 2ση ). 

We have { } 0E wi = , 
2

var{ } var{ }
21

w wi i n
σε

ρ
= =+

−
 and 

2
| |cov( , )

21

nw wi n i
σε ρ

ρ
=+

−
(n is time point interval) so that  

{ }E Y Hi i=  , { }E Y Hi n i n=+ + , 
2

2var{ }
21

Yi
σε ση

ρ
= +

−
and 

2
| |cov( , )

21

nY Yi n i
σε ρ

ρ
=+

−
. So the CNR of 

ptY is given by the 

following equation: 

                                                                               
2

2
21

p

p

t
Y

H
t

CNR

σ
ε σ

ηρ

=

+
−

                                                              (4) 

 

Let K be the number of trials, each producing a hemodynamic response assumed to be of length L.  If the peak time  t p  

for every event-related response is unvaried, then Y Yi
i
∑=  is also follows a Gaussian distribution with { }E Y Htp

= and  

                                                                   
2 211 22

var{ } ( ) ( )2 2 21 11

K i LY K i
K K i

σ σε εσ ρηρ ρ

− ×
∑= + + −

− −=
                                     (5) 

 

Note that the first term of equation (5),
21 2

( )21K

σε σηρ
+

−
, is equal to var{ }

1
Yt pk

. Let us substitute typical parameters’ 

value into equation (5) to see the ratio ζ  between the second term of equation (5), 
212

( )2 211

K i LK i
K i

σε ρ
ρ

− ×
∑ −

−=
, and the 

first term of equation (5) in term of  physiological noise correlation coefficient ρ . The result is shown in figure 1. 
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From figure 1, it is shown that when ρ ≤ 0.8, the second term of Eq. (5) will be significantly less than the first term. So, 

var{ }Y will be approximated by 
21 2

( )21K

σε σηρ
+

−
 and CNR of Y  by K CNRYt p

× , which is consistent with the result 

derived from white noise model. Thus, we conclude that averaging the peak-time images over events can significantly 

improve the CNR, which will make it possible to segment and identify the activated regions using fewer time-series 

images.  

 

3.  THE EM/MPM ALGORITHM 

 

Before we discuss the EM/MPM algorithm, some notations which will be used in the following discussion are 

written as follows: 

S: set of lattice points and S={(i,j)|0 ≤  i  ≤ N1 - 1, 0 ≤ j ≤ N2 - 1}, where N1 and N2 are the number of voxels in the x and  

     y  directions; 

s: a lattice point, s ∈  S; 

η: a neighborhood system and η={ηs|s∈S}, where each ηs is a neighborhood of s satisfying (i) s∉ηs and (ii) s∈ηt  

     implies t∈ηs; 

c: a clique, a set of points, which are all neighbors of each other; 
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                    Figure 1. The ratio of the second part of Eq. (5) to the first part in terms of physiological noise              

                                    correlation coefficient (K=15, L=15, 1ση = , 
7

4
σε = ) 
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C: the collection of all cliques in S; 

N: the number of voxel in one image = N1 ×  N2; 

X: the label field, containing the classification of each voxel to the activated or non-activated state; 

Y: the observed image (average peak-time image); 

Xs: the element in X at s, a random variable; 

Ys: element in Y at s, a random variable; 

θ: parameter vector and θ is defined as [µ0, σ0
2, µ1, σ1

2] in our method. 

 

3.1 2-D Discrete Markov Random Field 

We assume that activated voxels will have different statistical characteristics from non-activated voxels, allowing 

us to convert the signal detection problem into a segmentation problem. Depending on its statistical properties and its 

neighbors, each voxel in the activated fMRI image must be assigned to one of two labels, activation (Xs = 1) or non-

activation (Xs = 0), forming a two-dimensional label field. In this paper, the Markov random field model is used for the 

label field. By the Hammersley-Clifford Theorem, the probability mass function of X takes the form of a Gibbs 

distribution over the collection of all cliques, C: 

                                                       1
( ) exp ( )

{ , }
p x x xr sX Z r s C

β δ
⎛ ⎞
⎜ ⎟
⎜ ⎟⎜ ⎟
⎝ ⎠

= − ≠∑
∈

                                                      (6) 

where β is the spatial interaction parameter; Z is the normalizing constants for the density; δ(xr ≠ xs)=0 if xr = xs and δ(xr 

≠ xs)=1 if xr ≠ xs. This is actually a special case of the Gibbs distribution known as the ising model. 

 

3.2 Observed Image Model 

The label state Xs for every voxel is not observed directly and must be estimated from the observed image Y. It is 

assumed that random variables Y1, Y2,  …,YN  are conditionally independent given the label field X. it is also assumed 

that the conditional probability density of Ys depends only on Xs, and is independent of any other element of X. We 

model Ys to be conditionally Gaussian given Xs. This leads to the following expression for the conditional probability 

density function of Y:  

                                        

                                               | ||

2( )1
( | , ) ( | , ) ( | , ) exp

221 1 1 22
Y X Y Xs s sY X

N N N ys xsy x f y x f y xs s s
s s s

xx ss

f
µ

θ θ θ
σπσ

−
∏ ∏ ∏= = = −
= = =

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎝ ⎠

,                (7)          

where 2 2

0 0 1 1
[ , , , ]θ µ σ µ σ= . The posterior probability mass function of X given Y is obtained as follows:  

              |

|

( | , ) ( )
( | , )

( | )

Y X X

X Y
Y

f y x p x
p x y

f y

θ
θ

θ
= =     
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2( )1 1

exp ( )
2( | ) 2 21 { , }1 2Y

N N ys xs X Xr sZf y s r s Cs
xx ss

µ
β δ

θ σπσ

−
− − ≠∑ ∑∏

= ∈=

⎡ ⎤ ⎛ ⎞
⎢ ⎥ ⎜ ⎟
⎢ ⎥ ⎜ ⎟
⎢ ⎥ ⎜ ⎟
⎢ ⎥ ⎝ ⎠⎣ ⎦

.                                (8) 

3.3   MPM Algorithm 

MPM is one type of Bayesian estimation, which is to choose the estimate � � ( )x x y=  by minimizing the expected 

cost E(C(X, (Y)x� )) taken with respect to the posterior probability distribution PX|Y, where C(X, (Y)x� ) is the cost of x�   

when x is the correct answer. Maximum a posterior (MAP) is considered too conservative because it treats all errors 

equally. MPM is a more reasonable approach, which assigns a cost proportional to the number of error voxels and its 

cost function is defined as 

                                                         ( , ) 1 ( )ss

s S

C x x x xδ
∈

= − −⎡ ⎤⎣ ⎦∑� �                                                                     (9) 

The general criterion for optimal class labeling is to minimize the following expected cost function: 

                                    
,

( , ( )) ( , ( )) ( | ) ( ) ( , ( )) | ( )
x y y

E C X x Y C x x Y P x y P y E C X x Y Y y p y= = =⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦∑ ∑� � �                    (10) 

For MPM, we substitute Eq. (9) to Eq. (10). Thus, for each y 

                                                            ( , ( )) | ( | ),ss

s S xs

sE C X x Y Y y N P x x yx
∈ −

−= = − =
⎡ ⎤

⎡ ⎤ ⎢ ⎥⎣ ⎦
⎣ ⎦

∑ ∑� �                                (11) 

where N is  the number of voxel in one image,  xs- = {xr: r∈S and r ≠ s} and  �( , | )
s

ss s
x

P x x x y
−

−=∑ is a marginal 

probability of P(x|y) for xs- with �

ssx x= . For each voxel s∈S, the estimator is to find the value of k (k = 1 for 

activation, k = 0 for nonactivation) which maximizes  

                                                            
,

|( | ) ( | , )
k s

s X Y
x S

P X k Y y p x y θ
∈

= = = ∑ ,                                                   (12) 

where Sk,s = {x: xs = k}. But computing the above marginal probability mass functions is very time-consuming and 

infeasible. In [6], by using a Markov chain Monte Carlo (MCMC) sampling process which converges in distribution to a 

random field with probability mass function given by Eq. (8),  the authors approximate the marginal probability mass 

function with the fraction of time the Markov chain spends in state k at voxel s, for each k and s. A pseudocode is 

shown below to explain how to count the fraction of time the Markov chain spends in state k = 1 (activation) at each 

voxel s in the MPM algorithm: 
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3.4   EM Algorithm 

In order to approximate the above marginal probabilities, the value of parameter vector θ must be estimated.  We 

use the Expectation-Maximization (EM) algorithm to estimate the parameters ( )2, kkµ σ  in every iteration p. Here we 

only give the final equations to update the parameters in EM algorithm. The detailed discussion is included in [7]. 

                                                     |

1( 1) ( )( | , )( 1) 1
X Yssk

k

Np py p k ypN s
µ θ+ = ∑+ =

                                                              (13) 

                                       |

( 1) 12 ( 1) 2 ( )( ) ( | , )( 1) 1
X Ys

p

k
k

N p py p k ysk pN s
σ µ θ

+ += −∑+ =
                                                        (14) 

                                                             |
( 1) ( )( | , )

1
X Ysk

Np pN p k y
s

θ+ = ∑
=

                                                                         (15) 

 

3.5   EM/MPM Algorithm 
So, the whole EM/MPM algorithm procedure is described as follows:  

Step1: Initialize estimate of parameter vector θ(0). 

Step2: For iteration p = 1, …, P 

           i) perform a certain number of iteration of the MPM algorithm based on Eq. (12) and the estimate of  

               parameter vector θ(p-1);  

           ii) Approximate the estimate of the marginal probability mass function and then use EM update Eqs (13- 

               15) to obtain the estimate of parameter vector θ(p). 

 

Nact ←  count_act_num( ) { 
    for m = 1, …, MPM_iteration_number { 
        Nact = 0;                                                    //Initialize to 0 

        posterior ←  1
2

11

2( )
exp ( ( 1))

221 { , }

1

2

N ys X Xr s
s r s C

µ β δ
σπσ

⎛ ⎞−⎜ ⎟− − ≠ =∑ ∑
⎜ ⎟= ∈⎝ ⎠

; 

        random_num ←  random( );     // random( ): a uniform random function 
        If (random_num ≤  posterior) { 
            Nact =  Nact + 1; 
        } 
     return Nact; 
    } 
} 
fraction= Nact/MPM_iteration_number; 
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4.  RESULTS 

 

4.1 Synthetic Data Results 

The EM/MPM method produces a posterior probability map (PPM) from which the activation region can be 

identified with its statistical significance.  

Using simulation conditions similar to those defined in [4][5] where 1ση = , 
7

4
σε =  and 0.75ρ= , true positive (TP) 

and false positive (FP) rates were determined and are shown in figure 4 ((α = 0.05, p value ≤ 0.05 ⇒ activation for 

GLM; posterior probability ≥ 0.95 ⇒ activation for the new method). 

 

From figure 4(a) and (b), we can see that when the CNR is high ( ≥ 1), both the proposed and popular GLM methods can 

correctly detect almost all the activated voxels, however the proposed method maintains a lower false positive rate.  

When CNR is lower (<1), the proposed method can significantly increase detection performance, exhibiting both a 

higher true positive rate (greater sensitivity) and lower false positive rate (greater specificity). 

When we set the CNR at 0.7 and use posterior  probability and p value as its discrimination threshold for the 

EM/MPM method and GLM, respectively, the receiver-operator-characteristic curves are generated as in figure 5. From 

this figure, we conclude that the new method will have higher detection performance than that derived from GLM, i.e., 

higher true positive rate and lower false positive rate. 
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(a)  Relation between True Positive (TP) rate and 
Contrast-to-noise (CNR) for new method and GLM 
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(b)  Relation between False Positive (FP) rate and 

Contrast-to-noise (CNR) for new method and GLM 

Figure 4. True Positive(FP) and False Positive(FP) rate comparisons between new method and GLM 
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Figure 5. ROC curves of the new method and GLM when CNR=0.7 
 

 

4.2 Human Brain Data Results 

The EM/MPM method is applied to the same human brain data as in [4] to assess consistency with the GLM 

approach. The new method uses posterior probability to mark the activation location and statistical significance.  The 

GLM approach is used here as the “gold standard” based on its wide acceptance within the fMRI community.  From 

figure 6, we can observe that, as expected based on the synthetic data analyses, results of the proposed algorithm are 

consistent with those derived from the GLM approach ( α =0.05, p value ≤ 0.05 ⇒ activation for GLM; posterior 

probability ≥ 0.95 ⇒ activation for the new method ).   

 

Figure 6. Functional images for GLM (α=0.05) and the new method. The left and yellow-to-red colorscale corresponds 
the p value for GLM and the posterior probability for the new method, respectively. 

(a) Functional map of GLM  
     (p value threshold = .05) 

(b) Functional map of new method (posterior 
marginal probability threshold = 0.95) 
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5. CONCLUSION 

 

     We have demonstrated that the accuracy of signal detection in fMRI can be significantly improved. Our results show 

that the proposed EM/MPM method can achieve greater sensitivity and specificity than the popular GLM approach, 

particularly at lower CNR values. When EM/MPM method is applied to human brain data, the detected functional 

activation region is consistent with that of the GLM approach, suggesting that performance is at least as effective. 
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