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A Method for Delivering Spatio-Temporally Focused
Energy to a Dynamically Adjustable Target

Along a Waveguiding Structure
J. Brandon Laflen, Member, IEEE, and Thomas M. Talavage, Member, IEEE

Abstract—It is possible to exploit the frequency-dependent
velocity dispersion inherent to waveguiding structures to deliver
spatio-temporally focused energy to a spatial target anywhere
along the longitudinal extent of a waveguide. Such focusing of
energy may have application to technologies as varied as nerve
stimulation or chemical etching. A waveguide signal that effects
this focused energy is conceptualized and derived. The spatial
location of the target acted upon by the waveguide signal is demon-
strated to be dynamically adjustable with a linear filtering step.
Optimal parameters for waveguide signal generation are derived
in the general case, allowing for application to a cross section
of homogeneous waveguides. Performance is also considered in
non-ideal, absorptive media. Numerical simulations are presented
that indicate agreement with analytic results, and an evaluation of
possible reduction to practice is presented.

Index Terms—Energy conversion, filters, focusing, waveguides.

I. INTRODUCTION

A WIDE range of applications use spatio-temporally fo-
cused energy as a catalyst for a desired system activation.

Two examples of this range are etching with electrically-acti-
vated chemicals and stimulation of electrically excitable neural
populations with a sensory prosthetic. Although the appli-
cations vary in scale and modality, control over the location
and concentration of the focused energy is critical to optimal
performance, affecting product miniaturization, speed, and
resolution. In practice, a variety of methods deliver focused en-
ergy to spatial targets, including electromechanical positioning,
optical lenses, and discrete electrode arrays.

One potential method for spatially focusing energy develops
from the frequency-dependent velocity dispersion inherent to a
large class of waveguiding structures. While many waveguiding
structures exhibit dispersion, this paper will focus on a class
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of idealized structures with a single mode of excitation that is
governed by the propagation relation

(1)

where is the intrinsic cutoff frequency of the waveguide,
and is the theoretical maximum propagation velocity within
the structure [1], [2]. The propagation relation is incorporated
into the waveguide transfer function as a frequency-dependent
phase-delay for waves propagating a distance

(2)

The propagation relation also leads to the frequency-dependent
group velocity , associated with the center frequency of a
given frequency-band

(3)

Frequency-bands of wave energies, centered at different fre-
quencies above cutoff , propagate along the wave-
guide at differing group velocities dictated by (3).

It is possible to exploit the natural dispersion of waveguiding
structures, represented by (2), to produce a signal that spatially
decays in amplitude from its maximum at a target location
within the waveguide. Formally, we seek a signal with
Fourier spectrum , and with peak amplitude

, such that
is minimized ; here represents the spatial
target along the waveguide. This is an open-ended optimization
problem that is related to efforts in other areas. For example,
this problem is related to sensor network optimization problems
[3], [4], where the “sensor input” is the spatially-distributed
field intensity (each sensor represents a different location along
the guide) and the sensor and channel transmission are the
waveguide transfer function. Under this paradigm, the input
signal is free, not the fusion algorithm, and the optimization
criterion is as specified above. It is also desirable that the per-
formance of this signal be robust to low levels of added system
noise, so the posed inverse network problem is also related to
blind separation problems [5]. Finally, it is noteworthy that in
real applications (e.g., implantable prostheses) the waveguide
transfer function may be parameterized, where the parameters

1053-587X/$26.00 © 2010 IEEE
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must be estimated in noise for a large number of specific
instances (e.g., individual variance across implanted embodi-
ments). In this case, the optimal input signal must be derived
in terms of the noisy estimates. As such, this optimization
problem also intersects with those related to noisy parameter
estimation [6]–[9].

One possible solution to the general problem uses frequency-
dependent group velocity to construct a signal composed of
multiple frequency-bands, each having a different center-fre-
quency and propagating at a different group velocity [10]–[12].
In this construction, each frequency-band is delayed such that
all bands coalesce at the spatial target to produce maximal con-
structive interference.

This article examines the potential to spatio-temporally focus
energy along the waveguide using such a linear combination of
pulses propagating at different group velocities. The presented
technique demonstrates that the velocity relation governed by
(3) can be exploited to generate such a focus at any location
along the waveguide. Further, scalability and requirements for
optimal configuration are examined and performance predictors
are derived in terms of given design parameters. It is shown
that this construction is related to wave-packet propagation
[13]–[16], which permits treatment of the spatial decay function
using asymptotic saddle-point approximations. A numerical
simulation corroborates theoretical results. Finally, propaga-
tion in an absorptive medium is considered and the effect is
demonstrated both in theory and in simulation.

II. METHOD

The presented technique constructs a signal that generates
an excitation peak at a dynamically-adjustable target along a
waveguide. Additionally, the signal amplitude and temporal
concentration decays with increasing distance from the target.
The signal is developed around physical design parameters
that are specified by the intended application and are therefore
assumed constant. Three parameters pertain directly to the
geometry and composite material of the waveguide:

1) —the longitudinal extent of the waveguide
2) —a parameter representing the transverse dimension(s)

of the waveguide
3) —the theoretical maximum velocity for waves propa-

gating within the waveguide
A fourth parameter, (the waveguide cutoff frequency), is de-
fined by two of the above physical parameters: .

This article employs the following conventions. Spectral fre-
quencies (rad/s) are , velocities (m/s) are , and times (s) are

. Specific frequencies and velocities are related through (3),
with and respectively repre-
senting the minimum and maximum allowed values (by appli-
cation), and with and , respectively, rep-
resenting the effective lowest and highest values. is an opti-
mization parameter representing pulsewidth that is used during
signal construction. (Table I lists values for a sample numerical
simulation.)

TABLE I
VALUES OF SIMULATION PARAMETERS

A. Signal Construction

The presented construction exploits the frequency-dependent
velocity dispersion of (3) to produce a signal that spatially de-
cays from a target location within the waveguide. This signal
is a distribution of amplitude-modulated pulse envelopes prop-
agating at differing group velocities (derived from their respec-
tive modulation frequencies). All pulse envelopes are individu-
ally delayed such that they produce maximum constructive in-
terference at a predetermined spatial location along the wave-
guide. Fig. 1 illustrates multiple amplitude-modulated pulses
coalescing to produce such a peak. Alternately, each pulse en-
velope can be considered as a wave packet with static frequency
equal to the modulation frequency, traveling along a space-time
ray with its respective group velocity. In this framework, the
origin of the rays is the spatio-temporal focus. This is devel-
oped in Section II.A.3.

1) Pulse Envelope and Characteristics: The presented wave-
guide signal is constructed as a temporal distribution of pulses,
each windowed by the same envelope function. Envelopes con-
sidered in this paper are real-valued and nonnegative, have com-
pact support on , and decay symmetrically from
a normalized maximum of unity at . Let be such an
envelope function.

The above restrictions have necessary implications for the
approximate spectral width of the pulse. The real-valued, sym-
metric frequency-band of is given by the Fourier spectrum

(4)
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Fig. 1. Illustration of the signal construction scheme for three pulses propa-
gating along a waveguide. The horizontal axis represents time �, increasing from
left to right, and the vertical axis represents longitudinal location along the wave-
guide �, increasing from the waveguide entrance at the bottom to the exit at the
top (a reference cylindrical waveguide is depicted along the right of the illustra-
tion). The excitation signal, composed of three pulses, enters the waveguide at
the lower-left side of the illustration. The three pulses, from left to right, have a
respectively low, medium, or high propagation velocity, attained by amplitude
modulation with the velocity-respective frequencies given by (3). Dashed lines
represent the spatio-temporal path of the center of each pulse as it propagates
along the waveguide. The pulses are appropriately delayed such that the pulse
centers converge in time at a target location, � � ��� � �. Maximum absolute
field intensity over the temporal extent of the signal, as a function of spatial lo-
cation, is depicted along the reference waveguide.

Because has compact support, cannot have com-
pact support [17]. However, the spectral envelope must decay
to zero as since the total spectral content is bounded

. Let

(5)

be the approximate width of this spectrum, where is
the smallest positive frequency value such that

(the value is doubled to account for
both sides of the symmetric spectrum).1 Given the above
envelope, is a time-scaled envelope with a dura-
tion of . The nonnegligible spectral width of this scaled
envelope is because, according to the
time and frequency scaling property of the Fourier transform,

.
2) Pulse Distribution Function: The waveguide signal at a

given spatial location is constructed with a uniform distribution
of pulse centers. The temporal range of this distribution is im-
plied by (3), which associates low and high group velocity limits

and , respectively) with low and high frequency bounds
and , respectively)

(6)

If, by the construction illustrated in Fig. 1, the centers of the
pulse envelopes coalesce at the spatial target at time ,

1Note that� is not equivalent to the normally accepted spectral bandwidth,
which might be defined similarly with � � ���. Here, � should be interpreted
as control of precision in the Fourier spectral representation of ����: spectral
content that decays past �� � �� � ���% of maximum spectral amplitude is
truncated.

then any pulse-center with associated fixed group velocity
will reach any spatial point, , at time

(7)

In particular, this is true for velocity extremes and and
defines the temporal range for a given spatial location : the
range is centered at and

is the temporal spread.
The waveguide signal envelope is constructed as a linear com-

bination of pulse envelopes distributed over the above temporal
range. Consider discrete envelopes, evenly spaced across the
temporal range producing the signal envelope

(8)

This can be interpreted as the output of the convolution

(9)

(10)

where is the Dirac impulse function. is a discrete
distribution that is ideally sampled with samples from the
continuous uniform distribution

(11)

Extending this relationship, the uniform distribution is the
limit as the number of samples .

is chosen as the temporal distribution for this article be-
cause it is optimal in a general sense. It can be shown that
asymptotically minimizes the maximum value of with in-
creasing temporal spread .2 The signal envelope is there-
fore

(12)

The following section develops a waveguide input signal for the
temporal distribution specified by (11).

3) Waveguide Excitation Signal: The signal at the target spa-
tial focus is constructed as a linear combination of amplitude-
modulated pulse envelopes. Amplitude-modulation is required
to give each frequency band (associated with a particular pulse
envelope) a differing center frequency, which in turn produces
differing group velocities by (3). Ultimately, differing group ve-
locities allow a given temporal distribution, and specifically the
distribution in (11), to be realized.

2For any distribution 	��� �� 
���with compact support on � � ������ ���	,
it can be shown that �� such that �
� � � � �� �
���
�� 	 ����� �
 
�� �	���
�� 	 ����� �
. This is not necessarily optimal for a specific ap-
plication because it requires a sufficiently large distance from the spatial target.
The temporal spread will be constrained if the longitudinal extent of the wave-
guide is finite, and a nonuniform distribution can yield greater decay over this
constrained range. For example, 
 ��� in (10) yields smaller maximum inten-
sities up to a certain � , and � can be chosen for the application.
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The temporal distribution of (11) is mapped to a modulation
frequency distribution by successive applications of the chain
rule for differentiation. in (11) is a primitive distribution
independent of . Let

(13)

define the shifted and dilated form used to construct
in (12). Define a percentile function such that

. The derivative of (7) with respect to
defines and the derivative of (3) with respect to
defines . Applying the chain rule and substituting (3)
for yields the modulation frequency distribution

(14)

Note that, while depends upon spatial location, the de-
pendence cancels out of the relation in (14).

The spectrum of the signal at the spatial focus is constructed
using the modulation frequency distribution given by (14). The
spectrum of a cosine-modulated pulse envelope is

, so it follows that the spectrum of a
continuous distribution of modulated pulse envelopes, weighted
with density function , is

(15)

Note that is real-valued and symmetric because it is the con-
volution of two real-valued, symmetric functions. Therefore, the
individual components of are not relatively phase-delayed but
are all centered at . Since this formulation of pulse en-
velopes with differing modulation frequencies and, therefore,
differing group velocities contains no temporal spread,
is the signal at the spatial focus . This fact confirms the earlier
assertion that the origin of the space-time rays is the spatio-tem-
poral focus. Under this viewpoint, the rays must extend back-
ward in time to induce the waveguide excitation signal.

The spectrum of the waveguide excitation signal is

(16)

Here, is the amount of time it will take the
minimum frequency energy to propagate from the waveguide
entrance to the target , and

(17)

is a modified propagation constant that only adjusts elements
within some allowed frequency range

and respectively denote the application specific

minimum3 and maximum allowed frequencies, with associated
group velocities and . The first exponential term in
(16) compensates for group dispersion by inverting the wave-
guide transfer function (backprojecting the space-time rays),
while the second exponential term sets the beginning of the
signal at .

The input signal is given by the inverse Fourier transform

(18)

Note that is a parameter in the construction of the input signal
spectrum given in (16). This indicates that once the spectrum
is established for a given application, the spatial target can be
adjusted dynamically with the linear filtering step in (16).

B. Optimal Signal Parameters

It is desirable to derive the signal parameters that minimize
the maximum signal intensity away from the spatial target, .
Section II-A–3 demonstrates that a waveguide input signal ex-
ists that produces at the spatio-temporal target the temporal dis-
tribution in (11). The free parameters for this construction
are , and , with

, which were assumed in Section II-A–3.
The maximum signal intensity can be approximated by

upper-bounds in two regions. The first region is near the target,
where the primary decay in signal intensity is the result of
inter-pulse spreading. Neglecting phase interference, the max-
imum value of the signal envelope in (12) occurs at
and is

(19)

represents the spatial decay of the signal envelope
propagating along the waveguide. Let

(20)

define temporal capacity of the pulse spread, i.e., the number
of distinct pulse envelopes of duration that can fit without
overlap into the temporal spread at . As will be shown, param-
eter optimization reduces to maximizing . Setting ,
(19) is rewritten in terms of

(21)

The second upper-bound is located in a region sufficiently
displaced from the target such that intrapulse dispersion be-
comes significant. In this region, the distance is sufficient to
permit so-called “saddle-point” approximations of the traveling
wave packets corresponding to the lower frequency bands
[13]–[15]. Following this method, each wave packet undergoes
dispersion while traveling a space-time ray at its corresponding

3Frequencies below � will propagate too slowly or will be attenuated
because they are below cutoff. See Section II-B for more details.
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group velocity.4 The saddle-point contribution to the field of
the time-harmonic wave packet is5

(22)

noting that
. The total signal field is then approximately

(23)

To determine an upper bound, apply the identity
to (23), yielding

(24)

as with , this approximate bound neglects local phase inter-
ference.6

Parameter optimization is achieved by maximizing temporal
capacity. In both regions, the spatial decay is inversely propor-
tional to . In the case of , this relation is scaled by integra-
tion over a central region of the pulse envelope, . But, in the
case of decaying envelopes, the rate of contribution from the
integral diminishes as the region of integration increases; so in-
creasing decreases the total bound. In the case of , the spec-
tral width of the pulse is expected to be small compared with
the overall distribution . Hence, the integral may be approxi-
mated as constant, and this bound also decreases with increasing

. Therefore, the optimization goal to minimize field intensity
away from is accomplished by maximizing , in-
dependent of .

For fixed , maximizing is reduced to maximizing the
temporal spread, . Since the possible velocities are bounded

, maximizing ve-
locity spread, , achieves maximum temporal spread,
and velocity spread is maximized by maximizing the frequency
spread, . Hence, the low and high pulse center-fre-
quencies are respectively set as low and as high as possible; i.e.,

and .
However, because of the functional dependence of spectral

width upon pulse duration (i.e., ), the min-

4Because the medium is ideally nonabsorptive, the group velocity is uniquely
specified. In the case of an absorptive medium, group velocity is not uniquely
defined [18].

5This is a reduced form of [13, eq. (1.84)].
6Note that the upper bound in (24) is proportional to �� � � ����� � ��,

with ��� � �� proportional to �. Hence, the upper bound is actually proportional
to �� �� � � �, as expected for expanding wave packets.

imum and maximum group velocities also vary with pulse du-
ration. For a given bandwidth

(25)

and

(26)

Equation (6) extends this dependence from to the group
velocities . Incorporating (6), (25), and (26) into (20)
yields

(27)

An analytic solution for the optimal pulse duration, ,
is obtained by allowing and to achieve their
respective limits. The center frequency distribution given in
(14) exhibits a cubic decay to zero with increasing . Hence,
for . As

, reducing the second term in (27) to unity. In
contrast, cannot be lower than , and if , the
lowest propagation velocity is . However, if in
(5), the majority of the signal will have a nonzero propagation
velocity . These two reductions yield
the greatest possible velocity spread while also simplifying the
temporal capacity equation such that

(28)

The maxima of (28) are located at peaks such that ,
and only one satisfies this relationship

(29)

Substituting back into (28) yields

(30)

The choice of frequency range is related to the overall fo-
cusing time of successive input signals (e.g., in the case of mul-
tiple spatial targets). The frequency range bounds are and

, which in reality correspond respectively to velocities
and . Wave energies at these lowest and

highest frequencies respectively require and
time to reach the end of the waveguide. Let the focus time
be the delay between successive signals such that the fastest
wave energy of the second signal reaches the slowest energy of
the first signal at the end of the guide, thus, avoiding interaction

(31)
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If is specified by the application, it defines the minimum
velocity and also the minimum frequency since

(32)

The optimal results given in (29) and (30) were obtained
by assuming that the focus time and the maximum allow-
able frequency were both sufficiently large. Stating that

is identical to stating that the lowest velocity
is much lower than the maximum velocity: .
This is a consistent restatement of the original goal of max-
imum temporal spread. Similarly, is identical
to since ; this is again the goal
of maximum temporal spread since
when . However, there is a decreasing benefit to
increasing either or , since becomes bandwidth
dominated when , while
and . Hence, choosing

and one or two orders of magnitude above
and , respectively, will ensure nearly optimal results without
requiring infinite bandwidth or duration.

Finally, the optimal specification for pulse duration ensures
that the spectral width of the pulse-envelope, and the lower
bounds to frequency and velocity, are all independent of the
choice of envelope. Noting that yields

(33)

If is sufficiently large such that , then

(34)

which leads to the velocity bound

(35)

C. Signal Attenuation due to Absorption

Since the presented signal construction assumes a lossless
propagation medium, it is important to consider the effect of an
absorptive medium upon performance. This effect is considered
in terms of the intended peak intensity at the spatio-temporal
focus. If the signal accrues attenuation during propagation, it is
desirable that this attenuation be small compared with the in-
tended signal gain at the focus.

An absorptive medium can be modeled with complex permit-
tivity, resulting in a complex scale factor in the propagation re-
lation. In a lossless medium, , and the effect
of losses can be incorporated into the permittivity, , such that

, with . Let be a resistivity co-
efficient, then and
are updated parameters that reflect the affect of the absorptive
medium. It follows that the propagation relation is updated to

(36)

where .7 Here induces an imaginary part in
that contributes frequency-dependent attenuation to the propa-
gating signal. The first two terms of a binomial expansion for

approximate the real (propagating) and imaginary (attenu-
ating) components:

(37)

The presented signal construction remains robust if propa-
gation losses are sufficiently below the expected gain, i.e., if

. signifies the resistivity at which propagation losses
at the spatial target are equal to the expected system gain. Signal
attenuation is approximated using the imaginary component in
(37) and then compared with the upper bound in (24) to
estimate . In the signal construction, the majority of the signal
energy is located near , with in (34).
While the imaginary part of (37) grows linearly with , the rel-
ative amplitude of the signal is inversely proportional to in
(14). Hence, the overall signal attenuation can be represented
with the attenuation for . At this frequency, the signal
is attenuated by the factor . is estimated by the
relation

(38)

noting that is the upper bound of the signal strength at
the waveguide entrance, relative to a maximum of unity at the
spatial target . Hence

(39)

The affect of absorption will become noticeable as .

III. SIMULATION AND NUMERIC RESULTS

To illustrate the above analytic results, signals constructed ac-
cording to (18) were numerically simulated propagating along
a waveguide. While the above analysis defines and ,
and gives recommendations for and , several sim-
ulation parameters were specifically chosen for these simula-
tions. These choices are intended to 1. demonstrate the inter-
action of various parameters in the signal construction and 2.
provide numerical corroboration of the theoretical analysis. The
waveguide length was chosen m, and the theoretical
maximum propagation velocity was m/s (free
space). Four separate simulations were run with spatial targets
of , and 0.8 m, respectively.

The Hanning window [19]

(40)

7This is consistent with more exact analysis of absorptive losses (e.g., in [14]
and [15]). However, analysis here diverges from such methods to obtain a simple
approximation of the performance of the ideal signal construction in absorptive
media.
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was chosen as the simulation envelope. The Fourier spectrum of
this envelope is

(41)

which has a maximum value of 1/2 at and an accurate
absolute bound of for .
was set for (5) and was approximated with twice the real
root to the cubic equation :

rad/s.8

With the Hanning envelope, the spatial decay bounds given
by (21) and (24) become

(42)

and

(43)

where is the complete elliptic integral of the first
kind with modulus . The approximation of results from
treating the pulse spectrum as an effective impulse, allowing
the signal spectrum to be approximated with in (24), with

and left unbounded.
The transverse parameter was chosen to yield a specific

spatial resolution, which also defined and . Using ,
the maximum value of the signal envelope decays to 1/2 when

was chosen so that the spatial envelope would
be 1/2 at 20% of the waveguide length away from the target.
That is, while might normally be specified by the application,
for the purposes of this simulation it was determined so that

. Using (30),

(44)

This led to the cutoff frequency
rad/s and to the optimal pulse duration
by (29).

and were both chosen to be sufficiently large. In
(14) when

, so rad/s
is sufficiently large. Similarly, was set to

s, which is an order of magnitude greater than
the time required for a pulse propagating at maximum velocity
to reach the end of the waveguide.

Having characterized the waveguide and signal parameters,
the rest of the simulation parameters were derived from the
above-defined functional relations. Table I lists the completed
set of simulation parameters.

The simulation was conducted using the fast-Fourier trans-
form (FFT). The overall simulation time was set to the amount
of time required for the energy propagating at velocity to
cross the waveguide, plus the pulse duration:

8Note that � is required to be small (i.e., � � �), by the optimization in Sec-
tion II.B. Hence, � should not be taken as the bandwidth. Instead, it signifies
the nonnegligible region of the signal.

Fig. 2. Plots of the waveguide input signal spectrum construction for the sim-
ulation. (a) The symmetric spectral distribution function ������ � �������.
(b) The spectrum of the signal at the spatial focus (result of convolution), ����.

.9 Temporal sampling was conducted at a rate at least 4 times
the Nyquist frequency (in Hz, ), but the actual rate, ,
was adjusted up so that , the number of samples, was
a power of 2 to facilitate the FFT. Frequency was sampled on a
symmetric range . Spatial sampling was simi-
larly constructed by identifying the smallest wavelength

,10

and selecting samples at the spatial rate
across . All discrete functions were con-
sidered ideally sampled.

The waveguide signal at the input and other locations was
constructed by following Section II-A–3. The pulse envelope
spectrum , modulation frequency distribution ,
original and modified propagation relations and ,
and waveguide transfer function were all computed
directly from (41), (14), (1), (17), and (2), respectively, on
the sampled values. The spectrum of the waveguide ex-
citation signal at the target was computed as in (15) with
discrete convolution using the truncated envelope

. Fig. 2(a) and (b), respectively, illustrates the
distribution and the spectrum . The spectra of the
waveguide signal at the input and other locations within the
waveguide were directly computed using (16) and application

9In practice, with � � �� � � (see Table I), this is perhaps one order
of magnitude in excess of the required simulation interval for significant signal
levels.

10� � �	���. By (3), � � �	� �� ��� ��.
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Fig. 3. Plots of the constructed waveguide signal for the simulation. (a) The
constructed temporal signal at the spatial focus. (b) The waveguide input signal.
(Note that the horizontal axis is time in units relative to pulsewidth, ��� , for
(a) and (b), and the scale is the same.)

of the waveguide transfer function . All temporal sig-
nals were approximated from their corresponding spectra using
the inverse-FFT (IFFT) function. Fig. 3(a) and (b) illustrate
the constructed signal at the spatial focus and at the waveguide
entrance, respectively, for m.

Each simulation consisted of sampling the temporal wave-
guide signal at every spatial sampling point

. This sampling was performed by multiplying the spec-
trum of the input signal with and then computing the
temporal signal via IFFT. Fig. 4 illustrates the simulation results
for m, with the spatio-temporal absolute field intensity
depicted in Fig. 4(a) and (b), the spatial maximum absolute field
intensity depicted in Fig. 4(c), and the temporal maximum ab-
solute field intensity depicted in Fig. 4(d). The combined spatial
decay bound from (42) and (43) is also shown in Fig. 4(c).

Simulations were also run with sub-optimal maximum fre-
quency, . Together with

, these represent signal bandwidths of approximately
, respectively. Fig. 5 illustrates the degradation

of spatial decay performance with decreasing signal bandwidth
for a spatial target of .

Fig. 6 reproduces Fig. 4(c) for each of the target locations,
showing the same spatial roll-off but recentered at each of the
target locations. Note that the maximum field strength is attained
at each of the target locations, and the spatial decay does not
change as a function of target location. Results are similar for
signal bandwidths of (not shown).

Finally, simulations were performed with absorptive media as
characterized by the absorptive propagation relation in (36). The
resistivity equivalence point was estimated using (39) in con-
junction with the simulation specific, approximate upper-bound

in (43); for this simulation, . Using this
value, simulations were performed with resitivity coefficients

. Fig. 7 illustrates the results of these sim-
ulations. At , the spatial response is only slightly
attenuated in comparison with (also drawn for refer-
ence). This attentuation increases with increasing , as seen in
the and curves. is a fairly close approx-
imation of the actual resistivity that would provide equivalent
attenuation to the expected system gain: in Fig. 7, the peak in
the curve is only slightly lower than the maximum in-
tensity of the signal at input (dashed line).

IV. DISCUSSION

A method was presented that exploits the frequency-depen-
dent velocity dispersion inherent to waveguides in order to pro-
duce a spatio-temporal focus at any spatial target along the lon-
gitudinal extent of the waveguide. The target location can be
manipulated by modifying the waveguide input signal through
a linear filtering step, where the filter is dependent upon the
target location and is related to the waveguide transfer func-
tion. This means that the underlying waveguide structure can re-
main fixed, while still allowing any spatial point to be targeted.
Such a system may be useful in a variety of applications that
use spatio-temporally focused energy as a catalyst to achieve a
desired system activation.

A. Summary of Analysis

Analysis of the presented waveguide signal construction re-
veals two effects of the choice of the physical waveguide pa-
rameters. First, the results scale in proportion to the waveguide
cutoff frequency . The overall signal bandwidth
covers the region from to approximately one order of
magnitude above . The upper bound is due to the modulation
frequency distribution in (14), which is inversely proportional to

for . (In simulation, an upper frequency
limit of produced qualitatively similar results to

.) Also, signal times are inversely proportional
to . In particular, the optimal duration of each constituent
pulse is in (29) and the maximum
time for each pulse is . Second,
while the relationship between maximum field amplitude and
distance from the spatial target is complex, the asymptotic spa-
tial decay is influenced by the transverse parameter . At suf-
ficient distances from the spatial target, the field is bounded by

in (24). After some rearrangement, this relation reduces to
.

Note that is only relevant at sufficient distances from
the target. At distances arbitrarily close to the target, is un-
bounded and arbitrarily large. In these regions, the upper bound

in (21) is more precise, and indeed agrees exactly with the
simulation at the target [see Fig. 4(c)]. As noted previously,
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Fig. 4. Results of the spatio-temporal simulation. (a) Spatio-temporal visualization of the waveguide signal as it propagates through the waveguide with spatial
target � � ���. The horizontal axis is time in units relative to pulsewidth ���� �, and the vertical axis is relative longitudinal distance �����; this is the same
arrangement as in Fig. 1. (Note that only the temporal subset �� � � �� � � ��� � � �� � ���� 	 � ��
�� is displayed on the horizontal axis.) Dashed
lines depict the spatio-temporal paths of the slowest �� � and fastest �� � pulses. (b) Horizontal and vertical axes are the same as in (a). Absolute field intensity
is depicted with gray-shading (see inset colorbar). Horizontal and vertical axes are the same as in 4(a). (c) Maximum absolute field intensity as a function of
relative longitudinal distance. The horizontal axis is distance �����; the vertical axis is maximum absolute field intensity across the entire time-series. The solid
line indicates the simulation results while the dashed line indicates the combined predicted spatial decay of (42) and (43). (d) Maximum absolute field intensity as
a function of relative time. The horizontal axis is time ���� � in the same range as the horizontal axis of the spatio-temporal plots; the vertical axis is maximum
absolute field intensity across the entire space-series.

Fig. 5. Spatial results from suboptimal (i.e., lower) signal bandwidth. Data
from � � ��� �� �����
 � � (leading to bandwidths of approximately
��� ������ �
 � � , respectively) are superimposed and displayed the same as
in Fig. 4(c). The spatial target was � � ��� � �. Markers indicate the spatial
responses from bandwidths of � � � � � � � , and � � � [reproduced from
Fig. 4(c)]; responses from bandwidths of � � � and � � � (not marked) are
sandwiched between the � � � and � � � response curves.

neglects phase interference, so that the actual signal decay is
sharper than this bound.

Fig. 6. Maximum absolute field intensity as a function of relative longitudinal
distance. Data from � � �����������, and 0.8 m are superimposed and dis-
played the same as in Fig. 4(c). These results were obtained with � �
�� � � (bandwidth � � � � ).

The numeric simulation supports these theoretical re-
sults. In Fig. 6, the maximum points of constructive in-
terference clearly occur at the intended targets, i.e., at

. Further, the spatial decay
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Fig. 7. Spatial results resulting from signal propagation in lossy media. Data
from � � ��� ���� ���� �� � � are superimposed and displayed the same as in
Fig. 4(c). The spatial target was � � ��� � �. Markers indicate the spatial
responses resulting from differing � [note that the case � � � is reproduced
from Fig. 4(c)]. The dashed line represents the maximum field intensity of the
signal at the input.

from the target matches the predicted upper bound of (42) and
(43). Although these upper bounds neglect destructive phase
interference, the gap between the bounds and the actual field
intensity away from the target is small and consistent.

While these results demonstrate that dispersive systems
can be exploited to achieve a spatio-temporal focus, it is not
clear whether improved performance could be attained with a
nonlinear signal construction. For example, more exact models
of dispersive wave packets exist, especially for absorptive
medium [20], [15], and it may be possible to construct a supe-
rior signal through such methods. In addition, techniques based
on time-reversal or Fourier conjugate mirrors can effect the
spatio-temporal matched filter in a scattering environment [21],
[22], and as such may represent an alternate signal construction
method. The asymptotic spatial decay of the presented approach
is inversely proportional to the square root of distance from the
target.

B. Waveguide Geometry for Optimal Performance

The analytic framework indicates an inverse relationship be-
tween spatial decay rate and the transverse dimension, . Near
the spatial target, spatial decay is bounded by in (21),
which is inversely proportional to temporal capacity. According
to (30), temporal capacity linearly increases with increasing dis-
tance from the target, with a slope of .
While this slope is inversely proportional to , it is unlikely
that major improvements can be attained by selecting from dif-
fering functions. This is primarily due to results that state
that the product of the variances of and has a lower
bound achievable only with a Gaussian envelope [17], [23].
However, the slope of the temporal capacity is also inversely
proportional to , the transverse dimension of the waveguide.
Further, as was shown in the preceding section, at sufficient dis-
tances from the spatial target, the field is bounded by

. Therefore, decreasing the transverse dimension
will increase overall spatial decay.

While it may be possible to decrease the transverse dimen-
sion, this will affect the signal frequency range. For a fixed

maximum velocity, decreasing the transverse dimension will in-
crease the waveguide cutoff frequency and all parameters asso-
ciated with it, because . In particular, the optimal

is ; so the application bandwidth must
also increase.11

However, it is incorrect to hold the theoretical maximum
propagation velocity as sacrosanct. In homogeneous configu-
rations, the theoretical maximum velocity of electromagnetic
waves within a given medium is related to the permittivity
and permeability of that medium

(45)

It is, therefore, possible to attain differing maximum veloci-
ties through materials with differing values of permittivity and
permeability [25]–[27]. Dramatically different velocities may
require special materials, such as in [28]. Also, “slow-wave”
structures [29], acoustic waves in conjunction with piezoelectric
materials [30], and ultraslowed group velocities brought about
by electromagnetic induced transparency [31], [32], all produce
lower propagation velocities. However, note that such configu-
rations permit dispersion relations that are different from the re-
lation assumed for this article. These relations can be exploited
by following a similar signal construction to the presented con-
struction.

Last, this work is not unrelated to the area of waveguide pulse-
compression [33]. In that area, the waveguide signal is opti-
mized to maximize output from the waveguide with certain re-
strictions on the waveguide input. As such, the properties of
the signal within the waveguide are disregarded. Nevertheless,
work in waveguide pulse-compression has produced structures
and configurations that may be relevant to this work, including
corrugated waveguides [34] and waveguides with periodic di-
electrics [35].

V. CONCLUSION

The frequency-dependent velocity dispersion inherent to
many waveguiding structures can be exploited to create a
spatio-temporal focus at an arbitrary spatial target along the
extent of the structure. This focus is dynamically-adjustable
by applying a location-dependent linear filter to the waveguide
input signal, which does not affect the underlying structure. The
results scale with the physical parameters of the waveguiding
structure, such that focused energy can be delivered to target
locations within a variety of applications.

REFERENCES

[1] S. Ramo, J. R. Whinnery, and T. Van Duzer, Fields and Waves in
Communication Electronics, 3rd ed. New York: Wiley, 1994, pp.
398–402, 417–418.

[2] B. A. Auld, Acoustic Fields and Waves in Solids, 2nd ed. Malabar,
FL: Robert E. Krieger, 1990, vol. 2, pp. 69ff–.

[3] W. Guo, J.-J. Xiao, and S. Cui, “An efficient water-filling solution for
linear coherent joint estimation,” IEEE Trans. Signal Process., vol. 56,
no. 10, pp. 5301–5305, 2008.

[4] A. G. Marques, X. Wang, and G. B. Giannakis, “Minimizing transmit
power for coherent communications in wireless sensor networks with
finite-rate feedback,” IEEE Trans. Signal Process., vol. 56, no. 9, pp.
4446–4457, 2008.

11Note, however, that some surface waveguides have � � � [24].



1426 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 58, NO. 3, MARCH 2010

[5] J. K. Tugnait, “On blind separation of convolutive mixtures of inde-
pendent linear signals in unknown additive noise,” IEEE Trans. Signal
Process., vol. 46, no. 11, pp. 3117–3123, 1998.

[6] J. K. Tugnait, “Parameter estimation for noncausal ARMA models
of nongaussian signals via cumulant matching,” IEEE Trans. Signal
Process., vol. 43, no. 4, pp. 886–893, 1995.

[7] J.-C. Hung and B.-S. Chen, “Genetic algorithm approach to fixed-order
mixed � �� optimal deconvolution filter designs,” IEEE Trans.
Signal Process., vol. 48, no. 12, pp. 3451–3461, 2000.

[8] D. S. Pham and A. M. Zoubir, “Estimation of multicomponent poly-
nomial phase signals with missing observations,” IEEE Trans. Signal
Process., vol. 56, no. 4, pp. 1710–1715, 2008.

[9] S. Oh, A. B. Milstein, R. P. Millane, C. A. Bouman, and K. J. Webb,
“Source-detector calibration in three-dimensional Bayesian optical
diffusion tomography,” J. Opt. Soc. Amer. A, vol. 19, no. 10, pp.
1983–1993, 2002.

[10] J. B. Laflen, T. M. Talavage, and A. K. Sarychev, “High spatial res-
olution, focused electrical stimulation of electrically-excitable tissue,”
in Proc. 2nd Joint Meet. IEEE EMBS and BMES, Houston, TX, Oct.
2002, vol. 3, pp. 2080–2081, IEEE Eng. Med. Biol. Soc..

[11] J. B. Laflen, “measurement and analysis of perceptual coding in the
human auditory system: Multi-modal studies using neural activation
patterns,” Ph.D. dissertation, Purdue Univ., West Lafayette, IN, Dec.
2003.

[12] J. B. Laflen and T. M. Talavage, “A theoretical, continuous alternative
to the discrete electrode array,” in Cochlear Implants, ser. Int. Congress
Series. Indianapolis, IN: Elsevier, Nov. 2004, pp. 56–59, Vol. 1273.

[13] L. B. Felsen, Transient Electromagnetic Fields. Berlin, Germany:
Springer-Verlag, 1976, pp. 31–38, ch. 1.4.5.

[14] K. A. Connor and L. B. Felsen, “Complex space-time rays and their ap-
plication to pulse propagation in lossy dispersive media,” Proc. IEEE,
vol. 62, no. 11, pp. 1586–1598, 1974.

[15] E. Sonnenschein, I. Rutkevich, and D. Censor, “Wave packets, rays,
and the role of real group velocity in absorbing media,” Phys. Rev. E,
vol. 57, no. 1, pp. 1005–1016, 1998.

[16] R. M. Lewis and J. B. Keller, Asymptotic methods for partial differen-
tial equations: The reduced wave equation and Maxwell’s equations
New York Univ., Courant Inst. Math. Sci., Div. Electromagn. Res.,
New York, Research Rep. 430681, Jan. 1964.

[17] S. Mallat, A Wavelet Tour of Signal Processing, 2nd ed. London,
U.K.: Academic, 1999, pp. 30–33.

[18] D. Censor and J. J. Gavan, “Wave packets, group velocities, and rays
in lossy media revisited,” IEEE Trans. Electromagn. Compat., vol. 31,
no. 3, pp. 262–271, 1989.

[19] A. V. Oppenheim and A. S. Willsky, Signals and Systems. Upper
Saddle River, NJ: Prentice-Hall, Pearson Education, 1997, pp. 422–,
ch. 5.

[20] L. B. Felsen and N. Marcuvitz, Radiation and Scattering of Waves.
Englewood Cliffs, NJ: Prentice-Hall, 1973, pp. 153–158, ch. 1.7e.

[21] J. M. F. Moura and Y. Jin, “Detection by time reversal: Single antenna,”
IEEE Trans. Signal Process., vol. 55, no. 1, pp. 187–201, 2007.

[22] W. A. Kuperman, W. S. Hodgkiss, H. C. Song, T. Akal, C. Ferla, and
D. R. Jackson, “Phase conjugation in the ocean: Experimental demon-
stration of an acoustic time-reversal mirror,” J. Acoust. Soc. Amer., vol.
103, no. 1, pp. 25–40, 1998.

[23] D. Gabor, “Theory of communication,” J. Inst. Elect. Eng., vol. 93, no.
26, pp. 429–457, 1946.

[24] R. E. Collin, Field Theory of Guided Waves. New York: McGraw-
Hill, 1960, ch. 11.

[25] S. Ramo, J. R. Whinnery, and T. Van Duzer, Fields and Waves in Com-
munication Electronics, 3rd ed. New York: Wiley, 1994, pp. 134–.

[26] L. D. Landau, E. M. Lifshitz, and L. P. Pitaevskii, Electrodynamics
of Continuous Media, J. B. Sykes, J. S. Bell, and M. J. Kearsley, Eds.,
2nd ed. Oxford: Butterworth-Heinemann, 1999, vol. 8, pp. 259–, Ser.
Course of Theoretical Phys., translated from the Russian by.

[27] N. E. Hill, W. E. Vaughan, A. H. Price, and M. Davies, Dielectric Prop-
erties and Molecular Behaviour, ser. The Van Nostrand Series in Phys-
ical Chemistry. New York: Van Nostrand Reinhold, 1969, pp. 7–13.

[28] S. S. Bellad, S. C. Watawe, and B. K. Chougle, “Some AC electrical
properties of Li-Mg ferrites,” Mater. Res. Bull., vol. 34, no. 7, pp.
1099–1106, 1999.

[29] S. Ramo, J. R. Whinnery, and T. Van Duzer, Fields and Waves in
Communication Electronics, 3rd ed. New York: Wiley, 1994, pp.
476–478.

[30] B. A. Auld, Acoustic Fields and Waves in Solids, 2nd ed. Malabar,
FL: Robert E. Krieger , 1990, Vol. 1 ch. 8.

[31] M. M. Kash et al., “Ultraslow group velocity and enhanced nonlinear
optical effects in a coherently driven hot atomic gas,” Phys. Rev. Lett.,
vol. 82, no. 26, pp. 5229–5232, Jun. 1999.

[32] C. Liu, Z. Dutton, C. H. Behroozi, and L. V. Hau, “Observation of
coherent optical information storage in an atomic medium using halted
light pulses,” Nature, vol. 409, pp. 490–493, Jan. 2001.

[33] R. Bromley and B. Callan, “Use of a waveguide dispersive line in an
f.m. pulse compression system,” Inst. Elect. Eng. Proc., vol. 114, no.
9, pp. 1213–1218, Sep. 1967.

[34] G. Burt, S. V. Samsonov, A. D. Phelps, K. R. Bratman, G. G. Denisov,
W. He, A. R. Young, A. W. Cross, and I. V. Konoplev, “Microwave
pulse compression using a helically corrugated waveguide,” IEEE
Trans. Plasma Sci., vol. 33, no. 2, pp. 661–667, Apr. 2005.

[35] E. C. Thirios, D. I. Kaklamani, and N. K. Uzunoglu, “Microwave pulse
compression using a periodically dielectric loaded dispersive wave-
guide section,” Electromagnetics, vol. 26, pp. 345–358, 2006.

J. Brandon Laflen (M’01) received the B.S. degree
and Ph.D. in electrical engineering from Purdue Uni-
versity, West Lafayette, IN, in 1998 and 2003.

He joined the faculty at New York University, New
York, in 2005 and is affiliated with the Department of
Otolaryngology, NYU Langone Medical Center.

Thomas M. Talavage (M’89) received the B.S. and
M.S. degrees in electrical engineering from Purdue
University, West Lafayette, IN, in 1992 and 1993,
respectively, and the Ph.D. degree in speech and
hearing sciences from the Harvard-MIT Division
of Health Sciences and Technology, Cambridge, in
1998.

He joined the faculty of Purdue University in
1998, and is currently an Associate Professor with
the School of Electrical and Computer Engineering
and the Weldon School of Biomedical Engineering,

Purdue University, and since 2007, has been Founding Co-Director of the
Purdue MRI Facility, Weldon School of Biomedical Engineering.


	Purdue University
	Purdue e-Pubs
	January 2010

	A method for delivering spatio-temporally focused energy to a dynamically adjustable target along a waveguiding structure
	J. B. Laflen
	T. M. Talavage


