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3D Modeling of Optically Challenging Objects
Johnny Park, Member, IEEE, and Avinash C. Kak

Abstract—We present a system for constructing 3D models of real-world objects with optically challenging surfaces. The system

utilizes a new range imaging concept called multipeak range imaging, which stores multiple candidates of range measurements for

each point on the object surface. The multiple measurements include the erroneous range data caused by various surface properties

that are not ideal for structured-light range sensing. False measurements generated by spurious reflections are eliminated by applying

a series of constraint tests. The constraint tests based on local surface and local sensor visibility are applied first to individual range

images. The constraint tests based on global consistency of coordinates and visibility are then applied to all range images acquired

from different viewpoints. We show the effectiveness of our method by constructing 3D models of five different optically challenging

objects. To evaluate the performance of the constraint tests and to examine the effects of the parameters used in the constraint tests,

we acquired the ground-truth data by painting those objects to suppress the surface-related properties that cause difficulties in range

sensing. Experimental results indicate that our method significantly improves upon the traditional methods for constructing reliable

3D models of optically challenging objects.

Index Terms—Range data, geometric modeling, image analysis, virtual reality, feature representation.

Ç

1 INTRODUCTION

IN the last few decades, constructing accurate 3D models of
real-world objects has drawn much attention from many

industrial and research groups. Earlier, the 3D models were
used primarily in robotics and computer vision applications
such as bin picking and object recognition. The models for
such applications only require salient geometric features of
the objects so that the objects can be recognized, and the pose
can be determined. Therefore, it is unnecessary in these
applications for the models to faithfully capture every detail
on the object surface. More recently, however, there has been
considerable interest in the construction of 3D models for
applications where the focus is more on visualization of the
object by humans [1], [2], [3], [4], [5], [6], [7], [8], [9]. This
interest is fueled by the recent technological advances in
range sensors and the rapid increase of computing power that
now enables a computer to represent an object surface by
millions of polygons or points and render such representa-
tions in real time. Obviously, in order to take advantage of
these technological advances, the 3D models constructed
must capture to the maximum extent possible the shape and
surface-texture information of real-world objects.

The classical approach for constructing 3D models of real-
world objects involves a range sensor that acquires
3D measurements (that is, range image) of an object.
Optical-triangulation-based structured-light scanners are
commonly used due to their superior accuracy and relatively
simple hardware requirement. A sketch of a typical struc-
tured-light scanner is shown in Fig. 1. A plane of light,
typically a laser, parallel to the yz-plane of the world frame is
projected onto the object of interest. The intersection of the
light and the object creates a stripe of illuminated points on

the object surface. A camera captures the scene, and the center
of illuminated points in each camera scan line is extracted.
Given the image coordinates of the extracted illuminated
points, the 3D coordinates with respect to the world frame can
be computed by the equations based on triangulation. In
order to scan the whole scene, the object is either translated
along the x-axis or rotated about the z-axis through the plane
of light, as the camera takes a sequence of images. A single
scan produces a range image that captures only part of the
object. Therefore, multiple range images are acquired from
different viewpoints in order to capture the entire surface of
the object.

Researchers have shown that the state-of-the-art techni-
ques can now construct detailed 3D models of objects
ranging from small figurines to large statues. Although they
have established the feasibility of constructing accurate
3D models, there still remain several challenging issues.
One of these challenging issues arises from the fact that
many real-world objects have surface properties that are not
ideal for range sensors. For example, consider the images
shown in Fig. 2. The images in the top row show the
photographs of objects with different surface materials, and
the images in the bottom show the camera images of those
objects when a laser stripe is projected onto the surface. The
camera image for the first object (painted bust) corresponds
to an ideal case, where the reflection of the projected laser
stripe can be clearly detected for each camera scan line (that
is, horizontal line) of the image. For the second object (metal
bowl), however, multiple illuminated points in the same
camera scan line exist due to the mutual reflections that
occurred on the object’s specular surface. Mutual reflections
give rise to ghosts in the measured structured-light data,
and depending on the extent of specularity, the presence of
these ghosts can make it difficult to localize a data point that
corresponds to the object point that was actually illumi-
nated. Choosing the peak with the highest intensity value in
a camera scan line does not guarantee that it corresponds to
the object surface that was illuminated directly by the light
source. For the third object (gorilla), the surface absorbed
most of the projected light, causing the reflections captured
in the camera image to have relatively low intensity values,
which makes it difficult to disambiguate the primary
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reflections from other spurious reflections in the camera
image. Some researchers have tried to simply do away with
such surface-related problems by painting or coating the
object with removable powder to ensure that the surfaces
reflect the laser in a diffuse manner. Obviously, this
approach would not be desirable and may not even be
feasible for many applications outside the laboratory.

In this paper, we present a system for constructing
3D models of real-world objects that is capable of handling
optically challenging surfaces. The system utilizes a new
range imaging concept called multipeak range imaging,
which stores multiple candidates of range measurements
for each point on the object surface. The multiple measure-
ments include the erroneous structured-light data caused
by various surface properties that are not ideal for
structured-light range sensing. False measurements gener-
ated by spurious structured-light reflections are iteratively
eliminated by applying a series of constraint tests. After
convergence of the constraint tests, the remaining data are
integrated to form a final geometric 3D model.

The remainder of this paper is organized as follows: We
will first review some of the previous work in two related
areas: construction of 3D models by using range data and
range data acquisition of optically challenging objects. In
Section 3, we will outline our 3D modeling system, and in
Section 4, we will describe the concept of multipeak range
imaging. Section 5 includes detailed descriptions of each
step involved in the 3D modeling process, in particular all
the constraint tests for eliminating false range measure-
ments. We will then show our experimental results in
Section 6 and, finally, the conclusion and future work in
Section 7.

2 PREVIOUS WORK

2.1 Construction of 3D Models Using Range Data

Much work has been devoted to the area of constructing
3D models of real-world objects using range data [1], [2],
[3], [4], [6], [7], [8], [10], [11]. In general, there are three main
steps involved in the process. The first step is to acquire the
geometric shape of the exterior of an object. Among many
existing techniques for acquiring 3D data, optical triangula-
tion sensors [12] are most commonly used. Typically,
multiple range images viewed from different directions
are required—reaching up to hundreds of range images,
depending on the shape complexity and the size of
object—so that all of the surface detail is captured.

The second step is the registration of multiple range images
into a common coordinate system. The Iterative Closest Point
(ICP) algorithm [13] has now become a dominant technique
for registering data sets. The algorithm selects the closest

points between two data sets as the corresponding points and
computes a rigid transformation that minimizes the distances
between the corresponding points. The data set is updated by
applying the transformation, and the process is continued
until the error between the corresponding points falls below a
threshold. Since the introduction of ICP, many variants of ICP
[14], [15] have been proposed to improve its performance.
Since the ICP algorithm only deals with pairwise registration,
Bergevin et al. [16] developed a multiview registration
technique that minimizes the registration errors between all
pairs of range images. Benjemaa and Schmitt [17] accelerated
the multiview registration method of Bergevin et al., and Pulli
[2] extended it so that it can be applied to large data sets.

All of the registration methods mentioned above require
the initial data sets to be approximately aligned, which
traditionally has been provided by either specialized
hardware that records the sensor position or simply by a
manual intervention. In the effort to automate the entire
registration process without any special hardware, Huber
and Hebert [8] proposed a method that automatically
registers a set of range images. The method constructs a
globally consistent solution from a list of pairwise registra-
tion results based on visibility consistency. Stamos and
Leordeanu [18] utilize range segmentation and line features
for automatic pairwise registrations and use a topological
graph to form a globally consistent coordinate frame.
Recently, Gelfand et al. [19] proposed an algorithm for
automatic pairwise registration using a point descriptor
based on the local surface geometry.

The registered range images taken from adjacent view-
points will typically contain overlapping surfaces with
common features in the areas of overlap. The third step
consists of integrating the registered range images into a
single connected surface model to eliminate the redundan-
cies. The volumetric method [1], [20], which is one of the
more widely used integration methods, computes an
implicit function dðxÞ that represents the closest distance
from an arbitrary 3D point x to the surface that we want to
reconstruct. Then, the isosurface, meaning the surface
defined by dðxÞ ¼ 0, is extracted by triangulating the zero-
crossing points of dðxÞ by using the marching cubes
algorithm [21]. Other integration methods include the mesh
stitching method [22], [23] and the ball-pivoting algorithm
(BPA) [24].

2.2 Range Data Acquisition of Optically Challenging
Objects

In contrast to the work reported on the construction of
3D models using range images, relatively little work is seen
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Fig. 1. A typical optical-triangulation-based structured-light scanner.

Fig. 2. The images in the bottom row show the camera images of the

objects in the top row when a laser stripe is projected onto the surface.



in the literature on the range acquisition of optically
challenging objects. As mentioned earlier, it is a common
practice to paint or coat objects before acquiring range data
when the objects contain optically challenging surfaces.

Curless and Levoy [25] proposed a new range sensing
method that is less sensitive to nonuniform light reflections
by analyzing the time evolution of the light reflections. The
method also improves the range data accuracy on sharp
edges or discontinuous surfaces caused by sensor occlu-
sions. However, it requires a large number of images to
ensure that the laser stripe passes over every pixel in the
image and, more importantly, the existence of spurious
reflections is ignored.

Nayar et al. [26] proposed an iterative algorithm that
recovers the shape and reflectance properties of surfaces in
the presence of mutual reflections. This algorithm is useful
for the shape-from-intensity approach to range acquisition.
This approach, however, does not produce dense and
accurate range maps compared to the optical triangulation
methods. Additionally, the proposed algorithm was tested
only on Lambertian surfaces of simple geometry.

Clark et al. [27] developed a laser scanning system that
uses the polarization analysis to disambiguate the primary
reflections from those caused by mutual reflections. Their
system was tested on shiny aluminum objects with
concavities, and spurious reflections were successfully
discriminated. However, the system requires special equip-
ment such as a linear polarizer, and multiple images need to
be captured at each position of the laser: in their experi-
ments, three images were acquired at three different angles
of the linear polarizer.

Trucco and Fisher [28] proposed a number of consistency
tests for acquiring reliable range images of specular objects.
Their range sensor consists of two charge-coupled device
(CCD) cameras observing a laser stripe from opposite sides.
The consistency tests are based on the fact that the range
measurements obtained from the two cameras will be
consistent only if the measurements correspond to the true
illuminated point. Their method was tested on a polished
aluminum block with holes. However, their method does
not consider the situation where more than one illuminated
point is observed in the same camera scan line. The
consistency tests are therefore applied only to the measure-
ments corresponding to a single illuminated point observed
per camera scan line. In our experiments, we have noticed
that the illuminated points caused by mutual reflections
occur very frequently in the vicinity of the true illuminated
points and, thus, they are seen together along the same
camera scan line. Eliminating all points whenever multiple
illuminated points are observed in the same camera scan
line may result in too few range measurements.

Unlike the previous work mentioned here, our system
takes into account the existence of spurious reflections in
the structured-light data, including multiple illuminated
points in the same camera scan line. Also, the discrimina-
tion of spurious reflections is solely based on the algorith-
mic constraint tests; thus, no special hardware is required.

3 SYSTEM OVERVIEW

Fig. 3 shows the flowchart of our 3D modeling process.
First, several scans from different viewpoints are performed
so that the entire surface of the object can be captured. For
each scan, the multipeak range imaging is carried out to
account for the erroneous structured-light data. For each

range image produced, two constraint tests, namely, the
local surface test and the local visibility test, are applied.
The application of these two tests is repeated until the
number of eliminated points during the tests becomes very
small. For our experiment, we define the convergence of the
local surface and the local visibility tests as the time when
the number of eliminated points during the tests is less than
0.1 percent of the remaining points.

After executing the steps described above for each scan,
the registration of all the range images acquired from
different viewpoints is carried out. First, the initial registra-
tion process using a set of salient geometric features is
performed. After obtaining an approximate registration, the
multiview registration step fine-tunes the registration of all
range images.

After all range images have been registered into a
common coordinate system, two constraint tests, namely,
the isolated region test and the global consistency test, are
applied to all range images taken together. After applying
these two constraint tests, the multiview registration step is
carried out again on the new data set. Since we have
eliminated some spurious measurements during the appli-
cation of the constraint tests, we can expect the multiview
registration applied on the new data set to yield a more
precise registration. After the multiview registration, the
two constraint tests are applied again, and this iteration is
continued until it converges. Again, we define the conver-
gence as the time when the number of eliminated points in a
single iteration is less than 0.1 percent of the remaining
points. Finally, the integration is performed on the resulting
output by using the method proposed in [1].

4 MULTIPEAK RANGE IMAGING

In order to improve the conventional range imaging in the
presence of erroneous structured-light data caused by
various object surface related problems, we developed the
multipeak range imaging technique, which is a new concept in
range data collection for a more reliable extraction of range
images [29], [30]. The basic idea is to store multiple
candidates of range measurements when multiple illumi-
nated points in the same camera scan line exist.1 Since
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Fig. 3. Flowchart of our 3D modeling process.

1. The idea of storing multiple range measurements is similar to a
Layered Depth Image [31]. The difference is that our multipeak range image
stores at most one “true” range measurement that belongs to the object
surface.



choosing the highest intensity illuminated point does not
guarantee the correctness of its corresponding range
measurement and since a single camera scan line, or even
the entire image, does not provide sufficient information to
determine whether an illuminated point corresponds to a
spurious reflection, our multipeak range imaging initially
stores all detected illuminated points and then iteratively
eliminates the false measurements generated by spurious
reflections by applying a series of constraint tests. These
constraint tests will be the topic of the next section.

Fig. 4 depicts the data structure used in conventional range
imaging (Fig. 4a) and what we used in multipeak range
imaging (Fig. 4b). In a conventional range image, the range
measurements are arranged in anm� ngrid, where typically,
m is the number of scan lines of a camera image, and n is the
number of captured images (that is, number of light stripes) in
the scan. This grid can be represented by xði; jÞ, where x

represents the 3D coordinates of a range measurement at the
ith camera scan line for the jth light stripe. To generalize this
representation to multipeak range imaging, a range image
element is now a linked list, where each node of the list
contains 3D coordinates corresponding to one of the multiple
peaks detected in the same scan line. Symbolically, the
measured range information can now be represented by
xði; j; kÞ, where x is the 3D coordinates for the kth detected
peak at the ith camera scan line for the jth light stripe.

Fig. 5a shows a multipeak range image acquired for a shiny
bowl, where the intensity of the image represents the number
of measurements, not the depth of a measurement that is
typically used for visualizing a conventional range image.
One can observe that a higher number of measurements are
stored in the region corresponding to the inner parts of the
bowl. This agrees with the fact that mutual reflections occur
frequently at concave regions. The shape of the bowl in the
multipeak range image is an oval shape because the bowl was
captured at a tilted angle with respect to the perspective of the
laser projector. Fig. 5b shows the computed 3D points
visualized from the viewpoint of the camera, and Fig. 5c
visualized from top to bottom. It is evident that the data
shown in Fig. 5 contain many false measurements. Again, the
objective of multipeak range imaging is to store all possible
range measurements that are potentially true object surface
points. It is the constraint tests that are responsible for
eliminating the false measurements.

5 FALSE MEASUREMENT ELIMINATION

The false measurement elimination process can be broken
down into two stages. The first stage consists of the local
surface test and the local visibility test and is performed on
each range image separately. The second stage, which
consists of the isolated region test and the global consistency
test, is performed on all range images as a whole. From now
on, we will refer to the local surface and the local visibility
tests together as the local tests and to the isolated region and
the global consistency tests together as the global tests.

Let us first define some terms and notations. First we use
the term rigel to refer to a range image element (every cell in
the matrix in Fig. 4a is a rigel). Note that a rigel in a
multipeak range image may contain multiple range
measurements. Let pi denote the ith range measurement.
For simplicity, we will assume that by having the index i,
the measurement’s row and column indices in the range
image and the node index of its linked list are known. Recall
that the linked list must account for multiple measurements
in a rigel. When there is a superscript, for example, pji , it
represents the ith measurement in the range image
acquired from the jth viewpoint. Let xðpiÞ and nðpiÞ denote
respectively the 3D coordinates and the unit surface normal
vector2 at pi. The 3D coordinates and the surface normal
vector are all with respect to the world frame, that is, the
common coordinate system to which all range images are
registered. Let Dða; bÞ denote the closest euclidean distance
between two elements a and b, where the elements can be
3D coordinates or line vectors. Finally, the angle between
unit vectors nðpiÞ and nðpjÞ is denoted by �ðnðpiÞ;nðpjÞÞ.

5.1 Local Surface Test

It is legitimate to assume that a range measurement lies on
one of the three surface types: smooth surface,3 near crease
edge, and near jump edge. A crease edge is where surface
normals suddenly change directions, and a jump edge is
where a spatial discontinuity between adjacent range
measurements occurs. A common approach to estimate
the local surface property of a range measurement is to fit a
planar patch to the neighboring points, where the neighbor-
ing points are typically those within a small window (for
example, 3 � 3 or 5 � 5) centered at the point in question. It
has been shown in [33] that the planar patch can be reliably
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Fig. 4. Data structure of a conventional range image (a) and a multipeak

range image (b).

Fig. 5. Typical data acquired by multipeak range imaging. (a) A

multipeak range image, where the intensity represents the number of

measurements. (b) A 3D point cloud visualized from the camera

viewpoint. (c) A 3D point cloud visualized from top to bottom.

2. We will assume that every range measurement belongs to a local
surface patch, where the surface is estimated by fitting the best plane on the
neighboring range measurements (see Section 5.1 for more details).

3. Additionally, smooth surfaces may be categorized into eight different
types based on the surface curvature sign [32].



computed not only for those on smooth surfaces, but also
for those located near edges by appropriately selecting
neighbors. What we are trying to convey here is that given a
true range measurement, whether it lies on a smooth
surface or near an edge, we can find a planar patch that fits
reasonably well to the carefully selected neighboring points
that will all be on one or the other side of a crease boundary
or a range discontinuity. If no suitable planar patch can be
found, then it is likely that the measurement is spurious and
should be eliminated. The elimination of such spurious
measurements is the object of the local surface test.

Suppose a range measurement pi is being tested. We first
need to find appropriate neighbors to compute the planar
patch that would best estimate the local surface at pi. We
define a measurement pj to be a valid element of the fitting
window for pi if

DðxðpiÞ;xðpjÞÞ < �Bðpi; pjÞ; ð1Þ

where � represents the maximum distance allowed between
two immediate neighbors, and Bðpi; pjÞ is the city-block
distance [34] between pi and pj. In case multiple valid
elements exist in the same rigel (due to multiple detected
peaks), the one with the smallest distance is selected. The
parameter � should be a function of the range sensor
resolution and should be chosen properly so that the adjacent
points between a jump edge would not become valid
elements for each other’s fitting window. We empirically
set � to be four times the range sensor resolution.

Let mðpiÞ denote the number of valid elements in a fitting
window, including the point in question pi, that satisfy (1).
Let us denote the valid elements as pe, e ¼ 1; . . . ;mðpiÞ, and
the center of mass of the elements as xc. Then, the
covariance matrix CðpiÞ is computed by

CðpiÞ ¼
XmðpiÞ
e¼1

xðpeÞ � xc½ � xðpeÞ � xc½ �T :

The eigenvector corresponding to the smallest eigenvalue of
CðpiÞ represents the normal vector of the best fitting plane.
Thus, this eigenvector is used as the estimate of the surface
normal at pi, denoted as nðpiÞ. The euclidean distance
between an element pe and the best fitting plane is simply
the scalar projection of the vector xðpeÞ � xc onto the plane’s
surface normal nðpiÞ. Thus, the fitting error of the elements
to the best fitting plane, denoted as "ðpiÞ, is given by

"ðpiÞ ¼
1

mðpiÞ
XmðpiÞ
e¼1

xðpeÞ � xc½ � � nðpiÞ:

There are two constraints in the local surface test. All
range measurements that do not satisfy either constraint are
eliminated. The first constraint requires that each range
measurement pi has the number of valid elements for its
fitting window greater than a threshold �m:

mðpiÞ > �m: ð2Þ

The second constraint in the local surface test requires that
the fitting error of the best fitting plane be less than �":

"ðpiÞ < �": ð3Þ

In general, the threshold �m must be high enough so that the
best fitting plane can be reliably computed, but low enough
so that the points near a jump edge will not be eliminated.

The threshold �" must be set in such a way that the points
on crease edges will not be eliminated. Section 6.2 discusses
in detail how the two thresholds �m and �" can be set.

5.2 Local Visibility Test

The local visibility test checks whether the direction of the
estimated surface normal meets the constraints imposed by
the sensor visibility. Based on the Lambertian reflectance
model [35], it has been commonly accepted to assign a
measurement’s confidence value as the dot product
between the surface normal and the projector’s line-of-
light. Therefore, we can impose a constraint that the angle
between the surface normal and the laser projector’s line-of-
light be less than 90 degrees. Using a similar rationale, we
can impose another constraint that the angle between the
surface normal and the camera’s line-of-sight be less than
90 degrees, since otherwise, the illuminated points on the
object surface could not have been seen by the camera.
Fig. 6 illustrates the local visibility constraints. Let the unit
vector l represent the laser projector’s line-of-light, the unit
vector s the camera’s line-of-sight, and the unit vector n the
estimated surface normal at pi. Writing the two constraints
mentioned above into equations, we have

nðpiÞ � lðpiÞ < cos
�

2
� ��

� �
; ð4Þ

nðpiÞ � sðpiÞ < cos
�

2
� ��

� �
; ð5Þ

where �� is a small angle (we shall discuss about the
threshold �� shortly). Pictorially, a range measurement is
valid if the direction of its surface normal lies within the
range of angles indicated by � in Fig. 6. All measurements
that do not satisfy the local visibility constraints given by (4)
and (5) are eliminated.

By having the threshold ��, we are eliminating the
measurements whose surface normals are near orthogonal
to either the projector’s line-of-light or the camera’s line-of-
sight. This way, the measurements with very low con-
fidence can be eliminated without having to go through the
later constraint tests that are more computationally ex-
pensive. Apart from this obvious reason for having the
threshold ��, another reason is that a significantly large
number of false measurements have surface normals near
orthogonal to the corresponding line-of-sight vectors. These
false measurements are usually generated by the spurious
reflections that managed to stay at the same position with
respect to the world frame over consecutive camera images.
Let us elaborate with the illustration shown in Fig. 7. The
positions of the laser projector and the camera at three
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Fig. 6. Local visibility constraint.



consecutive sampling positions during a scan are shown.
Suppose that the camera observes a spurious reflection,
depicted as the red dot, that is stationary with respect to the
world frame at all three sampling positions. In practice,
such a spurious reflection can be a secondary reflection on
the object surface or simply a bright spot in the background
of the scene. The false illuminated point will result in 3D
points p1, p2, and p3 at the respective sampling positions. As
one can observe, these points line up in the direction near
the camera’s line-of-sight. Consequently, their estimated
surface normals will be close to orthogonal to the line-of-
sight vectors. For example, estimating the surface normal
nðp2Þ using the neighboring points p1 and p3, one can
observe that nðp2Þ would be near orthogonal to the line-of-
sight vector of p2.

Fig. 8a shows 3D points of a multipeak range image
visualized from top to bottom, where the false measure-
ments generated by the phenomenon described above are
seen along the several diagonal lines that extend from the
bottom left to the top right of the image. Fig. 8b shows the
data after applying a single iteration of only the local
surface test. Notice that false measurements on the diagonal
lines are still prevalent. Figs. 8c and 8d show the data after
applying a single iteration of both the local surface test and
the local visibility test, with the threshold �� set as 5 degrees
and 10 degrees, respectively. Many of the false measure-
ments that the local surface test alone could not eliminate
were successfully eliminated with the local visibility

constraints. We will discuss about setting the threshold ��
in Section 6.2.

When the local surface and the local visibility tests
converge (see Section 3 for the definition of convergence), a
weight w (or confidence value) is assigned to each range
measurement by incorporating all four constraints applied
in the local tests (that is, (2), (3), (4), and (5)). We assign
equal weight to all four constraint tests, and by normalizing
the weight contribution from each constraint test to 1, w is
also normalized to 1.

5.3 Registration

5.3.1 Geometric Feature-Based Registration

The feature-based registration serves as the initial step that
provides an approximate registration for the next step, the
multiview registration, that fine-tunes the registration. First,
the feature-based registration extracts a set of salient
geometric features from the range data. Then, the correspon-
dences between the features of the anchor data set and the
moving data set are established. Finally, the best transforma-
tion is computed using the feature correspondences.

To be useful in the registration of the kinds of range data
that we are interested in, the features not only need to be
invariant under rigid transformations but also insensitive to
noise and false measurements. We developed a 3D feature
descriptor that is similar to the one described in [19]. The main
differences are 1) our descriptor considers a set of neighbor-
ing 3D points as opposed to a local surface geometry, 2) our
descriptor uses a 2D Gaussian kernel to maintain the isotropic
property of the descriptor, and 3) our descriptor is designed
to handle multiple candidates of neighboring points. The 3D
feature descriptor is computed at each measurement pi as
follows: In a small window centered at pi, the neighboring
points are obtained by the same procedure as described
earlier in Section 5.1. Using the same notations as before, let
the valid neighboring points be pe, e ¼ 1; . . . ;mðpiÞ, where
mðpiÞ is the total number of valid neighboring points. Also, let
the distance from pe to the tangent plane at pi be denoted as de,
that is, de ¼ xðpeÞ � xðpiÞ½ � � nðpiÞ. Then, the 3D feature
descriptor f is defined as

fðpiÞ ¼
1

mðpiÞ
XmðpiÞ
e¼1

dege;

where ge is the corresponding 2D Gaussian kernel value at
pe. By applying the 2D Gaussian kernel, the isotropic
property of the descriptor is maintained. Moreover, the
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Fig. 7. Illustration of a phenomenon that occurs when spurious

reflections that are stationary with respect to world frame are observed

in consecutive camera images.

Fig. 8. Illustration of the effect of the local visibility test. (a) Original data. (b) After applying only the local surface test. (c) After applying the local

surface test and the local visibility test, with �� set as 5 degrees. (d) After applying the local surface test and the local visibility test, with �� set as

10 degrees.



Gaussian kernel suppresses the noise, especially around the
boundary of the window where erroneous neighboring
points are more likely to arise. Fig. 9a illustrates the 3D
feature descriptor. The solid line represents the object
surface, and the blue points are the selected neighboring
points of the measurement pi in the nearby scan lines.
Notice at most one neighboring point per rigel that satisfies
(1) is selected, and in case of multiple candidates in the
same rigel (for example, along l4, l6, and l9), the one with the
smallest distance to pi is selected. Although the spurious
measurement along l9 has been falsely selected as a
neighbor, it has little effect on the descriptor value fðpiÞ,
since the corresponding 2D Gaussian kernel value is small.

After computing the 3D feature descriptor values, we then
extract a small set of salient points whose descriptor values
are distinctive. We use a standard histogram approach to
populate the descriptor values and select the salient points
starting from the least populated bin until the number of
salient points reaches a certain threshold. Since we want to
avoid selecting points that are too close to one another, we
require that all salient points be separated by at least a certain
distance threshold: we empirically choose this distance
threshold to be 20 times the range sensor resolution. Since
we also want to obtain both small and large-scale salient
features, we first extract salient points by using a small kernel
window and combine those with the ones extracted using a
large kernel window. In our experiments, we use 15� 15 and
25 � 25 windows. Fig. 9b shows the color-coded 3D feature
descriptor values computed using a 15 � 15 kernel window.
The yellow squares are 50 selected salient feature points.
Fig. 9c shows the result of using a 25� 25 kernel window that
produces larger-scale feature points.

After extracting a set of salient feature points from the
anchor data set and the moving data set, we next establish
the feature correspondences between the two data sets.
Since we are dealing with very noisy range images, it is not
easy to compute an optimal threshold value that will
minimize false correspondences. Instead, we assign a
“loose” threshold for correspondences that will generate a
large number of false correspondences and rely on the
Random Sample Consensus (RANSAC) algorithm [36] to
find the correct correspondences.4 Even when the RANSAC

algorithm results in incorrect correspondences, it is easy to
verify the result by applying a pairwise ICP algorithm. If
the initial correspondences given by the RANSAC algo-
rithm are incorrect, then the registration error at the
convergence of ICP will be large, and vice versa. In the
case of an incorrect solution, we can apply the RANSAC
algorithm again until the solution is verified by the ICP
algorithm. Fig. 10 illustrates the process of feature-based
registration.

This newly proposed feature-based registration has been
tested on all of the data presented in our experimental
section and has proved to be reliable and robust to noisy
data. However, the current implementation assumes that
the two data sets to be registered have sufficient over-
lapping area. Since the RANSAC algorithm continues to
search for the correct correspondences until they are
verified by the ICP algorithm, we provided an ordered list
of range images to the algorithm so that any two successive
data sets for each registration will have some common
surface areas.

5.3.2 Multiview Registration

Our approach for multiview registration is similar to the
one proposed by Bergevin et al. [16]. Adapting the
correspondence criteria presented in [37], our method
selects the corresponding points between two data sets as
the closest points with the angle between surface normals
less than a threshold. The thresholds for selecting the
corresponding points are set dynamically in each iteration
of the ICP by using an approach similar to the one proposed
by Zhang [14]. Since our correspondence criteria also
include the angle between surface normals, the angle
threshold is also computed dynamically using the same
approach as the distance. Our multiview registration
randomizes the processing order of range images to reduce
any bias toward a particular range image [17]. Also, similar
to the method in [23], the weights of the range measure-
ments are taken into account when computing the
transformation that minimizes the distances between the
corresponding points.

Even after multiview registration, we must anticipate
some registration errors, which generally depend on the
accuracy of the previous registration and the number of
remaining false measurements in the data. The registration
errors play an important role in the global tests because the
global tests utilize the information from all range images,
which is greatly influenced by how well the range images
are registered with one another. Note that computing the
registration error is not trivial mainly for two reasons. First,
we do not know which parts between the data sets are
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Fig. 9. (a) Illustration of the 3D feature descriptor. (b) Color-coded 3D feature descriptor values and 50 extracted salient feature points using a 15 �
15 kernel window. (c) Result using a 25 � 25 kernel window.

4. Over the years, the RANSAC method has emerged as a highly
effective approach to the elimination of outliers in the candidate matches
between two data sets (two range maps in our case). Given a set of
candidate matches between two range maps, the RANSAC approach
consists of using the least possible number of matches to construct a pose
transform between the two range maps and then ascertaining the extent to
which the estimated pose is supported by the rest of the matches. If the
consensus set is large enough, then the pose estimate is accepted (and, in
some cases, further refined using all the accepted matches).



overlapping and which parts are distinctive. Second, we do
not know which measurements correspond to true surface
points and which ones are spurious. Nevertheless, it is
commonly accepted in the literature on registration algo-
rithms that the mean distance between the corresponding
points or the distance threshold for the correspondence
search at the termination of the ICP algorithm be the
estimate of the registration error. We adopted the latter
approach, where we use the distance and the angle
thresholds at the termination of the ICP algorithm as the
estimates of the registration error. We will denote the
registration error of the ith range image with respect to the
distance as �iD and with respect to the angle as �i�.

5.4 Isolated Region Test

The main purpose of the isolated region test is to eliminate
all points that are far separated from the true object points.
The test involves constructing a 3D volumetric grid that

contains the entire data, with each voxel having a binary
value of 1 if any point exists inside the voxel, and 0
otherwise. A voxel segmentation based on region growing
[34] is then performed to group the connected voxels. In
order to ensure that all true measurements belong to a
common connected voxel region, the resolution of the
volumetric grid is set to max maxið�iDÞ; �

� �
. Recall that � is

the maximum distance allowed between two immediate
neighbors defined in Section 5.1. The isolated region test
eliminates all measurements except the ones that belong to
the region with the largest size. By the largest size we mean
the largest number of connected voxels in a region (see
Fig. 11 for a pictorial illustration of the isolated region test).

5.5 Global Consistency Test

The global consistency test is based on two criteria: the
coordinate consistency and the visibility consistency. Here, the
word “global” implies that the consistency is tested among all
possible range images acquired from different viewpoints.

5.5.1 Coordinate Consistency

The coordinate consistency states that the 3D coordinates of
true measurements are always consistent among the
registered range images that capture the same object
surface. On the other hand, the 3D coordinates of false
measurements generated by noise or mutual reflections are
likely to be inconsistent, since the locations where the
spurious reflections occur vary from viewpoint to view-
point. For example, consider the scene depicted in Fig. 12.
On the left, a specular object is being sampled. Due to the
mutual reflections, three range measurements a, b, and c are
generated. On the right, the same object point is now being
sampled from a different viewpoint. As the surface normal
relative to the direction of the light source changes, the
bouncing light direction also changes. In this case, two
illuminated points are detected by the camera, resulting in
two range measurements d and e. Observe that only the

PARK AND KAK: 3D MODELING OF OPTICALLY CHALLENGING OBJECTS 253

Fig. 10. Feature-based registration. (a) Two data sets to be registered
with extracted salient features. (b) Initial feature correspondences. (c) A
set of correct correspondences obtained via RANSAC. (d) After the
transformation using the correspondences shown in (c). (e) After
applying ICP. The registration is verified to be correct. (f) An example
of incorrect correspondences. (g) After the transformation using the
correspondences shown in (f). (h) After applying ICP. The registration is
incorrect.

Fig. 11. Illustration of the isolated region test. (a) Range measurements
from three range images indicated by red, blue, and green points. The
three range images sampled the oval-shaped object from different
directions. (b) The volumetric grid (shown in 2D), where the gray color
represents the binary value of 1, and the rest the binary value of 0. The
regions of connected voxels are shown as the regions that are enclosed
by thick lines. (c) The isolated region test eliminated all points except the
ones that belong to the largest connected region. (d) The same data as
in (c), but with a better registration among the data. (e) The volumetric
grid containing the data in (d). The grid resolution is smaller than the one
in (b) because of better registration among the data. (f) After another
isolated region test.



coordinates of the true range measurements a and d are
consistent, whereas the coordinates of the false measure-
ments are inconsistent with one another.

Assuming that we have range data from N different
viewpoints and that there are a total of Mj measurements in
the jth range image, the coordinate consistency value,
denoted as C, is computed as

CðpjiÞ ¼ wðp
j
iÞ þ

XN
v¼1;v 6¼j

max
u¼1;...;Mv

�Cðpji ; pvuÞ � wðpvuÞ
n o

: ð6Þ

Here, the test function �C is given by

�Cðpji ; pvuÞ ¼
1 if DðxðpjiÞ;xðpvuÞÞ < maxð�jD; �vDÞ and

�ðnðpjiÞ;nðpvuÞÞ < maxð�j�; �v�Þ
0 otherwise:

8<
:

Recall that D is the closest euclidean distance between two
elements, � is the angle between surface normals, and w
represents the weight. Notice in the test function �C that the
corresponding registration errors for each range measure-
ment are incorporated. Notice also in (6) that by taking the
maximum value, we are limiting the coordinate consistency
value to be contributed only once per range image in case
multiple valid points in the same range image exist. In
other words, for each measurement pji , the maximum of
N � 1 measurements can contribute to its coordinate
consistency value. Since the weight w is normalized to 1
and since the coordinate consistency includes the weight
value of its own, the upper bound of the coordinate
consistency value is N . This allows us to obtain a more
balanced distribution of the coordinate consistency values
throughout the data, and more importantly, it allows us to
combine the coordinate consistency and the visibility
consistency, as we will explain in the next section.

5.5.2 Visibility Consistency

The second criterion of the global consistency test, which
we call visibility consistency, is based on the facts that a line
space between a sensor and a true measurement is empty
and that a line space beyond a true measurement is invisible
to the sensor. Note that these basic concepts are also used in
the space carving approaches [38], but in the context of
reconstructing 3D objects from a set of calibrated images.
Some other researchers have used a similar concept to
remove small outliers [1], [39].

Although we can apply the visibility consistency concept
for both the projector’s line-of-light and the camera’s line-
of-sight, only the former is considered in our work:
obtaining the visibility consistency for the camera’s line-
of-sight is computationally much more expensive than that
for the projector’s line-of-light, as we will explain in more
detail in Section 5.5.4.

Consider the example depicted in Fig. 13, where an object
was scanned from three different viewpoints. The dotted
lines represent the projector’s lines of light at the respective
sampling positions during the scan. Suppose in the first view,
among other detected measurements, points a1 and a2 were
detected in the same rigel. If a1 is a true measurement (we do
not know yet which one is true), then the space at a2 should
have been empty. On the other hand, if a2 is true, then a1

should not have been visible (or illuminated) by the projector
la. Thus, the measurements a1 and a2 are inconsistent with
each other with respect to the projector la. In fact, the
measurements in the same rigel are always inconsistent with
each other, for there cannot be more than one true measure-
ment in the same rigel. The visibility concept applies also for
the measurements obtained from different viewpoints. For
example, a1 acquired from the first view and e from the
second view are inconsistent with respect to the projector le.
Similarly, a1 and g are inconsistent with respect to the
projector la and also with respect to lg.

In order to test the visibility consistency of a range
measurement pji , we first need to check for additional
measurements in the same rigel, since multiple measure-
ments in the same rigel are always inconsistent with one
another. We then need to check for measurements from other
range images that lie on the line-of-light, where pji was
sampled. Let the light projector that sampled pji be labeled as
lji and the 3D coordinates of the light projector with respect to
the world frame be xðljiÞ. Then, the ray equation of the line-of-
light that sampled pji , denoted as~lðpjiÞ, is given by

~lðpjiÞ ¼ xðljiÞ þ � xðpjiÞ � xðljiÞ
� �

; � ¼ ð0;1Þ:

Here, the ray symbol ~ is used to distinguish from the unit

vector of line-of-light l described in Section 5.2. The closest

distance between ~lðpjiÞ and a range measurement, say, pvu,

can be computed by

D xðpvuÞ;~lðp
j
iÞ

� �
¼

xðpjiÞ � xðljiÞ
� �N

xðpvuÞ � xðljiÞ
� ����

���
xðpjiÞ � xðljiÞ
�� �� : ð7Þ

Here,
N

is a cross product, and �k k is a vector magnitude.
Obviously, few range measurements will lie exactly on a
ray; therefore, we use the registration error for determining
whether a point lies on a line-of-light. That is, we define that
a range measurement pvu lies on the line-of-light~lðpjiÞ if

D xðpvuÞ;~lðp
j
iÞ

� �
< maxð�jD; �vDÞ: ð8Þ
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Fig. 12. Illustration of the coordinate consistency.

Fig. 13. Illustration of the visibility consistency.



Once we find the measurements that lie on the line-of-light
~lðpjiÞ, the distance between each of those found measure-

ments and xðljiÞ (the 3D coordinates of the light projector

that sampled pji ) needs to be computed. If that distance is

less than the distance between xðpjiÞ and xðljiÞ, then there is

a visibility inconsistency. For example, in Fig. 13, the points

a1 and e are inconsistent because a1 lies on the line-of-light

of e, and DðxðeÞ;xðleÞÞ > Dðxða1Þ;xðleÞÞ. On the other hand,

although a2 and g lie on each other’s line-of-light, they are

consistent because DðxðgÞ;xðlgÞÞ < Dðxða2Þ;xðlgÞÞ and

Dðxða2Þ;xðlaÞÞ < DðxðgÞ;xðlaÞÞ. Again, we need to take into

account the registration error when comparing the distances

to the projector. Therefore, we define that there is a visibility

inconsistency between pji and pvu with respect to the light

projector lji if (8) is satisfied, and

D xðpjiÞ;xðl
j
iÞ

� �
> D xðpvuÞ;xðl

j
iÞ

� �
þmaxð�jD; �vDÞ: ð9Þ

A straightforward implementation of the visibility
consistency can result in situations where true measure-
ments may be determined to be highly inconsistent. For
example, the point h in Fig. 13 is inconsistent with four
measurements c, d, e, and f from the second view, even
though all of them are true measurements. This kind of
situation may occur between two orthogonal surfaces,
where each side of the surfaces is captured by a different
range image. For another example, the point b is incon-
sistent with three false measurements i1, i2, and i3 that
happened to be along the line-of-light of b. Similar
situations can occur more frequently as the noise increases
in the scene, and the object shape becomes more complex.

In order to consider all the discussions above, we compute
the visibility consistency value for each measurement as
follows: Using the same notations as (6), the visibility
consistency value of pji , denoted as VðpjiÞ, is defined as

VðpjiÞ ¼
XN
v¼1

min
u¼1;...;Mv

�Vðpji ; pvuÞ � wðpvuÞ � nðpjiÞ � nðpvuÞ
�� ��n o

:

ð10Þ

Here, the test function �V is given by

�Vðpji ; pvuÞ ¼
�1 if pji and pvu are in the same rigel or

if ð8Þ and ð9Þ both satisfy
0 otherwise:

8<
:

There are several things that need to be mentioned. First,
notice that VðpjiÞ can only have a zero or a negative value,
since the test function �V checks only for inconsistency.
Second, the absolute value of the dot product between the
surface normal vectors is multiplied so that any two
measurements whose surface normals are close to orthogo-
nal (such as points c and h in Fig. 13) have little effect on
each other. Also, only the minimum consistency value (that
is, highest inconsistency) computed for each range image is
added to VðpjiÞ in order to prevent the situation described
earlier with the example of the points b, i1, i2, and i3 in
Fig. 13. By adding only the smallest consistency value for
each range image, the lower bound of the visibility
consistency value is �N , which enables us to obtain more
evenly distributed values of V throughout the data.

5.5.3 Constraints for the Global Consistency Test

The total global consistency value, denoted as G, is simply
the sum of the coordinate consistency and the visibility
consistency:

GðpjiÞ ¼ Cðp
j
iÞ þ Vðp

j
iÞ: ð11Þ

The main reason for considering the global consistency
value G is that we discovered in our experiment that it is
easier to distinguish between the true and the false
measurements by using G as opposed to applying C or V
separately. We are able to add C and V, since the scales of
both values are normalized to the number of range images.
By simply adding C and V without any coefficients, we are
assuming that they have equal weights.

Fig. 14a shows the 3D points from three multipeak range
images acquired for a bowl, where different colors represent
each multipeak range image. Fig. 14b shows the same, data
where the color now represents the coordinate consistency
value C indicated by the legend bar on the top. Clearly, the
surface areas where overlaps between range images occur
have higher consistency values whereas distinctive surface
areas, both the false measurements and some of the true
measurements that were captured only once from a single
viewpoint, have low consistency values. Fig. 14c shows the
visibility consistency value V for the same data. As expected,
most of the false measurements have negative values of
consistency, meaning they are highly inconsistent, and most
of the true measurements have zero values, meaning no
visibility inconsistency was detected. Finally, Fig. 14d shows
the global consistency value G.

Given the values of G, the global consistency test
employs a simple threshold technique in order to eliminate
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Fig. 14. (a) Three-dimensional points from three multipeak range images acquired for a bowl. Different colors represent individual range image.
(b) The same data as in (a), but the color represents the coordinate consistency value C, where the range of the values is indicated by the legend bar
on the top. (c) Color-coded visibility consistency value V. (d) Color-coded global consistency value G.



the measurements with low consistency values. There are
two constraints in the global consistency test. The first
constraint requires that the global consistency value of a
measurement be greater than a threshold �G:

GðpjiÞ > �G ð12Þ

with the threshold set as

�G ¼ minð	G � t
G; 0Þ; ð13Þ

where 	G and 
G are the mean the standard deviation of G,
and t is a positive constant. We will evaluate the effect of
varying t in Section 6.3. Note that by forcing �G � 0, we are
preserving all measurements that do not have any
neighbors from other range images, as long as there is no
visibility inconsistency with other measurements. This
property lifts an otherwise restrictive requirement that
every part of the object surface must be sampled at least
twice from different viewpoints.

The second constraint of the global consistency test also
eliminates the measurements with small G values, but the
difference from the first constraint is that it now considers
only the range measurements in the same rigel. We define a
measurement in a rigel to have a small G if the value is
smaller than the maximum G in that rigel minus t
G, where
t is the same constant as used in (13). Formally, let GmaxðpjiÞ
denote the maximum global consistency value among all
the range measurements in the rigel to which pji belongs.
Then, the second constraint requires that

G pji

� �
> Gmax pji

� �
� t
G: ð14Þ

Note that the second constraint only applies to those with
more than one measurement in the same rigel. All
measurements that do not satisfy either constraints (12) or
(14) are eliminated in the global consistency test.

5.5.4 Implementation of the Global Consistency Test

Since the range data used in 3D modeling typically consists of

several millions of 3D points, an efficient algorithm for the

global consistency test is necessary. For example, a straight-

forward implementation of the visibility consistency test

would require that (7) and (8) be carried out for every point in

every range image against every point in all the rest of range

images. In this section, we describe an efficient implementa-

tion of the global consistency test. Consider the images shown

in Fig. 15. Suppose we want to compute the visibility

consistency of a range measurement pji against all range

measurements in the kth range image. Recall that the global

consistency test is applied after the multiview registration

process, which provides the 3D coordinates of pji with respect

to the world frame and the coordinate system of the kth range

image also with respect to the world frame. Thus, we can

easily compute the position of the laser projector that would

have illuminated pji during the acquisition of the kth range

image (see Fig. 15b). Given the position of the laser projector,

we immediately obtain the corresponding column index v of

the kth range image and the position of the camera that would

have captured an image at that time instance. Then, as shown

in Fig. 15c, by projecting the 3D coordinates of pji onto the

image plane of the camera, we can obtain the projected image

coordinates ðu; sÞ that represent the center of illuminated

points if the light reflection on the object surface at pji were

observed by the camera. At this point, we know that pji would

have belonged to rigel ðu; vÞ in the kth range image. This

implies that pji lies on the line-of-light of the measurements at

rigel ðu; vÞ of the kth range image and, therefore, we do not

need to consider any other measurements in the kth range

image.5

We said earlier in Section 5.5.2 that only the visibility
consistency with respect to the laser projector’s line-of-light
is considered in our work. As we just illustrated, by simply
projecting a 3D point onto a range image coordinate system,
we are able to dramatically reduce the number of measure-
ments that need to be tested for the visibility consistency
with respect to the laser projector’s line-of-light. For the
camera’s line-of-sight, however, we cannot use a similar
projection approach, since the camera view at each
sampling point is not a plane, but rather a four-sided
pyramid extending from the center of projection of the
camera. Therefore, a more sophisticated computation is
required for the line-of-sight visibility.

Here, we describe the outline of our implementation of
the global consistency test. For each range image k, all
points in the rest of the range images are projected onto the
kth range image coordinate system. For each projected
point, if its projection coordinates ðu; vÞ are inside the
boundary of the kth range image, then the coordinate
consistency is tested between the projected point and the
points in rigel ðu; vÞ of the kth range image. Since the
projection coordinates will most likely be in floating points
and since the registration error needs to be taken into
consideration, all points in a small window centered at rigel
ðu; vÞ are tested, where the size of the window is controlled
by the registration error. The visibility consistency is tested
only if the coordinate consistency test fails (that is, �c ¼ 0).

5.6 Computational Complexity

In this section, the computational complexity of each of the
constraint tests is analyzed. For simplicity, we will assume
that the number of range measurements in each range
image is the same and denoted by M. As before, the number
of range images is denoted by N .

The computation of the local surface test consists of two
main steps: 1) determining valid elements in a fitting
window and 2) computing the best fitting plane for the
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5. For this, we are assuming that the laser projection is orthographic,
which is a reasonable assumption, given that the laser projector is
sufficiently distanced from the object.

Fig. 15. Projecting a point onto a range image coordinate system.



valid elements. Both steps require OðMÞ time for a single

range image. Therefore, the total of OðNMÞ is required for

the local surface test for all range images.
The local visibility test simply examines the angles

between the estimated surface normals and the correspond-

ing lines of light and lines of sight. Therefore, the time

complexity for the local visibility test is also OðNMÞ.
The isolated region test first constructs a binary volu-

metric grid, which requires OðNMÞ time, and then per-

forms a voxel segmentation. The complexity of a voxel

segmentation depends on the number of voxels in the

volumetric grid, where the number of voxels depends on

the resolution and the size of the grid. Here, we will assume

that the number of voxels grows only in proportion to the

size of the object being reconstructed. Then, denoting the

number of voxels as v, the time complexity of a voxel

segmentation is OðvÞ. Altogether, the isolated region test

requires OðNM þ vÞ time.
The global consistency test consists of computing the

coordinate consistency and the visibility consistency. The

exhaustive approach for computing the coordinate consis-

tency of each point would require OðNMÞ time and, thus,

OðN2M2Þ would be required for all points. A more efficient

alternative is to use binning such as k-d tree [40] or Elias

[41] methods. For example, it has been shown in [42] that

the time complexity of traversing a k-d tree containing

M samples is proportional to logM. Utilizing one of the

binning methods, therefore, we can expect the time

complexity of the coordinate consistency test to be

OðNM logðNMÞÞ.
The computation of the visibility consistency would

require OðN2M2Þ time when implemented, as described in

Section 5.5.2. We cannot simply use the k-d tree or the Elias

method here, since the computation of the closest distance

between a point and a line vector in 3D space is involved in the

visibility consistency test. On the other hand, when the

visibility consistency is implemented, as described in Sec-

tion 5.5.4, the time complexity reduces to OðNMÞ, since only

the measurements in the projected rigel need to be considered

in each range image. Combining the coordinate consistency

and the visibility consistency, we have OðNM logðNMÞÞ as

the computational complexity of the global consistency test.

6 EXPERIMENTS

We now report the experimental results on five optically
challenging objects shown in Fig. 16. The first object is a
stainless steel bowl, the second and the third are ceramic
glazed seashell and angel figurines, the fourth is a tray
figurine made of multiple surface materials, including
specular, Lambertian, and highly absorptive surfaces, and
the fifth is a gorilla figurine made of black plastic, which is
highly absorptive. We will refer each object as bowl,
seashell, angel, tray, and gorilla, respectively.

6.1 Data Acquisition

We acquired 3, 27, 18, 40, and 34 range images, respectively,
for the objects shown in Fig. 16. Then, we painted all the
objects so that the surfaces of the objects are ideal for range
sensing. Range data of the painted objects were acquired and
registered. Let Pref be the set of measurements in all the
registered range images of a painted object and Pi be a set of
measurements from the ith range image acquired for the
original object. Note that none of the elimination tests have
been applied to Pi yet. Each measurement in Pi is labeled as
either true or false by the following procedures. First, Pi is
transformed into the coordinate system of Pref , where the
transformation matrix is computed beforehand by registering
Pi to Pref . In order to obtain an accurate registration, we used
the final result of Pi after the convergence of all the constraint
tests. Once Pi is transformed, each measurement in Pi is
labeled as true if there is a point in Pref that has the distance
less than the range resolution and the angle between surface
normals less than 30 degrees. Otherwise, it is labeled as false.
Having all the original data labeled as true or false, we can
simply keep record of which of the true or false measure-
ments are eliminated during the constraint tests.

6.2 Evaluation of the Local Tests

Fig. 17 shows the distributions of true measurements (blue
line with �markers) and false measurements (red line with�
markers) for all five objects over four different parameters
used in the local tests. Fig. 17a shows the distribution over the
number of valid elements in the respective 5 � 5 fitting
window (that is, the parameter m in (2)). Notice that the
majority of true measurements has all 25 elements, which is
the maximum number for a 5 � 5 window, and very few of
them have less than 20 elements. On the other hand, there is a
good number of false measurements, withm ranging from 10
to 20. Thus, a good choice for the threshold �m would be from
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Fig. 16. Objects used in the experiment. (a) A stainless steel bowl. (b) and (c) Ceramic glazed seashell and angel figurines. (d) A tray figurine made

of multiple materials, including specular, Lambertian, and highly absorptive surfaces. (e) A gorilla figurine made of black plastic. All objects have

surface materials that are optically challenging.



10 to 15 (that is, 40 percent to 60 percent of maximum number).
Fig. 17b shows the distribution over the fitting error of the best
fitting plane for the elements in the window (that is, the
parameter " in (3)). Most of the true measurements have the
fitting error less than 0.1 mm,whereas the false measurements
are more evenly distributed. The graph suggests that a good
choice for the threshold �" would be from 0.15 mm to 0.3 mm
(that is, about 50 percent to 100 percent of sensor resolution).
Fig. 17c shows the distribution over the angle between the
surface normal and the line-of-light vectors, and Fig. 17d
shows the distribution over the angle between the surface
normal and the line-of-sight vectors. Observe in Fig. 17d that a
large number of false measurements have the surface normals
close to orthogonal to the line-of-sight vectors. These
measurements correspond to those that we explained in
Section 5.2. Since the local visibility test requires both angles
cos�1ðn � lÞ and cos�1ðn � sÞ to be less than �

2 � ��, a good
choice for the threshold �� would be from 0.05 to 0.15 radians.

Fig. 18 shows the number of true and false measure-
ments during the course of the local tests, with the
parameters set as �m ¼ 13, �" ¼ 0:2, and �� ¼ 0:1. Each
iteration indicates both the smoothness test and the local
visibility test. Observe that a large number of false
measurements were eliminated while maintaining almost
all of true measurements. For the case of the gorilla figurine,
almost all the false measurements were eliminated by the
local tests. Table 1 summarizes the results of the local tests
for all five objects.

6.3 Evaluation of the Global Tests

Fig. 19 shows the number of true and false measurements
over the course of the global tests. The first row shows the
number of true measurements for each of the five objects,
and the second row shows the number of false measure-
ments. The global tests were evaluated with six different
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Fig. 17. (a) Distributions of the true measurements (blue line with �markers) and the false measurements (red line with �markers) for all five objects

over m, which is the number of valid elements in the fitting window. (b) Distribution over ", that is, the fitting error of the best fitting plane.

(c) Distribution over cos�1ðn � lÞ, where n is the unit surface normal vector, and l is the unit line-of-light vector. (d) Distribution over cos�1ðn � sÞ,
where s is the unit line-of-sight vector.

Fig. 18. Number of true measurements and false measurements during the local tests, with the parameters set as �m ¼ 13, �" ¼ 0:2, and �� ¼ 0:1
(see Sections 5.1 and 5.2 for the descriptions of the parameters). Each iteration indicates both the smoothness test and the local visibility test.
(a) Bowl. (b) Seashell. (c) Angel. (d) Tray. (e) Gorilla.

TABLE 1
Summary of the Local Tests

N is the number of range images acquired. ntotalbefore and ntotalafter represent
the total number of measurements before and after the local tests
applied, respectively, ntruebefore and ntrueafter represent the number of true
measurements before and after the local tests applied, and analogously,
nfalsebefore and nfalseafter for the number of false measurements. Iavg is the
average of number of iterations in the local tests. TN represents the true
negative rate, FN represents the false negative rate, and time is the
total execution time performed on a Linux machine with 2.8-GHz
Pentium 4 CPU and 1.0-Gbyte RAM.



values of t, the constant used to determine the thresholds in
the global tests in (13) and (14). The odd-numbered
iterations represent the isolated region test, and the even-
numbered iterations the global consistency test. The initial
data was the result after the convergence of the local test.
Note that the vertical axis limits for each graph is
independent of each other, except that the lower limits for
the graphs showing the number of false measurements
(second row) are all zeros. As expected, a larger t value
maintains more true measurements at the cost of having
more false measurements at the convergence. In general, the
global tests, regardless of the t value, were able to preserve
most of the true measurements, whereas only the tests with
the t value less than 2.0 were able to eliminate the false
measurements reasonably well.

Table 2 summarizes the results of the global tests for all
five objects, with the t value set as 1.5. The notations in the
table are similar to those used in Table 1, except that I is
simply the number of iterations in the global tests.
Generally, the global tests took more time compared to
the local tests, and for all objects, the true negative rates
were greater than 0.95 while maintaining the false negative
rates under 0.07.

In Fig. 20, the images in the first row show the original
data for all five objects, where the light blue points
represent the true measurements, and the red points
represent the false measurements. The second row shows
the data after the convergence of the local tests, and the
third row shows the color-coded global consistency value G
after the convergence of the local tests. Similarly, the fourth
and the fifth rows show after the convergence of the global
tests. Finally, the images in the last two rows show the final
integrated 3D models. The final 3D models capture the fine
details of the objects, even in the regions of severe
concavities, where mutual reflections are highly likely to
occur, as well as the regions of highly absorptive surfaces.

7 CONCLUSION AND FUTURE WORK

In this paper, we presented a new method for constructing
accurate 3D models of real-world objects that are optically
challenging, such as those containing specular and highly
absorptive surfaces. The multipeak range imaging is used to
capture the erroneous range data. Subsequently, the false
measurements are eliminated by applying a series of
constraint tests. By obtaining the ground-truth data for
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Fig. 19. Number of true and false measurements over the iterations of the global tests evaluated with the varying constant t of (13) and (14). The top
row shows the number of true measurements for each of the five objects, and the bottom row shows the number of false measurements. Note that
the vertical axis limits for each graph is independent of each other, except that the lower limits for the graphs showing the number of false
measurements (second row) are all zeros. (a) Bowl (true). (b) Seashell (true). (c) Angel (true). (d) Tray (true). (e) Gorilla (true). (f) Bowl (false).
(g) Seashell (false). (h) Angel (false). (i) Tray (false). (j) Gorilla (false).

TABLE 2
Summary of the Global Tests
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Fig. 20. The images in the first row show the original data for all five objects, where the light blue points represent the true measurements, and the

red points represent the false measurements. The second row shows the data after the convergence of the local tests, and the third row shows the

color-coded global consistency value G after the convergence of the local tests. Similarly, the fourth and the fifth rows show the consistency value

after the convergence of the global tests. Finally, the images in the last two rows show the final integrated 3D models.



each of the objects used in the experiment, we are able to
analyze the performance of each constraint test and also
justify the selection of the thresholds used in the constraint
tests. The experimental results indicate that our method

significantly improves upon the traditional methods for
generating accurate 3D models of real-world objects with
optically challenging surface properties.

We envision a number of directions for future work.
First, a more sophisticated peak detection algorithm needs
to be developed to account for various light reflection
properties that depend on the material and the shape of
objects. One of the most difficult problems is the case when
multiple peaks are too close to one another that the borders
between the peaks are no longer seen by the intensity
change alone. When two peaks are treated as one, the image
coordinates of the estimated center will be shifted, as well
as, consequently, the 3D coordinates in the world frame. We
have found that most of the secondary reflections behave
just like the primary reflections in that they stay around the
same position or steadily move to a certain direction
throughout the image sequence, as opposed to suddenly
appearing and disappearing at random positions. By
performing a segmentation in each image and by keeping
track of the position and the direction of each region
throughout the images in the sequence, it may be possible
to detect cases where two separate regions are getting close
to each other and eventually merge into a single region. If
we can detect the merge between separate regions, that is,
separate peaks, then it may be possible to compute more
accurate centers of the peaks, even when the peaks are very
close to each other.

Another goal for future work is to improve the threshold
selection in the constraint tests so that the elimination of
false measurements is maximized while preserving all true

measurements. Although we showed the effects of varying
the parameters in the constraint tests and suggested the
range of a good choice for each of the parameters, one can
certainly compute the best parameters for a given particular
data. For example, the constant t of (13) can be set

dynamically in each iteration, depending on the current
status of the data. Perhaps, instead of using a single t value
for the entire data, one can divide the data by using regular
3D blocks and assign different values of t for each block

according to the contents of the data inside the block.
Finally, extending our methods to other types of

optically challenging surfaces such as translucent or
transparent surfaces remains an important area for future
work.
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