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Covariance Estimation for High Dimensional Data

Vectors Using the Sparse Matrix Transform

Guangzhi Cao and Charles A. Bouman

School of Electrical and Computer Engineering
Purdue University

West Lafayette, IN 47907
April 29, 2008

1 Introduction

Many problems in statistical pattern recognition and analysis require the classification and
analysis of high dimensional data vectors. However, covariance estimation for high dimen-
sional vectors is a classically difficult problem because the number of coefficients in the
covariance grows as the dimension squared [1, 2, 3]. This problem, sometimes referred to as
the curse of dimensionality [4], presents a classic dilemma in statistical pattern analysis and
machine learning.

In a typical application, one measures M versions of an N dimensional vector. If M < N ,
then the sample covariance matrix will be singular with N −M eigenvalues equal to zero.
Over the years, a variety of techniques have been proposed for computing a nonsingular
estimate of the covariance. For example, regularized and shrinkage covariance estimators
[5, 6, 7, 8, 9, 10] are examples of such techniques.

In this paper, we propose a new approach to covariance estimation, which is based on
constrained maximum likelihood (ML) estimation of the covariance. In particular, the co-
variance is constrained to have an eigen decomposition which can be represented as a sparse
matrix transform (SMT) [11]. The SMT is formed by a product of pairwise coordinate rota-
tions known as Givens rotations [12]. Using this framework, the covariance can be efficiently
estimated using greedy minimization of the log likelihood function, and the number of Givens
rotations can be efficiently computed using a cross-validation procedure. The estimator ob-
tained using this method is always positive definite and well-conditioned even with limited
sample size.

In order to validate our model, we perform experiments using a standard set of hyperspec-
tral data [13]. Our experiments show that SMT covariance estimation results in consistently
better estimates of the covariance for a variety of different classes and sample sizes. Also,
we show that the SMT method has a particular advantage over traditional methods when
estimating small eigenvalues and their associated eigenvectors.
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2 Covariance Estimation for High Dimensional Vectors

In the general case, we observe a set of M vectors, y1, y2, · · · , yM , where each vector, ym, is
N dimensional. Without loss of generality, we assume ym has zero mean. We can represent
this data as the following N ×M matrix

Y = [y1, y2, · · · , yM ] .

If the vectors ym are assumed to be identically distributed, then the sample covariance is
computed by

S =
1

M
Y Y t ,

and S is an unbiased estimate of the true covariance matrix1

R = E
[

ymyt
m

]

= E[S] .

While S is an unbiased estimate of R it is also singular when M < N . This is a serious
deficiency since as the dimension N grows, the number of vectors needed to estimate R also
grows. In practical applications, M may be much smaller than N which means that most of
the eigenvalues of R are erroneously estimated as zero.

A variety of methods have been proposed to regularize the estimate of R so that it is
not singular. Shrinkage estimators are a widely used class of estimators which regularize
the covariance matrix by shrinking it toward some target structures [7, 8, 9, 10]. Shrinkage
estimators generally have the form

R̂ = αD + (1− α)S ,

where D is some positive definite matrix. One popular choice for D is the identity matrix
or its scalar multiple. Another popular choice for D is diag(S), the matrix formed by the
diagonal entries of S. In either case, the parameter α can be estimated using cross-validation
or boot-strap methods. However, neither of these regularization procedures full account for
the correlation between elements of the vector.

Our approach will be to compute a constrained maximum likelihood (ML) estimate of the
covariance R, under the assumption that eigenvectors of R may be represented as a sparse
matrix transform (SMT). So we first decompose R as

R = EΛEt ,

where E is the orthonormal matrix of eigenvectors and Λ is the diagonal matrix of eigen-
values. Then we will estimate the covariance by maximizing the likelihood of the data Y
subject to the constraint that E is an SMT. By varying the order, K, of the SMT, we may
then reduce or increase the regularizing constraint on the covariance.

1If the sample mean is used as an estimate of the mean, then M

M−1
S is the unbiased estimate of the

covariance.
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2.1 Maximum Likelihood Covariance Estimation

If we assume that the columns of Y are independent and identically distributed Gaussian
random vectors with mean zero and positive-definite covariance R, then the likelihood of Y
given R is given by

pR(Y ) =
1

(2π)
NM

2

|R|−
M
2 exp

{

−
1

2
tr{Y tR−1Y }

}

.

From Appendix A, we see that the log-likelihood of Y is given by

log p(E,Λ)(Y ) = −
M

2
tr{diag(EtSE)Λ−1} −

M

2
log |Λ| −

NM

2
log(2π) .

where R = EΛEt is specified by the orthonormal eigenvalue matrix E and diagonal eigen-
value matrix Λ. Jointly maximizing the likelihood with respect to E and Λ then results in
the ML estimates of E and Λ given by (see Appendix A)

Ê = arg min
E∈Ω

{∣

∣diag(EtSE)
∣

∣

}

(1)

Λ̂ = diag(ÊtSÊ) , (2)

where Ω is the set of allowed orthonormal transforms. So we may compute the ML estimate
by first solving the constrained optimization of (1), and then computing the eigenvalues from
(2).

An interesting special case occurs when S has full rank and Ω is the set of all orthonor-
mal transforms. In this case, equations (1) and (2) are solved by selecting E and Λ as the
eigenvalues and eigenvectors of S (See Appendix B). So this leads to the well known result
that when S is non-singular, then the ML estimate of the covariance is given by the sample
covariance, R̂ = S. However, when S is singular and Ω is the set of all orthonormal trans-
forms, then the likelihood is unbounded, with a subset of the estimated eigenvalues tending
toward zero.

2.2 ML Estimation of Eigenvectors Using SMT Model

The ML estimate of E can be improved by constraining the feasible set of eigenvectors,
Ω, to a smaller set. We will see that by properly constraining the set Ω, we can compute
the ML estimate of the covariance of data even when the sample covariance, S, is singular.
By constraining Ω, we are effectively regularizing the ML estimate by imposing a model
constraint. As with any model-based approach, the key is to select a feasible set, Ω, which
is as small as possible while still accurately modeling the behavior of real data.

Our approach is to select Ω to be the set of all orthonormal transforms that can be
represented as an SMT of order K [11]. More specifically, a matrix E is an SMT of order K
if it can be written as a product of K sparse orthornormal matrices, so that

E =
0

∏

k=K−1

Ek = EK−1EK−2 · · ·E0 , (3)
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Figure 1: The structure of a pair-wise sparse transform Ek. Here, all the unlabeled
diagonal elements are 1’s, and all the unlabeled off-diagonal elements are 0’s. Each
transform Ek is a Givens transform with rotation angle θk.

where every sparse matrix, Ek, is a Givens rotation operating on a pair of coordinate indices
(ik, jk) [12]. Figure 1 illustrates the structure of the Givens rotation. Notice that every
Givens rotation Ek is an orthonormal rotation in the plane of the two coordinates, ik and
jk, which has the form

Ek = I + Θ(ik, jk, θk) , (4)

where Θ(m,n, θ) is defined as

[Θ]ij =















cos(θ)− 1 if i = j = m or i = j = n
sin(θ) if i = m and j = n
− sin(θ) if i = n and j = m
0 otherwise

. (5)

Figure 2 shows the flow diagram for the application of an SMT to a data vector y. No-
tice that each 2D rotation, Ek, plays a role analogous to a “butterfly” used in an traditional
Fast Fourier Transform (FFT) [14]. However, unlike an FFT, the organization of the but-
terflies in an SMT is unstructured, and each butterfly can have an arbitrary rotation angle
θk. This more general structure allows an SMT to implement a larger set of orthonormal
transformations. In fact when K =

(

N

2

)

, the SMT can be used to exactly represent any

N × N orthonormal transformation (see Appendix C). Even when K <<
(

N

2

)

, the SMT
can represent a wide range of operations since it captures the dependencies between pairs of
coordinates.

Using the SMT model constraint, the ML estimate of E is given by

Ê = arg min
E=

Q

0

k=K−1
Ek

∣

∣diag(EtSE)
∣

∣ . (6)

Unfortunately, evaluating the constrained ML estimate of (6) requires the solution of a
optimization problem with a nonconvex constraint. So evaluation of the globally optimal
solutions is very difficult. Therefore, our approach will be to use greedy minimization to
compute an approximate solution to (6). The greedy minimization approach works by se-
lecting each new butterfly Ek to minimize the cost, while fixing the previous butterflies, El
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Figure 2: The structure of an SMT implementation of y̌ = Ey. Every Ek plays a
role analogous to a “butterfly” used in an traditional FFT. However, the irregular
structure of the SMT makes it a generalization of the FFT and allows it to be used
to accurately approximate a general orthonormal transform. In fact, an SMT with
N(N − 1)/2 butterflies can be used to exactly compute any N × N orthonormal
transformation.

for l < k. The solution to this local optimization can be computed quite easily by determin-
ing the two coordinates, ik and jk, that are most correlated, and then applying a rotation
with angle θ that decorrelates the measurements (See Appendix D).

This greedy optimization algorithm can be implemented with the following simple recur-
sive procedure. We start by setting S0 = S to be the sample covariance, and initialize k = 0.
Then we apply the following two steps for k = 0 to K − 1.

E∗
k = arg min

Ek

∣

∣diag
(

Et
kSkEk

)∣

∣ (7)

Sk+1 = E∗t
k SkE

∗
k . (8)

The resulting values of E∗
k are the butterflies of the SMT.

The problem remains of how to compute the solution to (7). For a specified coordinate
pair (i, j), the cost function in (7) is minimized when the off-diagonal entries Sij and Sji

become zero. In this case, the ratio of the minimized cost function to its original value is
given by

(

1−
S2

ij

SiiSjj

)

, (9)

where i and j are the indices corresponding to the pair-wise transform of Ek (See Ap-
pendix D). Therefore, with each iteration of the greedy algorithm, we select the coordinate
pair (ik, jk) that reduces the cost in (7) most among all possible pairs, i.e.,

(ik, jk)← arg min
(i,j)

(

1−
S2

ij

SiiSjj

)

. (10)

Once ik and jk are determined, the Givens rotation E∗
k is given by

E∗
k = I + Θ(ik, jk, θk) , (11)
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where

θk =
1

2
atan(−2Sikjk

, Sikik − Sjkjk
) . (12)

By iterating the (7) and (8) K times, we obtain the constrained ML estimation of E given
by

Ê∗ =
0

∏

k=K−1

E∗
k .

2.3 Model Order

A simple cross-validation method can be used to determine the model order K. First, we
split the sample data Y into three subsets Y1, Y2, and Y3. Then we then compute an order k
SMT covariance estimate using the combined data from subsets Y2 and Y3. We denote this
estimates by (Ê1,k, Λ̂1,k). Next, we compute the log likelihood of Y1 given (Ê1,k, Λ̂1,k), which
is given by

log p(E1,k,Λ1,k)(Y1) = −
M

2
tr{diag(Êt

1,kS1Ê1,k)Λ̂
−1
1,k} −

M

2
log

∣

∣

∣
Λ̂1,k

∣

∣

∣
−

NM

2
log(2π) .

In fact, this log likelihood expression can be evaluated on-the-fly as Ê1,k is estimated starting
from k = 0. This on-the-fly evaluation dramatically reduces the computation.

The cross-validation log likelihood is then evaluated in a similar manner for the subsets
Y2 and Y3 to yield (Ê2,k, Λ̂2,k) and (Ê3,k, Λ̂3,k). The order is then estimated by maximizing
the sum of the cross-validation likelihood terms over the three possible partitions.

K∗ = arg max
k∈{0,1,2,...}

3
∑

i=1

log p(Ei,k,Λi,k)(Yi) .

Once K∗ is determined, the proposed covariance estimator is re-computed using using all
the data and the estimated model order.

3 Experimental Results

The effectiveness of the SMT covariance estimation procedure depends on how effectively
the SMT model can capture the behavior of real data vectors. Therefore in this section,
we compare the effectiveness of the SMT covariance estimator to commonly used shrinkage
estimators describe in Appendix E. We do this comparison using hyperspectral remotely
sensed data as our high dimensional data vectors.

The hyperspectral data we use is available with the recently published book by Landgrebe
[13]. Figure 3 shows five simulated color IR views of an airborne hyperspectral data flightline
over the Washington DC Mall. The sensor system used here measured pixel response in 210
bands in the 0.4 to 2.4 µm region of the visible and infrared spectrum. Bands in the 0.9
and 1.4 µm region where the atmosphere is opaque have been omitted from the data set,
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leaving 191 bands. The data set contains 1208 scan lines with 307 pixels in each scan line.
Each of the images were made using bands 60, 27 and 17 for the red, green and blue colors,
respectively. The data set also provides ground truth pixels for each of five classes designated
as grass, water, roof, street, and tree. Figures 3 (a) through (e) show images for each of
the five ground-truth classes. For each image, the pixels of the designated class are outlined
with a white rectangle.

For each class, we computed the “true” covariance by using all the ground truth pixels to
calculate the sample covariance. The covariance is computed by first subtracting the sample
mean vector for each class, and then computing the sample covariance for the zero mean
vectors. The number of pixels for the ground-truth classes of water, grass, roof, street, and
tree are 1224, 1928, 3579, 416, and 388, respectively. In each case, the number of ground
truth pixels was much larger than 191, so the true covariance matrices are nonsingular, and
accurately represent the covariance of the hyperspectral data for that class.2

3.1 Gaussian Case

First, we compare how different estimators perform when the data vectors are samples from
an ideal multivariate Gaussian distribution. To do this, we first generated zero mean mul-
tivariate vectors with the true covariance for each of the five classes. Next we estimated
the covariance using each of four methods, SMT covariance estimation, shrinkage method
I, shrinkage method II, and shrinkage method III. (See Appendix E for a description of the
shrinkage estimators.) In order to determine the effect of sample size, we also performed
each experiment for a sample sizes of M = 80, 40, and 20.

In order to get an aggregate accessment of the effectiveness of SMT covariance estimation,
we compared the estimated covariance for each method to the true covariance using the
Kullback-Leibler (KL) distance as derived in Appendix F. The KL distance is a measure of
the error between the estimated and true distribution. So a value of 0 indicates a perfect
estimate, and larger values indicate greater error. Figures 4-8 show plots of the KL distance
as a function of sample size for three of the four estimators.3 Notice that the values of the
Kullback-Leibler distance are consistently and substantially smaller for the SMT covariance
estimation method. The error bars indicate the standard deviation of the KL distance due
to random variation in the sample statistics.

Figure 9 shows the spectrum of the ground-truth pixels for the water and grass classes.
Then Figures 10-12 and 16-18 show more details of eigenvalues estimated for water and grass,
with part a) showing the samples used to compute the covariance, and part b) showing plots
of the estimated eigenvalues.

For example, consider the case of water with M = 80 as shown in Fig. 10(b). Notice that
the eigenvalues of the SMT estimator are much closer to the true values than the eigenvalues

2We did not estimate the covariance for the classes designated as “path” and “shadow” because the number
of ground truth pixels for these two classes was too small to get an accurate estimate of the covariance.

3The KL distance for shrinkage estimator I is not shown because it is much larger than the remaining
three estimators.
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produced by the shrinkage estimators. From the plots, we can see the eigenvectors estimated
by the shrinkage estimators I and II tend to degrade beyond the M = 80th eigenvalue. This
is reasonable since eigen decomposition of the sample covariance can only estimate the 80
largest eigenvalues. Alternatively, the SMT estimator generates good estimates for the small
eigenvalues. This tendency of the SMT estimator to generate better estimates of smaller
eigenvalues is consistent across different classes and different sample sizes.

3.2 Non-Gaussian Case

In practice, the sample vectors may not be from an ideal multivariate Gaussian distribution.
In order to see the effect of the non-Gaussian statistics on the accuracy of the covariance
estimate, we performed a set of experiments in which we randomly sampled vectors from
the ground truth pixels. Since these samples are from the actual measured data, their
distribution is not precisely Gaussian. Using these samples, we performed the covariance
estimation using the four different methods with sample sizes of M = 80, 40, and 20.

Plots of the KL distance for this non-Gaussian case are shown in in Figures 4-8; and
Figures 13-15 and 19-21 show more details of the estimated eigenvalues and the sampled
pixels spectra. We note that the results are similar to those found for the ideal Guassian
case. However, in a few cases there is some reduction in the accuracy of the SMT estimate.
The worst case seems to appear in Fig. 4 (b) in which the variance of the KL distance for
M = 20 becomes large. It appears that the model-based SMT method is more sensitive
to the non-Guassian statistics, however, it is likely that the variance could be reduced by
the use of more than 3 sets for the cross-validation method (the shrinkage methods use true
“leave-one-out” cross-validation, which is computationally expensive).

4 Conclusion

We have proposed a novel method for covariance estimation of high dimensional data. The
new method is based on constrained maximum likelihood (ML) estimation in which the
eigenvector transformation is constrained to be the composition of K Givens rotations. This
model seems to capture the essential behavior of the data with a relatively small number
of parameters. The constraint set is a K dimensional manifold in the space of orthnormal
transforms, but since it is not a linear space, the resulting ML estimation optimization
problem does not yield a closed form global optimum. However, we show that a recursive
local optimization procedure is simple, intuitive, and yields good results.

We also demonstrate that the proposed SMT covariance estimation method substantially
reduces the error in the covariance estimate as compared to current state-of-the-art shrinkage
estimates for a standard hyperspectral data set.
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(a)

(b)

(c)

(d)

(e)

Figure 3: Images showing the location of the pixels for each of the five ground-truth
classes denoted by (a) “water”, (b) “grass”, (c) “roof”, (d) “street”, and (e) “tree”.
For each image, the locations of the ground-truth pixels are outlined with white
rectangles.
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(a) Gaussian Case
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(b) Non-Gaussian Case

Figure 4: Kullback-Leibler distance from true distribution versus sample size for the
water class.
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(a) Gaussian Case
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(b) Non-Gaussian Case

Figure 5: Kullback-Leibler distance from true distribution versus sample size for the
grass class.
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(a) Gaussian Case
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(b) Non-Gaussian Case

Figure 6: Kullback-Leibler distance from true distribution versus sample size for the
roof class.
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(a) Gaussian Case
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(b) Non-Gaussian Case

Figure 7: Kullback-Leibler distance from true distribution versus sample size for the
street class.
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(b) Non-Gaussian Case

Figure 8: Kullback-Leibler distance from true distribution versus sample size for the
tree class.
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(b) Grass Spectum

Figure 9: The spectrum of the ground-truth pixels for the (a) water and (b) grass
classes. The vertical axis shows the spectral band, and the horizontal axis is the pixel
number.
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(b)

Figure 10: Gaussian case of water for M = 80. (a) Synthesized data spectrum. (b)
The distribution of estimated eigenvalues.
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(b)

Figure 11: Gaussian case of water for M = 40. (a) Synthesized data spectrum. (b)
The distribution of estimated eigenvalues.
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(b)

Figure 12: Gaussian case of water for M = 20. (a) Synthesized data spectrum. (b)
The distribution of estimated eigenvalues.
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(b)

Figure 13: Non-Gaussian case of water for M = 80. (a) Sampled data spectrum. (b)
The distribution of estimated eigenvalues.
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(b)

Figure 14: Non-Gaussian case of water for M = 40. (a) Sampled data spectrum. (b)
The distribution of estimated eigenvalues.
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(b)

Figure 15: Non-Gaussian case of water for M = 20. (a) Sampled data spectrum. (b)
The distribution of estimated eigenvalues.
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(b)

Figure 16: Gaussian case of grass for M = 80. (a) Synthesized data spectrum. (b)
The distribution of estimated eigenvalues.
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Figure 17: Gaussian case of grass for M = 40. (a) Synthesized data spectrum. (b)
The distribution of estimated eigenvalues.
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(b)

Figure 18: Gaussian case of grass for M = 20. (a) Synthesized data spectrum. (b)
The distribution of estimated eigenvalues.
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(b)

Figure 19: Non-Gaussian case of grass for M = 80. (a) Sampled data spectrum. (b)
The distribution of estimated eigenvalues.
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(b)

Figure 20: Non-Gaussian case of grass for M = 40. (a) Sampled data spectrum. (b)
The distribution of estimated eigenvalues.
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Figure 21: Non-Gaussian case of grass for M = 20. (a) Sampled data spectrum. (b)
The distribution of estimated eigenvalues.
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A Derivation of Log Likelihood

If the columns of Y are independent and identically distributed Gaussian random vectors
with mean zero and positive-definite covariance R, then the likelihood of Y given R is given
by

p(E,Λ)(Y ) =
1

(2π)
NM

2

|R|−
M
2 exp

{

−
1

2
tr{Y tR−1Y }

}

(13)

=
1

(2π)
NM

2

|Λ|−
M
2 exp

{

−
1

2
tr{Y tEΛ−1EtY }

}

(14)

=
1

(2π)
NM

2

|Λ|−
M
2 exp

{

−
M

2
tr{EtSEΛ−1}

}

(15)

=
1

(2π)
NM

2

|Λ|−
M
2 exp

{

−
M

2
tr{diag(EtSE)Λ−1}

}

. (16)

Taking the logarithm yields

log p(E,Λ)(Y ) = −
M

2
tr{diag(EtSE)Λ−1} −

M

2
log |Λ| −

NM

2
log(2π) . (17)

Therefore, the maximum likelihood (ML) estimator of (E, Λ) is given by

(Ê, Λ̂) = arg max
(E,Λ)

log p(E,Λ)(Y ) (18)

= arg max
E

max
Λ

log p(E,Λ)(Y ) . (19)

We first maximize the log-likelihood with respect to Λ. Setting the derivatives of log p(E,Λ)(Y )
with respect to all the diagonal entries of Λ to zero, we obtain

Λ̂ = diag(EtSE) .

Therefore, the ML estimation of E is given by

Ê = arg max
E∈Ω

log p(E,Λ̂(E))(Y ) (20)

= arg max
E∈Ω

{

−
NM

2
log(2π)−

M

2
log

∣

∣diag(EtSE)
∣

∣−
MN

2

}

(21)

= arg min
E∈Ω

{∣

∣diag(EtSE)
∣

∣

}

, (22)

where Ω is the set of allowed orthonormal transforms. So minimization of |diag(E tSE)| leads
to the ML estimate of E, and hence the ML estimate of Λ whicheq:MLE is given by

Λ̂ = diag(ÊtSÊ) . (23)
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B Unconstrained ML Estimate

Proposition: Let S be an N×N positive definite symmetric matrix with eigenvalue decom-
position given by S = E∗ΛSE∗t, and let Ω be the set of all N ×N orthonormal transforms.
Then E∗ achieves the global minimization of (1), so that

∣

∣diag(E∗tSE∗)
∣

∣ = min
E∈Ω

{∣

∣diag(EtSE)
∣

∣

}

. (24)

Proof: first, we show for any symmetric, positive definite matrix S, we have

|diag(S)| ≥ |S| . (25)

We know there exists a unique low triangular N ×N matrix G, such that

S = GGt , (26)

which is called the Cholesky factorization [15]. Therefore, |S| = |G|2 =
∏n

i=1 G2
ii. Clearly,

we have Sii =
∑n

j=1 G2
ij ≥ G2

ii for i = 1, 2, . . . , n. This gives

|diag(S)| ≥
n

∏

i=1

G2
ii = |S| . (27)

The equality holds if and only if Sii = G2
ii for i = 1, 2, . . . , N , which is equivalent to the fact

that S is diagonal. Therefore, we know for any orthonormal transform E,

∣

∣diag(EtSE)
∣

∣ ≥
∣

∣EtSE
∣

∣ = |S| . (28)

If S = E∗ΛSE∗t is the eigen-decomposition of S, then we know

∣

∣diag(E∗tSE∗)
∣

∣ = |ΛS| = |S| . (29)

Therefore, E∗ is the solution of global minimization of (1).

C Exact SMT Factorization of Orthonormal Transforms

We know the Givens QR factorization can be used to find a decomposition of an N × N
matrix into

(

N

2

)

Givens rotations [15]. Let A be an N × N orthonormal matrix, and let

Q = G1G2...GK with K =
(

N

2

)

, so that

A = QR ,

where every Gk is a Givens rotation and R is upper triangular. Since A and Q are orthonor-
mal, R must be orthonormal. Therefore, the columns of R must be orthogonal. Since R
is also upper triangular, this means that it must be diagonal. Therefore, R is a diagonal
orthonormal matrix, which means that it is the identity matrix. Hence, we have A = Q.
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D Solution of (7) for a Specified Coordinate Index Pair

In this appendix, we will find the solution to the optimization problem of (7) for a specified
coordinate index pair and the corresponding change of the cost function. Since the coordinate
index pair is specified, we can assume all the matrices to be 2× 2 without loss of generality.

From Appendix B, we know that E∗ minimizes the cost function (7) if and only if E∗ is
the matrix of eigenvectors of S, i.e. S = E∗ΛSE∗t. Next we obtain an expression for E∗ in
terms of a Givens rotation. Let

S =

[

s11 s12

s21 s22

]

, (30)

and let E∗ = I + Θ(1, 2, θ) with θ = 1
2
atan(−2s12, s11 − s22). Then we have

E∗tSE∗ =

[

s′11 0
0 s′22

]

, (31)

where

s′11 =
1

2

(

s11 + s22 +
√

(s11 − s22)2 + 4s2
12

)

(32)

s′22 =
1

2

(

s11 + s22 −
√

(s11 − s22)2 + 4s2
12

)

. (33)

This shows that E∗ of the given form is the matrix of eigenvectors of S. Hence E∗ must
minimize the cost function of (7). Based on (29), we know that the ratio of the cost function
before and after the transform of E∗ is given as

|diag (E∗tSE∗)|

|diag (S)|
=

|S|

|diag (S)|
= 1−

s2
12

s11s22

. (34)

E Review of Commonly Used Shrinkage Estimators

A general approach to the problem of covariance estimation for high dimensional data is the
use of shrinkage estimators. Shrinkage estimators work by shrinking the sample covariance
matrix toward some target structures

R̂ = αD + (1− α)S ,

where D is some positive definite matrix and S is the sample covariance matrix.

The first method, which we will refer to as “Shrinkage Estimator I” (SE I) in the exper-
imental results, sets D equal to the indentity matrix [16, 7].

R̂ = αI + (1− α)S .

This identity regularization is usually used in ridge regression and Tikhonov regularization.
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The second method, which we will refer to as “Shrinkage Estimator II” (SE II) in the
experimental results, sets D equal to an scaled indentity matrix [5, 17, 9].

R̂ = α

(

tr(S)

N

)

I + (1− α)S .

This approach scales the identity matrix by the average of the eigenvalues, so it tends to
decrease the large eigenvalues and increases the small ones.

The third method, which we will refer to as “Shrinkage Estimator III” (SE III) in the
experimental results, sets D equal to the diagonal of S [6, 10].

R̂ = αdiag (S) + (1− α)S .

For these three methods, we use the leave-one-out likelihood to choose an appropriate
value for shrinkage intensity parameter α. Specifically, the value of α is chosen so that the
average likelihood of omitted samples is maximized as suggested in [6],

α∗ = arg max
α

{

1

M

M
∑

k=1

log
(

pR̂k(α) (yk)
)

}

(35)

= arg max
α

{

−
1

2M

M
∑

k=1

[

yt
kR̂k(α)−1yk + log

∣

∣

∣
R̂k(α)

∣

∣

∣
+ N log(2π)

]

}

, (36)

where R̂k is the estimated covariance matrix without sample yk. To do this, we search for
α∗ in the interval [0.05, 1] with a step size of 0.05. Once the value of α∗ is determined, R̂(α∗)
is computed using all the training samples. However, this leave-one-out cross-validation
approach is very computationally expensive since we need to compute the inverse of R̂k(α)
for every k and α. Some approximations can be used to improve the computation speed
[5, 6]; however, these approximations still can reduce accuracy. With these approximations,
the computation is comparable to the proposed SMT method.

For these three shrinkage estimators, the eigenvector and eigenvalue estimates, (Ê, Λ̂),
are given by the eigen decomposition of the covariance estimator R̂(α∗)

R̂(α∗) = ÊΛ̂Ê . (37)

F Kullback-Leibler Distance

The Kullback-Leibler distance for two distributions pθ(y) and pθ̂(y) is defined as [18]

d(θ, θ̂) = Eθ [log pθ(Y )− log pθ̂(Y )] .

So if θ = (E, Λ) and θ̂ = (Ê, Λ̂), then

d(θ, θ̂) = Eθ [log pθ(Y )− log pθ̂(Y )]
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= −
1

2
tr{diag(EtRE)Λ−1} −

1

2
log |Λ|+

1

2
tr{diag(ÊtRÊ)Λ̂−1}+

1

2
log

∣

∣

∣
Λ̂

∣

∣

∣

=
1

2
tr{diag(ÊtRÊ)Λ̂−1 − I}+

1

2
log

∣

∣

∣
Λ̂Λ−1

∣

∣

∣

We will use the Kullback-Leibler distance as one of the measures for the various covariance
estimators.
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