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ABSTRACT  

Electrowetting (EW) involves the actuation of liquid droplets using electric fields and has been 

demonstrated as a powerful tool for initiating and controlling droplet-based microfluidic operations 

such as droplet transport, generation, splitting, merging and mixing.  The heat transfer resulting from 

EW-induced droplet actuation has, however, remained largely unexplored owing to several challenges 

underlying even simple thermal analyses and experiments.  In the present work, the heat dissipation 

capacity of actuated droplets is quantified through detailed modeling and experimental efforts.  The 

modeling involves three-dimensional transient numerical simulations of a droplet moving under the 

action of gravity or EW on a single heated plate and between two parallel plates.  Temperature 

profiles and heat transfer coefficients associated with the droplet motion are determined.  The 

influence of droplet velocity and geometry on the heat transfer coefficients is parametrically 

analyzed.  Convection patterns in the fluid are found to strongly influence thermal transport and the 

heat dissipation capacity of droplet-based systems.  The numerical model is validated against 

experimental measurements of the heat dissipation capacity of a droplet sliding on an inclined hot 

surface.  Infrared thermography is employed to measure the transient temperature distribution on the 

surface during droplet motion.  The results provide the first in-depth analysis of the heat dissipation 

capacity of electrowetting-based cooling systems and form the basis for the design of novel 

microelectronics cooling and other heat transfer applications. 
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NOMENCLATURE 

 

 

cp specific heat capacity, J/(kg-K) 

h heat transfer coefficient, W/(m2-K) 

k thermal conductivity,  W/(m-K) 

P pressure, Pa 

 heat flux, W/m2 

 volumetric heat source, W/m3 

t time, s 

v


 velocity vector, m/s 

x distance along direction of droplet 

motion (in the plane of the heated 

surface), m 

y distance normal to droplet motion (in 

the plane of the heated surface), m 

z distance along droplet height, m 

F force, N 

H plate spacing, m 

R droplet radius, m 

T temperature, °C 

V velocity, m/s 

Greek 

α thermal diffusivity, m2-s 

μ  dynamic viscosity, Pa-s 

ρ  mass density, kg/m3 

Subscripts 

a ambient 

d droplet 

s surface 

 

INTRODUCTION 

The field of electrowetting [1,2] has received significant attention over the past decade because of 

enhanced microfluidic control options, low power consumption and amenability to integration with 

microelectronics packaging.  The key application areas driving this interest include lab-on-chip systems, 

electrowetting-based optics and liquid displays.  There has been recent interest in using electrowetting for 

heat transfer applications [3-5]; as an illustration, electrowetting-based microelectronics thermal 

management (package level as well as site-specific hot spot thermal management) has been the focus of 

some recent research efforts. 

While there have been a number of studies in the literature on the heat transfer characteristics of other 

types of droplet-based systems such as sprays [6-12] and mist [13, 14], the thermal characteristics 

associated with the motion of discrete liquid droplets have not been well mapped and understood.  The 

heat dissipation capacity associated with a stationary evaporating droplet on a surface has been studied in 

detail for fire suppression applications [15, 16].  The heat transfer from a hot steel surface to stationary 

water droplets (diameter ~ 2 mm) with various contact angles (90°, 55° and 20°) was experimentally 

measured and modeled by Chandra et al. [15].  The focus of that work was to study the dependence of the 

droplet evaporation rate on the contact angle.  The contact angle was varied in the experiments by the 

q

q
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addition of surfactants to the liquid.  Fukai et al. [17] performed experiments which involved droplets 

sliding on a hot inclined substrate; however, the focus of the work was to study the effect of the heat flux 

on the dynamic contact angle of the droplet.  Another study of stationary droplet-based transient cooling 

of a hot substrate was conducted by Tarozzi et al. [18].  An infrared transparent substrate (BaF2) and 

infrared thermography were employed to thermally map the contact area of the substrate and the cold 

droplet. 

Unlike the focus of the studies discussed above, electrowetting-based cooling schemes do not 

typically rely on evaporative cooling.  Only a few studies have reported experimental measurements of 

the heat transfer performance of electrowetting-based droplet systems.  Pamula and Chakrabarty [3] 

suggested the use of an electrowetting-based digital microfluidic system for cooling hot spots in 

integrated circuits.  They also proposed a dynamic cooling system utilizing thermocapillarity and 

electrowetting; hot spots on the chip would attract higher flow rates due to thermocapillarity, and this hot 

fluid would be returned to the reservoir using electrowetting-based pumping.  Paik et al. [19] 

experimentally investigated the effect of temperature on droplet velocities by evaluating the temperature-

dependence of filler fluid viscosity and filler fluid-droplet surface tension.  Oprins et al. [20] and Mohseni 

[5] carried out simplified experiments to study droplet flows in microchannels, but did not obtain 

temperature measurements.  Paik et al. [4] demonstrated via measured temperature decreases that EW can 

be used for hot-spot cooling. 

Modeling of EW-actuated droplet heat transfer has received less attention.  Preliminary feasibility 

calculations by Pamula and Chakrabarty [3] showed that up to 90 W/cm2 of heat dissipation is possible 

from an array of droplets flowing on a chip without any area enhancement.  Oprins et al. [21] modeled the 

internal flow and heat transfer inside a two-dimensional droplet moving between two plates under 

electrowetting actuation.  The heat transfer was found to be enhanced by a factor of 2 compared to the 

case of a static droplet with conduction as the only heat transfer mode.  Baird and Mohseni [22] solved 

the two-dimensional flow and energy equations to predict the heat transfer associated with droplet 

movement between two heated, isothermal plates; three-dimensional effects of liquid flow circulation 

were not considered.  Bahadur and Garimella [23, 24] introduced the concept of an electrically tunable 

thermal resistance switch which relies on the use of an electrowetting voltage to switch between the 

nonwetting (high thermal resistance to heat transfer) and wetting (low thermal resistance) states of 

superhydrophobic surfaces.  It is noted that numerical analysis of the heat transfer associated with EW-

induced droplet motion is complicated by the coupling of the momentum and energy equations through 

the temperature-dependent viscosity and surface tension. 
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The present work undertakes a fundamental investigation of the heat transfer accompanying EW-

induced droplet motion on a single plate and between two parallel plates.  Precise temperature 

measurements are obtained to experimentally estimate the cooling capacity of a droplet as it slides down 

an inclined heated surface.  A numerical model is developed to further understand and quantify the heat 

transfer; results from the model are benchmarked against the experimental measurements.  The numerical 

model is then utilized to predict the heat dissipation performance of droplets moving between two parallel 

plates, which is a common microfluidic configuration.  Finally, the cooling performance of discrete 

droplet-based pumping is compared to that obtained with continuous flows. 

EXPERIMENTAL CHARACTERIZATION OF HEAT TRANSFER TO A MOVING DROPLET 

Figure 1 (a) shows a schematic diagram of the experimental setup designed for measuring the heat 

dissipation capacity of a droplet sliding down an inclined plate.  The plate is attached to a tilt stage that 

can adjust plate inclination to the desired angle.  Electrowetting is not employed to actuate the droplets in 

the experiments; instead, droplets move under the influence of gravity at velocities commonly 

encountered in electrowetting actuation.  The plate is made of glass and has dimensions of 15 cm × 15 cm 

× 0.5 mm.  A part of the bottom side of the plate (12 cm × 15 cm) is coated with an Indium Tin Oxide 

(ITO) layer, as shown in cross section in Figure 1(b).  A DC power supply is utilized to resistively heat 

the  ITO layer such that it dissipates a constant heat flux of 2000 W/m2 over the heated section (estimated 

from the measured current and voltage difference across the ITO layer, and the surface area of the ITO 

layer).  The upstream section of the plate is left uncoated and unheated; the length of this non-heated 

section is chosen such that the droplet (which is deposited well upstream of the heated section) reaches its 

terminal velocity before encountering the heated portion of the plate.  Electrical connections to the ITO 

layer are made using electrically conductive silver epoxy.  A thin layer of black paint (Krylon # 1602 with 

known thermal emissivity of 0.95 [25]) is sprayed on the lower surface of the plate; the temperature of the 

lower surface can be estimated using an infrared camera.  The upper surface of the plate is spin-coated 

with a thin (50 nm) layer of Teflon to render it hydrophobic. 

The experiments consist of depositing a droplet of a known volume and initial temperature (22 oC) on 

the unheated part of the plate and recording the droplet velocity and temperature profile along the plate.  

The plate is held at tilt angles ranging from 30° to 60°, which determines the droplet velocity as it slides 

under the influence of gravity.  Droplet motion is recorded using a high-speed camera (Pixelink) 

positioned above the plate as shown in Figure 1(a); the high-speed image sequences are used to estimate 

droplet velocity.  The heat dissipation capacity of the droplet is quantified by measuring the reduction in 

wall temperature using an infrared camera (ThermaCAM Merlin) at 60 fps with a resolution of 0.375 mm 
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× 0.375 mm.  The infrared camera was calibrated using a highly-sensitivity blackbody (2000 series, SBIR 

Inc.). 

Ethylene glycol (EG) and water are the two fluids utilized in this work.  The low vapor pressure of 

ethylene glycol ensures negligible evaporative cooling, so that the temperature reduction achieved can be 

directly attributed to heat conduction and convection.  The experiments with water droplets have an 

evaporative cooling component; however, the contribution of evaporative cooling can be accounted for by 

comparing the experimental results against a validated numerical model, as described in the next section. 

Table 1 summarizes the volumes of all the droplets considered in the experiments and the measured 

velocities obtained with these droplets at different tilt angles.  Droplet velocity is estimated by plotting the 

position of the center of the droplet versus time; as an illustration, Figure 2(a) shows the time-varying 

position of a 5 μl EG droplet.  It is seen that the droplet position can be approximated as a linear function 

of time, indicating that the droplet velocity is constant, and it has reached its terminal velocity.  The 

uncertainty in measurement of the droplet velocity is estimated to be approximately ±0.1 cm/s.  Table 1 

shows that the droplet velocities increase with tilt angle as expected.  The velocities for water droplets are 

higher than for ethylene glycol droplets due to the smaller viscosity and higher surface tension of water; 

these properties influence the advancing and receding contact angles which in turn determine the driving 

force for the sliding motion [26].  Experiments for each case listed in Table 1 were repeated 3 times.  The 

experimental results varied within the experimental uncertainty limits for each case; the experimental 

results are presented from a representative test run for each case. 

Figure 2(b) shows a representative infrared temperature map for the case of a 5 μl EG droplet moving 

at 3.95 cm/s.  It should be noted that the infrared camera measures the temperatures at the lower surface 

of the heated plate (and the temperature of the upper surface is estimated using numerical modeling as 

will be discussed).  The heated section of the plate shows a constant temperature of approximately 72 oC; 

the upstream, unheated section also increases in temperature due to conduction through the plate.  The 

temperature drop associated with the motion of a cold droplet can be seen along the droplet path.  Such 

temperature maps are utilized in the present work to quantify the cooling capacity of the droplet.  In part 

due to the careful calibration of the IR camera, the uncertainty in measurement of the wall temperature is 

approximately ± 0.2 °C. 

Figure 3 (a)-(c) show the transient temperature decreases (along the droplet centerline trajectory) 

resulting from heat transfer to a 5 μl EG droplet moving at three different velocities.  The temperature 

decreases are only plotted over the heated section of the substrate, i.e., x > 3 cm.  From the plots, the 

maximum temperature decreases are measured to be approximately 3.8 oC, 3 oC and 1.8 oC for V = 2.85, 

3.95 and 9 cm/s, respectively.  The droplet heats up as it moves downstream; this reduces its heat removal 
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capacity which results in less cooling in the downstream regions of the heated section.  Also, the plate 

temperature at any location is seen to increase after the droplet has moved away from that location.  

Interestingly, it is seen that at the low velocities of V = 2.85 cm/s and V = 3.95 cm/s, the droplet has a 

cooling effect downstream of its position.  As an illustration, Figure 3(a) shows that a section up to x = 

3.4 cm experiences a cooling effect at t = 0.1 s, even though the droplet center is at x = 3.07 cm (the 

droplet footprint is between x = 2.93 and 3.21 cm).  However, according to Figure 3(c), the droplet with a 

higher velocity of 9 cm/s does not result in a temperature reduction downstream.  This phenomenon of 

downstream cooling is directly related to the thermal diffusivity of the plate and the residence time of the 

droplet on the plate (which depends on its velocity). 

Smaller temperature decreases are observed on the lower surface with faster-moving droplets.  This 

may appear to be counter-intuitive as the convective heat transfer coefficient would increase with an 

increase in droplet velocity.  This seemingly anomalous result is attributed to the temperature 

measurements being obtained on the lower surface while the droplet slides along the upper surface; the 

associated thermal mass of the glass plate is the primary contributor to this anomaly.  It will be shown in 

the next section that the temperature decrease on the upper surface is indeed higher for faster-moving 

droplets.  Another interesting observation from Figure 3(a)-(c) is that the transient temperature profiles 

for V = 2.85 cm/s show different shapes as compared to those obtained at higher velocities.  For the case 

of V = 3.95 and 9 cm/s, the temperature drops decrease consistently with time; for the case of V= 2.85 

cm/s, however, the temperature drop shows a peak around x = 4.7 cm at t = 0.8 s (droplet center at 4.84 

cm).  The reason for this behavior is the recirculating flow field inside the droplet which will be discussed 

in the next section. 

Transient lower-surface temperature decreases (along the droplet centerline trajectory) with a larger, 

6.5 μl EG droplet (not shown) were similar to the trends seen in Figure 3(a)-(c).  The maximum 

temperature decreases on the lower surface temperature were approximately 3.2, 2.4 and 1.8 oC for 

velocities of 4.66, 6.36 and 10.71 cm/s, respectively.  The droplet at the lowest velocity of 4.66 cm/s 

showed a cooling effect downstream of its location; this effect was not seen in the other two cases.  A 

comparison of results for the two droplet volumes showed that the maximum temperature decrease does 

not show a strong dependence on droplet size.  However, a direct comparison between the two cases is 

not appropriate as the droplet velocities are also different; the bigger droplet also cools a larger surface 

area. 

Additional heat transfer experiments were carried out with deionized water droplets to estimate the 

influence of liquid thermal properties on heat dissipation.  Figure 4(a) shows transient temperature 

decreases for a 5 μl water droplet moving at 9 cm/s, while Figure 4(b) is for a 6.5 μl water droplet moving 
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at 12.6 cm/s.  The temperature reduction trends are similar to those obtained with EG droplets.  The 

maximum temperature reduction obtained is 5.1 and 4.4 oC for the two cases, respectively.  A comparison 

of the results in Figure 3(c) and Figure 4(a) also illustrate the greater cooling obtained with water droplets 

due to its higher heat capacity compared to EG. 

NUMERICAL MODELING OF HEAT TRANSFER TO A MOVING DROPLET 

Since experimental measurement of temperatures on the upper surface of a plate along which a 

droplet moves is challenging, one approach to quantifying the cooling achieved with droplets is to 

measure the effect on the lower surface of the wall and estimate the corresponding reduction in 

temperature along the upper surface by numerical modeling.  A better understanding of the heat 

dissipation associated with a moving droplet is also achieved with such a model, and is one of the major 

objectives underlying the present work.  The validated model is then extended to study the heat transfer 

associated with a droplet moving between two plates, which is a common configuration encountered in 

microfluidic applications. 

The present study utilizes a finite volume approach using the commercially available software 

package FLUENT [27] to model the droplet motion in two configurations.  The modeling involves a 

solution of the following coupled mass, momentum and energy equations in the droplet and the hot plate: 

  0v
t

 
 




 (1) 

     v v v P v g
t
   

      


    
 (2) 

     P Pc T vc T k T q
t
      


   (3) 

where  is the material density,  is the velocity vector, μ is the material-specific dynamic viscosity,  

 is the gravitational force, T is the temperature, cp and k are material-specific heat and thermal 

conductivity, respectively, and is the volumetric heat generation rate.  The material properties for 

ethylene glycol are:  = 1115 kg/m3, μ = 0.014 Pa-s, cp = 2200 J/(kg-K) and k = 0.24 W/(m-K); for 

water:  = 998 kg/m3, μ = 0.00089 Pa-s, cp = 4180 J/(kg-K) and k = 0.6 W/(m-K); for glass:  = 2520 

kg/m3, cp = 1020 J/(kg-K) and k = 0.6 W/(m-K); and for silicon:  = 2330 kg/m3, cp = 712 J/(kg-K) and k 

= 148 W/(m-K). 

1. SINGLE-PLATE CONFIGURATION 

 v


g


q
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Figure 5(a) shows the computational domain for the study of the heat transfer associated with a 

droplet moving on a heated plate.  The computational domain for the droplet motion between two plates is 

also shown (Figure 5(b)) and will be discussed in the next section.  In Figure 5(a), the glass plate is 15 cm 

× 15 cm × 0.5 mm in dimension just as in the experiments.  The indium tin oxide layer is modeled as a 1 

μm thick heat-generating layer.  The side walls of the plate are adiabatic and a convective heat transfer 

condition of (ha , Ta) of (20 W/m2K, 22 oC) is applied on the upper and lower surfaces of the plate to match 

the steady-state plate temperature in the experiments with no droplet motion.  The droplet is modeled as a 

hemispherical cap with a radius of 1.37 mm or 1.48 mm representing the 5 µL and 6.5 µL droplet, 

respectively.  The contact angle of the droplet is fixed to be 90° and the change in droplet shape due to 

motion is ignored.  These assumptions are justified as the velocity field obtained in the present work is 

similar to that obtained from a detailed model of the droplet shape employing different advancing and 

receding angles [28].  The velocity field in the droplet moving between two plates (with similar 

assumptions) also matches the velocity field obtained with a more detailed model considering the droplet 

shape [21].  The droplet-air interface is modeled as a no-shear boundary condition, with an applied 

convective heat transfer condition.   The frame of reference is fixed to the droplet, and a constant velocity 

V is applied to the plate in the negative x-direction. 

A mesh-independence study was carried out to determine the grid sizes needed for the numerical 

simulations.  The heat transfer coefficient between the droplet and the surface (defined later) changed by 

approximately 10% when the number of grid cells was increased from 320,000 to 880,000, and only by 

less than 1% for a further change from 880,000 to 1,600,000.  All the simulations presented in this paper 

were thus carried out using 880,000 cells.  The time step was selected as 0.001 s; it was verified that the 

results changed by less than 0.2% when the time step was decreased from 0.001 s to 0.0005 s.   

The numerical model was benchmarked by comparing predictions against the experimental heat 

transfer measurements.  The predicted transient temperature profile on the lower surface of the plate is 

compared with the measured profile.  As shown in Figure 6(a)-(b) for the case of an ethylene glycol 

droplet sliding on an inclined heated plate at velocities of 3.95 and 9 cm/s.  Figure 6(c) shows a similar 

comparison for the case of a water droplet sliding at a velocity of 9 cm/s.  The droplet is at its terminal 

velocity in all the comparisons.  The x’ in Figure 6 represents the axial distance (in the flow direction) 

measured from the point where the droplet reaches its terminal velocity; in the model, this is the point 

after which the velocity field inside the droplet reaches a fully developed condition.  The comparison is 

shown over an axial distance of 1.2 cm about the droplet center (approximately 6 radii upstream and 

downstream of the droplet center).  It is seen that the predicted and measured temperature profiles show 

reasonable agreement within the limits of experimental uncertainty for all the three cases.  This 
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comparison validates the assumptions in the present model, especially with respect to the use of a single 

heat transfer coefficient all around the droplet, the hemispherical shape of the droplet, and the use of 

identical advancing and receding contact angles for the droplet.  The good match between experiments 

and simulations for the water droplet also indicates that evaporative cooling is not significant as compared 

to convective cooling; this is explained by the small residence time of the droplet on the hot plate. 

A snapshot of the velocity vectors inside a 5 µL ethylene glycol droplet moving at a droplet velocity 

of 3.95 cm/s are shown in Figure 7; several different cross-sectional planes are shown to reveal the 

complex nature of the flow field at a single instant in time, t = 0.1 s.  For this case, the flow was found to 

reach a fully developed state by t = 0.045 s (when the droplet center was at x = 1.78 mm).  Velocity 

vectors in xz planes are shown in Figure 7 (a)-(b) at y = 0 and y = 0.4 mm.  A circulating flow pattern is 

seen inside the droplet; liquid flows in the positive x direction close to the plate (small z) and in the 

negative x direction higher up (large z).  The center of the vortex is seen to shift from (x, z) = (3.8, 0.4) 

mm at the y = 0 mm center plane to (x, z) = (4.2, 0.5) mm at the y = 0.4 mm showing the three-dimensional 

nature of the flow.  The flow patterns can be analyzed in more detail by considering various z planes at 

this time instant as shown in Figure 7(c)-(h).  Close to the plate, at z = 0.05 mm, the flow is predominantly 

in the negative x direction due to no-slip at the wall as seen in Figure 7(c).  At z = 0.2 mm, the flow points 

upward (positive z) near the leading edge of the droplet and downward near the trailing edge; in the 

central region of the droplet, the flow continues to be mostly in the negative x-direction (Figure 7 (d)).  A 

similar flow pattern is seen at z = 0.4 mm with vertical flow over much of this plane (Figure 7(e)).  By z = 

0.5 mm, vertical flow is seen in the entire plane; the flow direction in the two halves is opposite which 

results in two vortices at x = 4 mm and y = ± 0.8 mm, as shown in Figure 7(f).  The vortices move out to 

the droplet-air interface (y = ± 1.1 mm) at z = 0.6 mm (Figure 7(g)).  The flow direction is reversed to the 

positive x direction for z > 0.6 mm as shown in Figure 7(h). 

Figure 8(a) shows the average heat flux sq  , the average surface temperature Ts at the droplet-plate 

interface, and the volume-averaged droplet temperature Td as a function of the position of the droplet 

center, xd.  Figure 8(b) shows details of the variation of sq   and Ts in the region 0 < xd < 1 cm.  The mean 

droplet temperature increases monotonically with distance as expected; however  sq  and Ts do not show a 

monotonic dependence on xd.  The shapes of these profiles can be understood by studying the temperature 

distribution in different xz planes and at the droplet-plate interface (Figure 9(a)), as well as along the 

droplet-air interface (Figure 9(b)).  The six time instants at which the plots in Figure 9 are shown are 

marked in Figure 8(b).  The heat flux is very high as soon as the droplet encounters the heated region as 

shown in Figure 8 because of the high temperature difference available between the plate and droplet.  
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The maximum temperature decrease on the upper surface of the heated plate is approximately 15 oC at the 

beginning of the heated section (from 72 oC to 57 oC).  A thermal boundary layer is seen to develop in the 

droplet due to heating from the plate from (t, xd) of (0.005 s, 0.2 mm) to (0.045 s, 1.8 mm) shown as 

panels (i) – (iii) in Figure 9.  As this thermal boundary layer grows, sq  decreases while Ts increases.  

While the thermal boundary layer thickness remains constant between points (iii) and (v), cold liquid is 

drawn to the plate by recirculation and results in sq   and Ts being constant till (t, xd) = (0.125 s, 5 mm) as 

shown in Figure 8(b).  Eventually, as the hot liquid in the droplet reaches the leading edge of the droplet 

by recirculation, the cooling capacity is reduced; this is seen as a decrease in qs” and an increase in Ts  

(from point (vi) forward in Figure 8(b) and Figure 9).  The temperature distribution along the droplet-air 

interface in Figure 9(b) shows trends consistent with this explanation.  This cycle of variation of sq   and 

Ts repeats every 6.9 mm (0.17 s) which is the circulation distance of the liquid inside the droplet, i.e., the 

length along the droplet and circumference of the droplet-air interface.  The phenomenon subsides once 

the droplet has reached thermally developed conditions.  Similar oscillatory behavior of the heat transfer 

coefficient was also reported by Baird and Mohseni [22]. 

The temperature profiles obtained above can be used to estimate the heat transfer coefficient h which 

is defined as: 

s

s d

q
h

T T





 (4)  

where, 
sq  is the surface heat flux, Ts is the average temperature of the surface over the droplet footprint, 

and Td is the mean droplet temperature.  A Nusselt number Nu can also be estimated using a length scale 

which is the ratio of the droplet volume to the droplet-plate contact area, i.e., .  Figure 10(a) plots the 

heat transfer coefficient h and Nusselt number Nu as a function of the droplet position xd for a 5 µL 

ethylene glycol droplet moving at three different velocities.  The oscillations in the curves result from the 

liquid circulation effects discussed above.  The time period for these oscillations depends on the droplet 

velocity.  The initial values of the heat transfer coefficient and the Nusselt number are approximately the 

same for all three droplet velocities.  The steady-state value of (h, Nu) are (2140 W/m2K, 7.57), (2239 

W/m2K, 7.91) and (3076 W/m2K, 10.66) for droplet velocities of 2.85, 3.95 and 9 cm/s, respectively.  The 

corresponding values for a larger 6.5 µL ethylene glycol droplet as shown in Figure 10(b) are (2196 

W/m2K, 8.47), (2434 W/m2K, 9.41) and (3239 W/m2K, 12.5) for droplet velocities of 4.66, 6.36 and 10.7 

cm/s, respectively. 

2

3

R
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Similar results for water droplets are summarized in Figure 11 for a 5 µL water droplet moving at 9 

cm/s and a 6.5 µL droplet moving at 12.6 cm/s; Figure 11(b) shows the corresponding h.  The smaller 

droplet with the lower velocity results in a lower heat flux as compared to the faster, larger droplet.  The 

smaller droplet also heats up faster.  However, the wall temperatures for the two droplets are quite 

comparable.  The heat transfer coefficients shown in Figure 11(b) exhibit similar trends as those for 

ethylene glycol droplets.  Figure 11(b) does not show Nu since the characteristic length scale is different 

for the two droplets.  Steady-state values of (h, Nu) are obtained as (7529 W/m2K, 11.2) and (7347 W/m2K, 

12) for the 5 µL and 6.5 µL water droplets, respectively.  The heat fluxes and heat transfer coefficients are 

higher for the water droplets compared to the EG droplets due to the higher specific heat capacity of 

water.  As an illustration, the heat transfer coefficient resulting from the movement of a 5 µL water 

droplet at 9 cm/s is approximately three times higher than that obtained from a similarly sized ethylene 

glycol droplet moving at the same velocity.  The initial wall temperature decrease for water droplets of 

approximately 22 °C is higher than the 15 °C observed with EG droplets  

2. TWO-PLATE CONFIGURATION 

Heat transfer due to the motion of droplets sandwiched between two parallel plates is considered here, 

as this is a common configuration encountered in droplet actuation and microfluidic systems.  The 

modeling framework developed and validated for the one plate model is utilized here to predict the heat 

dissipation capacities of droplets moving between two plates.   

In the computational domain shown in Figure 5(b) the bottom plate is selected as silicon (k = 148 

W/mK, α = 8.8 × 10-5 m2/s) which is a common choice of material in many studies.  The bottom plate has 

dimensions of 15 cm × 15 cm × 0.3 mm with a 1 µm layer on the bottom surface set as a heat-generating 

source.  The side walls of the plate are adiabatic and a convective heat transfer condition of (ha , Ta) of (86 

W/m2K, 22 °C) is applied on the upper and lower surfaces of the silicon plate to maintain a steady-state 

temperature of 80 °C with no droplet motion.  The top wall as well as the droplet-air interface are 

modeled as adiabatic; the adiabatic condition on the droplet-air interface ensures that the droplet is not 

cooled by the ambient air, to mimic the case of a droplet-based heat sink.  Water is selected as the fluid 

and the droplet is modeled as a cylinder with radius R; the change in shape due to droplet movement is 

neglected.  The droplet-air interface is modeled as a no-shear boundary condition.  The frame of reference 

is fixed to the droplet, and a constant velocity V in the negative x-direction is applied to the top and 

bottom plates.  

Parametric studies are carried out to estimate the influence of droplet size, droplet velocity and plate 

spacing on heat transfer.  The first set of simulations consider 5 µL (R = 1.78 mm) water droplets moving 
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between two plates with a spacing of H = 0.5 mm at velocities of 5, 7.5 and 10 cm/s; this set of 

simulations quantifies the influence of droplet velocity on heat transfer.  Additional simulations are 

carried out with droplet velocities fixed at 10 cm/s with (droplet volume, radius, plate spacing) 

combinations of (1µL, R = 0.79 mm, H = 0.5 mm) and (1µL, R = 1.78 mm, H = 0.1 mm). 

Figure 12 shows the velocity vectors (colored by the velocity magnitude) and the velocity profiles 

obtained from the motion of a 5 µL water droplet moving at 10 cm/s between two plates with a spacing of 

0.5 mm.  These plots correspond to a time of 0.1 s after the droplet starts moving (droplet center at x = 10 

mm).  Figure 12(a) – (b) show the velocity vectors in the xz plane at y = 0 at the leading and trailing edges 

of the droplet, respectively.  The flow is seen to have two recirculation regions which are symmetric 

about the midplane z = 0.25 mm.  Details of the flow field on xy planes are shown in Figure 12(c) – (e) for 

z = 0 mm, 0.1 mm and 0.2 mm, respectively (the flow profiles are similar at z = 0.5, 0.4 and 0.3 mm and 

are not shown).  It is seen that the flow is in the negative x direction in the region close to the plates (z < 

0. 1 mm and z > 0.4 mm) and in the positive x direction for 0.2 mm < z < 0.3 mm.  Two vortices are seen 

at z = 0.1 mm with centers at x = 8.8 mm and y = ± 0.8 mm.  These results capture the complex three-

dimensional nature of the flow fields.  The velocity profiles vx and vz on the y = 0 mm plane at different 

axial locations are shown in Figure 12(f).  The velocity has a parabolic profile over most of the axial 

distance, except in regions close to the leading and trailing edges of the droplet.  It is interesting to note 

that vx is smaller at x coordinates upstream of the droplet center and larger at x coordinates downstream of 

the droplet center.  This is because of the development of the velocity boundary layer along the droplet 

length.  The magnitude of velocity component vz is negligible across most the droplet, except towards the 

trailing and leading edges of the droplet. 

Temperature contours at seven xz planes in the droplet are shown in Figure 13(a) at t = 0.1 s (droplet 

center is at x = 10 mm); the interface temperature contour between the droplet and the bottom plate is also 

indicated in this plot.  Figure 13(b) shows the temperature profiles at different axial locations at y = 0.  

The thermal boundary layer is seen to be grown along the x-direction.  Figure 13(b) also shows a very 

high temperature gradient at the leading edge of the droplet as compared to the trailing edge.  At the 

leading edge (xrel = 1.75 mm; x = 11.75 mm), the temperature in the droplet changes sharply from 74 °C at 

the surface to 36 °C at z = 0.02 mm; at the trailing edge (xrel = -1.75 mm; x = 11.75 mm), on the other 

hand, the same temperature decrease from 74 °C to 36 °C occurs at z = 0.25 mm; this results in a much 

lower temperature gradient at the trailing edge as compared to the leading edge.  Also, it is seen that the 

top half of the droplet (z > 0.25 mm) is at significantly lower temperatures than the bottom half.  This is 

because of the lack of flow mixing across the mid z plane (z = 0.25 mm) resulting from the velocity 

profile shown in Figure 12.  Heat transfer across the two halves of the droplet is therefore dominated by 
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heat diffusion.  The characteristic time for diffusion is approximately H2/α = 1.74 s; this is much higher 

than the time period of the simulation (0.1 s).  The results of these simulations highlight the importance of 

conducting careful analyses of the flow patterns; many of the present results are non-intuitive and 

significantly impact thermal transport in the droplet. 

Figure 14 shows the heat transfer coefficient h and Nusselt number Nu for a 5 µL water droplet 

moving at three different velocities; it is seen that all three cases have the same trend of variation with 

droplet position.  The h and Nu start of being very high and then attain a constant value after an axial 

distance of about 0.1 mm.  The heat transfer coefficient and the Nusselt number increase with droplet 

velocity.  The (h, Nu) values obtained at the downstream end of the simulation domain are (5895 W/m2K, 

4.91), (7016 W/m2K, 5.9) and (10637 W/m2K, 8.9) for droplet velocities of 5, 7.5 and 10 cm/s respectively.   

The important difference from the single-plate heat transfer results is the lack of an oscillatory behavior in 

the profiles of h and Nu in this case.  This is because the recirculation length is twice the droplet diameter 

and the plate spacing of 7.64 mm which is close to the length scale studied in the simulation. 

As for the single-plate configuration, Figure 15(a) compares sq  , Ts and Td for three water droplets 

with (volume, radius R, plate spacing H) corresponding to (5 µL, 1.78 mm, 0.5 mm), (1 µL, 0.79 mm, 0.5 

mm) and (1 µL, 1.78 mm, 0.1 mm) moving at a velocity of  10 cm/s.  Figure 15(b) shows the 

corresponding h and Nu for the three cases.  The second case has the highest heat flux, followed by the 

first case.  The heat transfer coefficient is highest for the third case followed by the second case.  The 

third case has the highest rate of droplet temperature rise because of its high area to volume ratio.  For this 

case, the difference between the surface temperature and the droplet temperature is very small for xd > 0.4 

cm; this results in a high value of h (from the definition of the heat transfer coefficient).  It can be 

concluded from Figure 15 that the heat transfer coefficients are higher for small droplet volumes and 

lower plate spacings.  Analyses such as this are necessary to arrive at an optimum geometry which 

maximizes the heat transfer coefficient or wall temperature reduction for a given problem.  

HEAT DISSIPATION CAPACITY OF ELECTROWETTING-BASED SYSTEMS 

The dependence of heat transfer coefficients on droplet velocity, actuation geometry and fluid 

properties was elucidated above.  These results are now used to estimate the heat dissipation capacity of a 

system of droplets moving under electrowetting actuation, to provide an estimate of the thermal 

performance in practical applications.  In the example considered, droplets flow in discrete rows on a hot 

surface with an area of 12 mm × 12 mm.  The lateral and longitudinal spacing between neighboring 

droplets in the array is assumed to be 0.1 mm; this distance also depends on packaging constraints and 

should be sufficiently large to avoid droplet merging.  The maximum surface temperature is assumed to 
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be 80 °C.  The average heat transfer coefficient associated with a single droplet is obtained from the 

simulations in the previous section.  The average heat flux removal capacity of a single droplet is 

estimated by multiplying the average heat transfer coefficient and the temperature difference between the 

surface and the inlet liquid.  The overall heat dissipation capacity of this system of droplets is estimated 

by multiplying the heat flux dissipation capacity of a single droplet with the fraction of the area of the 

surface covered by the droplets.  Table 2 compares the heat dissipation results for the three different kinds 

of droplets shown in Figure 15.  It is clear from the table that a system consisting of 1 µL water droplets 

with a plate spacing of 0.5 mm can support a heat dissipation rate of approximately 59 W under a single 

droplet, and an average heat dissipation rate over the entire plate area of 40 W/cm2. 

The performance of electrowetting-based cooling systems is now compared with that of continuous 

flow systems such as a flow through a microchannel.  Microchannel-based heat sink cooling utilizing 

single-phase flow is well studied and characterized [29].  The comparison between these two competing 

technologies is carried out under the constraint of the same pumping power for flow in the heat sink 

(having a footprint area of 12 × 12 mm2).  The pumping power required for the external loop is not 

considered in the calculations and is usually much lower than the power required to sustain flow in the 

heat sink.  The second droplet-based case in Table 2 is selected for comparison.  The pumping power for 

electrowetting-based actuation can be estimated by calculating the power required to charge the 

capacitive layer underneath the droplets.  The electrowetting actuation force depends on a gradient of the 

capacitive energy underneath the droplet; this capacitance exists in the form of a dielectric layer on top of 

the actuation electrodes.  The power required for electrowetting-based actuation can be estimated using: 

20.5  d
EW

CV n
W

t



  (5) 

where V is applied voltage (approximately 50 V [30]), nd is the number of droplets on the heat sink (49 

from Table 2), and C is the capacitance associated with a droplet which is defined as: 

r oAd

diel

C
t

 
  (6) 

In the above equation, εo is the dielectric constant of vacuum which is 8.85 x 10-12 F/m, εr is the dielectric 

constant of the dielectric layer (for Parylene C dielectric layer, εr = 3), Ad is the base area of the droplet, 

and tdiel is the thickness of the dielectric layer (1 μm).  The time interval Δt is the time require by a droplet 

to move a length equal to its diameter and depends on the droplet velocity as follows: 
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Using the equations described above, the pumping power required to drive the electrowetting-based heat 

sink (actuation of 1 µL water droplets at 10 cm/s between two plates with spacing 0.5 mm) is estimated as 

= 0.2 mW.   

Two kinds of microchannel-based heat sinks are included in the comparison.  The first involves a 

single channel with slug flow (channel width of 12 mm), while the second heat sink consists of 40 

microchannels (channel width of 0.2 mm).  The channel height in both these cases is the same as that in 

the electrowetting-based heat sink (0.5 mm).  The flow velocity in the microchannels is estimated such 

that the pumping power consumed by the microchannel is 0.2 mW.  The pumping power to sustain single-

phase laminar flow is estimated using the following equation: 

MCW dP Q    (8) 

where  
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In the above equations f is the friction factor which is estimated using [29].  Additionally, the Nu can be 

estimated using the same reference which predicts the heat transfer coefficient h as h = Nu k/H.  

Knowledge of the temperature difference can be used to estimate the heat dissipation capacity of the 

microchannel heat sinks.  The overall heat flux dissipation capacity is estimated to be 35 W and 56 W for 

the single microchannel and multiple microchannel cases, respectively.  The heat dissipation capacities of 

microchannel cooling are thus comparable to those obtained from electrowetting-based discrete-droplet 

heat sinks operating at the same pumping power.    

CONCLUSIONS 

The heat removal capacity of droplets under electrowetting actuation is characterized via experiments 

and numerical analysis.  Transient three-dimensional simulations are carried out to estimate the flow and 

temperature patterns associated with a droplet sliding on a plate or sandwiched between two plates.  

Several interesting, complex and non-intuitive fluid circulation patterns are observed; it is shown that 

these patterns significantly influence thermal transport and heat transfer coefficients.  The complexity of 

the transient flow patterns underscores the need for careful analysis of the flow field and its effect on the 

heat removal capacity of droplet-based systems.  Systematic experimentation is carried out to benchmark 

the models.  The reduction in wall temperatures resulting from the motion of a relatively cold droplet is 

directly measured. 

EWW
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Further, the heat dissipation capacity of electrowetting-based systems is seen to be comparable to 

microchannel cooling systems operating at the same pumping power.  Electrowetting-based systems offer 

significant other advantages over microchannel cooling such as the possibility for enhanced 

reconfigurable flow control, the absence of mechanical moving parts, noiselessness and ease of 

integration with existing microelectronics packaging frameworks.  The present work thus forms the basis 

for further studies on the thermal performance of discrete droplet-based systems for cooling and phase 

change applications. 
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Table 1. Volume and terminal velocities of droplets. 
 

Liquid Volume (μl) Velocity (cm/s)/ Tilt angle 

Ethylene glycol 
5 2.85/30°, 3.95/45° and 9/60° 

6.5 4.66/30°, 6.36/45° and 10.71/60° 

Water 
5 9/30° 

6.5 12.55/30° 
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Table 2. Comparison of heat dissipation capacity of droplet-based systems. 

Droplet 
volume 
(µL) 

Droplet 
radius 
(mm) 

Plate 
spacing 
(mm) 

Spacing 
between 
droplets 
(mm) 

Number of 
droplets on 
12 × 12 mm2 
area 

% area 
covered 
by 
droplets 

Heat transfer 
coefficient / 
heat flux  

(single 
droplet) 

Average 
heat flux 

(W/cm2) 

5 1.78 0.5 0.1 
3 × 3 
 

62.5 7890 / 46 29 

1 0.79 0.5 0.1 7 × 7 68.1 10190 / 59 40 

1 1.78 0.1 0.1 3 × 3 62.5 3880 / 23 14 
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(a) 

 

(b)  

 

Figure 1. (a) Schematic diagram of the experimental setup for measuring droplet velocity and heat 

dissipation capacity, and (b) details of the plate cross section. 

 

 

0.5 mm 

15 cm 

12 cm 

Teflon Glass slide 

ITO Black paint 

x 

Tilt stage 

IR camera 

Sample holder 

Plate

High speed 
camera 



 22

 

(a) 

 

(b) 

Figure 2. Experimental data for a 5 μl EG droplet: (a) transient droplet positions at different angles of 

inclination, and (b) temperature contours on the lower surface of the heated plate with the droplet moving 

at 3.95 cm/s on the upper surface. 
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   (a)     (b)  

 

(c)  

Figure 3. Experimentally measured temperature decrease along the centerline of the lower surface for a 5 

μl EG droplet: (a) V = 2.85 cm/s (droplet center at 2.56 cm at t = 0, after which it moves by 0.167 cm 

every 0.05 s), (b) V= 3.95 cm/s (droplet center at 2.67 cm at t = 0, after which it moves by 0.188 cm every 

0.05 s), and (c) V = 9 cm/s (droplet center at 3.35 cm at t = 0, after which it moves by 0.45 cm every 

0.05 s). 
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(a) 

 

(b)  

Figure 4. Experimentally measured temperature decrease along the centerline of the lower surface using 

water droplets (a) 5 μl droplets moving at 9 cm/s (droplet center at 2.76 cm at t = 0, after which it moves 

by 0.45 cm every 0.05 s), and (b) 6.5 μl droplets moving at 12.6 cm/s (droplet center at 3.02 cm at t = 0, 

after which it moves by 0.328 cm every 0.05 s)  
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(a) 

 

(b) 

 

Figure 5 . Computational domain for droplet motion (a) on a heated plate, and (b) between two plates. 
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(a)     (b) 

 

    

(c) 

Figure 6. Comparison of the experimental and numerical temperature profiles for an ethylene glycol 

droplet moving on a heated plate at (a) 3.95 cm/s and (b) 9 cm/s, and (c) for a water droplet moving at 9 

cm/s.  The droplet center for the first profile is at x’ = 0.5 cm after which it moves 0.188 cm in (a), and 

0.45 cm in (b) and (c) for each subsequent profile (symbols – experimental results, solid lines – numerical 

results). 
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(a) y = 0 mm      (b) y = 0.4 mm 

         

       (c) z = 0.05 mm            (d) z = 0.2 mm               (e) z = 0.4 mm 

         

           (f) z = 0.5 mm          (g) z = 0.6 mm               (h) z = 0.7 mm 

Figure 7. Velocity vectors for fully developed flow in a 5 µL ethylene glycol droplet moving at a velocity 

of 3.95 cm/s at 0.1 s on (a)-(b) xz planes (y = 0 mm and y = 0.4 mm), and (c)-(h) xy planes (z = 0.05, 0.2, 

0.4, 0.5, 0.6 and 0.7 mm). 
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(a) 

 

(b) 

Figure 8. (a) Average heat flux qs”, average droplet-plate interface temperature Ts and mean droplet 

temperature Td as a function of droplet center location xd for a 5 µL ethylene glycol droplet moving at 

3.95 cm/s, and (b) a zoomed plot for 0 < xd < 1 cm. 
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(a) 

 

            

             

(b) 

 

Figure 9. Temperature profile due to the motion of a 5 µL ethylene glycol droplet moving at 3.95 cm/s on 

(a) xz plane at y = 0 mm and droplet-plate interface, and (b) droplet-air interface. 
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(a) 

 

(b) 

Figure 10. Variation of heat transfer coefficient and Nusselt number as a function of droplet position xd 

for a (a) 5 µL, and (b) 6.5 µL ethylene glycol droplet moving with different velocities. 
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(a)  

      

 (b) 

Figure 11. Heat transfer parameters during the motion of water droplets of different volume moving 

at different velocities: (a) qs
”, Ts and Td , and (b) heat transfer coefficient. 
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(a) Leading edge at y = 0 mm     (b) Trailing edge at y = 0 mm 

        

      (c) z = 0.0 mm     (d) z  = 0.1 mm  (e) z = 0.2 mm 

   

(f) Velocity profile (vx and vz) at y = 0 mm  

Figure 12. Velocity vectors (colored with velocity magnitude) at (a) leading edge, and (b) trailing 

edge of the droplet at xz plane,  xy planes of droplet at (c) z = 0.1 mm, (d) z = 0.2 mm and (e) z =  0.3 mm; 

and (f) Velocity profiles vx and vz  at y = 0 mm at different axial distances. Droplet motion direction is 

shown by the top arrow (xrel is measured with respect to the center of the droplet, x = 10 mm).  
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(a) 

 

(b) 

Figure 13. (a) Temperature contours plot at xz planes at y = 0, ± 0.5, ± 1.0, ± 1.5 mm, and (b) 

temperature profiles at the y = 0 plane at different axial distances. Note that xrel is measured with respect 

to the center of the droplet, x = 10 mm. 
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Figure 14. Heat transfer coefficient and Nusselt number as functions of the droplet center position xd for 

water droplets moving with different velocities. 
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(a) 

 

(b) 

Figure 15. Heat transfer parameters associated with the motion of droplets of different volumes moving at 

10 cm/s between two plates with different plate spacings: (a) qs
”, Ts and Td , and (b) the heat transfer 

coefficients. 
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