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Abstract

In this paper we present the basic ideas of a distributed object middlcwarc for nC!twork
computing. We argue that when building complex systems out of components one can
emulate the lock and key mechanisms used by proteins to recognize each other.
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A number of biological analogies have found their way into computer science. Neural networks
provide an alternative to von Neumann architecture [2], [3], (4], [5J, genetic algorithms [6] are
used to solve optimization problems, mutation analysis was proposed for software engineering.
The question we are concerned with is if these analogies can be further expanded to cover the
way we build complex systems out of components, to emulate genetic mechanisms and the
immuue system [14], [19].

The heterogeneity of our computing hardware and the diversity of the computer software
are a constant source of pain for those intent on solving problems with computers. Though
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we thoroughly enjoy the diversity of biological and social systems we complain when faced
with the diversity of computer systems. Here we argue that heterogeneity and diversity are
a true blessing and not a form of modern plague, provided that we learn how to transfer
to computers themselves the more tedious tasks needed to accommodate heterogeneity and
diversity. Nature uses composition to build very complex formS of life and as we understand
the principles and mechanisms that form the foundation of life we should try to emulate them
to build more dependable and easy to use computing systems. The alternative to heterogeneity
and diversity is uniformity, but is this an exciting prospect?

In this paper we present the design philosophy of Bond, an infrastructure project in sci­
entific computing, within the larger context of building complex systems out of ready made
components. Inherently, a complex computing system is heterogeneous and accommodating
the heterogeneity of the hardware and the diversity of the software is a main concern of such
a design.

The Bond project was triggered by a collaboration with structural biologists who provided
the problems, the motivation, and need to learn some basic facts about the structure of bi·
ological macromolecules. The complex procedures needed for data acquisition, data analysis
and model building for x-ray crystallography and electron microscopy are discussed elsewhere
[12], [13], [16], [17], [18]. Here we only note that processing of structural biology data involves
large groups and facilities scattered around the world, complex programs that are changed fre­
quently. Most computations are data intensive, they require the use of parallel and distributed
systems.

2 Biological Systems,
Metaobjects

Composition, Introspection, and

Nature uses composition to build extremely complex structures (1]. There are 20 aminoacids,
the basic building blocks of life. The aminoacids sequence of a protein's peptide chain is
called a primaty structure. Different regions of the structure form local regular secondanJ
structure such as alpha helices and beta strands. The tertiary structure is formed by packing
such structural elements onto globular units called domains. The final protein may contain
several polypeptide chains arranged in a quaternary structure. By formation of such tertiary
and quaternary structures aminoacids far apart in the sequence are brought together in three
dimensions to form a functional region, an active site [1]. The three dimensional structure
of a protein determines its function, the disposition in space and the type of the atoms in a
region of the protein provide a lock that can be recognized by other proteins that may bind to
it, provided that they have the proper key. Living organisms mutate, the atomic structure of
their cells changes and a selection mechanisms ensures the survival of those able to perform
best their function.

Let us briefly examine the mechanisms used by the immune system. The human immune
system provides a first line of defense against viruses. It first detects the presence of a virus and
then produces antibodies that bind to the active site of the virus cell. A virus cell may have
several millions atoms. To disable a virus cell1 an antibody ceIl must know the conformation
of the binding sitc(s) of the virus at the atomic level. A man made antiviral drug provides a
second line of defense and can only be designed if the atomic structure of the virus is known.

Biological cells carry with them genetic material, RNA and DNA which describe the se­
quence of aminoacids in every protein. How this information is used to actually build the
protein, the so-called folding problem is not elucidated yet. Moreover proteins with different
sequences of aminoacids may fold to identical or very similar 3D atomic structures. They
may have different properties, e.g. thermal stability, but they will perform the same functions
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because a fundamental principle is that the structure determines the junction of a biological
specimen. Another fundamental principle in genetics is genetic economy. Symmetry plays
an important role in building complex cells. Spherical viruses have an icosahedral symmetry,
they look like a soccer ball, arc composed out of wedges with identical structure. The virus
core contains the genetic material and has only one copy of the DNA or RNA sequence of an
"unit cell" , the wedge mentioned above.

Let us now turn our attention to software composition. The idea of building a program
out of ready made components has been around since the dawn of the computing age, back­
worldsmen have practiced it very successfully. Most scientific programs we are familiar with,
use mathematicallibrarics, parallel programs use communication libraries, graphics programs
rely on graphics libraries, and so on.

Modern programming languages like Java, take the composition process one step further.
A software component, be it a package, or a function, carries with itself a number of properties
that can be queried and/or set to specific values to customi:;o;e the component according to the
needs of an application which wishes to embed the component. The mechanism supporting
these functions is called introspection. Properties can even be queried at execution time.
Reflection mechanisms allow us to determine run time conditions, for example the source of
an event generated during the computation. The reader may recognize the reference to the
Java Beans but other component architectures exists, Active X based on Microsoft's COM and
LiveConnect from Netscape to name a few.

Can these ideas be extended to other types of computational objects besides software
components, for example to data, services, and hardware components? What can be achieved
by creating metaobjects describing network resources like programs, data or hardware? We use
here the term "object" rather loosely, but later on it will become clear that the architecture
we envision is intimately tied to object oriented concepts. We talk about network resources to
acknowledge that we are concerned with a distributed environment where programs and data
are distributed on autonomous nodes interconnected by high speed networks.

The set of properties embedded into a metaobject provide a "lock and key" mechanism
similar with the one used by proteins to recognize one another. In a workspace populated with
metaobjects, one can envision mechanisms to link them together to form a metaprogram, a new
metaobject, capable of carrying out a well defined computational task. Example: to link a data
metaobject to a software metaobject we need to search the workspace for a crystallographic
FFT program able to compute the 3D Fourier transform of a symmetric object with a known
symmetry, given a lattice of real numbers describing the "unit cell", the building block of the
object. At each step, the selection process succeeds if the target metaobject possesses a set of
"keys", corresponding to the desired properties needed for composition. This is a deliberate
example, anyone familiar with FFTs recognizes that creating the metaobjects describing the
elements discussed above is a non trivial task.

We expect the metaobject to contain a description of all relevant properties of a network
resource including "genetic information". This information must be in a form suitable for ma­
chine processing by an autonomous agent. For example a software metaobject should include
a description of the functions and interfaces of that component using a descriptive language
like IDL, Interface Description Language, which reveals only the interfaces of an object and
does not specify how these properties are to be "folded" into an actual implementation. The
genetic information associated with a data object should reveal its ancestry, the characteristics
of the sensor that has generated the data or provide links to the program that has produced
the data and to its input data objects. The genetic information would allow an autonomous
agent to generate an actual implementation of the code in case of a software component, or a
human contemplating the results of a sequence of computations to trace back decisions made
at some point in the past.
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Does the effort to build metaobjects seem daunting? We should expect it according to
the biological analogy discussed above. The task of abstracting the properties of network
resources is monumental, one can only succeed if the network resources, software, data, and
hardware, arc classified into disjoint classes each with well-defined properties and inheritance
mechanisms. We also need to add new properties to any metaobject. A fundamental principle
is that acquired traits take precedence over inherited ones.

We favor the development of software components in an object-oriented language like Java
which supports inheritance mechanisms. Building software in an object-oriented framework
is essential because it exposes only essential properties of the software component and hides
the details of the implementation of each function.

Both hardware and software are created as a result of an evolutionanJ process. Occasion­
ally, new programs, or microprocessors, are created- from scratch, but often, new versions are
upgrades of existing objects, that inherit many characteristics of the older versions. The latest
release of a program may only have a small number of known new properties and only those
need to be included into its information object, the rest of the properties are inherited from its
ancestor. For example if the input data format has not changed, the new version will inherit
the data format of the old one. If we discover that the latest version of the program in some
cases produces incorrect results this fact becomes a new property and an agent will be able to
avoid the latest version of the program if it acts in behalf of an application that exercises the
incorrect behavior of the program. Similar examples can be constructed for hardware compo­
nents. A Pentium Pro processor is downwards compatible with a Pentium processor and its
information object need not describe the common set of instructions but only new instructions
as well as faulty instruction sequences if they exist. Therefore inheritance has the potential
to simplify the task of building information objects and agents capable to manipulate them
intelligently.

Care must be taken to expose in the metaobject only stable properties of the network
resources. For example the amount of main memory installed on a system is a stable property,
though it may change, such changes are likely to be infrequent, while the load placed upon
the system varies rapidly, it is a transient property and should not be exposed.

Once we recognize that creation of metaobjects is a difficult task we have to ask ourselves if
metaobjects and the network resources need to be tightly or loosely coupled with each other.
The tightly coupled approach would require that the two components are kept together to
ensure consistency. There are fundamental flaws with the tightly coupled argument. First,
this "ab-initio" approach would require re-creation of legacy components, software, hardware
and data, to fit our scheme. Second, information would be unnecessarily duplicated and
confidential information compromised. Every site running Microsoft Word would need to
store a huge amount of information including its genetic component (the source code) that
Microsoft is unlikely to reveal willingly.

By virtue of the arguments discussed above a metaobject should only have a soft link to the
network resource it describes. Different properties of the network resource may be accessible
on a need to know basis, e.g. the source code may be available only to those who have the
need for it. The metaobject associated with a program may contain attributes describing the
function of the program, its input and output. It should also provide references or pointers to
the: source code, the executables for different platforms, the human readable documentation
of the program, the implementation notes, an error log, and so on. Following the principle of
genetic economy, components of the metaobject would be shared among all the users of the
object.

The price to pay for the distributed metaobject approach is that inconsistency between
the metaobjects and the network resources are occasionally unavoidable. We argue that in
a network rich environment catastrophic consequences of such inconsistencies are unlikely to
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occur.
In summary, we propose to create metaobjects describing properties of network resources.

These properties should reveal how objects can be composed together using a lock and key
mechanism and support a selection mechanism to eliminate components that do not perform
their functions well. Linking metaobjects together can only be done based upon a universally
accepted taxonomy of objects and properties, and a given context. We acknowledge the fact
that a considerable amount of work in the area of knowledge sharing still remains to be done,
but we believe that a system built along the principles discussed above will allow a larger
segment of the population to use computers to solve complex tasks. In this paper we present
an infra.<;tructure supporting the design principles presented in this section.

3 An Architecture for Communicating Objects

This section introduces Bond, a Java-based, object-oriented middleware for network com­
puting. Network computing is a paradigm that emphasizes the usc of network resources,
computing resources distributed across the network, over local resources. Network resources
are hosts, programs and data. Middleware is a software layer that allows developers to mold
systems tailored to specific needs from components and develop new components based upon
existing ones. The goals of the Bond system are to: (a) facilitate access to network resources,
(b) support collaborative activities, and (c) accommodate software diversity and hardware
heterogeneity.

The basic components of Bond are metaobjeds and agents. Metaobjects provide synthetic
information about network resources and agents use this information to access and manipulate
network objects on behalf of users. The basic philosophy of the Bond middleware is to allow
developers and users to define metaobjects and agents using the frameworks provided by the
system.

Bond can be used in stand-alone mode or to connect to a Bond domain. A Bond domain
consists of a society of users with common interests and a number of services. In stand-alone
mode a user may create metaobjects and agents and execute locally several demos. To create
a Bond domain one needs to activate the servers provided with the package.

Bond is a message-oriented system, it uses KQML [15], as a meta-language for inter-object
communication. KQML offers a variety of message types (performatives) that express an
attitude regarding the content of the exchange. Performatives can also assist agents in finding
other agents that can process their requests. A performative is expressed as an ASCII string,
using a Common Lisp Polish-prefix notation. The first word in the string is the name of the
performative, followed by parameters. Parameters in performatives are indexed by keywords
and therefore order independent.

3.1 Objects and containers

A Bond ObjiXt is collection of data fields and methods, [7]. The data component of an object
consists of several fields and a vector of dynamic properties. Each object has a unique bondld.
The granularity of Bond objects ranges from simple objects, e.g. a message, to complex objects
like a directory server. Some objects are passive, e.g. a message or a metaobject associated
with a data file, others are active they have one or more threads of control. Active as well as
passive objects can communicate using the sayO method [7]. AU objects are persistent. A
segment of the Bond object hierarchy is presented in Figure 1. The full Bond object hierarchy
is presented elsewhere.

A container is a Bond object that encapsulates a collection of objects. A message for
a remote object is always delivered to the container where the object is located and the
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Figure 1: A segment of the Bond object hierarchy and the subprotocols understood by various
classes.

messaging thread together with the local directory cause the delivery of the message to the
local object. There are two types of containers, active and passive. Residents and workspaces
arc examples of containers. A resident is an active container consisting of several threads of
control, a local directory and a set of objects. Bond objects with the exception of light-weight
objects like messages and shadows always register with the local directory upon creation.

Figure 2 shows the structure of a resident. The messaging thread of a resident delivers
messages from remote objects to local ones and sends out messages originating from local
objects. Several other threads may be running as a side-effect of messages in sub-protocols
understood by the resident. An workspace is a passive container consisting of several, possi­
bly many objects belonging to one user. An workspace can be saved to and retrieved from
persistent storage (or stored on the local host and retrieved by the resident).

3.2 Communication fabric

The system provides a communlcation fabric allowing objects to interact with one another.
The communication fabric is based upon active messages. An active message is one delivered
immediately upon receipt to its destination. A passive message is queued in a buffer for later
delivery. Bond favors non-blocking communication, typically the sender continues execution
after sending a request and it is interrupted upon the arrival of the reply. There are means to
block, waiting for a message, e.g. uaitReplyO function [7].
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Figure 2: A Bond resident. All objects in the container, excluding shadows are registered with
the local directory. The messaging thread of the resident delivers messages to local objects
identified by their bondld. Messages for remote objects are sent out by the messaging thread
using the address of the remote container provided by the local shadow. The main thread of
a resident may start up new threads as requested by various sub-protocols. A resident could
be configured as a server or have one or more agents.

A shadow object is a proxy for a remote object. A shadow is an abstraction designed to
allow distant objects to communicate with one another as if they were co-located. A message
delivered to the local shadow is guaranteed to reach the remote object. Shadow objects are
the conceptual equivalents of the stubs in CORBA and RMI and can be implemented using
stubs. Shadows are the only component of the Bond system that depends upon the underlying
transport mechanism. Porting a Bond networking solution to a new transport middlewarc
requires only to re-implement the bondShadow object, while all the other components can be
reused even without being recompiled.

A virtual network is a local collection of shadow objects. This abstraction h. necessary
to create dynamic sets of semantically related objects. For example, a directory maintains a
virtual network of local directories, a scheduler agent maintains a virtual network of execution
agents.

A subprotocol is a closed subset of KQML messages, a specialized language needed to per­
form a specific task. The subset is closed because a subprotocol does not reference outside
messages, the reply is a member of the same subprotocol with the question. Examples of
generic Bond subprotocols are property access subprotocol, agent control subprotocol or secu­
rity subprotocol. This abstraction is necessary to introduce a structure in the semantic space
of the messages. An object can only understand sub-protocols implemented by its own class
or inherited from its ancestors.

3.3 Probes, an aspect-oriented approach to complex object design

Bond relies on probes to separate various aspects of complex object design. A probe is an
object that understands one or more specialized subprotocols and can be attach to an existing
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Figure 3: Communication between remote objects using their shadows. A shadow is a proxy
for a remote object. To communicate with object B in container 2, object A in container 1
creates a shadow of B using the find function. Once the shadow Df B is created, A applies
the local sayO method to send messages to it; then the shadow delivers the message to B.
To send a message to A, B follows the same procedure, creates a shadow of A then sends
messages for A to its shadow.
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Figure 4: Probes. A bondDirectoryServer object does not understand the monitoring sub­
protocol. A monitoring message received by the bondDirectoryServer object message is
passed to its ancestors, bondServer, bondExecutable. bondObject, but none of them un­
derstands the subprotocol. Then the dynamic properties of the object reveal that a moni­
toring probe is attached and the message is delivered to it. The monitoring probe under­
stands the monitoring subprotocol and it is able to monitor other objects in behalf of the
bondDirectoryServer or monitor the bondDirectoryServer in behalf of other objects.
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object. Security and monitoring probes can be attached to an existing object. Security probes
implement several security and access control models. Monitoring probes implement the Bond
monitoring model. They allow objects to continuously monitor remote objects and be informed
when changes of the properties of remote objects occur see Figure 4.

The system includes agent and metaobject factories and frameworks for monitoring and
object security. The agent factory is capable to generate agents based upon blueprints describ­
ing the state-machine implemented by the agent,the strategies associated with every state, the
agenda and the model of the world used by the agent.

Bond servers support the basic functionality necessary for collaborative activities. A Bond
domain is a society of users with common interests. A system monitor starts up the servers
and ensures fault-tolerance. Directory Servers allow objects to locate remote objects. The
Persistent Storage Server is a repository for user workspaces.

Figure 5 shows the architecture of the system and its major components:

• The transport layer - ensures message delivery to remote objects. At this time Bond
uses Infospheres [11], to transport messages between Bond sites.

• Core elements - provide the communication fabric, containers and core objects.

• Frameworks· provide the infrastructure to build agents and metaobjects and augment
them with monitoring, and security features.

• Extensions - provide blueprints for agents, metaobjects, probes and demos,

• Servers - directory, persistent storage, the system monitor, the QoS monitor, authenti­
cation, versioning, are some of the servers that can be activated in a Bond domain.

• Interfaces - GUIs and APls provide user access to the system.

3.4 Agent Framework

Agents are programs that autonomously pursue their own agenda and are able to cooperate
with other agents to accomplish their tasks.

The agent framework in Bond allows a programmer to simplify the programming of an
agent because most of the functionality of the agents are already implemented. By default,
Bond agents have the possibility to be controlled remotely and to cooperate with each other.

The task of an application programmer is limited to specify the agenda, the finite state
machine of the agent, and the strategies associated with each state. Bond also provides a large
database of ready-made strategies, so in typical cases a Bond agent can be assembled without
programmlng.

The segment of the Bond object hierarchy related to the implementation of the agent
framework is shown in Figure 6.

Events are object that implement the bondEvent interface, however all the events cur­
rently used in Bond agents are KQML messages, represented by the bondKQML object. The
programmer may define new types of events.

The finite state machine is implemented by the bondFiniteStateMachine, bondFSMState
and bondFSMTransition classes. These classes are general enough that they don't have to
be overwritten for any agent covered by this formalism. A bondFiniteStateMachine can be
constructed dynamically and saved or restored from the persistent storage.

Strategies are defined by any object which implement the bondStrategy interface. The
model of the world is represented by the bondModel object. The information is represented
in form of objects attached as dynamic properties of the model object. This approach allows
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Figure 5: The architecture of the Bond middleware. The transport layer is provided by
the info.net class of the Infospheres. Solid boxes are components not yet implemented. Bond
servers are necessary to guarantee services in a Bond domain. Bond object~ may communicate
with each other even without the assistance of servers.
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Figure 6: The segment of the Bond object hierarchy directly involved in creating agents

the programmer complete freedom to use any knowledge representation approach he or she
wants. We found it useful to impose certain conventions on the representation which allows
various strategies to work together. A programmer mayor may not follow these conventions.

The agenda is an object implementing a bondAgenda interface. The float
distance (bondModel) function should return the distance from the desired state of the world,
while the satisfiedByO function returns a boolean value showing if the agenda is satisfied
or not.

One particular way of implementing the agenda is when the desired region is a projection
of the Model, Le. some values of the model should match specific values, while others can have
arbitrary values. This is implemented in the bondProjectionAgenda object. Another possible
agenda is when the desired region is an n-dimensional rectangle: we provide specific limits for
the values of certain properties. This agenda is implemented by the bondRectangleAgenda
object.

The bondCompositeAgenda object implements an agenda calculus supporting boolean ex­
pressions on ready made agendas. The ready-made agendas cover most of the useful agendas
one would think of llsing within the agent framework. These agendas can be created dynam­
ically, without the need to write Java code.

Actions in the Bond system are object that implements the bondAction interface. Exem­
pIes of defined actions in the object hierarchy are the bondMethodCallAction that allows a
particular method of an object to be designated as an action and bondAgent which specifies
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Figure 7: The ~tate transition diagram of the Data Staging and Remote Execution Agent,
bondDSexec. The functions of the agent are: perform data staging, start-up a legacy program
on a remote host, and supervise its execution. State transitions are caused by: (a) external
messages, (b) the success/failure to attain the goal of the strategy in a given state.

that starting a new agent can be an action. The user can also define custom actions.
Strategies arc object implementing the bondStrategy interface, which defines the

nextActionO function. Strategies can be created using their constructors, created as part of
strategy groups, or saved and loaded from persistent storage.

Figure 7 illustrates the states and the transitions of a data staging and remote execution
agent. The strategy associated with every state is a sequence of actions, often the result of
the execution of a program, or a script. For example the strategy for the" Data staging state"
may consist of a script invoking the ftpfile transfer protocol, the strategy for "Starting legacy
program" state invokes a system call to start up a process running the program. The model
of this agent consists of variables to store information needed by various strategies, e.g. the
path to the executable for the legacy application, the completion code of the strategy for each
state, and so on.

3.5 Monitoring Framework

Objects in Bond are cooperative. They provide and request services one another. They are
inherently dynamic. Agent objects appear on demand and disappear. Permanent servers
change their state. It is important for objects to know the state of other objects and their
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changes.
We design a subscription-based monitoring model [10]' The following terms are used to

describe the model:

• Property: an entity consisting of name and its value.

• Event: the changes of properties.

• Subject: an object whose properties are of interest to other objects and it is willing to
provide them upon request.

• Monitor: an objects that collects the properties of other objects, analyzes them, and
takes actions based upon the result of this analysis.

In this model a monitor subscribes to the properties of interest of a subject. The subject
notifies the subscribers of the events. The notifications are sent according to one of the
notification models:

• Time-triggered: the subject notifies the changes periodically using an agreed-upon time
interval.

• Change-triggered: any changes in the subscribed properties triggers notification.

• Hybrid: it works like change-triggered when changes do occur as time-triggered if there
are no change'>.

An implicit assumption of our model is that monitors and subjects are aware of the effects
of communication latency and processing delays. If we denote by J the total elapsed time
from the instance of change, till the action triggered by the change is completed, the objects
involved in monitoring maintain their relevant properties stable for at least A time with t:::. >
J. We call this A-monitoring. Each pair (monitor, subject) needs to agree upon the value of
A and considers only actions compatible with or irrelevant with this value.

A Bond Monitoring Framework implements this model. It consists of monitoring probe,
monitoring interface, and monitoring policy. The monitoring probe is an object implementing
the subscription/notification communication between a monitor and a subject. By attaching
the monitoring probe, objects can perform that communication. The monitoring interface
defines a list of methods which the objects with the monitoring probe should implement:

• handleNotificationO is invoked whenever the notifications arrive.

• handleMissingNotificationO is invoked when the expected notification is missing.

• handleMissingPropertyO is invoked when the subject does not include the subscribed
property.

• handleErrorO is invoked in the case of general errors.

The monitoring policy is an object containing a subject address, property names, and notifi­
cation model. The monitor starts monitoring by creating the monitoring policy and handing
it over to its monitoring probe.

Figure 8 shows a monitoring example. Suppose that there are two objects, A and B. A
is going to monitor B. Both A and B create monitoring probes and implement monitoring
interface. A constructs a monitoring policy and gives it to its monitoring probe, which in
turn subscribes to B. The subscription request is delivered along the hierarchy to the mon­
itoring probe of B, which sends back the notifications. The monitoring probe of A invokes
handleNotification() whenever the notifications arrive.
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Figure 8: Two objects, A and E, involved in a monitoring relationship, A monitors B. Both
object~ create the monitoring probe and implement the monitoring interface. Once the mon­
itoring is started, all the monitoring messages are exchanged between the monitoring probes.

3.6 Security Framework

Applications of network computing have vastly different security requirements and the trade­
off between security and efficiency are application specific.

The first design principle of Bond security is to provide a framework for security, not
implementations based upon a specific security model. By providing such a general framework,
Bond leaves the decision of choosing security mechanism, such as the format of credentials,
the authentication policy, the access control policy, etc. to the system developers. Such a
framework is implemented through an extensible core bond object called bondSecurityContext
and a set of well-defined security interfaces.

The second design principle is that security is an aspect of a complex object design. A
Bond object can become a secure object by declaring or dynamically adding the property
bondSecurityContext. The bondSecurityContext sets up a secure boundary for the object
and intercepts all messages sent to/from the object.

The third design principle is to support multiple authentication and access control models.
This goal is achieved by defining a common interface for different security functions, like cre­
dential, authentication and access control. A bondSecurityContext contains security-related
objects supporting security functions. Each of these security-related object implements one
of the security interfaces defined by Bond.

The bondSecurityContext sets up a secure boundary for the object. It has two methods:
incomingMessageProcessO and outgoingMessageProcessO, called on the incoming and
outgoing messages.

The bondSecurityContext is implemented as a preemptive probe to intercept all incoming
and outgoing messages. The hondSecurityContext captures all the messages sent to its Bond
object, and the incomingMessageProcess 0 method is invoked to enforce security measures
without the involvement of the object.

The bondSecurityContext captures all message sent out by the object. It achieves this by
intercepting the message when it was moved from the master object to the local message thread
for delivering. The outgoingMessageProcessO method will be called to do any programmer
defined security process on the outgoing message.
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Figure 9: Application of the Bond security model to client-server operations. The client object
first sends a service request to the server object. This message is intercepted by its security
context, it is then forwarded to the outgoingMessageProcess 0 and sent out. All incoming
are intercepted by the server's security context. The incomingMessageProcess 0 enforces
authentication and access control before delivering the message to the server object. Finally,
the server object grants the service.

A BondSecurityContext contains security-related objects that implement various security
functions. Each security-related object implements one of the security interface defined by
Bond. Existing security interfaces includes:

• bondCredentiallnterface - This interface defines the method to access the credential
possessed by the current bondSecurityContext. The implementation of a credential can
be user/password, access ticket or public/private key pair.

• bondAuthenticatorlnterface - This interface defines the method used to enforce au­
thentication for each received message. Programmer or administrator can define differ­
ent authentication mechanisms, for example, usernamejpassword based authentication,
ticket based authentication, or certificate based authentication. The only restriction is
adhering to this interface. The only method in this interface is authenticateClient (),
it will return an authenticated user identifier.

• bondAccessControlInterface - This interface defines the method to enforce access
control for each received message. Programmer or administrator can define different
access control mechanisms, for example, IP address based firewall, username based access
control list, or others. The methods provided by this security interface are initACLO
and checkRight O. The first method is used to initialize the access control object; and
the second one is used to check access rights of an authenticated user identifier.
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4 Applications - Middleware for a Virtual Laboratory

We propose to create a Virtual Laboratory middleware to support experiments and computer
modeling activities in a scientific laboratory_ First, we present a model of the activity the
middleware is expected to support. In our model a group of individuals collaborate to solve a
scientific problem. They carry Qut experiments and collect data produced by sensors connected
to the experimental setup. Often the volume of experimental data is very large due to the
nature of the physical phenomena and to advances in sensor technology. The experimentalist
needs to keep a detailed log of the experimental conditions and the precise setup used for
each set of data. The next step is to extract the relevant information from the experimental
data. Seldom this process is straightforward; often it requires a significant computational
effort. Once the experimental data are distilled, they arc plugged into a computational model.
This model itself is typically very complex, depends upon a large number of parameters and
computations have to be carried out repeatedly with different sets of parameters until the
results are deemed to be acceptable. Some of the components of the model are inherited from
other groups and there is little understanding of the inner working of the legacy codes written
long time ago but trusted due to repeated use. At the same time, there arc new components
of model that may change on a daily basis.

The entire process of discovery typically takes months if not years, it involves complex
interactions between humans, and between humans and computers, it requires backtracking,
keeping detailed information about each step, keeping intermediate data. The members of a
group are often geographically distributed and have to use a diversity of computers.

Based upon this model we concluded that the critical elements of the Virtual Laboratory
are annotation of network reSOlUces, an infrastructure for communicating objects, knowledge
processing, monitoring of concurrent activities, and workflow management.

Some of the functions desirable in such an environment and supported by Bond will be:

• System-level resource management,

• User-level resource management,

• Annotation of network resolUces,

• Management of communication channels,

• Support for collaborative work, ability to share reSOlUces,

• Access to computational servers,

• Remote start-up and execution of single programs,

• Execution of workflows,

• Persistent storage,

• Data migration,

• Scheduling,

• Monitoring,

• Access control and seclUity related functions,

• Accounting.
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5 Summary

We believe that several metaphors from structural biology are useful for designing distributed
object systems. Metaobjects, persistent objects providing information about network re­
sources, provide a metaphor for the genetic material. Agents use introspection and reflections
to emulate lock and key mechanisms necessary to bind together various components. The
aspect-oriented design supports aggregation of components developed separately and emu­
lates binding of proteins. Security probes build a defense perimeter surrounding an object
emulating the function of antibodies. The monitoring probes can be used to construct the
equivalent of a central nervous system.

In this paper we describe an object-oriented, agent-based, distributed object system based
upon active messages. The system exercises the metaphors discussed above. An alpha release
of the Bond system is planned for early November 1998. Additional information about the
system is available at http://bond.cs.purdue.edu.
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