
Purdue University Purdue University 

Purdue e-Pubs Purdue e-Pubs 

Department of Computer Science Technical 
Reports Department of Computer Science 

2006 

Energy-Efficient Distributed Consturctions of Minimum Spanning Energy-Efficient Distributed Consturctions of Minimum Spanning 

Tree for Wireless Ad-hoc Networks Tree for Wireless Ad-hoc Networks 

Maleq Khan 

Gopal Pandurangan 

V. S. Anil Kumar 

Report Number: 
06-019 

Khan, Maleq; Pandurangan, Gopal; and Kumar, V. S. Anil, "Energy-Efficient Distributed Consturctions of 
Minimum Spanning Tree for Wireless Ad-hoc Networks" (2006). Department of Computer Science 
Technical Reports. Paper 1662. 
https://docs.lib.purdue.edu/cstech/1662 

This document has been made available through Purdue e-Pubs, a service of the Purdue University Libraries. 
Please contact epubs@purdue.edu for additional information. 

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Purdue E-Pubs

https://core.ac.uk/display/4951967?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://docs.lib.purdue.edu/
https://docs.lib.purdue.edu/cstech
https://docs.lib.purdue.edu/cstech
https://docs.lib.purdue.edu/comp_sci


ENERGY-EFFICIENT DISTRIBUTED CONSTRUCTRIONS OF 
MINIMUM SPANNING TREE FOR WIRELESS AD-HOC NETWORKS 

Maleq Khan 
Gopal Pandurangan 

V.S. Anil Kumar 

Department of Computer Science 
Purdue University 

West Lafayette, IN 47907 

CSD TR #06-019 
October 2006 

ENERGY-EFFICIENT DISTRIBUTED CONSTRUCTRIONS OF
MINIMUM SPANNING TREE FOR WIRELESS AD-HOC NETWORKS

Maleq Khan
Gopal Pandurangan

V.S. Anil Kumar

Department of Computer Science
Purdue University

West Lafayette, IN 47907

CSD TR #06-019
October 2006



Energy-Efficient Distributed Constructions of 
Minimum Spanning Tree for Wireless Ad-hoc 

Networks 
Maleq Khan Gopal Pandurangan V.S. Anil Kumar 

Abstract-The Minimum Spanning Tree (MST) problem 
is one of the most important and commonly occurring prim- 
itive in the design and operation of data and communica- 
tion networks. While there are distributed algorithms for 
the MST problem these require relatively large number of 
messages and time, and are fairly involved, require synchro- 
nization and a lot of book keeping; this makes these algo- 
rithms impractical for emerging technologies such as ad hoc 
and sensor networks. In such networks, a sensor has very 
limited power, and any algorithm needs to be simple, lo- 
cal and energy efficient for being practical. Motivated by 
these considerations, we study the performance of a class of 
simple and local algorithms called Nearest Neighbor Tree 
(NNT) algorithms for energy-efficient construction of MSTs 
in a wireless ad hoc setting. These employ a very simple 
idea to eliminate the work involved in cycle detection in 
other MST algorithms: each node chooses a distinct rank, 
and connects to the closest node of higher rank. We con- 
sider two variants of the NNT algorithms, obtained by two 
ways of choosing the ranks: (i) Random NNT, in which each 
node chooses a rank randomly, and (ii) Directional NNT, in 
which each node uses directional information for choosing 
the rank. We show provable bounds on .the performance 
of these algorithms in instances obtained by uniformly dis- 
tributed points in the unit square. 

Finally, we perform extensive simulations of our algo- 
rithms. We tested our algorithms on both uniformly ran- 
dom distributions of points, and on realistic distributions of 
points in an urban setting. The cost of the tree found by the 
NNT algorithms is within a factor of 2 of the MST, but there 
is more than a ten-fold saving on the energy and about a five 
fold saving on the number of messages sent. Also, our algo- 
rithms are significantly simpler to implement compared to, 
for instance, the GHS algorithm, which is essentially opti- 
mal with regards to the message complexity. Thus, our re- 
sults demonstrate the first such tradeoff between the quality 
of approximation and the energy cost for spanning trees on 
ad hoc networks, and motivates similar considerations for 
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other important problems. 
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I. OVERVIEW 

A. Introduction and Motivation 

The Minimum Spanning Tree (MST) problem is one of 
the most important and commonly occurring primitive in 
the design and operation of data and communication net- 
works. For instance, in ad hoc sensor networks, MST can 
be shown to be the optimal routing tree for data-centric 
routing [I]. Traditionally, the efficiency of distributed al- 
gorithms is measured by running time and number of mes- 
sages exchanged among the computing nodes, and a lot of 
research has gone into the design of algorithms that are 
optimal with respect to such criteria. There are distributed 
algorithms of that find the optimal MST (for e.g., see [2], 
[3]) and are essentially optimal in terms of time complex- 
ity: they run in O(Diam(G) + n') time, and there are 
matching lower bounds. However, these algorithms in- 
volve a lot of message transfers and time. The GHS al- 
gorithm [4] uses O(n log n + IE l )  messages, and is es- 
sentially optimal with respect to the message complexity. 
Despite their theoretical optimality, these algorithms are 
fairly involved, require synchronization and a lot of book 
keeping; such algorithms are impractical for ad hoc and 
sensor networks. For example, consider sensor networks 
- an ad hoc network formed by large numbers of small, 
battery-powered, wireless sensors. In many applications, 
the sensors are typically "sprinkled" liberally in the region 
of interest and the network is formed in an ad hoc fash- 
ion by local self-configuration. Since each sensor usu- 
ally knows only its (local) neighbors, the network man- 
agement and communication has to be done in a local and 
distributed fashion. Additionally, because of battery lim- 
itations, energy is a very crucial resource. A distributed 
algorithm which exchanges a large number of messages 
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I. OVERVIEW

A. Introduction and Motivation

The Minimum Spanning Tree (MST) problem is one of
the most important and commonly occurring primitive in
the design and operation of data and communication net­
works. For instance, in ad hoc sensor networks, MST can
be shown to be the optimal routing tree for data-centric
routing [1]. Traditionally, the efficiency of distributed al­
gorithms is measured by running time and number of mes­
sages exchanged among the computing nodes, and a lot of
research has gone into the design of algorithms that are
optimal with respect to such criteria. There are distributed
algorithms of that find the optimal MST (for e.g., see [2],
[3]) and are essentially optimal in terms of time complex­
ity: they run in O(Diam(G) + n E

) time, and there are
matching lower bounds. However, these algorithms in­
volve a lot of message transfers and time. The GHS al­
gorithm [4] uses 8(n log n + lEI) messages, and is es­
sentially optimal with respect to the message complexity.
Despite their theoretical optimality, these algorithms are
fairly involved, require synchronization and a lot of book
keeping; such algorithms are impractical for ad hoc and
sensor networks. For example, consider sensor networks
- an ad hoc network formed by large numbers of small,
battery-powered, wireless sensors. In many applications,
the sensors are typically "sprinkled" liberally in the region
of interest and the network is formed in an ad hoc fash­
ion by local self-configuration. Since each sensor usu­
ally knows only its (local) neighbors, the network man­
agement and communication has to be done in a local and
distributed fashion. Additionally, because of battery lim­
itations, energy is a very crucial resource. A distributed
algorithm which exchanges a large number of messages
can consume a relatively large amount of energy (and also



time) and may not be suitable in an energy-constrained ad this paper) and a is a small positive number. The moti- 
hoc wireless sensor network. vation for this objective function comes from energy re- 

Thus it is necessary to develop simple, local, distributed 
algorithms which are energy-efficient and (preferably also 
time-efficient), even at the cost of being sub-optimal. This 
adds a new dimension to the design of distributed algo- 
rithms for such networks. Thus we can potentially trade- 
offoptimality of the solution to work done by the algo- 
rithm. In a sensor network, the total energy cost ("en- 
ergy complexity") of a distributed algorithm typically de- 
pends on the number of messages exchanged and the en- 
ergy needed to transmit the messages over a certain dis- 
tance (cf. Section I-c). (It can also depend on the time 
complexity of the distributed algorithm). The (radiation) 
energy needed to transmit a message is typically assumed 
proportional to some work function f (typically square 
or some small power) of the distance between the sender 
and the receiver [5], [6]. Thus it becomes important to 
measure efficiency of a distributed algorithm in terms of 
power, energy, besides the number of messages. 

We study a class of simple, local, distributed, ap- 
proximation algorithms called the Nearest Neighbor Tree 
(NNT) algorithms to build slightly sub-optimal trees, with 
low energy complexity. A fundamental step in all ex- 
isting algorithms for the MST is cycle detection: given 
an edge, one needs to determine whether the edge would 
form a cycle with the edges already chosen. This decep- 
tively simple operation leads to a big overhead: a signifi- 
cant amount of book keeping and message passing needs 
to be done in order to maintain the components, and an- 
swer such queries. Our NNT algorithms bypass such a 
step completely by a very simple idea: each node chooses 
a unique rank, a quantity from a totally ordered set, and 
a node connects to the nearest node of higher rank. Ob- 
serve that this immediately precludes cycles, and the only 
information that needs to be exchanged is the rank; also, 
this information does not have to be updated continuously 
over the course of the algorithm. 

B. MST and its Applications 

Formally, our focus is the following geometric 
weighted minimum spanning tree problem: given an ar- 
bitrary set N of points (nodes) ' in a plane 2, find a tree 
T spanning N such that C ( u , v ) E T  d" (u, v)) is minimized 
where d(u, v) is the distance of an edge (u, v) E T ac- 
cording to some norm (we use the Euclidean norm in 

' ~ . g . ,  these may represent sensors. We assume that these have 
unique labels or id's. 

2 ~ e  consider the 2-dimensional setting for concreteness; our results 
can be generalized for higher dimensions. 

quirements in a wireless communication paradigm (see 
also next Section): to transmit a signal over a distance 
r ,  the required radiation energy is proportional to r", 
where typically a is 2 and can range up to 4 in environ- 
ments with multiple-path interferences or local noise [6], 
[5]. It can easily be shown (e.g., using Kruskal's al- 
gorithmic construction) that the MST which minimizes 
C(u ,v )ET  d(u, v) also minimizes C(,,v)ET da(u, v) for 
any a > 0. 

Two important applications of the MST in wireless net- 
works are broadcasting and data aggregation. The MST is 
the optimal broadcast tree to minimize radiation energy 
consumption since it minimizes C(,,,) ET da (u, V) . In 
data aggregation, the idea is to combine the data coming 
from different sources enroute to eliminate redundancy 
and minimize the number of transmissions and thus sav- 
ing energy; the common aggregate functions are mini- 
mum, maximum, average, etc [7]. One popular paradigm 
for computing aggregates is to construct a (directed) tree 
rooted at the sink where each node forwards its (locally) 
aggregated data collected from its subtree to its parent [8], 
[9], [lo], [ l l ] .  Again, in such cases, MST is the optimal 
data aggregation tree, since it works exactly as a reverse 
broadcast tree [I]. 

C. Energy Model and Work Complexity 

To run a distributed algorithm in an ad hoc wireless set- 
ting, the following modules of an wireless device are typ- 
ically involved: a digital unit for processing the signals 
and performing network protocol functions, and a radio 
(transceiver) module for communication [12]. Thus one 
can consider the following three components of energy 
consumption to run a distributed algorithm.3 1) Radiation 
energy which is proportional to r" to transmit to distance 
r. 2) A constant (independent of distance) amount of en- 
ergy e, required by the radio electronics (transceiver) for 
each unit of data at the sending and receiving end. Thus 
energy consumption to transmit a b-bit message to dis- 
tance r is be, + bcrm, for some constant c. 3) Energy con- 
sumption in digital electronics: even when a node does 
not receive or transmit a message, the digital electronics 
and transceiver (in listening or sleeping mode) dissipates 
power at a constant rate. Let this power is p,. Thus, if 
a distributed algorithm exchanges M messages and takes 

3 ~ n  this paper we do not consider the affects of protocol layers (e.g. 
the MAC layer), and the overheads resulting from their interaction- 
thus the focus of this work is to optimize the static energy require- 
ments. 

time) and may not be suitable in an energy-constrained ad
hoc wireless sensor network.

Thus it is necessary to develop simple, local, distributed
algorithms which are energy-efficient and (preferably also
time-efficient), even at the cost of being sub-optimal. This
adds a new dimension to the design of distributed algo­
rithms for such networks. Thus we can potentially trade­
off optimality of the solution to work done by the algo­
rithm. In a sensor network, the total energy cost ("en­
ergy complexity") of a distributed algorithm typically de­
pends on the number of messages exchanged and the en­
ergy needed to transmit the messages over a certain dis­
tance (cf. Section I-C). (It can also depend on the time
complexity of the distributed algorithm). The (radiation)
energy needed to transmit a message is typically assumed
proportional to some work function f (typically square
or some small power) of the distance between the sender
and the receiver [5], [6]. Thus it becomes important to
measure efficiency of a distributed algorithm in terms of
power, energy, besides the number of messages.

We study a class of simple, local, distributed, ap­
proximation algorithms called the Nearest Neighbor Tree
(NNT) algorithms to build slightly sub-optimal trees, with
low energy complexity. A fundamental step in all ex­
isting algorithms for the MST is cycle detection: given
an edge, one needs to determine whether the edge would
form a cycle with the edges already chosen. This decep­
tively simple operation leads to a big overhead: a signifi­
cant amount of book keeping and message passing needs
to be done in order to maintain the components, and an­
swer such queries. Our NNT algorithms bypass such a
step completely by a very simple idea: each node chooses
a unique rank, a quantity from a totally ordered set, and
a node connects to the nearest node of higher rank. Ob­
serve that this immediately precludes cycles, and the only
information that needs to be exchanged is the rank; also,
this information does not have to be updated continuously
over the course of the algorithm.

B. MST and its Applications

Formally, our focus is the following geometric
weighted minimum spanning tree problem: given an ar­
bitrary set N of points (nodes) 1 in a plane 2, find a tree
T spanning N such that L(U,V)ET dCt (u, v)) is minimized
where d(u, v) is the distance of an edge (u, v) E T ac­
cording to some norm (we use the Euclidean norm in

1E.g., these may represent sensors. We assume that these have
unique labels or id's.

2We consider the 2-dimensional setting for concreteness; our results
can be generalized for higher dimensions.

this paper) and a is a small positive number. The moti­
vation for this objective function comes from energy re­
quirements in a wireless communication paradigm (see
also next Section): to transmit a signal over a distance
r, the required radiation energy is proportional to rCt,
where typically a is 2 and can range up to 4 in environ­
ments with multiple-path interferences or local noise [6],
[5]. It can easily be shown (e.g., using Kruskal's al­
gorithmic construction) that the MST which minimizes
L(U,V)ETd(u,v) also minimizes L(U,V)ETdCt(U,v) for
any a > O.

Two important applications of the MST in wireless net­
works are broadcasting and data aggregation. The MST is
the optimal broadcast tree to minimize radiation energy
consumption since it minimizes L(U,V)ETdCt(u,V). In
data aggregation, the idea is to combine the data coming
from different sources enroute to eliminate redundancy
and minimize the number of transmissions and thus sav­
ing energy; the common aggregate functions are mini­
mum, maximum, average, etc [7]. One popular paradigm
for computing aggregates is to construct a (directed) tree
rooted at the sink where each node forwards its (locally)
aggregated data collected from its subtree to its parent [8],
[9], [10], [11]. Again, in such cases, MST is the optimal
data aggregation tree, since it works exactly as a reverse
broadcast tree [1].

C. Energy Model and Work Complexity

To run a distributed algorithm in an ad hoc wireless set­
ting, the following modules of an wireless device are typ­
ically involved: a digital unit for processing the signals
and performing network protocol functions, and a radio
(transceiver) module for communication [12]. Thus one
can consider the following three components of energy
consumption to run a distributed algorithm.3 1) Radiation
energy which is proportional to rCt to transmit to distance
r. 2) A constant (independent of distance) amount of en­
ergy ec required by the radio electronics (transceiver) for
each unit of data at the sending and receiving end. Thus
energy consumption to transmit a b-bit message to dis­
tance r is bec +berm, for some constant e. 3) Energy con­
sumption in digital electronics: even when a node does
not receive or transmit a message, the digital electronics
and transceiver (in listening or sleeping mode) dissipates
power at a constant rate. Let this power is Pc. Thus, if
a distributed algorithm exchanges M messages and takes

3In this paper we do not consider the affects of protocol layers (e.g.
the MAC layer), and the overheads resulting from their interaction­
thus the focus of this work is to optimize the static energy require­
ments.



t time to complete the algorithm, total energy-cost of the 
algorithm is 

M 
E = tp, + Mbe, + bc C r,", 

i= 1 

considering all messages have same size b and the ith mes- 
sages travels to distance ri. Thus time, number of mes- 
sages, and distance needed to transmit messages all deter- 
mine the total energy cost. 

Motivated by above, in addition to the traditional time 
and message complexity, we introduce a new complexity 

M 
term called work defined as UJ = C r,". Thus total ra- 

i=l 
diation energy is directly proportional to the work done 
by the algorithm. We show that NNT algorithms perform 
better in all three: time, number of messages and work. 
Thus, total energy consumed by the algorithms is less for 
our algorithms compared to the algorithms that construct 
(optimal) MSTs. 

The quality of a spanning tree T is defined by Q, (T) = 
CeET (el"; e denotes an edge of T .  For a = 1, Q1 (T) is 
simply the sum of the lengths of the edges. Tree with 
lower Q,(T) is considered better tree. Our goal is to 
develop local distributed algorithm with the objective of 
minimizing total energy E ,  while keeping the quality of 
the spanning tree produced to be reasonably close to the 
optimal. 

D. Our Contributions and Results 

Our main contribution is detailed theoretical and exper- 
imental study of a simple and local class of algorithms, 
specifically for ad hoc and sensor networks. Our algo- 
rithms, called the Nearest Neighbor Tree (NNT) algo- 
rithms use a very simple idea to avoid cycle formation: 
each node (independently) chooses a distinct rank, and 
connects to the closest node of higher rank. Depending 
on how ranks are chosen we study two types of NNT al- 
gorithms: Random-NNT (ranks are chosen randomly) and 
Directional-NNT (Dir-NNT) (ranks are based on coordi- 
nate information). Both are well motivated: when nodes 
don't know their geometric coordinates4. Random-NNT 
is natural, but if nodes know their coordinate location then 
Dir-NNT is more suitable. 

We theoretically analyze the performance of both these 
NNT algorithms in the model where n nodes are uni- 
formly distributed in a unit square (this is a popular prob- 
abilistic model for ad hoc wireless networks, e.g., see 
[13]). Our results are enumerated below. 

4~onsider  a scenario where sensor nodes are sprinkled randomly in 
the ocean from a high flying airplane; the nodes typically will not have 
(accurate) knowledge of their coordinates, unless they have some sort 
of geographic information locater (e.g., GPS). 

Quality bounds: We give asymptoti- 
cally tight bounds on the cost of the tree 
found by Random-NNT: for a 5 2, 
E[Q,(RNNT)] = O(nl-"I2 log"12 n) and 
for a > 2, E[Q,(RNNT)] = ~ ( ( l o ~ n ) " / ~ - ' ) ,  
where RNNT is the tree computed by Random- 
NNT algorithm. Thus, for a = 1, this is an 
O ( e )  approximation and for a = 2, this 
is an O(1og n)  approximation. For Dir-NNT, 
we show that EIQ1(DNNT)] = O(&) and 
E[Q2(DNNT)]  = 0(1) ,  where DNNT is the tree 
computed by Dir-NNT algorithm; thus, Dir-NNT 
is always within a constant factor of the optimal- 
this shows that at a cost of increased information 
(i.e., about the coordinates), we can get very good 
approximations. 
Message, time, and work complexity: We show 
that NNT algorithms has significantly lower mes- 
sage, time, and work complexity compared to other 
algorithms distributed which compute the optimal 
MST. We show how NNT algorithms can be imple- 
mented efficiently in a wireless setting and show that 
the work complexities for Dir-NNT and Random- 
NNT are O(1ogn) and O(1) respectively, for a = 
2. We show that for both NNT algorithms, the 
message complexity is O(n) and time complexity 
is O(log2 n).  We comp,are the work-complexity of 
NNT with other distributed algorithms which com- 
pute the (optimal) MST. We analyze the work com- 
plexity of GHS algorithm [4] - a message-optimal 
distributed MST algorithm - and show that it is 
0(log2 n), for a = 2. Also, the message complex- 
ity of GHS is O(n  log n )  and the time complexity 
is O(n). The above bounds hold when the GHS al- 
gorithm does not know the coordinate information. 
When coordinate information of the nodes are known 
the algorithm can be improved by computing the Yao 
graph (or the relative neighborhood graph, see e.g., 
[14]) and then using GHS to find MST from Yao 
graph. This is essentially optimal with respect to 
message complexity. To be fair, we compare Dir- 
NNT, which uses coordinates of the nodes, with GHS 
algorithm by running on the Yao graph. In a Yao 
graph, each node has constant degree (at most 6) and 
thus (El = O(n). Therefore, message complexity is 
O(n log n).  We also show that work complexity of 
GHS to run on a Yao graph is R(1og n), for a = 2. 
In this analysis, the cost of finding the Yao graph is 
ignored. In fact, the cost for finding the Yao graph 
is itself is larger than for Dir-NNT. Because, in Dir- 
NNT, each node needs to find the nearest node on its 

t time to complete the algorithm, total energy-cost of the
algorithm is

M
E = tpc + Mbec + be 1: rf,

i=l

considering all messages have same size b and the ith mes­
sages travels to distance rio Thus time, number of mes­
sages, and distance needed to transmit messages all deter­
mine the total energy cost.

Motivated by above, in addition to the traditional time
and message complexity, we introduce a new complexity

M
term called work defined as w = 1: rf. Thus total ra-

i=l
diation energy is directly proportional to the work done
by the algorithm. We show that NNT algorithms perform
better in all· three: time, number of messages and work.
Thus, total energy consumed by the algorithms is less for
our algorithms compared to the algorithms that construct
(optimal) MSTs.

The quality of a spanning tree T is defined by Qa.(T) =
1:eET lela.; e denotes an edge of T. For 0: = 1, Ql(T) is
simply the sum of the lengths of the edges. Tree with
lower Qa.(T) is considered better tree. Our goal is to
develop local distributed algorithm with the objective of
minimizing total energy E, while keeping the quality of
the spanning tree produced to be reasonably close to the
optimal.

D. Our Contributions and Results

Our main contribution is detailed theoretical and exper­
imental study of a simple and local class of algorithms,
specifically for ad hoc and sensor networks. Our algo­
rithms, called the Nearest Neighbor Tree (NNT) algo­
rithms use a very simple idea to avoid cycle formation:
each node (independently) chooses a distinct rank, and
connects to the closest node of higher rank. Depending
on how ranks are chosen we study two types of NNT al­
gorithms: Random-NNT (ranks are chosen randomly) and
Directional-NNT (Dir-NNT) (ranks are based on coordi­
nate information). Both are well motivated: when nodes
don't know their geometric coordinates4 . Random-NNT
is natural, but if nodes know their coordinate location then
Dir-NNT is more suitable.

We theoretically analyze the performance of both these
NNT algorithms in the model where n nodes are uni­
formly distributed in a unit square (this is a popular prob­
abilistic model for ad hoc wireless networks, e.g., see
[13]). Our results are enumerated below.

4Consider a scenario where sensor nodes are sprinkled randomly in
the ocean from a high flying airplane; the nodes typically will not have
(accurate) knowledge of their coordinates, unless they have some sort
of geographic information locater (e.g., GPS).

• Quality bounds: We give asymptoti-
cally tight bounds on the cost of the tree
found by Random-NNT: for 0: :S 2,
E[Qa.(RNNT)] 0(n1-a./210ga./2 n) and
for 0: > 2, E[Qa.(RNNT)] = 0((logn)a./2-1),
where RNNT is the tree computed by Random­
NNT algorithm. Thus, for 0: = 1, this is an
o(yflog n) approximation and for 0: = 2, this
is an O(1og n) approximation. For Dir-NNT,
we show that E[Ql(DNNT)] = 0(01) and
E[Q2(DNNT)] = 0(1), where DNNT is the tree
computed by Dir-NNT algorithm; thus, Dir-NNT
is always within a constant factor of the optimal­
this shows that at a cost of increased information
(i.e., about the coordinates), we can get very good
approximations.

• Message, time, and work complexity: We show
that NNT algorithms has significantly lower mes­
sage, time, and work complexity compared to other
algorithms distributed which compute the optimal
MST. We show how NNT algorithms can be imple­
mented efficiently in a wireless setting and show that
the work complexities for Dir-NNT and Random­
NNT are O(logn) and 0(1) respectively, for 0: =
2. We show that for both NNT algorithms, the
message complexity is O(n) and time complexity
is 0(log2 n). We compare the work-complexity of
NNT with other distributed algorithms which com­
pute the (optimal) MST. We analyze the work com­
plexity of GHS algorithm [4] - a message-optimal
distributed MST algorithm - and show that it is
D(log2 n), for 0: = 2. Also, the message complex­
ity of GHS is O(n log n) and the time complexity
is O(n). The above bounds hold when the GHS al­
gorithm does not know the coordinate information.
When coordinate information of the nodes are known
the algorithm can be improved by computing the Yao
graph (or the relative neighborhood graph, see e.g.,
[14]) and then using GHS to find MST from Yao
graph. This is essentially optimal with respect to
message complexity. To be fair, we compare Dir­
NNT which uses coordinates of the nodes, with GHS,
algorithm by running on the Yao graph. In a Yao
graph, each node has constant degree (at most 6) and
thus lEI = O(n). Therefore, message complexity is
O(n log n). We also show that work complexity of
GHS to run on a Yao graph is D(logn), for 0: = 2.
In this analysis, the cost of finding the Yao graph is
ignored. In fact, the cost for finding the Yao graph
is itself is larger than for Dir-NNT. Because, in Dir­
NNT each node needs to find the nearest node on its,



right (in the right half plane). Whereas, to compute 
the Yao graph, each node needs to find the nearest 
nodes in each of the six cones. . Simulation results: We performed extensive simu- 
lations of our algorithms. We tested our algorithms 
on both uniformly random distributions of points, 
and on realistic distributions of points in an urban set- 
ting obtained from TRANSIMS [15]. Experimental 
results show that costs for NNT algorithms are sig- 
nificantly smaller than that for an optimal MST algo- 
rithm, while the quality NNT is very close to MST. 
For example, for the TRANSIMS data, we found that 
the cost of the tree found by the NNT algorithms is 
within a factor of 2 of the MST, but there is more 
than a ten-fold saving on the energy and about a five 
fold saving on the number of messages sent. 

E. Organization of the Paper 

The rest of the paper is organized as follow. A sub- 
optimal MST called nearest neighbor tree (NNT) is de- 
fined and an energy-efficient local distributed NNT algo- 
rithm is described in Section 11. Theoretical analysis of 
the quality, and work, messages and time complexity of 
the algorithms are given in Section 111. Simulation results 
are presented in Section IV. 

Building minimum spanning tree (MST) in a dis- 
tributed fashion is highly energy intensive. A distributed 
algorithm to construct an MST, called GHS algorithm, 
was proposed in [4]. In the GHS algorithm, initially each 
node is considered to be a fragment (or a connected com- 
ponent). As the edges are added, the fragments grow by 
combing smaller fragments. In each "round" of the algo- 
rithm, each fragment finds its minimum length outgoing 
edge (MOE) - which is guaranteed to be in an MST - 
and uses this edge to combine fragments. Each fragment 
has two leaders, which are adjacent to the edge added 
immediately in the previous step. To find the MOE, the 
leaders send initiate message (relayed by the intermediate 
nodes) to the members of the fragment. Upon receipt of 
initiate message, each node tests its adjacent edges by ex- 
changing test/accept/reject messages to check if the node 
at the other end is in same fragment. Thus, each member 
node finds its minimum outgoing edge and reports it to the 
leaders. Upon receipts of reports, the leaders select a new 
leader - the node which is adjacent to the MOE for the 
entire fragment and this begins a new round. 

Thus a relatively large number of messages needs to 
be exchanged to find MOEs and to perform the com- 
bining operations (changing root of the fragment using 

"change root" messages); thus, the amount of energy 
consumed in configuring MST can become prohibitively 
large. Also as fragments grow, parallelism of the op- 
erations reduces (more sequential operations) requiring 
longer running time. The required number of messages 
can be shown to be 2 ( E  I + 5n log n and time complex- 
ity is 0 (n log n), where I E 1 is the number of edges in the 
connectivity graph and n is the number of nodes. The time 
complexity was improved to O(n) in [16], [17], but GHS 
was shown to be optimal in terms of number of messages. 

In this section, we propose a local distributed algo- 
rithm to construct a nearly-optimal spanning tree, which 
requires significantly less energy to build than the MST. 
The proposed algorithm is very simple. It requires no 
complex synchronization among the nodes and is natu- 
rally robust. An abstract form of the algorithm is given 
below. 

1. Each node u chooses a unique rank rank(u).  
2. Node u finds the nearest node v such that rank(u) < 

rank(v) and gets connected to v. 
We will shortly describe how to choose such a rank. A 

distributed implementation in a broadcast setting is given 
in Figure 1. The following definitions are needed to de- 
scribe the algorithm and its properties. 

Dejinition 1: Available-for-Connection Set or AC-set. 
If node u is allowed to get connected to node v, we say 
v is available to u for connection. AC(u) is the set of 
all available nodes. We define v E AC(u), if and only if 
u 4 v for some irreflexive and transitive binary relation 
4. Such ordering of the nodes ensures that the connec- 
tions among nodes do not create any cycle. 

Next, we describe how ordering of the nodes can be de- 
fined such that each node can determine its relative order 
with respect to its neighbors locally. 

One simple ordering heuristic is as follows. Every node 
generates a random number independently (between say 0 
and 1) and broadcasts this number along with its ID, iden- 
tification number. Each node collects random number-ID 
pairs of its neighbors and determines its order with respect 
to the neighbors according to the definition below. Let R, 
be the random number generated by node u. We assume 
that every node is given a unique ID before deployment. 

Dejinition 2: Random Order 4,. For any two nodes u 
and v, u 4, v if and only if either 

a) R, < R, or b) R, = R, and ID(u) < ID(v). 
Another ordering heuristic called directional order uses 

the location information of the nodes. We assume that 
each node knows its relative coordinates in the plane and 
no two nodes have the same coordinates (If two nodes 
have the same coordinates, ID can be used to break ties). 
Let (xu, y,) be the coordinates of u. 

right (in the right half plane). Whereas, to compute
the Yao graph, each node needs to find the nearest
nodes in each of the six cones.

• Simulation results: We performed extensive simu­
lations of our algorithms. We tested our algorithms
on both uniformly random distributions of points,
and on realistic distributions of points in an urban set­
ting obtained from TRANSIMS [15]. Experimental
results show that costs for NNT algorithms are sig­
nificantly smaller than that for an optimal MST algo­
rithm, while the quality NNT is very close to MST.
For example, for the TRANSIMS data, we found that
the cost of the tree found by the NNT algorithms is
within a factor of 2 of the MST, but there is more
than a ten-fold saving on the energy and about a five
fold saving on the number of messages sent.

E. Organization of the Paper

The rest of the paper is organized as follow. A sub­
optimal MST called nearest neighbor tree (NNT) is de­
fined and an energy-efficient local distributed NNT algo­
rithm is described in Section II. Theoretical analysis of
the quality, and work, messages and time complexity of
the algorithms are given in Section III. Simulation results
are presented in Section IV.

II. AN ENERGY-EFFICIENT CONSTRUCTION

Building minimum spanning tree (MST) in a dis­
tributed fashion is highly energy intensive. A distributed
algorithm to construct an MST, called GHS algorithm,
was proposed in [4]. In the GHS algorithm, initially each
node is considered to be a fragment (or a connected com­
ponent). As the edges are added, the fragments grow by
combing smaller fragments. In each "round" of the algo­
rithm, each fragment finds its minimum length outgoing
edge (MOE) - which is guaranteed to be in an MST­
and uses this edge to combine fragments. Each fragment
has two leaders, which are adjacent to the edge added
immediately in the previous step. To find the MOE, the
leaders send initiate message (relayed by the intermediate
nodes) to the members of the fragment. Upon receipt of
initiate message, each node tests its adjacent edges by ex­
changing test/accept/reject messages to check if the node
at the other end is in same fragment. Thus, each member
node finds its minimum outgoing edge and reports it to the
leaders. Upon receipts of reports, the leaders select a new
leader - the node which is adjacent to the MOE for the
entire fragment and this begins a new round.

Thus a relatively large number of messages needs to
be exchanged to find MOEs and to perform the com­
bining operations (changing root of the fragment using

"change root" messages); thus, the amount of energy
consumed in configuring MST can become prohibitively
large. Also as fragments grow, parallelism of the op­
erations reduces (more sequential operations) requiring
longer running time. The required number of messages
can be shown to be 21EI + 5n log n and time complex­
ity is O(nlogn), where lEI is the number of edges in the
connectivity graph and n is the number of nodes. The time
complexity was improved to O(n) in [16], [17], but GHS
was shown to be optimal in terms of number of messages.

In this section, we propose a local distributed algo­
rithm to construct a nearly-optimal spanning tree, which
requires significantly less energy to build than the MST.
The proposed algorithm is very simple. It requires no
complex synchronization among the nodes and is natu­
rally robust. An abstract form of the algorithm is given
below.

1. Each node u chooses a unique rank rank(u).
2. Node u finds the nearest node v such that rank(u) <

rank(v) and gets connected to v.
We will shortly describe how to choose such a rank. A

distributed implementation in a broadcast setting is given
in Figure 1. The following definitions are needed to de­
scribe the algorithm and its properties.

Definition 1: Available-for-Connection Set or AC-set.
If node u is allowed to get connected to node v, we say
v is available to u for connection. AC(u) is the set of
all available nodes. We define v E AC(u), if and only if
u --< v for some irreftexive and transitive binary relation
--<. Such ordering of the nodes ensures that the connec­
tions among nodes do not create any cycle.

Next, we describe how ordering of the nodes can be de­
fined such that each node can determine its relative order
with respect to its neighbors locally.

One simple ordering heuristic is as follows. Every node
generates a random number independently (between say 0
and 1) and broadcasts this number along with its ID, iden­
tification number. Each node collects random number-ID
pairs of its neighbors and determines its order with respect
to the neighbors according to the definition below. Let Flu
be the random number generated by node u. We assume
that every node is given a unique ID before deployment.

Definition 2: Random Order --<r. For any two nodes u
and v, u --<r V if and only if either

a) Flu < Ru orb) Flu = Ru and ID(u) < ID(v).
Another ordering heuristic called directional order uses

the location information of the nodes. We assume that
each node knows its relative coordinates in the plane and
no two nodes have the same coordinates (If two nodes
have the same coordinates, ID can be used to break ties).
Let (xu, Yu) be the coordinates of u.



Definition 3: Directional Order +d. For any two nodes 
u and v, u +d v if and only if either 

a)x,<x,orb)x,=x,andy,<y, .  
It is easy to see that the graph produced by NNT algo- 

rithm is a tree. The relations +, and +d defined above 
are irreflexive and transitive. For any irreflexive and tran- 
sitive binary relation +, if each node u gets connected to 
exactly one node v E AC(u), if AC(u) # 4, there is no 
cycle in the resulting graph. Further, there is exactly one 
node u such that AC(u) = 4 and thus there are n - 1 
edges. Therefore, the resulting graph is a tree. 

Definition 4: Nearest Neighbor Tree (NNT). When 
each node u, if AC(u) # 4, connects itself to a near- 
est node v E AC(u), the resulting tree is called a near- 
est neighbor tree. When random order is used, the tree is 
called a Random-NNT (RNNT). When directional order 
is used, the tree is called a Directional-NNT (Dir-NNT). 
The name "nearest neighbor tree" comes from the fact that 
the tree is formed by connecting each node to the nearest 
node from the available (for connection) neighbors. 

Algorithm 1 Distributed NNT algorithm. 
/* The algorithm is executed by each node u in- 
dependently. Messages are written in the format 
(message name, sender, [recipient], [other information]). 
When a message is broadcasted, the recipients are not spec- 
ified. 1 is the maximum possible distance between any two 
nodes. A is the area covered by the nodes and n is the number 
of nodes5.*/ 
i + l  
Repeat 

Set transmission radius (power level) 

ri + 2"*, for Random-NNT 

r, + i fi, for Dir-NNT 
Ifri > 1,ri + 1 
Broadcast (request, u, rankin f o) 
I* for Random-NNT ranlunfo is random number Ru & ID 

*/ 
/* for Dir-NNT rankinfo is coordinate (xu, yu) */ 
Wait for some specified time period 
i + i + l  

until (receipt of an "available" message) or ( ri = I )  
For all v, upon receipt of (request, v, rankin f o) do 

ifv + u ,  
set transmission radius to distance(u, v) 
send (available, u, v) to v 

Upon receipt of "available" message(s): 
Select the nearest node v from the senders 
Send (connect. u. v) to v 

The algorithm consists of exchanging three types of 

messages: "request", "available", and "connect" among 
the nodes. Each node begins with broadcasting a "re- 
quest" for connection message. considering a unit square 
(area A = I), each node broadcasts "request" messages 

1 2 3  successively to the distances -, --, -, . . . , in case of J5i J5i fi 
Dir-NNT and 2 e 7  4 p ,  g e l . .  . , in case of 
Random-NNT until it fin s a node with higher rank. The 
highest ranked node among all the nodes, can never find 
a node with higher rank. This node stops transmitting 
"request" message when it reaches the maximum possi- 
ble distance between any two nodes. "Request" messages 
carry rank information (coordinates or random number). 
The other nodes who can hear the message check their rel- 
ative rank and send back an "available" message if their 
rank is higher. The sender of the "request" message se- 
lects the nearest node from the senders of "available" mes- 
sages if more than one available message is received and 
thus it finds the nearest higher ranked node. 

When coordinates are not available (e.g., for Random- 
NNT), senders can include the transmission power lev- 
els in the "available" messages and the recipient can de- 
termine the relative distances of the senders from these 
power levels and the signal-strengths of the received mes- 
sages. Finally, the node sends a "connect" messages to the 
nearest higher ranked node, that creates an edge between 
these two nodes. 

Two different strategies are used in increasing the 
broadcast radius successively for Random-NNT and Dir- 
NNT. For Dir-NNT, each time radius is increased by -&. 
For Random-NNT, radius is doubled each time. Also Dir- 
NNT begins with a smaller radius compared to Random- 
NNT. Among many other possible strategies, one strategy 
can be "begin with a constant radius and increase each 
time by a constant amount". Selecting the best strategy 
for an NNT algorithm is not obvious. By experimental tri- 
als and theoretical analysis, the strategies given in the Al- 
gorithm l are found to be optimal for Random-NNT and 
Dir-NNT. In this paper, we present the results for these 
strategies only. 

In this section, quality of the trees and energy-cost of 
the algorithms are analyzed theoretically. In this analy- 
sis, we assume that n nodes are uniformly distributed in a 
unit square. In this setting, we measure the quality of the 
tree produced by NNT, Q,(T) = x d" (u, v), work 

(u,v)ET 
M 

w = rr,  number of messages, and the time complexi- 
i=l 

ties of NNT and GHS algorithms. Although our analysis 
generalizes to any a ,  for clarity we consider a = 1 and 2. 

Definition 3: Directional Order -<d. For any two nodes
u and v, u -<d v if and only if either

a) Xu < Xv orb) Xu = Xv and Yu < Yv'

It is easy to see that the graph produced by NNT algo­
rithm is a tree. The relations -<r and -<d defined above
are irreflexive and transitive. For any irreflexive and tran­
sitive binary relation -<, if each node u gets connected to
exactly one node v E AC(u), if AC(u) i- ¢, there is no
cycle in the resulting graph. Further, there is exactly one
node u such that AC(u) = ¢ and thus there are n - 1
edges. Therefore, the resulting graph is a tree.

Definition 4: Nearest Neighbor Tree (NNT). When
each node u, if AC(u) i- ¢, connects itself to a near­
est node v E AC(u), the resulting tree is called a near­
est neighbor tree. When random order is used, the tree is
called a Random-NNT (RNNT). When directional order
is used, the tree is called a Directional-NNT (Dir-NNT).
The name "nearest neighbor tree" comes from the fact that
the tree is formed by connecting each node to the nearest
node from the available (for connection) neighbors.

Algorithm 1 Distributed NNT algorithm.
/* The algorithm is executed by each node u in­
dependently. Messages are written in the format
(message name, sender, [recipient], [other information]).
When a message is broadcasted, the recipients are not spec­
ified. l is the maximum possible distance between any two
nodes. A is the area covered by the nodes and n is the number
of nodes5 .*/
i <- 1

Repeat
Set transmission radius (power level)

ri <- 2\/ Al~gn, for Random-NNT

ri <- i~, for Dir-NNT
If ri > I, ri <- l
Broadcast (request, u, rankinfo)
/* for Random-NNT rankinfo is random number Ru & ID

*/

/* for Dir-NNT rankinfo is coordinate (xu, Yu) */

Wait for some specified time period
i<-i+l

until (receipt of an "available" message) or ( ri = l)

For all v, upon receipt of (request, v, rankinfo) do
if v -< u,

set transmission radius to distance(u, v)
send (available, u, v) to v

Upon receipt of "available" message(s):
Select the nearest node v from the senders
Send (connect, u, v) to v

The algorithm consists of exchanging three types of

messages: "request", "available", and "connect" among
the nodes. Each node begins with broadcasting a "re­
quest" for connection message. Considering a unit square
(area A = 1), each node broadcasts "request" messages
successively to the distances .)n, .In, In, ... ,in case of

Dir-NNT and 2JIOgn 4!sIOgn SJIOgn . fn' n' n' ... , In case 0
Random-NNT until it fin s a node with higher rank. The
highest ranked node among all the nodes, can never find
a node with higher rank. This node stops transmitting
"request" message when it reaches the maximum possi­
ble distance between any two nodes. "Request" messages
carry rank information (coordinates or random number).
The other nodes who can hear the message check their rel­
ative rank and send back an "available" message if their
rank is higher. The sender of the "request" message se­
lects the nearest node from the senders of "available" mes­
sages if more than one available message is received and
thus it finds the nearest higher ranked node.

When coordinates are not available (e.g., for Random­
NNT), senders can include the transmission power lev­
els in the "available" messages and the recipient can de­
termine the relative distances of the senders from these
power levels and the signal-strengths of the received mes­
sages. Finally, the node sends a "connect" messages to the
nearest higher ranked node, that creates an edge between
these two nodes.

Two different strategies are used in increasing the
broadcast radius successively for Random-NNT and Dir­
NNT. For Dir-NNT, each time radius is increased by .)n.
For Random-NNT, radius is doubled each time. Also Dir­
NNT begins with a smaller radius compared to Random­
NNT. Among many other possible strategies, one strategy
can be "begin with a constant radius and increase each
time by a constant amount". Selecting the best strategy
for an NNT algorithm is not obvious. By experimental tri­
als and theoretical analysis, the strategies given in the Al­
gorithm I are found to be optimal for Random-NNT and
Dir-NNT. In this paper, we present the results for these
strategies only.

III. ANALYSIS

In this section, quality of the trees and energy-cost of
the algorithms are analyzed theoretically. In this analy­
sis, we assume that n nodes are uniformly distributed in a
unit square. In this setting, we measure the quality of the
tree produced by NNT, Qa(T) = 2: da(u, v), work

(u,v)ET

M
W = 2: rf, number of messages, and the time complexi­

i=1
ties of NNT and GHS algorithms. Although our analysis
generalizes to any a, for clarity we consider a = 1 and 2.



It was shown by Steele [18] that Q2(MST) is asymp- 
totically constant, O(1). Also it is well known that 
Q1 (MST) is O(f i ) .  We show that for Dir-NNT, Q1 = 

O(&) and Q2 = O(1) giving an approximation fac- 
tor of O(1) for both of them. For Random-NNT, Q1 = 

O(JE=-) and Q2 = O(1og n)  giving approximation 
factors of O ( e )  and O(1og n)  respectively. 

The work complexities for Dir-NNT and Random-NNT 
are O(1og n) and 0(1) ,  where work for GHS algorithm is 
0(log2 n). In [4], authors showed that message and time 
complexities are O(n log n + 1 E 1) and O(n log n) respec- 
tively. We show that for both NNT algorithms, number of 
messages is O(n) and time complexity is 0(log2 n). 

When coordinate information of the nodes are known, 
efficiency of GHS algorithm can be improved by comput- 
ing the Yao graph and then use GHS to find MST from the 
Yao graph. To be fair, we compare Dir-NNT, which uses 
coordinates of the nodes, with GHS algorithm with Yao 
graph. In a Yao graph, each node has constant degree (at 
most 6) and thus I E I = O(n) . Therefore, message com- 
plexity is O(n log n). We also show that work complexity 
of GHS to run on a Yao graph is R(log n). In our analysis, 
we actually favor GHS by ignoring the cost incurred for 
finding the Yao graph. In fact, the cost for finding the Yao 
graph is itself is larger than that for Dir-NNT. Because, in 
Dir-NNT, each node needs to find the nearest node on its 
right (in the right half plane). Whereas, to compute the 
Yao graph, each node need to find the nearest nodes in 
each of the six cones. 

The following lemmas and theorems prove the above 
claims. 

A. Random-NNT 

Lemma 1: In Random-NNT, a node v connects to the 
ith nearest neighbor with probability &. Thus, a node 
gets connected within its k nearest neighbors with proba- 

1 bility 1 - m. 
Pro08 Let a and xi be the random number generated 

by node v and its ith nearest neighbor. Let Xi = {xk 11 < 
k 5 i). We define, a > Xi 'dl<k<i(~ > xk). Since 
the random numbers are generated by the nodes indepen- 
dently, Pr{a > Xi) = probability that a is the largest 
among i + 1 independent identically distributed random 
numbers = & . Now, the probability that a node connect 
to the ith nearest neighbor is 
Pr{a > Xi-1, a < xi) 
= Pr{a > Xi-1) Pr{a < xiJa  > Xipl) 
= Pr{a > XiPl)[l - Pr{a > xila > Xi-l)] 
= Pr{a > Xi-1) - Pr{a > xi, a > Xi-1) 

1 = Pr{a > Xi-1) - Pr{a > Xi) = 7 - 1 = A 
2 2+1 2(2+1) ' 

Now Probability that a node is connected within k near- 
k 1 est neighbors is z = l  & = 1 - -. k+l 

Theorem 1: Expected work complexity of Random- 
NNT algorithm is 0 ( n 1 - ~ I 2  1ogffI2 n) for a < 2 and 
O((log n)ff/2-1) for a > 2. 

Proof: Consider an arbitrary node u. First transmis- 

sion radius for "requesty' message is rl = 2 e  and for 

the ith transmission, ri = 2ri-l = 2 ' E .  Let m be 

the maximum number of transmissions. rm-1 < f i  I 
rm, i.e., m < + 1. 

Let Ci be the set of nodes in the circle centered at u with 
2 radius ri and R, = Ci - Ci-1. E [ICi-l (1 = 7rri-1n = 

7r22i-2 logn. Using Chernoff bound for lower tail, with 
high probability ICiPl ( 2 E I ]  = 7r22i-3 log n. 

Now, the probability that node u needs the ith transmis- 
sion = the probability that u is the highest ranked node in 

1 Ci-1 = < - ~ 2 ~ ~ l o g n '  

E['Cil] = 7r22i log n. Again using Chernoff bound 
for upper tail, with high probability IR,I 5 ICi 1 5 
7r22i+1 logn. Consider an arbitrary node v E &. 
Pr{rank(u) < rank(v) J u  has the highest rank inCi-1) = 

8 
&Ti 5 -- Thus expected number of 
"available" messages (reply of "request" message) 5 
7r2"+' log n& = 16. Counting the "request" and 
the final "connect" messages there are at most 18 mes- 
sages that travels the distance > ri-1 and I ri. 

Thus the expected total work for n nodes (using linear- 
ity of expectation) is 

8 
18ry 

i=2 7r22i log n 

(log n) 9 m 
- - 2.18 + 2 i(a-2) 

n4-1 2=2 

For a = 2, E[W] 5 106 logn = O(1ogn). For a # 2, 

For a < 2, the second term becomes negative, thus 
E [W] = O(nl-"I2 logffI2 n) .  

For cr > 2, the second term is dominating, thus 
E [W] = O((log n)"I2-I). 

Theorem 2: In Random-NNT, E [Q,(RNNT)] = 

~ ( n l - ~ / ~  logff/' n )  for a 5 2 and O((log n)"I2-l) for 
a > 2. 

Proof: Similar to the proof of Theorem 1, consider 
an arbitrary node u, and concentric circles centered at u 

with radius ri = 2" for i = 1,2 ,  . . . , m. Maximum 

number of circles m < + 1. Let Ci bethe set of 
nodes in the circle with radius ri and R, = Ci - Ci-1. If 

It was shown by Steele [18] that Q2 (MST) .is asymp­
totically constant, 0(1). Also it is well known that
Ql(MST) is O(Jn). We show that for Dir-NNT, Ql =

O(In) and Q2 = 0(1) giving an approximation fac­
tor of 0(1) for both of them. For Random-NNT, Ql =
O(vn log n) and Q2 = O(logn) giving approximation
factors of O(Vlog n) and O(log n) respectively.

The work complexities for Dir-NNT and Random-NNT
are O(logn) and 0(1), where work for GHS algorithm is
n(1og2 n). In [4], authors showed that message and time
complexities are O(n logn + lEI) and O(n logn) respec­
tively. We show that for both NNT algorithms, number of
messages is O(n) and time complexity is 0(1og2 n).

When coordinate information of the nodes are known,
efficiency of GHS algorithm can be improved by comput­
ing the Yao graph and then use GHS to find MST from the
Yao graph. To be fair, we compare Dir-NNT, which uses
coordinates of the nodes, with GHS algorithm with Yao
graph. In a Yao graph, each node has constant degree (at
most 6) and thus lEI = O(n). Therefore, message com­
plexity is O(n logn). We also show that work complexity
of GHS to run on a Yao graph is n (log n). In our analysis,
we actually favor GHS by ignoring the cost incurred for
finding the Yao graph. In fact, the cost for finding the Yao
graph is itself is larger than that for Dir-NNT. Because, in
Dir-NNT, each node needs to find the nearest node on its
right (in the right half plane). Whereas, to compute the
Yao graph, each node need to find the nearest nodes in
each of the six cones.

The following lemmas and theorems prove the above
claims.

A. Random-NNT

Lemma 1: In Random-NNT, a node v connects to the
ith nearest neighbor with probability i(i~l)' Thus, a node
gets connected within its k nearest neighbors with proba­

bility 1 - k~l'
Proof' Let a and Xi be the random number generated

by node v and its ith nearest neighbor. Let Xi = {xkl1 :S
k :S i}. We define, a> Xi ¢=> 'lfl<k<i(a > Xk). Since
the random numbers are generated by the nodes indepen­
dently, Pr{a > Xi} = probability that a is the largest
among i + 1 independent identically distributed random
numbers = i~l' Now, the probability that a node connect
to the ith nearest neighbor is
Pr{a> Xi-l,a < Xi}
= Pr{a > Xi-I}Pr{a < xila > Xi-I}
= Pr{a > Xi-I} [1 - Pr{a > xila > Xi-I}]
= Pr{a > Xi-I} - Pr{a > Xi,a > Xi-I}
= Pr{a > Xi-I} - Pr{a> Xi} = t - i~l = i(i~l)'

Now Probability that a node is connected within k near-
. hb . "k 1 - 1 1 •est nelg ors IS L...-i=l i(i+l) - - k+1'

Theorem 1: Expected work complexity of Random­
NNT algorithm is 0(nl-a/210ga/2 n) for a :S 2 and
0((1ogn)a/2-l) fora> 2.

Proof' Consider an arbitrary node u. First transmis-

sion radius for "request" message is rl = 2JIO~ n and for

the ith transmission, ri = 2ri-l = 2iJlo~n. Let m be

the maximum number of transmissions. rm-l < J2 :S
. ~ 1r m , l.e., m < 21og2 + .

Let Ci be the set of nodes in the circle centered at u with
radius ri and ~ = Ci - Ci-l. E[lCi-lIJ = 7frt_ln =
7f22i- 2 log n. Using Chernoff bound for lower tail, with
high probability ICi-ll ~ ~E[ICi-lIJ = 7f22i- 3 10gn.

Now, the probability that node u needs the ith transmis­
sion =the probability that u is the highest ranked node in
c- = _1_ < 8t-l Ci- 1 - 7l"22, logn'

EI:ICi IJ = 7f22i log n. Again using Chernoff bound
for upper tail, with high probability I~ I :S 1Ci I :S
7f22i+llogn. Consider an arbitrary node v E ~.

Pr{rank(u) < rank(v)!uhasthehighestrankinCi_ l} =
ICi_l11+l < 7l"22i~ogn' Thus expected number of
"available" messages (reply of "request" message) :S
7f22i+1log n 8 = 16. Counting the "request" and7f22t logn
the final "connect" messages there are at most 18 mes-
sages that travels the distance ~ ri-l and :S rio

Thus the expected total work for n nodes (using linear­
ity of expectation) is

E[WJ :S n (18r? +f 22·~ 18r7) (1)
i=2 7f t ogn

For a = 2, E[WJ :S 106 log n = O(1og n). For a =I- 2,

E[WJ < 2a18(lo?,n)~ + 22"'48(logn)a/2-1.
- n'2"-l 2"'-4

For a < 2, the second term becomes negative, thus
E[WJ = 0(nl-a/210ga/2 n).

For a > 2, the second term is dominating, thus
E[WJ = 0((logn)a/2-1). •

Theorem 2: In Random-NNT, E[Qa(RNNT)J
0(nl-a/210ga/2 n) for a :S 2 and 0((logn)a/2-1) for

a> 2.
Proof' Similar to the proof of Theorem 1, consider

an arbitrary node u, and concentric circles centered at u

withradiusri = 2iJlo~n fori = 1,2, ... ,m. Maximum

number of circles m < if~g~ + 1. Let Ci be the set of
nodes in the circle with radius ri and ~ = n - Ci- 1 • If



u connects to a node v in the ith ring, i.e., v E a, (to get 
an upper bound) we consider distance d(u, v) = Ti. 

With high probability (by Chernoff bound), lCil 2 
1 ,EI:ICiJ] = 7r22i-1 log n. 

Now Pr{u connects to any v E &) = Pr{u connects 
to a node in Ci) x Pr{u does not connect to a node in 

Ci-l) = (1 - 6) 1 by Lemma I.  Thus, c.1 ICi-11 

Keeping the dominating terms and using linearity of ex- 
pectation, for n nodes, 

E[QaI = nE[d(u,  v)] 5 nrp + n Cz2 &7-9 
(log n) 3 L Em 2i(a-2) 5 7 (2" + x logn z=2 ) .  

For a = 2, E[Q,] 5 6 log n = O(1og n) .  For a # 2, 

(logn)? 22"3 
E[Qal 1 2 "  G I  + - (log n)a/2-1. 

n2  2" - 4 

For a < 2, E[Q,] = ~ ( n l - " / ~  log"/2 n )  and for a > 2, 
E [Q,] = 0 ((log n)"/2-1). rn 

Theorem 3: Expected message complexity of Random- 
NNT algorithm is O(n) . 

Proof: If we consider work needed for every mes- 
sage is 1, i.e., when a = 0, the total work is simply 
the number of messages, M ,  exchanged in the algorithm. 
Thus from Equation 1, by putting r;I = rq = 1 in the 
right hand side, we get 

H 
Theorem 4: Running time of Random-NNT algorithm 

is 0(log2 n )  . 
Proof: We assume that transmission of each mes- 

sage take one unit of time and while one node is transmit- 
ting a message, no other node in its transmission radius 
(transmission range) is allowed to transmit. 

The radius of the first transmission by each node is 

rl = 2 m .  Following the proof of Theorem 1, ex- 
pected number of nodes within this radius, E [IC1 11 = 
47r log n and with high probability, (Cl I 5 87r log n. In 
the first transmission phase, a node needs to reply to 
at most 87r log n "available" messages. Thus total time 
for 87r log n nodes to complete the first phase is at most 
( 8 7 r l 0 ~ n ) ~  = 0( log2n) .  

Now consider an ith transmission phase to distance 
2i ri = -9. After the ( i  - 1)th phase, there can 

be at most one unconnected node in any circle of radius 

ri-1, because, otherwise, one node has lower rank than 
the other and can connect to the that node. Thus ex- 
pected number of unconnected node within radius ri is 
4 and this number can be at most 24, because distance of 
any two such nodes is at least ri-1. From the proof of 
Theorem 1, expected number of reply ("available") mes- 
sages can be received by one of these nodes is 16. Thus 
each subsequent transmission phase (other than the first 
phase) needs constant time. There are at most & + 1 
phases. Thus total time for Random-NNT algorithm is 
O(log2n) + O(log n )  = 0(log2 n).  

Theorem 5: The expected quality of Dir-NNT, for a = 

1,2,  and 3, are 0 (fi), 0 (I), and 0 2 respectively. 
(fi) 

Proof We will upper bound the expected distance 
that a node needs to connect to some other node. For the 
purpose of analysis, let us subdivide the unit square into 
fi x fi small squares. Length of a side of each small 

1 square is 1 = - fi. 
Assume that each node selects the nearest node from a 

cell which is directly above of it and in the same column or 
in a column at the right. The probability that a particular 
cell has at least one node is p = 1 - (1 - 2 1 - ;. 
We further rearrange all the n cells, along with the nodes 
in it, in a single row - put the cells of first column (bottom 
cell in the left most position, top cell in the right most 
position), then the cells of the second column, and so on. 
In this new arrangement, we are moving the nodes further 
away and increasing the distances among the nodes; and 
thus increasing the length of the edges comparing to the 
original Dir-NNT. As a result, the expected sum of the 
squared edges in the original Dir-NNT is less than that 
of Dir-NNT in this new arrangement. All nodes to the 
right of any node have higher ranks than its own. A node 
connects to the ith next cell, if there is no node in the 
next i - 1 cells and there is a node in the ith next cell. The 
probability of this event is p ( l  -p)i-l. The distance to the 
ith next cell is il = L. Therefore, if a node u connects fi 
to some other v node-and d(u, v) is the distance between 
u and v, 

E[da(u, v)] 5 C~L: (il)"p(l - p)i-l. 

Using linearity of expectation for n nodes, E[Q,(T)] _< 
nE[da(u, v)]. As n -+ m, for a = 1,2 ,3 ,  

u connects to a node v in the ith ring, i.e., v E [4, (to get
an upper bound) we consider distance d(u, v) = rio

With high probability (by Chernoff bound), IGil 2
~EI:IGil] = 7f22i- l logn.

Now Pr{u connects to any v E [4} =Pr{u connects
to a node in Gi } x Pr{u does not connect to a node in

Gi-l} = (1 - 16il) IcLII by Lemma 1. Thus,

E[d(u, v)] = (1-~) r?+2:~2IcLII (1-
1
6il) rf·

Keeping the dominating terms and using linearity of ex­
pectation' for n nodes,

E[Qa] = nE[d(u, v)] :S nr? + n 2:~2 IcLllrf

< (logn)~ (2a + _8_ '"'~ 2i(a-2)).
- n~-l 1flogn L..,,~=2

For a = 2, E[Qa] :S 610gn = O(1ogn). For a i- 2,

E[Q ] < 2a (log n)% + 2
2a

3 (logn)a/2-l.
a - n%-l 2a - 4

For a < 2, E[Qa] = O(nl-a/210ga/2 n) and for a > 2,
E[Qa] = O((logn)a/2-l). •

Theorem 3: Expected message complexity of Random­
NNT algorithm is O(n).

Proof' If we consider work needed for every mes­
sage is 1, i.e., when a = 0, the total work is simply
the number of messages, M, exchanged in the algorithm.
Thus from Equation 1, by putting r? = rf = 1 in the
right hand side, we get

E[M] :S n (18 + 2:~2 1f22i~ogn 18)

:S n (18 + lo:n - l~n) = O(n).

•
Theorem 4: Running time of Random-NNT algorithm

is O(log2 n).
Proof' We assume that transmission of each mes­

sage take one unit of time and while one node is transmit­
ting a message, no other node in its transmission radius
(transmission range) is allowed to transmit.

The radius of the first transmission by each node is

rl = 2Jlo~n. Following the proof of Theorem 1, ex­

pected number of nodes within this radius, E[lGll] =
47f log n and with high probability, IGIl :S 87f log n. In
the first transmission phase, a node needs to reply to
at most 87f log n "available" messages. Thus total time
for 87f log n nodes to complete the first phase is at most
(87flogn)2 = O(log2 n ).

Now consider an ith transmission phase to distance

r i = 2iJlo~ n . After the (i - 1) th phase, there can
be at most one unconnected node in any circle of radius

ri-l, because, otherwise, one node has lower rank than
the other and can connect to the that node. Thus ex­
pected number of unconnected node within radius ri is
4 and this number can be at most 24, because distance of
any two such nodes is at least ri-l. From the proof of
Theorem 1, expected number of reply ("available") mes­
sages can be received by one of these nodes is 16. Thus
each subsequent transmission phase (other than the first
phase) needs constant time. There are at most d~ggn2 + 1
phases. Thus total time for Random-NNT algorithm is
O(log2n) + O(logn) = O(log2 n ). •

B. Dir-NNT

Theorem 5: The expected quality of Dir-NNT, for a =

1,2, and 3, are 0 (yin), 0 (1), and 0 (In) respectively.

Proof We will upper bound the expected distance
that a node needs to connect to some other node. For the
purpose of analysis, let us subdivide the unit square into
yin x yin small squares. Length of a side of each small
square is l = In.

Assume that each node selects the nearest node from a
cell which is directly above of it and in the same column or
in a column at the right. The probability that a particular
cell has at least one node is p = 1 - (1- *t 2 1 - ~.
We further rearrange all the n cells, along with the nodes
in it, in a single row - put the cells of first column (bottom
cell in the left most position, top cell in the right most
position), then the cells of the second column, and so on.
In this new arrangement, we are moving the nodes further
away and increasing the distances among the nodes; and
thus increasing the length of the edges comparing to the
original Dir-NNT. As a result, the expected sum of the
squared edges in the original Dir-NNT is less than that
of Dir-NNT in this new arrangement. All nodes to the
right of any node have higher ranks than its own. A node
connects to the ith next cell, if there is no node in the
next i-I cells and there is a node in the ith next cell. The
probability of this event is p(l-p)i-l. The distance to the
ith next cell is il = In. Therefore, if a node u connects

to some other v node and d(u, v) is the distance between
u and v,

E[da(u, v)] :S 2:~~l (il)ap (1 - p)i-l.

Using linearity of expectation for n nodes, E[Qa(T)] :S
nE[da(u, v)]. As n --> 00, for a = 1,2,3,

E[Ql(T)] :S (t~) = 0 (yin),

E[Q2(T)] :S (~~i~J = 0 (1) ,

E[Q (T)] < e(e
2
+4e+l) = 0 (_1) .

3 - (e-l)3y1n yin

•



Theorem 6: The energy cost of Dir-NNT algorithm, for 
cr = 1, 2, and 3, are 0 ( G ) ,  0 (I) ,  and 0 - respec- 

tively. 
(A )  

Proof: A node sends its rank info to distance 
1 2 3  ---  fi, fi, +, . . . until it gets a reply back from a higher 

ranked node. Again we subdivide the area into cells and 
consider the rearrangement of the cells in a single row as 
described in Theorem 5. A node sends a message with 
rank info to the ith next cell, which is at the distance 
il = 5, if there is no node in the next i - 1 cells. The 

probaklity of occumng this event is (1 - p)"', where 
the probability that there is a node in a particular cell is 
p > 1 - t. The expected number of nodes in a cell is 1. 
Thus expected number of "accept" messages in response 
is one and finally at most one connect message sent by 
this node. Thus, as n -t oo, expected energy cost for 
one node 5 CYL; 3(i l)"(l-  P)~-'. Using linearity of 
expectation, total expected energy cost, 

As n + oo, for cr = 1,2,3,  

1 
Theorem 7: Expected message complexity of Dir-NNT 

algorithm is 0 (n) . 
Proof: Again, similar to Random-NNT algorithm, 

if we consider work for every message is 1, i.e., when 
cr = 0, total work is equal to the number of messages M. 
Thus from Equation 2, by putting (il)" = 1 in the right 
hand side, we get 

rn 
Theorem 8: Running time of distributed Dir-NNT al- 

gorithm is O(log2 n)  . 
Proof: Stochastically, each node connects to a 

shorter distance in Dir-NNT than Random-NNT thus re- 
quiring transmissions to shorter distances. This allows 
more simultaneous communications in Dir-NNT than 
Random-NNT. Moreover, total number of messages for 
Dir-NNT algorithm is no more than that for Random- 
NNT. Thus running time for Dir-NNT algorithm < run- 
ning time for Random-NNT = 0 (1 og2n). rn 

C. GHS Algorithm 

The authors of GHS algorithm [4] shown the message 
and time complexity of the algorithm as we discussed ear- 
lier in this section. Here we compute the lower bound for 
work complexity of GHS algorithm. 

Lemma 2: Let ri be the distance of ith nearest neighbor 
for an arbitrary node. Then E [ri] = = O (i) , for some 
constant c and $ < c 5 2. 

Proof: See appendix. 1 
Theorem 9: The expected work complexity of GHS al- 

gorithm is R(log2 n). 
Proof: We analyze work complexity for 

test/accept/reject messages only. By the end of the al- 
gorithm, each node tests all of its adjacent edges by us- 
ing test/accept/reject messages through these edges one 
by one. To have a connected graph with high probabil- 
ity the required number of neighbors is c log n [13], for 
some constant c. Thus each node send test/accept/reject 
messages to these clog n neighbors. We know expected 
squared distance to the ith nearest neighbor is E[r;] > 

(Lemma 2). Thus expected work by a node is 2 n.rr 
clogn i - 

C i = l  G - R(%). For n nodes, by linearity of ex- 
lo 2 n  pectation, total work w = n x R(+) = R(log2 n). 1 

Theorem 10: The expected work complexity of GHS 
algorithm to run on Yao graph is R (log n)  . 

Proof: To find this lower bound, we ignore the en- 
ergy required to compute the Yao graph. In a Yao graph, 
each node has most 6 neighbors, thus work cost of the 
test/accept/rejet messages can be as low as O(1). 

Let us consider initiate and report messages. In each 
level, the leaders of the fragments send the initiate mes- 
sage to all other nodes in the fragment and the member 
nodes return report messages with the information of min- 
imum outgoing edges (MOE) to the leader. Total number 
of such messages is O (n  log n) ,  where O (n) messages in 
each phase (each node need to sendforward these mes- 
sages) and there are log n phases. These messages trav- 
els through the edges of MST. We know that some of the 
squared lengths of the ( n  - 1) MST edges is a constant, 
O(1). Total work complexity for O(n log n) messages is 
O(1ogn). Since we ignored cost for some messages, this 
is a lower bound. 

Although the initiate message can be broadcasted to the 
fragment members, the report messages must be transmit- 
ted in point-to point basis; because each node sends report 
to its parent and the parent aggregates data (find min of 
the MOEs) and forward to its own parent. Therefore, the 
work is still R(1og n). 

However, we can show that even if the initiate mes- 
sage is broadcasted, total work for these messages is also 
@(log n).  At the ith level, average number of fragments is 

Theorem 6: The energy cost of Dir-NNT algorithm, for

a = 1,2, and 3, are 0 (yin), 0 (1), and 0 ()n) respec­

tively.

Proof' A node sends its rank info to distance
)n, .}n, .}n, ... until it gets a reply back from a higher

ranked node. Again we subdivide the area into cells and
consider the rearrangement of the cells in a single row as
described in Theorem 5. A node sends a message with
rank info to the ith next cell, which is at the distance
il = )n, if there is no node in the next i-I cells. The

probability of occurring this event is (1 - p)i-I, where
the probability that there is a node in a particular cell is
p 2: 1 - ~. The expected number of nodes in a cell is 1.
Thus expected number of "accept" messages in response
is one and finally at most one connect message sent by
this node. Thus, as n -----+ 00, expected energy cost for
one node :::; 2:~l3(il)0«1 - p)i-l. Using linearity of
expectation, total expected energy cost,

n-l

E[Go<] :::; n L 3(il)O< (1 - p)i-l. (2)
i=l

As n -----+ 00, for a = 1,2,3,

E[Gl] :::; f~)~ = 0 (yin) ,
E[G ] < 3e

2
(e+l) = 0 (1)

2 - (e-1)3 ,

E[G ] < 3e
2

(e
2
+4e+l) = 0 (_1) .

3 - (e-l)4 vn vn

•
Theorem 7: Expected message complexity of Dir-NNT

algorithm is 0 (n).
Proof' Again, similar to Random-NNT algorithm,

if we consider work for every message is 1, i.e., when
a = 0, total work is equal to the number of messages M.
Thus from Equation 2, by putting (il)O< = 1 in the right
hand side, we get

•
Theorem 8: Running time of distributed Dir-NNT al-

gorithm is 0(1og2 n).
Proof Stochastically, each node connects to a

shorter distance in Dir-NNT than Random-NNT thus re­
quiring transmissions to shorter distances. This allows
more simultaneous communications in Dir-NNT than
Random-NNT. Moreover, total number of messages for
Dir-NNT algorithm is no more than that for Random­
NNT. Thus running time for Dir-NNT algorithm:::; run­
ning time for Random-NNT = 0(log2n ). •

C. GHS Algorithm

The authors of GHS algorithm [4] shown the message
and time complexity of the algorithm as we discussed ear­
lier in this section. Here we compute the lower bound for
work complexity of GHS algorithm.

Lemma 2: Let ri be the distance of ith nearest neighbor
for an arbitrary node. ThenE[ri] = ~ = 8 (*),forsome
constant c and 1 < c < 2.7r - -

Prool See appendix. •
Theorem 9: The expected work complexity of GHS al­

gorithm is D(1og2 n).
Prool We analyze work complexity for

test/accept/reject messages only. By the end of the al­
gorithm, each node tests all of its adjacent edges by us­
ing test/accept/reject messages through these edges one
by one. To have a connected graph with high probabil­
ity the required number of neighbors is clog n [13], for
some constant c. Thus each node send test/accept/reject
messages to these clog n neighbors. We know expected
squared distance to the ith nearest neighbor is E[rlJ 2:
;7r (Lemma 2). Thus expected work by a node is 2:
"'? log n...i.. = D( log2 n). For n nodes by linearity of ex-
L....t=l n7r n '

pectation, total work w =n x D( lo~ n) = D(1og2 n). •
Theorem 10: The expected work complexity of GHS

algorithm to run on Yao graph is D(logn).
Prool To find this lower bound, we ignore the en­

ergy required to compute the Yao graph. In a Yao graph,
each node has most 6 neighbors, thus work cost of the
test/accept/rejet messages can be as low as 0(1).

Let us consider initiate and report messages. In each
level, the leaders of the fragments send the initiate mes­
sage to all other nodes in the fragment and the member
nodes return report messages with the information of min­
imum outgoing edges (MOE) to the leader. Total number
of such messages is 8 (n log n), where 8 (n) messages in
each phase (each node need to send/forward these mes­
sages) and there are log n phases. These messages trav­
els through the edges of MST. We know that some of the
squared lengths of the (n - 1) MST edges is a constant,
0(1). Total work complexity for 8(n log n) messages is
8(logn). Since we ignored cost for some messages, this
is a lower bound.

Although the initiate message can be broadcasted to the
fragment members, the report messages must be transmit­
ted in point-to point basis; because each node sends report
to its parent and the parent aggregates data (find min of
the MOEs) and forward to its own parent. Therefore, the
work is still D(1ogn).

However, we can show that even if the initiate mes­
sage is broadcasted, total work for these messages is also
8 (log n). At the ith level, average number of fragments is



$, therefore, there are broadcast transmissions by the fraction of fi, and the plot for Dir-NNT is a straight line. 
$ leaders. Again, there are 2i nodes in each fragments. For Random-NNT, the asymptotic approximation ratio is 
Thus, in the ith level, the leader need to transmit to at @(=), and this plot is almost straight. 
least to the distance of 2'th nearest neighbor. By using 

logn . 

Lemma 2, for log n phases, work 1 C % = log n. 70 AND-NNT - 
i=l DIR-NNT -----.----. 

MST ............. 
60 - 
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We perform extensive simulations of our algorithms to 

understand their empirical performance. Our experimen- 30 - 

tal setup is the following: 
1) Number of Nodes: Varying from 50 to 5000. 
2) Node distributions: Uniformly random distribu- 

tions in the unit square and several realistic distri- o 1  
butions of points in an urban setting obtained from 0 5 10 15 20 25 30 35 40 45 50 

TRANSIMS [15]. n (X 100) 

3) Number of Runs: 50 Fig. 1. Sum of the lengths of the edges, Ql(T), for MST, Random- 
4) Measures: We compare the NNT trees and the NNT, and ~ i r - N N T .  

MST, with respect to the quality Q,(T) = 

C d" (u, v) for a = 1 and 2. We compare the 
(.~,V)ET 
performance of the NNT algorithms and GHS, with 
and without the Yao graph information, with respect 
to the following measures: (i) Number of messages, 

M 
and (ii) Work, w = C rq for a = 2. 

i=l 
In our simulations, we ignore the effects of the MAC 

layer. Our main results are enumerated below, and vali- 
date our theoretical results in earlier sections. 

1) The Dir-NNT algorithm always outperforms the 
Random-NNT algorithm, with respect to the qual- 
ity, number of messages and the energy. 

2) Both Directional and Random-NNT give a very 
good approximation to the MST- in particular, Dir- 
NNT is always within about 10% of the MST. 

3) For a = 2,3, Random-NNT does not give a very 
good approximation, but Dir-NNT remains within a 
factor of 2. 

4) The number of messages and the work done by both 
Directional and Random-NNT is very close, and 
significantly smaller than that by GHS or GHS with 
the Yao graph. 

Sqaure root of n 

Fig. 2. Sum of the lengths of the edges, Ql(T),  plotted with sqrtn 
for MST, Random-NNT, and Dir-NNT. 

Figure 3 shows Q2(T), the sum of squares of the 
edge lengths, for the NNT algorithms and the optimum. 
Both the optimum and Dir-NNT are a constant, and 
within a factor of 2. However, the value of Q2(T) for 
Random-NNT increases with n, as the asymptotic bound 
is @(log n)- this becomes clear from Figure 4. 

A. Quality of the Spanning Trees B. Energy-cost to Construct the Spanning Trees 

We present the simulation results of the quality Q,(T) In this section, we compare work w for a = 2 and 
for a = 1 and 2. As Figure 1 shows, both Random-NNT number of messages needed by the algorithms. The NNT 
and Dir-NNT compare very well with the MST. As shown algorithms are compared with GHS, both with and with- 
earlier, the MST cost is @(+) for a = 1, and Dir-NNT out the Yao graph. The input to the GHS algorithm must 
seems to be within a small constant factor of this value; be a connected a graph to obtain MST. To have a con- 
Figure 2 demonstrates this by showing the values as a nected graph, with high probability, in a wireless ah-hoc 

Fig. 1. Sum of the lengths of the edges, Ql (T), for MST, Random­
NNT, and Dir-NNT.

Fig. 2. Sum of the lengths of the edges, Ql (T), plotted with sqrtn
for MST, Random-NNT, and Dir-NNT.
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Figure 3 shows Q2(T), the sum of squares of the
edge lengths, for the NNT algorithms and the optimum.
Both the optimum and Dir-NNT are a constant, and
within a factor of 2. However, the value of Q2(T) for
Random-NNT increases with n, as the asymptotic bound
is 8(log n)- this becomes clear from Figure 4.

fraction of yTri, and the plot for Dir-NNT is a straight line.
For Random-NNT, the asymptotic approximation ratio is
8 (y'log n), and this plot is almost straight.

:;, therefore, there are ~ broadcast transmissions by the
~ leaders. Again, there are 2i nodes in each fragments.
Thus, in the ith level, the leader need to transmit to at
least to the distance of 2i th nearest neighbor. By using

logn .

Lemma 2, for log n phases, work 2: L: ~ ~: = ~ log n.
i=l •

IV. SIMULATION RESULTS

We perform extensive simulations of our algorithms to
understand their empirical performance. Our experimen­
tal setup is the following:

1) Number of Nodes: Varying from 50 to 5000.
2) Node distributions: Uniformly random distribu­

tions in the unit square and several realistic distri­
butions of points in an urban setting obtained from
TRANSIMS [15].

3) Number of Runs: 50
4) Measures: We compare the NNT trees and the

MST, with respect to the quality Q(AT)
L: dQ(u, v) for a = 1 and 2. We compare the

(u,v)ET
performance of the NNT algorithms and GHS, with
and without the Yao graph information, with respect
to the following measures: (i) Number of messages,

M
and (ii) Work, w = L: rf for a = 2.

i=l
In our simulations, we ignore the effects of the MAC

layer. Our main results are enumerated below, and vali­
date our theoretical results in earlier sections.

1) The Dir-NNT algorithm always outperforms the
Random-NNT algorithm, with respect to the qual­
ity, number of messages and the energy.

2) Both Directional and Random-NNT give a very
good approximation to the MST- in particular, Dir­
NNT is always within about 10% of the MST.

3) For a = 2,3, Random-NNT does not give a very
good approximation, but Dir-NNT remains within a
factor of 2.

4) The number of messages and the work done by both
Directional and Random-NNT is very close, and
significantly smaller than that by GHS or GHS with
the Yao graph.

A. Quality of the Spanning Trees

We present the simulation results of the quality QQ(T)
for a = 1 and 2. As Figure 1 shows, both Random-NNT
and Dir-NNT compare very well with the MST. As shown
earlier, the MST cost is 8(yTri) for a = 1, and Dir-NNT
seems to be within a small constant factor of this value;
Figure 2 demonstrates this by showing the values as a

B. Energy-cost to Construct the Spanning Trees

In this section, we compare work w for a = 2 and
number of messages needed by the algorithms. The NNT
algorithms are compared with GHS, both with and with­
out the Yao graph. The input to the GHS algorithm must
be a connected a graph to obtain MST. To have a con­
nected graph, with high probability, in a wireless ah-hoc
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network, when the nodes are uniformly distributed, each 
node must be connected to the nodes which are within 
distance e ( c  A) [13]. We consider the radius of the 

neighborhood to be 1.6 e, the minimum required for 
connectivity. Since each node sends at least one mes- 
sage to each of its neighbor (test message - to check if 
the neighbor is in the same fragment), cost of GHS algo- 
rithm increases as the number of neighbors of the nodes 
increases. 

To determine the neighbors, each node can broadcast a 

message to distance 1 . 6 c  A and consider another node 
as a neighbor if the node can hear the message from the 
other node. However, we did not incur any cost on GHS 
algorithm to find the neighbors (thus favoring GHS). We 
assumed that each node knows its neighbors and their dis- 
tances. 

In addition, we also simulate GHS on the Yao graph. 

Each node finds its Yao neighbors first, then executes GHS 
algorthm. 
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Fig. 5. Number of messages needed to construct the spanning trees. 

Fig. 5 depicts the number of messages needed to con- 
struct the tree. We see that the number of messages for 
NNT algorithms is significantly smaller than GHS. More- 
over, the number of messages for NNT algorithms in- 
creases linearly. On the other hand, the number of mes- 
sages for GHS increases at a slightly higher rate. In fact, 
message complexity for GHS is O(n log n). 

Fig. 6. Work done by the algorithms. 

Required work for NNT algorithms is also significantly 
less than that of GHS algorithm (Fig. 6). In addition, 
with the number of nodes, energy for NNT algorithms in- 
creases in a lower rate than GHS. In terms of both number 
of messages and work, GHS with Yao graph is more effi- 
cient than GHS without Yao graph. However, cost is still 
much larger than NNT algorithms. 

Analytically, we know that the work complexity for 
Dir-NNT, Random-NNT, and GHS and GHS-YAO are 
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Fig. 5 depicts the number of messages needed to con­
struct the tree. We see that the number of messages for
NNT algorithms is significantly smaller than GHS. More­
over, the number of messages for NNT algorithms in­
creases linearly. On the other hand, the number of mes­
sages for GHS increases at a slightly higher rate. In fact,
message complexity for GHS is O(n log n).

Fig. 6. Work done by the algorithms.
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Required work for NNT algorithms is also significantly
less than that of GHS algorithm (Fig. 6). In addition,
with the number of nodes, energy for NNT algorithms in­
creases in a lower rate than GHS. In tenns of both number
of messages and work, GHS with Yao graph is more effi­
cient than GHS without Yao graph. However, cost is still
much larger than NNT algorithms.

Analytically, we know that the work complexity for
Dir-NNT, Random-NNT, and GHS and GHS-YAO are

1.5
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log n

Fig. 4. Sum of the squares of the edge lengths, Q2 (T) for Random­
NNT with respect to log n.

network, when the nodes are unifonnly distributed, each
node must be connected to the nodes which are within

distance 8( VlO~n) [13]. We consider the radius of the

neighborhood to be 1.6VlO~n, the minimum required for
connectivity. Since each node sends at least one mes­
sage to each of its neighbor (test message - to check if
the neighbor is in the same fragment), cost of GHS algo­
rithm increases as the number of neighbors of the nodes
increases.

To detennine the neighbors, each node can broadcast a

message to distance 1.6VlO~n and consider another node
as a neighbor if the node can hear the message from the
other node. However, we did not incur any cost on GHS
algorithm to find the neighbors (thus favoring GHS). We
assumed that each node knows its neighbors and their dis­
tances.

In addition, we also simulate GHS on the Yao graph.
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can also observe these results from experimental data. Let 
work w = c loga n. Then log w = log c + a log log n. 
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Fig. 8. The distribution of nodes at one of the snapshots. 
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downtown Portland, OR, measuring 2900m x 2950m ap- 
proximately 9 square KM. The distribution of points, cor- 
responding to cars on the roadway, was obtained from the 
TRANSIMS simulation [15], which does a very detailed 
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TABLE I 
EXPERIMENT RESULTS FOR SNAPSHOT 1 

sources, ranging from census data to activity surveys to TABLE I1 
land use data. We use three snapshots, at one minute in- 

EXPERIMENT RESULTS FOR SNAPSHOT 2 
tervals. The number of nodes (or cars) in these snapshots 
is different, because there are cars moving in and out of 
this section all the time. The distribution of nodes at one 
of the snapshots is shown in Fig. 8. Experimental results 
on these three snapshots are given in Table I, 11, and 111. 
Where the original data was in meters, we converted into 
KM. Work is computed for a = 2. 

We see that work and number of messages are signifi- TABLE I11 

cantly larger for GHS algorithm. Work is about 10 times EXPERIMENT RESULTS FOR SNAPSHOT 3 

larger and number messages is about 5 times larger than 
NNT algorithms. On the other hand, both quality for Dir- 
NNT is within 2-approximation. Although approxima- 
tion for Q2 in Random-NNT is large, for Q1, Random- 
NNT also provides a close approximation. In this exper- 
iment, we only considered the YAO graph assuming that 

Dir-NNT 39.39 8.18 92.28 
Rnd-NNT 52.97 20.12 137.91 
GHS-YAO 33.52 3.82 1083.99 20417 

Dir-NNT 38.32 6.25 83.42 
Rnd-NNT 52.57 18.47 148.88 
GHS-YAO 33.27 3.78 1083.99 20417 
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0(1), O(logn), n(log2 n), andn(logn) respectively. We
can also observe these results from experimental data. Let
work w = c loga n. Then log w = log c + a log log n.
Thus if we plot log w vs. log log n the graph is an straight
line and the slope of the line is a, the power of log. In
Fig. 7, the slope for GHS is greater than 2. For GHS­
YAO, the slope is about 1 and for Random-NNT, it is less
than 1. For Dir-NNT the slope is 0 which indicates work
is 0(1).

Fig. 7. Slope of the lines indicate the powers oflog in work complex­
ity.

Fig_ 8. The distribution of nodes at one of the snapshots.

C. Experiments on Real Data

We consider a distribution of points in a section of
downtown Portland, OR, measuring 2900m x 2950m ap­
proximately 9 square KM. The distribution of points, cor­
responding to cars on the roadway, was obtained from the
TRANSIMS simulation [15], which does a very detailed
modelling of urban traffic, combining a variety of data
sources, ranging from census data to activity surveys to
land use data. We use three snapshots, at one minute in­
tervals. The number of nodes (or cars) in these snapshots
is different, because there are cars moving in and out of
this section all the time. The distribution of nodes at one
of the snapshots is shown in Fig. 8. Experimental results
on these three snapshots are given in Table I, II, and III.
Where the original data was in meters, we converted into
KM. Work is computed for a = 2.

We see that work and number of messages are signifi­
cantly larger for GHS algorithm. Work is about 10 times
larger and number messages is about 5 times larger than
NNT algorithms. On the other hand, both quality for Dir­
NNT is within 2-approximation. Although approxima­
tion for Q2 in Random-NNT is large, for Q1, Random­
NNT also provides a close approximation. In this exper­
iment, we only considered the YAO graph assuming that

TABLE I

EXPERIMENT RESULTS FOR SNAPSHOT I

Algorithm Q1 Q2 Work Messages
Dir-NNT 38.72 6.77 90.54 4832
Rnd-NNT 50.75 14.13 131.42 5241
GHS-YAO 33.16 3.73 1271.11 20592

TABLE II

EXPERIMENT RESULTS FOR SNAPSHOT 2

Algorithm Q1 Q2 Work Messages
Dir-NNT 39.39 8.18 92.28 4647
Rnd-NNT 52.97 20.12 137.91 5250
GHS-YAO 33.52 3.82 1083.99 20417

TABLE III

EXPERIMENT RESULTS FOR SNAPSHOT 3

Algorithm Q1 Q2 Work Messages
Dir-NNT 38.32 6.25 83.42 4668
Rnd-NNT 52.57 18.47 148.88 5229
GHS-YAO 33.27 3.78 1083.99 20417



the nodes know their coordinates. If the coordinates are 
not available, for GHS algorithm input need to be a com- 
plete graph (each node is a neighbor of the others) to make 
sure connectivity since the points does not follow any par- 
ticular (say uniform) distribution. Thus GHS would incur 
large work and messages. In that case, Random-NNT will 
still be a good choice over GHS, by sacrificing quality. 
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Proof of Lemma 2 
We will show that 5 ~ [ r f ]  5 $. To get the lower bound, we 

assume that a node u exists at the center of the square (otherwise we 
can do a translation and the following argument still holds). It is easy 
to see that the distance to the ith nearest neighbor of u is stochastically 
less than or equal to that of any other node (e.g., compared to a node 
at the boundary). Consider a circle centered at u with radius R such 
that xR2 = 1 .  The probability that some other node is within distance 
r from node u is = $. Then the probability that there are at 
least i nodes within distance r ,  

k n - k - 1  = - ( f )  ( I - f )  . 

The probability density function, Pi ( r )  = & Ci ( r )  

~ e t - - ~ k  = the first term inside the above sum = 

Now To = 0, thus Pi(r) = - E ; I ~ ( T ~  - Tk+1) = Ti. 
~ [ r f ]  2 ~ t r ~ ~ i ( r ) d r  

(,.z ) i  ( ;Z ) n - i - l  
= i R 2 ( n ; ' ) ~ t $  dr 

= iR2 (nil) EL=0 ( f )  ( - l )k&.  Since n - i > 0, using the 

identity @=, (i) = z-l (.in)-' (page 188 in [19]), 

E [ T : ~  2 iR2 in T l )  1 - 
iR2 - i 

( n - ( 7 )  n nx' 

To get the upper bound, we consider a node v at a comer. Let us 
consider another circle centered at v and with radius R' = &, the 
maximum possible distance between any two nodes. If we redistribute 
the nodes in this circle uniformly, the average distance to the ith near- 
est neighbor can only increase. Thus, E[r?] < $ = :. 

the nodes know their coordinates. If the coordinates are
not available, for GHS algorithm input need to be a com­
plete graph (each node is a neighbor of the others) to make
sure connectivity since the points does not follow any par­
ticular (say uniform) distribution. Thus GHS would incur
large work and messages. In that case, Random-NNT will
still be a good choice over GHS, by sacrificing quality.
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ApPENDIX

ProofofLemma 2

We will show that ni
" ::;: E[r;] ::;: ~. To get the lower bound, we

assume that a node u exists at the center of the square (otherwise we
can do a translation and the following argument still holds). It is easy
to see that the distance to the ith nearest neighbor of u is stochastically
less than or equal to that of any other node (e.g., compared to a node
at the boundary). Consider a circle centered at u with radius R such
that 7rR2 = 1. The probability that some other node is within distance

2 2
r from node u is ~ frr. Then the probability that there are at
least i nodes within distance r,

Ci(r) = 1- 2:=~~~ (n;;-1) (~r (1 - ~r-k
-

1
.

The probability density function, Pi (r) = d~ Ci (r)

= _ E(n;;-1)k* (~) k-1 (1- ~) n-k-1

+:~ (n;;-1)(n - k - 1)* (~r (1 - ~r-k

-

2

.

Let Tk the first term inside the above sum

(n1) 2 (2)k-1( 2)n-k-1;;- kIb frr 1 - frr .
Then Tk+1 G~i)(k + 1)* (~r (1- ~r-k

-

2

(n;;-1)(n _ k - 1)* (~r (1 _~) n-k-2.

Now To = 0, thus Pi(r) = - 2:=~~~(Tk - T k+1 ) = Ti .

E[r;] ~ foR r 2Pi (r)dr

= iR2(n-1) rR 2r (r2)i (1- r
2 )n-i-1 dr

i J 0 Ji'I Ji'I Ji'I
'R2 (n-1) ",i (i) ( l)k 1 S' . 0 . h= 2 i L..-k=O k - k+n-i' mce n - 2 > , usmg t e

identity 2:=~=o G) (;;-~~k = X -1 (x~n) -1 (page 188 in [19]),

E[ 2] > 'R2 (n - 1) 1 _iR
2

_ iri 2 - - --.
- i (n-i)(7) n n7r

To get the upper bound, we consider a node v at a comer. Let us
consider another circle centered at v and with radius R' = .;2, the
maximum possible distance between any two nodes. If we redistribute
the nodes in this circle uniformly, the average distance to the ith near­

est neighbor can only increase. Thus, E[r;] ::;: i~2 = ~.
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