
Purdue University Purdue University

Purdue e-Pubs Purdue e-Pubs

Department of Computer Science Technical
Reports Department of Computer Science

2005

Scaling Byzantine Fault-Tolerant Replication to Wide Area Scaling Byzantine Fault-Tolerant Replication to Wide Area

Networks Networks

Yair Amir

Claudiu Danilov

Danny Dolev

Jonathan Kirsch

John Lane

See next page for additional authors

Report Number:
05-029

Amir, Yair; Danilov, Claudiu; Dolev, Danny; Kirsch, Jonathan; Lane, John; Olsen, Josh; and Zage, David,
"Scaling Byzantine Fault-Tolerant Replication to Wide Area Networks" (2005). Department of Computer
Science Technical Reports. Paper 1642.
https://docs.lib.purdue.edu/cstech/1642

This document has been made available through Purdue e-Pubs, a service of the Purdue University Libraries.
Please contact epubs@purdue.edu for additional information.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Purdue E-Pubs

https://core.ac.uk/display/4951963?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://docs.lib.purdue.edu/
https://docs.lib.purdue.edu/cstech
https://docs.lib.purdue.edu/cstech
https://docs.lib.purdue.edu/comp_sci

Authors Authors
Yair Amir, Claudiu Danilov, Danny Dolev, Jonathan Kirsch, John Lane, Josh Olsen, and David Zage

This article is available at Purdue e-Pubs: https://docs.lib.purdue.edu/cstech/1642

https://docs.lib.purdue.edu/cstech/1642

SCALING BYZANTINE FAULT-TOLERANT
REPLICATION TO WIDE AREA NETWORKS

Yair Amir, Claudiu Danilov
Danny Dolev, Jonathan Kirsch

John Lane, Cristina Nita-Rotaru
Josh Olsen, David Zage

CSD TR #05-029
December 2005

SCALING BYZANTINE FAULT·TOLERANT
REPLICATION TO WIDE AREA NETWORKS

Yair Amir, Claudiu Danilov
Danny Dolev, Jonathan Kirsch

John Lane, Cristina Nita-Rotaru
Josh Olsen, David Zage

CSD TR #05-029
December 2005

Scaling Byzantine Fault-Tolerant Replication to
Wide Area Networks

Yair Amir, Claudiu Danilov, Danny Dolev, Jonathan Kirsch, John Lane, Cristina Nita-Rotaru,
Josh Olsen, David Zage

Abstract

This paper presents the first hierarchical Byzantine tolerant replication architecture suitable to systems that span

multiple wide area sites. The architecture confines the effects of any malicious replica to its local site. reduces

message complexity of wide area communication, and allows read-only queries to be perfo~med locally within a

site for the price of additional hardware. A prototype implementation is evaluated over several network topologies

and is compared with a flat Byzantine tolerant approach.

Index Terms

Byzantine Fault Tolerance, Scalability, Wide Area Networks.

Contact Author
Yair Amir
Computer Science Department
Johns Hopkins University
3400 N. Charles Street
Baltimore, MD 2121 8, USA
email: yairamir@cs.jhu.edu
phone: 41 0-51 6-4803

Submission category: Regular Paper

Word count: 10,300

This work was supported in part by grant FA8750-04-2-0232 from the Defense Advanced Research Projects Agency.
Y. Amir, C. Danilov, J. Kirsch and J. Lane are with Johns Hopkins University, Baltimore, MD. tel: 410 516-5562, fax: 410 516-6134.

{yairamir, claudiu, jak, johnlane) @cs.jhu.edu. D. Dolev is with The Hebrew University of Jerusalem, Jerusalem, Israel. tel: +972 2-658-41 16,
fax: +972 2-5-70-90-40. dolev@cs.huji.ac.il. C. Nita-Rotaru, J. Olsen and D. Zage are with Purdue University, West Lafayette, IN. tel: 765
496-6757, fax: 765 496-3 181. {crisn, jolsen, zagedj)@cs.purdue.edu. This paper was cleared by the authors affiliations.

Scaling Byzantine Fault-Tolerant Replication to
Wide Area Networks

Yair Amir, Claudiu Danilov, Danny Dolev, Jonathan Kirsch, John Lane, Cristina Nita-Rotaru,
Josh Olsen, David Zage

Abstract

This paper presents the first hierarchical Byzantine tolerant replication architecture suitable 10 systems that span

multiple wide area sites. The architecture confines the effects of any malicious replica to its local site, reduces

message complexity of wide area communication, and allows read-only queries to be performed locally within a

site for the price of additional hardware. A prototype implementation is evaluated over several network topologies

and is compared with a flat Byzantine tolerant approach.

Index Terms

Byzantine Fault Tolerance, Scalability, Wide Area Networks.

Contact Author
Yair Amir
Computer Science Department
Johns Hopkins University
3400 N. Charles Street
Baltimore, MD 21218, USA
email: yairamir@cs.jhu.edu
phone: 410-516-4803

Submission category: Regular Paper

Word count:]0,300

This work was supported in part by grant FA8750-04-2-0232 from the Defense Advanced Research Projects Agency.
Y. Amir, C. Danilov, J. Kirsch and J. Lane are with Johns Hopkins University, Baltimore, MD. tel: 410 516-5562, fax: 410 516-6134.

{yairamir, c1audiu, jak, johnlane}@cs.jhu.edu. D. Dolev is with The Hebrew University of Jerusalem, Jerusalem, Israel. tel: +972 2-658-4116,
fax: +972 2-5-70-90-40. dolev@cs.huji.ac.il. C. Nita-Rotaru, J. Olsen and D. Zage are with Purdue University, West Lafayette, IN. tel: 765
496-6757, fax: 765 496-3181. {crisn. jolsen, zagedj}@cs.purdue.edu. This paper was cleared by the authors affiliations.

During the last few years, there has been considerable progress in the design of Byzantine tolerant replication

systems. The current state of the art protocols perform very well on small-scale systems that are usually confined to

local area networks. However, current solutions employ flat architectures that introduce several limitations: Message

complexity limits their ability to scale, and strong connectivity requirements limit their availability on wide area

networks that usually have lower bandwidth, higher latencies, and exhibit network partitions.

This paper presents Steward, the first hierarchical Byzantine tolerant replication architecture suitable for systems

that span multiple wide area sites, each consisting of several server replicas. Steward assumes no trusted component

in the entire system, other than a valid mechanism to pre-distribute privatelpublic keys.

Steward uses a Byzantine tolerant protocol within each site and a lightweight, benign fault tolerant protocol

among wide area sites. Each site, consisting of several potentially malicious replicas, is converted into a single

logical trusted participant in the wide area fault-tolerant protocol. Servers within a site run a Byzantine agreement

protocol to order operations locally, and agree upon the content of any message Ieavinz the site for the global

protocol.

Guaranteeing a consistent agreement within a site is not enough. The protocol needs to eliminate the ability of

malicious replicas to misrepresent decisions that took place in their site. To that end, messages between servers

at different sites carry a threshold signature attesting that enough servers at the originating site agreed with the

content of the message. Using threshold signatures allows Steward to save the space and computation associated

with sending and verifying multiple individual signatures. Moreover, it allows for a practical key management

scheme where servers need to know only a single public key for each remote site and not the individual public

keys of all remote servers.

The main benefits of our architecture are:

1) It reduces the message complexity on wide area exchanges from N~ (N being the total number of replicas

in the system) to S* (S being the number of wide area sites), considerably increasing the system's ability to

scale.

2) It confines the effects of any malicious replica to its local site, enabling the use of a benign fault-tolerant

algorithm over the wide area network. This improves the availability of the system over wide area networks

that are prone to partitions, as only a majority of connected sites is needed to make progress, compared with

at least 2 f + 1 servers (out of 3f + 1) in flat Byzantine architectures.

3) It allows read-only queries to be performed locally within a site, enabling the system to continue serving

read-only requests even in sites that are partitioned.

4) It enables a practical key management scheme where public keys of specific replicas need to be known only

I. INTRODUCTION

During the last few years, there has been considerable progress in the design of Byzantine tolerant replication

systems. The current state of the art protocols perform very well on small-scale systems that are usually confined to

local area networks. However, current solutions employ flat architectures that introduce several limitations: Message

complexity limits their ability to scale, and strong connectivity requirements limit their availability on wide area

networks that usually have lower bandwidth, higher latencies, and exhibit network partitions.

This paper presents Steward, the first hierarchical Byzantine tolerant replication architecture suitable for systems

that span multiple wide area sites, each consisting of several server replicas. Steward assumes no trusted component

in the entire system, other than a valid mechanism to pre-distribute private/public keys.

Steward uses a Byzantine tolerant protocol within each site and a lightweight, benign fault tolerant protocol

among wide area sites. Each site, consisting of several potentially malicious replicas, is converted into a single

logical trusted participant in the wide area fault-tolerant protocol. Servers within a site run a Byzantine agreement

protocol to order operations locally, and agree upon the content of any message leaving the site for the global

protocol.

Guaranteeing a consistent agreement within a site is not enough. The protocol needs to eliminate the ability of

malicious replicas to misrepresent decisions that took place in their site. To that end, messages between servers

at different sites carry a threshold signature attesting that enough servers at the originating site agreed with the

content of the message. Using threshold signatures allows Steward to save the space and computation associated

with sending and verifying multiple individual signatures. Moreover, it allows for a practical key management

scheme where servers need to know only a single public key for each remote site and not the individual public

keys of all remote servers.

The main benefits of our architecture are:

I) It reduces the message complexity on wide area exchanges from N 2 (N being the total number of replicas

in the system) to 52 (S being the number of wide area sites), considerably increasing the system's ability to

scale.

2) It confines the effects of any malicious replica to its local site, enabling the use of a benign fault-tolerant

algorithm over the wide area network. This improves the availability of the system over wide area networks

that are prone to partitions, as only a majority of connected sites is needed to make progress, compared with

at least 21 + 1 servers (out of 31 + 1) in flat Byzantine architectures.

3) It allows read-only queries to be performed locally within a site, enabling the system to continue serving

read-only requests even in sites that are partitioned.

4) It enables a practical key management scheme where public keys of specific replicas need to be known only

within their own site.

These benefits come with a price. If the requirement is to protect against any f Byzantine servers in the system,

Steward requires 3f + 1 servers in each site. However, in return, it is able to overcome up to f malicious servers

in each site.

Steward further optimizes the above approach based on the observation that not all messages associated with the

wide area fault-tolerant protocol require a complete Byzantine ordering agreement in the local site. A considerable

amount of these wide area messages require a much lighter local site step, reducing the communication and

computation cost on the critical path.

The paper demonstrates that the performance of Steward with 3f + 1 servers in each site is much better even

compared with a flat Byzantine architecture with a smaller system of 3 f + 1 total servers spread over the same wide

area topology. The paper further demonstrates that Steward exhibits performance comparable (though somewhat

lower) with common benign fault-tolerant protocols on wide area networks.

The Steward system is completely implemented and is currently undergoing a DARPA red-team experiment to

assess its practical survivability in the face of white-box attacks (where the red team has complete knowledge of

system design, access to its source code, and control of up to f replicas in each site). We hope to be able to report

on the insight gained from this activity in a final version of this paper.

The remainder of the paper is presented as follows. We provide a more detailed problem statement in Section 11.

We present our assumptions and the service model in Section 111. We describe our protocol, Steward, and provide

a sketch for a proof that it meets the specified safety and liveness properties. in Sections IV and V. We present

experimental results demonstrating the improved scalability of Steward on wide area networks in Section VI. We

discuss previous work in several related research areas in Section VII. We summarize our conclusions in Section

VIII.

Our work requires concepts from fault tolerance, Byzantine fault tolerance and threshold cryptography. To

facilitate the presentation of our protocol, Steward, we first provide an overview of three representative works

in these areas: Paxos, BFT and RSA Threshold Si, unatures.

Paxos: Paxos [I], [2] is a well-known fault-tolerant protocol that allows a set of distributed servers, exchanging

messages via asynchronous communication, to totally order client requests in the benign-fault, crash-recovery model.

One server, referred to as the leader, has the task of coordinating the protocol. If the leader crashes or becomes

unreachable, a new leader is elected. Paxos requires at least 2 f + 1 servers to tolerate f faulty servers. Since servers

are not Byzantine, only one reply needs to be delivered to the client.

2

within their own site.

These benefits come with a price. If the requirement is to protect against any f Byzantine servers in the system,

Steward requires 31 + 1 servers in each site. However, in return, it is able to overcome up to 1 malicious servers

in each site.

Steward further optimizes the above approach based on the observation that not aJJ messages associated with the

wide area fault-tolerant protocol require a complete Byzantine ordering agreement in the local site. A considerable

amount of these wide area messages require a much lighter local site step, reducing the communication and

computation cost on the critical path.

The paper demonstrates that the performance of Steward with 3f + 1 servers in each site is much better even

compared with a flat Byzantine architecture with a smaJJer system of 3f + 1 total servers spread over the same wide

area topology. The paper further demonstrates that Steward exhibits performance comparable (though somewhat

lower) with common benign fault-tolerant protocols on wide area networks.

The Steward system is completelY implemented and is currently undergoing a DARPA red-team experiment to

assess its practical survivability in the face of white-box attacks (where the red team has complete knowledge of

system design, access to its source code, and control of up to f replicas in each site). We hope to be able to report

on the insight gained from this activity in a final version of this paper.

The remainder of the paper is presented as foJJows. We provide a more detailed problem statement in Section II.

We present our assumptions and the service. model in Section III. We describe our protocol, Steward, and provide

a sketch for a proof that it meets the specified safety and liveness properties, in Sections IV and V. We present

experimental results demonstrating the improved scalability of Steward on wide area networks in Section VI. We

discuss previous work in several related research areas in Section VII. We summarize our conclusions in Section

VIII.

II. BACKGROUND

Our work requires concepts from fault tolerance, Byzantine fault tolerance and threshold cryptography. To

facilitate the presentation of our protocol, Steward, we first provide an overview of three representative works

in these areas: Paxos, BFT and RSA Threshold Signatures.

Paxos: Paxos [l], [2] is a well-known fault-tolerant protocol that aJJows a set of distributed servers, exchanging

messages via asynchronous communication, to totaJJy order client requests in the benign-fault, crash-recovery model.

One server, referred to as the leader, has the task of coordinating the protocol. If the leader crashes or becomes

unreachable, a new leader is elected. Paxos requires at least 2f + 1 servers to tolerate f faulty servers. Since servers

are not Byzantine, only one reply needs to be delivered to the client.

In the common case, in which a single leader exists and can communicate with a majority of servers, Paxos uses

two asynchronous communication rounds to globally order client updates. In the first round, Proposal, the leader

assigns a sequence number to a client update, and proposes this assignment to the rest of the servers. In the second

round, Accept, any server receiving the proposal assents to the assigned sequence number, or accepts the proposal,

by sending an acknowledgment to the rest of the servers. When a server receives a majority of acknowledgments

- indicating that a majority of servers have accepted the proposal - the server orders the corresponding update.

If the leader crashes or is partitioned away, the servers run a leader electio~z protocol to replace the old leader,

allowing progress to resume. The leader election protocol follows a similar two-round, proposal-accept pattern,

where the value proposed will be a new leader. The protocol associates a unique view number with the reign of a

leader (i.e. view) and defines a one-to-one mapping between the view number and the identifier of the server acting

as the leader in this view. The system proceeds through a series of views, with a view change occumng each time

a new leader is elected. Proposals are thus made in the context of a given view.

BFT: The BFT [3] protocol addresses the problem of replication in the Byzantine model where a number of

the servers can be compromised and exhibit arbitrary behavior. Similar to Paxos, BFT uses an elected leader to

coordinate the protocol, and proceeds through a series of views. BFT extends Paxos into the Byzantine environment

by using an additional round of communication in the common case to ensure consistency both in and across

views, and by constructing strong majorities in each round of the protocol. Specifically, BFT requires end-to-end

acknowledgments from 2f + 1 out of 3f + 1 servers to mask the behavior of f Byzantine servers. A client must

wait for f + 1 identical responses to be guaranteed that at least one correct server assented to the returned value.

In the common case, BFT uses three communication rounds: Pre-Prepare, Prepare and Commit. In the first

round, the leader assigns a sequence number to a client update and proposes this assignment to the rest of the

servers by multicasting a pre-prepare message to all servers. In the second round, a server accepts the proposed

assignment by sending an acknowledgment, prepare, to all servers. The first two communication rounds guarantee

that correct servers agree on a total order of the updates proposed within the same view. When a server receives

2f + 1 prepare messages with the same view number and sequence number as the pre-prepare, it begins the third

round, Commit, by multicasting a cornr~iit message to all servers. A server coinrnits the corresponding update when

it receives 2 f + 1 matching conirnit messages. The third communication round, in combination with the view change

protocol, ensures the total ordering of updates across views.

Threshold digital signatures: Threshold cryptography [4] distributes trust among a group of participants to

protect information (e.g. threshold secret sharing [5]) or computation (e.g. threshold digital signatures [6]). Threshold

schemes define a threshold parameter, k , such that any set of at least k (out of n) participants can work together

to perform a desired task (such as computing a digital signature), while any subset of fewer than k participants

3

In the common case, in which a single leader exists and can communicate with a majority of servers, Paxos uses

two asynchronous communication rounds to globally order client updates. In the first round, Proposal, the leader

assigns a sequence number to a client update, and proposes this assignment to the rest of the servers. In the second

round, Accept, any server receiving the proposal assents to the assigned sequence number, or accepts the proposal,

by sending an acknowledgment to the rest of the servers. When a server receives a majority of acknowledgments

- indicating that a majority of servers have accepted the proposal - the server orders the corresponding update.

If the leader crashes or is partitioned away, the servers run a leader election protocol to replace the old leader,

allowing progress to resume. The leader election protocol follows a similar two-round, proposal-accept pattern,

where the value proposed will be a new leader. The protocol associates a unique view number with the reign of a

leader (i.e. view) and defines a one-to-one mapping between the view number and the identifier of the server acting

as the leader in this view. The system proceeds through a series of views, with a view change occurring each time

a new leader is elected. Proposals are thus made in the context of a given view.

BFT: The BFT [3] protocol addresses the problem of replication in the Byzantine model where a number of

the servers can be compromised and exhibit arbitrary behavior. Similar to Paxos, BFT uses an elected leader to

coordinate the protocol, and proceeds through a series of views. BFT extends Paxos into the Byzantine environment

by using an additional round of communication in the common case to ensure consistency both in and across

views, and by constructing strong majorities in each round of the protocol. Specifically, BFT requires end-to-end

acknowledgments from Zf + lout of 3f + 1 servers to mask the behavior of f Byzantine servers. A client must

wait for f + 1 identical responses to be guaranteed that at least one correct server assented to the returned value.

In the common case, BFT uses three communication rounds: Pre-Prepare, Prepare and Commit. In the first

round, the leader assigns a sequence number to a client update and proposes this assignment to the rest of the

servers by multicasting a pre-prepare message to all servers. In the second round, a server accepts the proposed

assignment by sending an acknowledgment, prepare, to all servers. The first two communication rounds guarantee

that correct servers agree on a total order of the updates proposed within the same view. When a server receives

2f + 1 prepare messages with the same view number and sequence number as the pre-prepare, it begins the third

round, Commit, by multicasting a commit message to all servers. A server commits the corresponding update when

it receives 2f +1 matching commit messages. The third communication round, in combination with the view change

protocol, ensures the total ordering of updates across views.

Threshold digital signatures: Threshold cryptography [4] distributes trust among a group of participants to

protect information (e.g. threshold secret sharing [5]) or computation (e.g. threshold digital signatures [6]). Threshold

schemes define a threshold parameter, k, such that any set of at least k (out of n) participants can work together

to perform a desired task (such as computing a digital signature), while any subset of fewer than k participants

is unable to do so. In this way, threshold cryptography offers a tunable degree of fault-tolerance: in the benign

fault model, the system can function despite (n-k) faults, and in the Byzantine fault model, an adversary must

corrupt k participants to break the system. In particular, corrupting fewer than k participants yields no useful

information. There is a natural connection between Byzantine fault-tolerance and threshold cryptography, since

both distribute trust among participants and make assumptions about the number of honest participants required in

order to guarantee correctness.

A (k, n) threshold digital signature scheme allows a set of n servers to generate a digital signature as a single

logical entity despite f = (k - 1) Byzantine faults. In a (k, n) threshold digital signature scheme, a private key

is divided into n partial shares, each owned by a server, such that any set of k servers can pool their shares to

renerate a valid threshold signature, while any set of fewer than k servers is unable to do so. To sign a message
G

m, each server uses its share to generate a partial signature on m, and sends the partial signature to a combiner

server. The combiner combines the partial signatures into a threshold signature on m. The threshold signature is

verified in the standard way, using the public key corresponding to the divided private key. Shares can be changed

proactively [7], [8] without changing the public key, allowing for increased security and fault-tolerance, since an

adversary must compromise k partial shares within a certain time window to break the system.

Since the participants can be malicious, it is important to be able to verify that the partial signature provided by

any participant is valid - that is, it was generated with a share from the initial key split. This property, known as

verifiable secret sharing [9], guarantees the robustness [lo] of the threshold signature generation.

A representative example of practical threshold digital signature schemes is the RSA Shoup [6] scheme, which

allows participants to generate threshold signatures based on the standard RSA[11] digital signature. The scheme

defines a (k, n) RSA threshold signature scheme, and provides verifiable secret sharing. The computational overhead

of verifying that the partial signatures were generated using correct shares is significant. The resulting threshold

signature can be non-interactively verified using the same technique as the standard RSA signature.

111. SYSTEM MODEL A N D SERVICE GUARANTEES

In our model, servers are implemented as deterministic state machines. All correct servers begin in the same

initial state, and transition between the states by applying updates as they are ordered. The next state is completely

determined by the current state and the next update to be applied.

We assume a Byzantine fault model. Servers are classified as either correct or faulty. Correct servers do not

crash. Faulty servers may behave in an arbitrary manner, and may: exhibit two-faced behavior, fail to send messages,

collude with other faulty servers, etc.

Communication is asynchronous. Messages can be delayed, lost, or duplicated. Messages that do arrive are not

corrupted.

4

is unable to do so. In this way, threshold cryptography offers a tunable degree of fault-tolerance: in the benign

fault model, the system can function despite (n-k) faults, and in the Byzantine fault model, an adversary must

corrupt k participants to break the system. In particular, corrupting fewer than k participants yields no useful

information. There is a natural connection between Byzantine fault-tolerance and threshold cryptography, since

both distribute trust among participants and make assumptions about the number of honest participants required in

order to guarantee correctness.

A (k, n) threshold digital signature scheme allows a set of n servers to generate a digital signature as a single

logical entity despite J = (k - 1) Byzantine faults. In a (k, n) threshold digital signature scheme, a private key

is divided into n partial shares, each owned by a server, such that any set of k servers can pool their shares to

generate a valid threshold signature, while any set of fewer than k servers is unable to do so. To sign a message

m, each server uses its share to generate a partial signature on m, and sends the partial signature to a combiner

server. The combiner combines the partial signatures into a threshold signature on m. The threshold signature is

verified in the standard way, using the public key corresponding to the divided private key. Shares can be changed

proactively [7], [8] without changing the public key, allowing for increased security and fault-tolerance, since an

adversary must compromise k partial shares within a certain time window to break the system.

Since the participants can be malicious, it is important to be able to verify that the partial signature provided by

any participant is valid - that is, it was generated with a share from the initial key split. This property, known as

verifiable secret sharing [9], guarantees the robustness [10] of the threshold signature generation.

A representative example of practical threshold digital signature schemes is the RSA Shoup [6] scheme, which

allows participants to generate threshold signatures based on the standard RSA[11] digital signature. The scheme

defines a (k, n) RSA threshold signature scheme, and provides verifiable secret sharing. The computational overhead

of verifying that the partial signatures were generated using correct shares is significant. The resulting threshold

signature can be non-interactively verified using the same technique as the standard RSA signature.

III. SYSTEM MODEL AND SERVICE GUARANTEES

In our model, servers are implemented as deterministic state machines. All correct servers begin in the same

initial state, and transition between the states by applying updates as they are ordered. The next state is completely

determined by the current state and the next update to be applied.

We assume a Byzantine fault model. Servers are classified as either correct or faulty. Correct servers do not

crash. Faulty servers may behave in an arbitrary manner, and may: exhibit two-faced behavior, fail to send messages,

collude with other faulty servers, etc.

Communication is asynchronous. Messages can be delayed, lost, or duplicated. Messages that do arrive are not

corrupted.

Servers are organized into wide area sites. Each site has a unique identifier. Each server belongs to exactly one

site. The network may partition into multiple disjoint components, each containing one or more sites. During a

partition, servers from sites in different components are unable to communicate with each other. Components may

subsequently re-merge. Each site Si has at least 3 * (f i) + 1 servers, where f i is the maximum number of servers

that may be faulty within Si. For simplicity, we assume in what follows that all sites may have f faulty servers.

Clients are distinguished by unique identifiers. Clients send updates to servers within their local site and receive

responses from these servers. Each update is uniquely identified by a pair consisting of the identifier of the client that

generated the update and a unique, monotonically increasing logical timestamp. Clients propose updates sequentially:

a client may propose an update with timestamp i + 1 only after it receives a reply for an update with timestamp i.

We employ digital signatures, and we make use of a cryptographic hash function to compute message digests.

Client updates are properly authenticated and protected against modifications. We assume that all adversaries,

including faulty servers, are computationally bounded such that they cannot subvert these cryptographic mechanisms.

We also use a (k, n) threshold digital signature scheme. Each site has a public key, and each server receives a

share with the corresponding proof. The share can be used to generate a partial signature, and the proof can be

used to generate a verification proof that the partial signature was computed using a valid share. A valid threshold

signature representing the site is computed by using k partial signatures. We assume that the threshold scheme

guarantees that threshold signatures are unforgeable without knowing k or more secret shares.

Our protocol assigns global, monotonically increasing sequence numbers to updates to establish a global, total

order. Below we define the safety and liveness properties of the Steward protocol. We say that:

a client proposes an update when the client sends the update to a server in the local site.

a sewer initiates an update when, upon receiving the update from a client, the server forwards the update for

global ordering.

a sewer executes an update with sequence i when it applies the update to its state machine. A server executes

update i only after having executed all updates with a lower sequence in the global total order.

a site executes an update when some correct server in the site executes the update.

h-0 servers within a site are connected if they can communicate with no communication failures.

two sites are connected if every correct server of each site can communicate with every correct server of the

other site with no communication failures.

D E F ~ N ~ T ~ O N 3.1: S1 - SAFETY: If two correct servers execute the ith update, then these updates are identical.

D E F I N I T ~ O N 3.2: S2 - VALIDITY: Only an update that was proposed by a client (and subsequently initiated by

a server) may be executed.

DEFINITION 3.3: GLI - GLOBAL PROGRESS: If there exists a set of a majority of sites, each consisting of at

5

Servers are organized into wide area sites. Each site has a unique identifier. Each server belongs to exactly one

site. The network may partition into multiple disjoint components, each containing one or more sites. During a

partition, servers from sites in different components are unable to communicate with each other. Components may

subsequently re-merge. Each site Si has at least 3 * (Ii) + 1 servers, where Ii is the maximum number of servers

that may be faulty within Si. For simplicity, we assume in what follows that all sites may have I faulty servers.

Clients are distinguished by unique identifiers. Clients send updates to servers within their local site and receive

responses from these servers. Each update is uniquely identified by a pair consisting of the identifier of the client that

generated the update and a unique, monotonically increasing logical timestamp. Clients propose updates sequentially:

a client may propose an update with timestamp i + 1 only after it receives a reply for an update with timestamp i.

We employ digital signatures, and we make use of a cryptographic hash function to compute message digests.

Client updates are properly authenticated and protected against modifications. We assume that all adversaries,

including faulty servers, are computationally bounded such that they cannot subvert these cryptographic mechanisms.

We also use a (k, n) threshold digital signature scheme. Each site has a public key, and each server receives a

share with the corresponding proof. The share can be used to generate a partial signature, and the proof can be

used to generate a verification proof that the partial signature was computed using a valid share. A valid threshold

signature representing the site is computed by using k partial signatures. We assume that the threshold scheme

guarantees that threshold signatures are unforgeable without knowing k or more secret shares.

Our protocol assigns global, monotonically increasing sequence numbers to updates to establish a global, total

order. Below we define the safety and liveness properties of the Steward protocol. We say that:

• a client proposes an update when the client sends the update to a server in the local site.

• a server initiates an update when, upon receiving the update from a client, the server forwards the update for

global ordering.

• a server executes an update with sequence i when it applies the update to its state machine. A server executes

update i only after having executed all updates with a lower sequence in the global total order.

• a site executes an update when some correct server in the site executes the update.

• fYvo servers within a site are connected if they can communicate with no communication failures.

• fWo sites are connected if every correct server of each site can communicate with every correct server of the

other site with no communication failures.

DEFINITION 3.1: S 1 - SAFETY: If two correct servers execute the i th update, then these updates are identical.

DEFINlTlON 3.2: S2 - VALJDlTY: Only an update that was proposed by a client (and subsequently initiated by

a server) may be executed.

DEFINITION 3.3: GLJ - GLOBAL PROGRESS: If there exists a set of a majority of sites, each consisting of at

least 2f + 1 correct, connected servers, and a time after which all sites in the set are connected, then if a client

connected to a site in the set proposes an update, some site in the set eventually executes the update.

IV. PROTOCOL DESCRIPTION

Steward leverages a hierarchical architecture to scale Byzantine replication to the high-latency, low-bandwidth

links characteristic of wide area networks. It employs more costly Byzantine fault-tolerant protocols within a site,

confining Byzantine behavior to a site and allowing a more lightweight, fault-tolerant protocol to be run among

sites. This results in fewer messages and communication rounds on the wide area compared to a flat Byzantine

solution. The price is the need to have enough hardware within a site to overcome f malicious servers.

A site is made to behave as a single logical participant in the wide area fault-tolerant protocol through a

combination of Byzantine agreement and threshold digital signatures. The servers within a site agree upon the

content of any message leaving the site, and then construct a threshold signature on the message to prevent a

malicious server from misrepresenting the site. One server in each site, referred to as the representative, coordinates

the internal agreement and threshold signing protocols within the site. The representative of one site, referred to as

the leading site, coordinates the wide area agreement protocol. If the representative of a site acts maliciously, the

servers of that site will elect a new representative. If the leading site is partitioned away, the servers in the other

sites will elect a new leading site.

At a higher level, Steward uses a wide area Paxos-like algorithm to globally order updates. However, the entities

participating in our protocol are not single trusted participants like i n Paxos. Each site entity in our wide area

protocol is composed of a set of potentially malicious servers. Steward employs several intra-site protocols as

building blocks at each site, to emulate a correct Paxos participant in each of the wide area algorithm steps, based

on need. For example, the leader participant in Paxos unilaterally assigns a unique sequence number to an update.

Instead, Steward uses an intra-site protocol that employs a BFT-like mechanism to assign a global sequence number

in agreement with the servers inside the leading site. The leading site will need to present to other sites a proof that

the sequence indeed was assigned. Steward uses a different intra-site protocol to threshold-sign the Paxos proposal

message demonstrating that f + 1 correct servers in the leading site agreed to that global sequence number. The

same threshold signature intra-site protocol is used to issue Paxos-like acknowledgments in non-leader sites.

In addition, Steward uses intra-site protocols that serve for Byzantine election of the new represeiztative inside

each site, as well as for proposing a new leading site.

The intra-site protocols used by Steward are as follows:

. THRESHOLD-SIGN: this protocol signs a message with a threshold signature composed of 2 f + 1 shares, within

a site. After executing this protocol, every correct process has a message that was signed with a threshold

signature composed of 2 f + 1 shares.

6

least 21 + 1 correct, connected servers, and a time after which all sites in the set are connected, then if a client

connected to a site in the set proposes an update, some site in the set eventually executes the update.

IV. PROTOCOL DESCRIPTION

Steward leverages a hierarchical architecture to scale Byzantine replication to the high-latency, low-bandwidth

links characteristic of wide area networks. It employs more costly Byzantine fault-tolerant protocols within a site,

confining Byzantine behavior to a site and allowing a more lightweight, fault-tolerant protocol to be run among

sites. This results in fewer messages and communication rounds on the wide area compared to a flat Byzantine

solution. The price is the need to have enough hardware within a site to overcome 1 malicious servers.

A site is made to behave as a single logical participant in the wide area fault-tolerant protocol through a

combination of Byzantine agreement and threshold digital signatures. The servers within a site agree upon the

content of any message leaving the site, and then construct a threshold signature on the message to prevent a

malicious server from misrepresenting the site. One server in each site, referred to as the representative, coordinates

the internal agreement and threshold signing protocols within the site. The representative of one site, referred to as

the leading site, coordinates the wide area agreement protocol. If the representative of a site acts maliciously, the

servers of that site will elect a new representative. If the leading site is partitioned away, the servers in the other

sites will elect a new leading site.

At a higher level, Steward uses a wide area Paxos-like algorithm to globally order updates. However, the entities

participating in our protocol are not single trusted participants like in Paxos. Each site entity in our wide area

protocol is composed of a set of potentially malicious servers. Steward employs several intra-site protocols as

building blocks at each site, to emulate a correct Paxos participant in each of the wide area algorithm steps, based

on need. For example, the leader participant in Paxos unilaterally assigns a unique sequence number to an update.

Instead, Steward uses an intra-site protocol that employs a BFT-like mechanism to assign a global sequence number

in agreement with the servers inside the leading site. The leading site will need to present to other sites a proof that

the sequence indeed was assigned. Steward uses a different intra-site protocol to threshold-sign the Paxos proposal

message demonstrating that 1 + 1 correct servers in the leading site agreed to that global sequence number. The

same threshold signature intra-site protocol is used to issue Paxos-like acknowledgments in non-leader sites.

In addition, Steward uses intra-site protocols that serve for Byzantine election of the new representative inside

each site, as well as for proposing a new leading site.

The intra-site protocols used by Steward are as follows:

• THRESHOLD-SIGN: this protocol signs a message with a threshold signature composed of 21 + 1 shares, within

a site. After executing this protocol, every correct process has a message that was signed with a threshold

signature composed of 21 + 1 shares.

ASSIGN-SEQUENCE: this protocol assigns a sequence number to an update received within a site, in the case

when the representative is not suspected, and no internal view change takes place. It is invoked at the leading

sire to assign a unique sequence number to an update such that at least f + 1 correct servers will agree on the

sequence number.

PROPOSE-LEADER-SITE: this protocol is used to generate an agreement inside a site regarding which wide

area site should be the next leading site in the global ordering protocol.

CONSTRUCT-COLLECTIVE-STATE: this protocol provides reconciliation during a view change and generates a

message describing the current state of the site, as agreed by at least f + 1 correct servers inside the site.

Below we provide a short description of the common case of operation of Steward, the view changes algorithms,

the timers used by our protocols, and the inter-dependency between the global protocol and intra-site timeouts. A

complete pseudocode of all protocols used by Steward can be found in [12].

A. Tlze Co~nmon Case

During the common case, global progress is made and no leading site or site representative election occurs. The

common case works as follows:

1) A client located at some site sends an update to a server in its local site. This server forwards the update to

the local represenrative.

2) The local representative forwards the update to the representative of the leading site.

3) The representative of the leading site initiates a Byzantine agreement protocol within the site to assign a

global sequence number to the update; this assignment is encapsulated in a proposal message. The site then

generates a threshold digital signature on the constructed proposal, and the representative sends the signed

proposal to all other sites for global ordering.

4) Upon receiving a signed proposal, the representative of each site initiates the process of generating a site

acknowledgment (accept), and then sends the acknowledgment signed with a threshold signature to the

representative of all other sites.

5) The representative of each site forwards the incoming accept messages to all local servers. A server globally

orders the update when it receives signed accepts from a majority of sites. The server at the client's local

site that originally received the update sends a reply back to the client.

6) If the client does not receive a reply to its update within a certain amount of time, it resends the update, this

time broadcasting it to all servers at its site.

All site-originated messages that are sent as part of the fault-tolerant global protocol, require threshold digital

signatures so that they may be trusted by other sites.

7

• ASSIGN-SEQUENCE: this protocol assigns a sequence number to an update received within a site, in the case

when the representative is not suspected, and no internal view change takes place. It is invoked at the leading

site to assign a unique sequence number to an update such that at least f + 1 correct servers will agree on the

sequence number.

• PROPOSE-LEADER-SITE: this protocol is used to generate an agreement inside a site regarding which wide

area site should be the next leading site in the global ordering protocol.

• CONSTRUCT-COLLECTIVE-STATE: this protocol provides reconciliation during a view change and generates a

message describing the current state of the site, as agreed by at least f + 1 correct servers inside the site.

Below we provide a short description of the common case of operation of Steward, the view changes algorithms,

the timers used by our protocols, and the inter-dependency between the global protocol and intra-site timeouts. A

complete pseudocode of all protocols used by Steward can be found in [12].

A. The Common Case

During the common case, global progress is made and no leading site or site representative election occurs. The

common case works as follows:

1) A client located at some site sends an update to a server in its local site. This server forwards the update to

the local representative.

2) The local representative forwards the update to the representative of the leading site.

3) The representative of the leading site initiates a Byzantine agreement protocol within the site to assign a

global sequence number to the update; this assignment is encapsulated in a proposal message. The site then

generates a threshold digital signature on the constructed proposal, and the representative sends the signed

proposal to all other sites for global ordering.

4) Upon receiving a signed proposal, the representative of each site initiates the process of generating a site

acknowledgment (accept), and then sends the acknowledgment signed with a threshold signature to the

representative of all other sites.

5) The representative of each site forwards the incoming accept messages to all local servers. A server globally

orders the update when it receives signed accepts from a majority of sites. The server at the client's local

site that originally received the update sends a reply back to the client.

6) If the client does not receive a reply to its update within a certain amount of time, it resends the update, this

time broadcasting it to all servers at its site.

All site-originated messages that are sent as part of the fault-tolerant global protocol, require threshold digital

signatures so that they may be trusted by other sites.

The THRESHOLD-SIGN intra-site protocol generates a (2f+l, 3f+l) threshold signature on a given message. As

described in Section 11, each server is assumed to have a partial share and a proof that the share was obtained from

the initial secret (i.e. private key). Upon invoking the protocol on a message to be signed, the server generates a

partial signature on this message. In addition, the server constructs a verification proof that can be used to confirm

that the partial signature was indeed created using a valid share. Both the partial signature and the verification proof

are sent to all servers within the site.

Upon receiving 2f+l partial signatures on a message, a server combines the partial signatures into a threshold

signature on that message. The constructed signature is then verified using the site's public key (RSA verification).

If the signature verification fails, then one or more partial signatures used in the combination were invalid, in

which case the verification proofs provided with the partial signatures are used to identify incorrect shares; the

corresponding servers are classified as malicious. The invalid shares serve as proof of corruption and can be

broadcast to all local servers. Further messages from the corrupted servers are ignored.

Once the representative of the leading site receives an update from a client (either local or forwarded by the

representative of a different site), i t assigns a sequence number to this update by creating a proposal message that

will then be sent to all other sites. The sequence number is assigned in agreement with other correct servers inside

the site, masking the Byzantine behavior of malicious servers. The ASSIGN-SEQUENCE intra-site protocol is used

for this purpose. The protocol consists of three rounds, the first two of which are similar to the corresponding

rounds of the BFT protocol: the site representative proposes an assignment by sending a pre-prepare message to

all servers within the site. Any server receiving the pre-prepare message sends to all servers a prepare message as

acknowledgment that it accepts the representative's proposal. At the end of the second round, any server that has

received 2f prepare messages, in addition to the pre-prepare, for the same view and sequence number, invokes the

THRESHOLD-SIGN intra-site protocol to generate a threshold signature on the representative's proposal.

Upon completion of the ASSIGN-SEQUENCE protocol, the representative sends the proposal message for global

ordering on the wide area to the representatives of all other sites.

Each site's representative receiving the proposal message forwards it to the other servers inside the site, and

invokes the THRESHOLD-SIGN protocol to generate an acknowledgment (accept) of the proposal. The representative

of the site then sends back the threshold signed accept message to the representatives of all other sites. Each

represe~ltative will forward the accepr message locally to all servers inside their site. A server within a site globally

orders the update when i t receives accept messages from a majority of sites.

B. Mew Changes

The above protocol describes the common-case operation of Steward. However, several types of failure may

occur during system execution, such as the corruption of one or more site representatives, or the partitioning of the

8

The THRESHOLD-SIGN intra-site protocol generates a (2f+1, 3f+ I) threshold signature on a given message. As

described in Section II, each server is assumed to have a partial share and a proof that the share was obtained from

the initial secret (i.e. private key). Upon invoking the protocol on a message to be signed, the server generates a

partial signature on this message. In addition, the server constructs a verification proof that can be used to confirm

that the partial signature was indeed created using a valid share. Both the partial signature and the verification proof

are sent to all servers within the site.

Upon receiving 2f+ I partial signatures on a message, a server combines the partial signatures into a threshold

signature on that message. The constructed signature is then verified using the site's public key (RSA verification).

If the signature verification fails, then one or more partial signatures used in the combination were invalid, in

which case the verification proofs provided with the partial signatures are used to identify incorrect shares; the

corresponding servers are classified as malicious. The invalid shares serve as proof of corruption and can be

broadcast to all local servers. Further messages from the corrupted servers are ignored.

Once the representative of the leading site receives an update from a client (either local or forwarded by the

representative of a different site), it assigns a sequence number to this update by creating a proposal message that

will then be sent to all other sites. The sequence number is assigned in agreement with other correct servers inside

the site, masking the Byzantine behavior of malicious servers. The ASSIGN-SEQUENCE intra-site protocol is used

for this purpose. The protocol consists of three rounds, the first two of which are similar to the corresponding

rounds of the BFT protocol: the site representative proposes an assignment by sending a pre-prepare message to

all servers within the site. Any server receiving the pre-prepare message sends to all servers a prepare message as

acknowledgment that it accepts the representative's proposal. At the end of the second round, any server that has

received 2f prepare messages, in addition to the pre-prepare, for the same view and sequence number, invokes the

THRESHOLD-SIGN intra-site protocol to generate a threshold signature on the representative's proposal.

Upon completion of the ASSIGN-SEQUENCE protocol, the representative sends the proposal message for global

ordering on the wide area to the representatives of all other sites.

Each site's representative receiving the proposal message forwards it to the other servers inside the site, and

invokes the THRESHOLD-SIGN protocol to generate an acknowledgment (accept) of the proposal. The representative

of the site then sends back the threshold signed accept message to the representatives of all other sites. Each

representative will forward the accept message locally to all servers inside their site. A server within a site globally

orders the update when it receives accept messages from a majority of sites.

B. View Changes

The above protocol describes the common-case operation of Steward. However, several types of failure may

occur during system execution, such as the corruption of one or more site representatives, or the partitioning of the

leader site. Such failures require delicate handling to preserve both safety and liveness.

If the representative of a site is faulty, the correct members of the site select a new representative by running

a local view change protocol, after which progress can resume. The local view change algorithm preserves safety

across views, even if consecutive representatives are malicious. Similarly, the leading site that coordinates the global

ordering between the wide area sites can be perceived as faulty if no global progress is made. In this case, a global

view change occurs. View changes are triggered by timeouts, as described in Section IV-C

Each server maintains a local view number and a global view number. The local view number maps to the

identifier of the server's current site representative, while the global view number maps to the identifier of the wide

area leader site. The local and global view change protocols update the server's corresponding view numbers.

We first introduce the CONSTRUCT-COLLECTIVE-STATE intra-site protocol, which is used as a building block in

both the local and global view change protocols.

The CONSTRUCT-COLLECTIVE-STATE protocol generates a message describing the current state of a site, as

agreed by at least f + 1 correct servers within the site. The constructed message is referred to as a union message.

The representative of a site invokes the protocol by sending a sequence number to all servers inside the site. Upon

receiving the invocation message, all servers send to the representative a message containing updates they have

ordered and/or acknowledged with a higher sequence number than the representative's number. The representative

computes a union on the contents of 2 f + 1 of these messages, eliminating duplicates and using the latest update

for a given sequence number if conflicts exist. The representative packs the contents of the union into a message -
and sends the message to all servers in the site. Upon receiving such a union message, each server updates its own

state with missing updates as needed, generates a partial signature on the message, and sends the signed message

to all servers within the site. A server then combines 2 f + 1 such partial signatures into a single message that

represents the updates that the site ordered or acknowledged above the original sequence number.

Local view change: The local view change protocol is similar to the one described in [3]. It elects a new site

representative and guarantees that correct servers cannot be made to violate previous safety constraints.

The protocol is invoked when a server at some site observes that global progress has not been made within a

timeout period, and is used at both the leading sire and non-leader sites. A server that suspects the representative is

faulty increases its local view number and sends to all local servers a newrepresentative message, which contains

the proposed view number. Individual servers increase their proposed local view in a way similar to [3]. Upon

receiving a set of 2f + 1 newgepresenrarive messages proposing the same view number (and, implicitly, a new

representative), the new representative computes the sequence number of the highest update ordered, such that all

updates with lower sequence numbers were ordered. We call this sequence number "ARU" (All Received Up-to).

The new representative then invokes the CONSTRUCT-COLLECTIVE-STATE protocol based on its ARU. Finally, the

9

leader site. Such failures require delicate handling to preserve both safety and liveness.

If the representative of a site is faulty, the correct members of the site select a new representative by running

a local view change protocol, after which progress can resume. The local view change algorithm preserves safety

across views, even if consecutive representatives are malicious. Similarly, the leading site that coordinates the global

ordering between the wide area sites can be perceived as faulty if no global progress is made. In this case, a global

view change occurs. View changes are triggered by timeouts, as described in Section IV-C

Each server maintains a local view number and a global view number. The local view number maps to the

identifier of the server's current site representative, while the global view number maps to the identifier of the wide

area leader site. The local and global view change protocols update the server's corresponding view numbers.

We first introduce the CONSTRUCT-COLLECTIVE-STATE intra-site protocol, which is used as a building block in

both the local and global view change protocols.

The CONSTRUCT-COLLECTIVE-STATE protocol generates a message describing the current state of a site, as

agreed by at least f + 1 correct servers within the site. The constructed message is referred to as a union message.

The representative of a site invokes the protocol by sending a sequence number to all servers inside the site. Upon

receiving the invocation message, all servers send to the representative a message containing updates they have

ordered and/or acknowledged with a higher sequence number than the representative's number. The representative

computes a union on the contents of 2f + 1 of these messages, eliminating duplicates and using the latest update

for a given sequence number if conflicts exist. The representative packs the contents of the union into a message

and sends the message to all servers in the site. Upon receiving such a union message, each server updates its own

state with missing updates as needed, generates a partial signature on the message, and sends the signed message

to all servers within the site. A server then combines 2f + 1 such partial signatures into a single message that

represents the updates that the site ordered or acknowledged above the original sequence number.

Local view change: The local view change protocol is similar to the one described in [3]. It elects a new site

representative and guarantees that correct servers cannot be made to violate previous safety constraints.

The protocol is invoked when a server at some site observes that global progress has not been made within a

timeout period, and is used at both the leading site and non-leader sites. A server that suspects the representative is

faulty increases its local view number and sends to all local servers a new-representative message, which contains

the proposed view number. Individual servers increase their proposed local view in a way similar to [3]. Upon

receiving a set of 2f + 1 newJepresentative messages proposing the same view number (and, implicitly, a new

representative), the new representative computes the sequence number of the highest update ordered, such that all

updates with lower sequence numbers were ordered. We call this sequence number "ARU" (All Received Up-to).

The new representative then invokes the CONSTRUCT-COLLECTIVE-STATE protocol based on its ARU. Finally, the

new representative invokes the ASSIGN-SEQUENCE protocol to replay all pending updates that it learned from the

signed union message.

Global view change: In the global view change protocol, wide area sites exchange messages to elect a new

leading site if the current one is suspected to be faulty (partitioned away or with fewer than 2 f + 1 correct servers).

Each site runs an intra-site protocol, PROPOSE-LEADER-SITE, to generate a threshold-signed message containing

the global view number that the site has agreed to propose.

The PROPOSE-LEADER-SITE protocol is invoked in a distributed fashion. Upon suspecting that the leading site

is faulty, a server within a site increases its global view number and generates a partial signature on a message

that proposes the new view. Upon receiving 2f + 1 partial signatures for the same global view number, the local

representative combines the shares to construct the site's proposal. To ensure liveness, a server already suspects

the leading site , and that receives f + 1 partial signatures refening to global view numbers higher than its own,

updates its global view number to the smallest value of the f + 1 view numbers, and sends a corresponding partial

signature to the other servers in the site.

If enough servers in a site invoke the PROPOSE-LEADER-SITE protocol, the representative of that site will issue the

resultant threshold-signed newleadingsite message that contains the identifier of that site and the proposed global

view number. When the representativeof the new leading site receives a majority of such messages proposing

the same global view, it starts a local reconciliation protocol by invoking the CONSTRUCT-COLLECTIVE-STATE

protocol on its own ARU. We call the highest sequence of an ordered update in the resulting union message, below

which all lower sequence numbers are ordered, "Site ARU". The representative of the new leading site invokes

the THRESHOLD-SIGN protocol on a message containing the Site ARU, and sends the resulting threshold-signed

message to the representatives of all other sites. Based on the Site ARU received, the representatives of the non-

leader sites invoke the CONSTRUCT-COLLECTIVE-STATE protocol and send the resultant union message back to

the representative of the new leading site. A set of union messages from a majority of sites is used by servers in

the leading site to constrain the messages they will generate in the new view so that safety is preserved.

Steward relies on timeouts to detect problems with the representatives in different sites or with the leading site.

Our protocols do not assume synchronized clocks; however, we do assume that the rate of the clocks at different

servers is reasonably close. We believe that this assumption is valid considering today's technology. Below we

provide details about the timeouts in our protocol.

Local representative (TI): This timeout expires at a server of a non-leading site to replace the representative

once no (global) progress takes place for that period of time. Once the timeout expires at f + 1 servers, the local

10

new representative invokes the ASSIGN-SEQUENCE protocol to replay all pending updates that it learned from the

signed union message.

Global view change: In the global view change protocol, wide area sites exchange messages to elect a new

leading site if the current one is suspected to be faulty (partitioned away or with fewer than 21 + 1 correct servers).

Each site runs an intra-site protocol, PROPOSE-LEADER-SITE, to generate a threshold-signed message containing

the global view number that the site has agreed to propose.

The PROPOSE-LEADER-SITE protocol is invoked in a distributed fashion. Upon suspecting that the leading site

is faulty, a server within a site increases its global view number and generates a partial signature on a message

that proposes the new view. Upon receiving 21 + 1 partial signatures for the same global view number, the local

representative combines the shares to construct the site's proposal. To ensure liveness, a server already suspects

the leading site, and that receives 1 + 1 partial signatures referring to global view numbers higher than its own,

updates its global view number to the smallest value of the 1+ 1 view numbers, and sends a corresponding partial

signature to the other servers in the site.

If enough servers in a site invoke the PROPOSE- LEADER-SITE protocol, the representative of that site will issue the

resultant threshold-signed newJeading -.Site message that contains the identifier of that site and the proposed global

view number. When the representativeof the new leading site receives a majority of such messages proposing

the same global view, it starts a local reconciliation protocol by invoking the CONSTRUCT-COLLECTIVE-STATE

protocol on its own ARU. We call the highest sequence of an ordered update in the resulting union p1essage, below

which all lower sequence numbers are ordered, "Site ARU". The representative of the new leading site invokes

the THRESHOLD-SIGN protocol on a message containing the Site ARU, and sends the resulting threshold-signed

message to the representatives of all other sites. Based on the Site ARU received, the representatives of the non

leader sites invoke the CONSTRUCT-COLLECTIVE-STATE protocol and send the resultant union message back to

the representative of the new leading site. A set of union messages from a majority of sites is used by servers in

the leading site to constrain the messages they will generate in the new view so that safety is preserved.

C. Timeouts

Steward relies on timeouts to detect problems with the representatives in different sites or with the leading site.

Our protocols do not assume synchronized clocks; however, we do assume that the rate of the clocks at different

servers is reasonably close. We believe that this assumption is valid considering today's technology. Below we

provide details about the timeouts in our protocol.

Local representative (Tl): This timeout expires at a server of a non-leading site to replace the representative

once no (global) progress takes place for that period of time. Once the timeout expires at 1 + 1 servers, the local

view change protocol takes place. TI should be higher than 3 times the wide area network round-trip to allow a

potential global view change protocol to complete without changing the local representative.

Leading sire representative (T2): This timeout expires at a server at the leading site to replace the representative

once no (global) progress takes place for that period of time. T2 should be large enough to allow the representative to

communicate with a majority of the sites. Specifically, since not all sites may be lined up with correct representatives

at the same time, T2 should be chosen such that each site can replace its representatives until a correct one will

communicate with the leading site; the site needs to have a chance to replace f + 1 representatives within the T2

time period. Thus, we need that 7'2 >(f+2)*maxTl, where rnaxTl is an estimate of the largest T1 at any site.

The (f + 2) covers the possibility that when the leader site elects a representative, the TI timer is already running

at other sites.

Leading site (T3): This timeout expires at a site to replace the leading site once no (global) progress takes place

for that period of time. Since we choose T2 to ensure a single communication round with every site, and since the

leading site needs at least 3 rounds to prove progress, in the worse case, the leading site must have a chance to

elect 3 correct representatives to show progress, before being replaced. Thus, we need T 3 = (f + 3)T2.
Client timer (TO): This timeout expires at the client, triggerins it to inquire the status of its last update by

interacting with various servers at the site. TO can have an arbitrary value.

Timeouts managenzenr: Servers send their timers estimation (TI, T2) on global view change messages. The

site representative disseminates the f + 1st highest value (the value for which f higher or equal values exist) to

prevent the faulty servers from injecting wrong estimates. Potentially, timers can be exchanged as part of local

view change messages as well. The leading site representative chooses the maximum timer of all sites with which

communicates to determine T2 (which in turn determines T3). Servers estimate the network round-trip according

to various interactions they have had. They can reduce the value if communication seems to improve.

In this section we provide a sketch of the proof that our algorithm provides safety and liveness; the complete

proof can be found in [I 21.

Safety: The safety property requires that if two correct servers execute the ith update, then these updates

are identical. Intuitively, this property is preserved by the ASSIGN-SEQUENCE protocol and by the reconciliation

mechanism implemented by the CONSTRUCT-COLLECTlVE-STATE protocol invoked after a view change (either local

or global). By requiring 2f + 1 servers to agree on any message within a site, the ASSIGN-SEQUENCE protocol

guarantees that at least f + 1 correct servers assented to the proposed sequence number. By using 2f + 1 shares to

compute the threshold signature for any message that leaves a site, it ensures that any future set of 2 f + 1 servers

will contain at least one correct server that assented to the proposal. This guarantees that the site will not "forget"

II

view change protocol takes place. Tl should be higher than 3 times the wide area network round-trip to allow a

potential global view change protocol to complete without changing the local representative.

Leading site representative (T2): This timeout expires at a server at the leading site to replace the representative

once no (global) progress takes place for that period of time. T2 should be large enough to allow the representative to

communicate with a majority of the sites. Specifically, since not all sites may be lined up with correct representatives

at the same time, T2 should be chosen such that each site can replace its representatives until a correct one will

communicate with the leading site; the site needs to have a chance to replace f + 1 representatives within the T2

time period. Thus, we need that 1'2 >(f+2)*maxT1, where maxT1 is an estimate of the largest Tl at any site.

The (f + 2) covers the possibility that when the leader site elects a representative, the Tl timer is already running

at other sites.

Leading site (T3): This timeout expires at a site to replace the leading site once no (global) progress takes place

for that period of time. Since we choose T2 to ensure a single communication round with every site, and since the

leading site needs at least 3 rounds to prove progress, in the worse case, the leading site must have a chance to

elect 3 correct representatives to show progress, before being replaced. Thus, we need 1'3 = (f + 3)1'2.

Client timer (TO): This timeout expires at the client, triggering it to inquire the status of its last update by

interacting with various servers at the site. TO can have an arbitrary value.

Timeouts management: Servers send their timers estimation (Tl, T2) on global vIew change messages. The

site representative disseminates the f + 1st highest value (the value fQr which f higher or equal values exist) to

prevent the faulty servers from injecting wrong estimates. Potentially, timers can be exchanged as part of local

view change messages as well. The leading site representative chooses the maximum timer of all sites with which

communicates to determine T2 (which in tum determines T3). Servers estimate the network round-trip according

to various interactions they have had. They can reduce the value if communication seems to improve.

V. CORRECTNESS

In this section we provide a sketch of the proof that our algorithm provides safety and liveness; the complete

proof can be found in [12].

Safety: The safety property requires that if two correct servers execute the i th update, then these updates

are identical. Intuitively, this property is preserved by the ASSIGN-SEQUENCE protocol and by the reconciliation

mechanism implemented by the CONSTRUCT-COLLECTIVE-STATE protocol invoked after a view change (either local

or global). By requiring 2f + 1 servers to agree on any message within a site, the ASSIGN-SEQUENCE protocol

guarantees that at least f + 1 correct servers assented to the proposed sequence number. By using 2f + 1 shares to

compute the threshold signature for any message that leaves a site, it ensures that any future set of 2f + 1 servers

will contain at least one correct server that assented to the proposal. This guarantees that the site will not "forget"

that i t acknowledged the proposal should a view change occur, preventing a conflict to happen. Finally, by requiring

a majority of site acknowledgments to globally order an update, the protocol guarantees that any intersection will

contain a site from the previous majority.

Liveness: To guarantee liveness, Steward must ensure that servers move to a new local or global view when no

progress takes place. By requiring a set of 2 f + 1 servers to initiate a local view change, the local view change

protocol guarantees that faulty replicas cannot create instability and prevent progress in the system by forcing

frequent local view changes. The representative can cause view changes by malicious actions, but then a different

representative will replace it. Since there are at most f faulty replicas in a site, after at most f + 1 local view

changes it is guaranteed that the site will have a correct representative.

In addition, by requiring a set of 2 f + 1 servers to initiate a proposal for a global view change, the global view

change algorithm prevents a malicious server from causing frequent global view changes.

A critical component that guarantees global liveness is the selection and management of timeout values, as

described in Section IV-C. The timeout values guarantee that the correct representative at the leading site has

enough time to communicate with a correct representative at each site before it is replaced. Note that this requires

that the correct representative at the leading site will need to stay valid long enough to allow up to f + 1 complete

view changes to occur in non-leading sites.

VI. PERFORMANCE EVALUATION

To evaluate the performance of our hierarchical Byzantine replication architecture, we implemented a complete

prototype of our protocol including all the necessary communication and cryptographic functionality. In this paper

we focus only on the networking and cryptographic aspects of our protocols, and do not consider disk writes.

Testbed and Network Setup: We selected a network topology consisting of 5 wide area sites, assuming that

there can be at most 5 Byzantine faults in each site, in order to quantify the performance of our system in a realistic

scenario. This requires 16 replicated servers in each site.

Our architecture uses RSA threshold signatures [6] to represent an entire site within a single trusted message sent

on the wide area network, thus trading computational power for wide area bandwidth and latency, in the number of

wide area crossings. We believe this tradeoff is realistic considering the current technology trend: end-to-end wide

area bandwidth is slow to improve, while latency reduction of wide area links is limited by the speed of light.

Our experimental testbed consists of a cluster with twenty 3.2GHz Intel Xeon computers, all of them having

a 64-bit architecture. On these computers, a 1024 bit RSA signature can be computed in 1.3 msec and can be

verified in 0.07 msec. The leader site was deployed on 16 of the machines, and the other 4 sites were emulated by

12

that it acknowledged the proposal should a view change occur, preventing a conflict to happen. Finally, by requiring

a majority of site acknowledgments to globally order an update, the protocol guarantees that any intersection will

contain a site from the previous majority.

Liveness: To guarantee liveness, Steward must ensure that servers move to a new local or global view when no

progress takes place. By requiring a set of 2f + 1 servers to initiate a local view change, the local view change

protocol guarantees that faulty replicas cannot create instability and prevent progress in the system by forcing

frequent local view changes. The representative can cause view changes by malicious actions, but then a different

representative will replace it. Since there are at most f faulty replicas in a site, after at most f + 1 local view

changes it is guaranteed that the site will have a correct representative.

In addition, by requiring a set of 2f + 1 servers to initiate a proposal for a global view change, the global view

change algorithm prevents a malicious server from causing frequent global view changes.

A critical component that guarantees global liveness is the selection and management of timeout values, as

described in Section IV-C. The timeout values guarantee that the correct representative at the leading site has

enough time to communicate with a correct representative at each site before it is replaced. Note that this requires

that the correct representative at the leading site will need to stay valid long enough to allow up to f + 1 complete

view changes to occur in non-leading sites.

VI. PERFORMANCE EVALUATION

To evaluate the performance of our hierarchical Byzantine replication architecture, we implemented a complete

prototype of our protocol including all the necessary communication and cryptographic functionality. In this paper

we focus only on the networking and cryptographic aspects of our protocols, and do not consider disk writes.

Testbed and Network Setup: We selected a network topology consisting of 5 wide area sites, assuming that

there can be at most 5 Byzantine faults in each site, in order to quantify the performance of our system in a realistic

scenario. This requires 16 replicated servers in each site.

Our architecture uses RSA threshold signatures [6] to represent an entire site within a single trusted message sent

on the wide area network, thus trading computational power for wide area bandwidth and latency, in the number of

wide area crossings. We believe this tradeoff is realistic considering the current technology trend: end-to-end wide

area bandwidth is slow to improve, while latency reduction of wide area links is limited by the speed of light.

Our experimental testbed consists of a cluster with twenty 3.2GHz Intel Xeon computers, all of them having

a 64-bit architecture. On these computers, a 1024 bit RSA signature can be computed in 1.3 msec and can be

verified in 0.07 msec. The leader site was deployed on 16 of the machines, and the other 4 sites were emulated by

Fig. 1. Write Update Throughput

S I ~ \ \ , ~ I > 10 ~ h ~ . :
~lc,&rd 5 Mhps -
Srhwlrd 2.5 Mhps ...--*---.

BFT l0Mhpr -
BFT SMhps . - . . BFT? 5 Mbps .-..a----

Fig. 2. Write Update Latency

one computer each1. The emulating computers were seen from the other sites as if they were the representatives

of complete 16 server sites, for a system consisting of a total of 80 nodes spread over 5 sites. Upon receiving a

packet at a non-leader site, the emulating computers were busy-waiting for the amount of time it took a 16 server

site to handle that packet and reply to it, including both in-site communication and the necessary computation.

The busy-waiting times for each type of packet were determined in advance by benchmarking individual protocols

on a fully deployed, 16 server site. We used the Spines [I31 messaging system to emulate latency and throughput

constraints on the wide area links.

We compared the performance results of the above system with those obtained by BFT [3] on the same network

setup with five sites, run on the same cluster, only that instead of using 16 servers i n each site, for BFT we used a

total of 16 servers across the entire network. This allows for up to 5 Byzantine failures in the entire network for

BFT, instead of up to 5 Byzantine failures in each site for Steward; however, since BFT is a flat solution where

there is no correlation between faults and the sites where they can occur, we believe this comparison is fair and

conservative. We distributed the BFT servers such that four sites contain 3 servers each, and one site contains 4

servers. All the write updates and read-only queries in our experiments canied a payload of 200 bytes, representing

a common SQL statement.

Bandwidth Limitation: We first investigate the benefits of the hierarchical architecture in a symmetric configu-

ration with 5 sites, where all sites are connected to each other with 50 milliseconds latency links. A 50 millisecond

delay emulates the wide area crossing of the continental US.

In the first experiment, clients inject write updates. Figure 1 shows the update throughput when increasing the

number of clients, limiting the capacity of wide area links between the sites to 10, 5 and 2.5Mbps, both for Steward

and BFT. The graph shows that up to 2.5Mbps, Steward is not limited by bandwidth. The system is able to process

a total of about 84 updates/sec, being limited only by CPU, used for computing threshold signatures at the sites.

lour implementation was tested on a complete deployment where each site is composed on multiple computers using the complete set
of protocols and is currently undergoing a 5-sites DARPA red-team exercise. In order to evaluate Steward's scalability on large networks
supporting many faults at each site, we used emulating computers for non-leader sites to limit the deployment to our cluster of 20 machines.

13

Slcwu;lJ 10 Mbp~
SI~~Tl.l 5 Mops
~rcw<lrd 2.5 Mhp~• -...

BfT 10 Mhps -G-

8fT 5 Mhps
BFT 2,5 Mbps -0..•.

oL-~~~~~~~~~~~~~---J

o 10 15 20 25)0

ClicnL~

1000

800

- 600

"...J
" 400
~
:0

2()()

25 302015

Clients

10
o

o

)0

70

20

40

50

100 ,---~~~~~~~~~~~~~-----,
Sicward 10 Mhp....

90 $IC\\",mJ :;: Mhp~

80 sle\~~2i~ ~~~; = ,.,!: .•.,III· ,.- , "Jt .

BFT 5 Mhp~ _..s·
BFT 2.5 Mhps -0.... JI.-'

.../ ../

.-,,-'
.'.....

/

........:" .
.'

10 rI·.~ G- 0- 0- 0- Go 0- 0 0 0 0 -0 '0 ~

Fig. I. Write Update Throughput Fig. 2. Write Update Latency

one computer each I. The emulating computers were seen from the other sites as if they were the representatives

of complete 16 server sites, for a system consisting of a total of 80 nodes spread over 5 sites. Upon receiving a

packet at a non-leader site, the emulating computers were busy-waiting for the amount of time it took a 16 server

site to handle that packet and reply to it, including both in-site communication and the necessary computation.

The busy-waiting times for each type of packet were determined in advance by benchmarking individual protocols

on a fully deployed, 16 server site. We used the Spines [13] messaging system to emulate latency and throughput

constraints on the wide area links.

We compared the performance results of the above system with those obtained by BFT [3] on the same network

setup with five sites, run on the same cluster, only that instead of using 16 servers in each site, for BFT we used a

total of 16 servers across the entire network. This allows for up to 5 Byzantine failures in the entire network for

BFT, instead of up to 5 Byzantine failures in each site for Steward; however, since BFT is a flat solution where

there is no correlation between faults and the sites where they can occur, we believe this comparison is fair and

conservative. We distributed the BFT servers such that four sites contain 3 servers each, and one site contains 4

servers. All the write updates and read-only queries in our experiments carried a payload of 200 bytes, representing

a common SQL statement.

Bandwidth Limitation: We first investigate the benefits of the hierarchical architecture in a symmetric configu-

ration with 5 sites, where all sites are connected to each other with 50 milliseconds latency links. A 50 millisecond

delay emulates the wide area crossing of the continental US.

In the first experiment, clients inject write updates. Figure I shows the update throughput when increasing the

number of clients, limiting the capacity of wide area links between the sites to 10, 5 and 2.5Mbps, both for Steward

and BFT. The graph shows that up to 2.5Mbps, Steward is not limited by bandwidth. The system is able to process

a total of about 84 updates/sec, being limited only by CPU, used for computing threshold signatures at the sites.

lOur implementation was tested on a complete deployment where each site is composed on multiple computers using the complete set
of protocols and is currently undergoing a 5-sites DARPA red-team exercise. In order to evaluate Steward's scalability on large networks
supporting many faults at each site, we used emulating computers for non-leader sites to limit the deployment to our cluster of 20 machines.

Fig. 3. Update Mix Throughput - 10 Clients

\Vrilc Updnlcs 1% I

Fig. 4. Update Mix Latency - 10 Clients

As we increase the number of clients, the BFT throughput increases at a lower slope than Steward, mainly due

to the one additional wide area crossing for each update. At 10 Mbps, BFT achieves about 58 updateslsec, being

limited by the available bandwidth. Similarly, at 5 Mbps it can sustain a maximum of 26 updatestsec, and at 2.5

Mbps a maximum of about 6 updateslsec. We also notice a reduction in the throughput of BFT as the number of

clients increases. We believe this is due to a cascading increase of message loss, generated by the lack of a wide

area flow control in the original implementation of BFT. Such a flow control was not needed as BFT was designed

to work in LANs. For the same reason, we were not able to run BFT with more than 24 clients at 5 Mbps, and 15

clients at 2.5Mbps. We believe that adding a client queuing mechanism would stabilize the performance of BFT to

its maximum achieved throughput, regardless of the number of clients.

The average update latency, as depicted in Figure 2, shows Steward achieving almost constant latency. The latency

slightly increases with the addition of clients, reaching 190 ms when 15 clients send updates into the system. At this

point, as client updates start to be queued, their latency increases linearly with the number of clients in the system.

BFT exhibits a similar behavior at 10 Mbps, only that its update latency is affected by the additional number of

messages sent and the additional wide area crossing, such that for 15 clients the average update latency is 336 ms.

As the bandwidth decreases, the update latency increases heavily, reaching up to 600 ms at 5 Mbps and 5 seconds

at 2.5 Mbps, for 15 clients.

Adding Read-only Queries: One of the benefits of our hierarchical architecture is that read-only queries can

be answered locally, at each site. To demonstrate these benefits we conducted an experiment where 10 clients send

mixes of read-only queries and write updates, chosen randomly at each client, with different ratios. We compared

the performance of Steward and BFT when both systems are not limited by bandwidth constraints. We used links

of 50 ms, 10 Mbps between the sites. Figures 3 and 4 show the average throughput and latency, respectively, of

different mixes of queries and updates sent using Steward and BFT. When clients send only read queries, Steward

achieves about 2.9 ms per query, with a throughput of over 3,400 queries per second. This is because all the queries

are answered locally, their latency being dominated by two RSA signature operations: one at the originating client,

o~~-~~~-~~-~---'
() 10 20 ~() -m :'i0 60 70 80 90 100

:'lOU

4{)0

E

1 300

~

t ZOO

F
](Xl

,--~~-~~~~
Sicwiud+ •...

BFr~

350

)oo

250

7.
.§ ZOO
~

"0
~ ISOJ

I[J{)

50

0
0

Slcw3rd-+-.-.
BFr~

10 20 30 40 SO 60 70 80 90 IOO

Wrilc Updalc~ (fA:)

14

Fig. 3. Update Mix Throughput - 10 Clients Fig. 4. Update Mix Latency - 10 Clients

As we increase the number of clients, the BFT throughput increases at a lower slope than Steward, mainly due

to the one additional wide area crossing for each update. At 10 Mbps, BFT achieves about 58 updates/sec, being

limited by the available bandwidth. Similarly, at 5 Mbps it can sustain a maximum of 26 updates/sec, and at 2.5

Mbps a maximum of about 6 updates/sec. We also notice a reduction in the throughput of BFT as the number of

clients increases. We believe this is due to a cascading increase of message loss, generated by the lack of a wide

area flow control in the original implementation of BFT. Such a flow control was not needed as BFT was designed

to work in LANs. For the same reason, we were not able to run BFT with more than 24 clients at 5 Mbps, and 15

clients at 2.5Mbps. We believe that adding a client queuing mechanism would stabilize the performance of BFT to

its maximum achieved throughput, regardless of the number of clients.

The average update latency, as depicted in Figure 2, shows Steward achieving almost constant latency. The latency

slightly increases with the addition of clients, reaching 190 ms when 15 clients send updates into the system. At this

point, as client updates start to be queued, their latency increases linearly with the number of clients in the system.

BFT exhibits a similar behavior at 10 Mbps, only that its update latency is affected by the additional number of

messages sent and the additional wide area crossing, such that for 15 clients the average update latency is 336 ms.

As the bandwidth decreases, the update latency increases heavily, reaching up to 600 ms at 5 Mbps and 5 seconds

at 2.5 Mbps, for 15 clients.

Adding Read-only Queries: One of the benefits of our hierarchical architecture is that read-only queries can

be answered locally, at each site. To demonstrate these benefits we conducted an experiment where 10 clients send

mixes of read-only queries and write updates, chosen randomly at each client, with different ratios. We compared

the performance of Steward and BFT when both systems are not limited by bandwidth constraints. We used links

of 50 ms, 10 Mbps between the sites. Figures 3 and 4 show the average throughput and latency, respectively, of

different mixes of queries and updates sent using Steward and BFT. When clients send only read queries, Steward

achieves about 2.9 ms per query, with a throughput of over 3,400 queries per second. This is because all the queries

are answered locally, their latency being dominated by two RSA signature operations: one at the originating client,

SIC ,,*- - -

90 BFT -r-

Fig. 5 . Wide Area Network Emulation - Write Update Throughput Fig. 6. Wide Area Network Emula1ion - Write Update Latency

and one at the servers answering the query.

For BFT, the latency of read-only queries is about 105 ms, and the total throughput achieved is 95 queries per

second. This is expected, as read-only queries in BFT need to be answered by at least f + 1 servers, some of which

being located across wide area links. BFT could have achieved queries locally in a site if we deployed it such that

there are at least 2 f + 1 servers in each site (in order to guarantee liveness it needs f + 1 correct servers to answer

queries in each site). Such a deployment, for f = 5 faults and 5 sites, would need at least 55 servers total, which

will dramatically increase communication for updates, and further reduce BFT's performance.

As the percentage of write updates in the query mix increases, the average latency for both Steward and BFT

increases linearly, with Steward latency being about 100 ms lower than BFT at all times. This is a substantial

improvement considering the absolute value of the update latency, the ratio between the latency achieved by the

two systems ranging from a factor of two, when only write updates are served, to a factor of 30, when only read

queries are served. The throughput drops with the increase of update latency, such that at 100% write updates there

is only about a factor of two between the throughput achieved by Steward and BFT.

Wide Area Scalability: To demonstrate the scalability of the hierarchical architecture we conducted an exper-

iment that emulated a wide area network that covers several continents. We selected five sites on the Planetlab

network [14], measured the latency and available bandwidth characteristics between every pair of sites, and emulated

the network topology on our cluster in order to run Steward and BFT. We ran the experiment on our cluster, and

not directly on Planetlab because Planetlab machines are not of 64-bit architecture. Moreover, Planetlab computers

provide a shared environment where multiple researchers run experiments at the same time, bringing the load on

almost all the machines to more than 100% at all times. Such an environment lacks the computational power

required for the two systems tested, and would artificially influence our experimental results.

The five sites we emulated in our tests are located in the US (University of Washington), Brazil (Rio Grande do

Sul), Sweden (Swedish Institute of Computer Science), Korea (KAIST) and Australia (Monash University). The

network latency varied between 59 ms (US - Korea) and 289 ms (Brazil - Korea). Available bandwidth varied

15

30252015

cticnl~

10

.....+ + + .•..•..•J
(J

o

500

S[L'W:lf(J •.•..+

BFf~

:woo

-,. 1500

~
..J
u
-g, 1000

::0

.,....
.... "'.....'

Sto.:'wanl•....
BFf~

..,

,.
":t".... ..,.

..,..-
~.,

....................

.....
.,,.,

.~.,

;+:,-

.'
10 .,/

o~'-~~----'
o 10 15 20 25 ~()

Clients

100

90

80

t 70

! 60

I 50

e 40
;':

~
30

:5 20

Fig. 5. Wide Area Network Emulation - Write Update Throughput Fig. 6. Wide Area Network Emulation - Write Update Latency

and one at the servers answering the query.

For BFT, the latency of read-only queries is about 105 ms, and the total throughput achieved is 95 queries per

second. This is expected, as read-only queries in BFT need to be answered by at least f + 1 servers, some of which

being located across wide area links. BFT could have achieved queries locally in a site if we deployed it such that

there are at least 2f + 1 servers in each site (in order to guarantee liveness it needs f + 1 correct servers to answer

queries in each site). Such a deployment, for J = 5 faults and 5 sites, would need at least 55 servers total, which

will dramatically increase communication for updates, and further reduce BFT's performance.

As the percentage of write updates in the query mix increases, the average latency for both Steward and BFT

increases linearly, with Steward latency being about 100 ms lower than BFT at all times. This is a substantial

improvement considering the absolute value of the update latency, the ratio between the latency achieved by the

two systems ranging from a factor of two, when only write updates are served, to a factor of 30, when only read

queries are served. The throughput drops with the increase of update latency, such that at 100% write updates there

is only about a factor of two between the throughput achieved by Steward and BFT.

Wide Area Scalability: To demonstrate the scalability of the hierarchical architecture we conducted an exper-

iment that emulated a wide area network that covers several continents. We selected five sites on the Planetlab

network [14], measured the latency and available bandwidth characteristics between every pair of sites, and emulated

the network topology on our cluster in order to run Steward and BFT. We ran the experiment on our cluster, and

not directly on Planetlab because Planetlab machines are not of 64-bit architecture. Moreover, Planetlab computers

provide a shared environment where multiple researchers run experiments at the same time, bringing the load on

almost all the machines to more than 100% at all times. Such an environment lacks the computational power

required for the two systems tested, and would artificially influence our experimental results.

The five sites we emulated in our tests are located in the US (University of Washington), Brazil (Rio Grande do

SuI), Sweden (Swedish Institute of Computer Science), Korea (KAIST) and Australia (Monash University). The

network latency varied between 59 ms (US - Korea) and 289 ms (Brazil - Korea). Available bandwidth varied

Clicnls Cl~enls

Fig. 7. CAIRN Network Emulation - Write Update Throughput Fig. 8. CAIRN Network Emulation - Write Update Latency

between 405 Kbps(Brazi1 - Korea) and 1.3Mbps (US - Australia).

Figure 5 shows the average write update throughput as we increased the number of clients in the system, while

Figure 6 shows the average update latency. As seen in Figures 5 and 6, Steward is able to achieve its maximum

limit of about 84 updateslsecond when 27 clients inject updates into the system. The latency increases from about

200 ms for 1 client, to about 360 ms for 30 clients.

BFT is limited by the available bandwidth to a maximum of about 9 updateslsec, while the update latency starts

at 631 ms for one client, and jumps to the order of seconds when more than 6 clients are introduced.

Comparison with Non-Byzantine Protocols: Since Steward deploys a lightweight fault-tolerant protocol

between the wide area sites, we expect it to achieve performance comparable to existing non-Byzantine fault-

tolerant protocols commonly used in database replication systems, but with Byzantine guarantees (while paying

more hardware).

In the following experiment we compare the performance of our hierarchical Byzantine architecture with that

of two-phase commit protocols. In 1151 we evaluated the performance of two-phase commit protocols [I61 using

a wide area network setup across the US, called CAIRN [17]. We emulated the topology of the CAIRN network

using the Spines messaging system, and ran Steward and BFT on top of it. The main characteristic of the CAIRN

topology is that East and West Coast sites were connected through a single link of 38ms and 1.86Mbps.

Figures 7 and 8 show the average throughput and latency of write updates, respectively, of Steward and BFT

on the CAIRN network topology. Steward was able to achieve about 51 updateslsec in our tests, being limited

mainly by the bandwidth of the link between the East and West Coasts in CAIRN. In comparison, an upper bound

of two-phase commit protocols presented in [I51 was able to achieve 76 updateslsec. As our architecture uses a

non-Byzantine fault-tolerant protocol between the sites, it was expected to achieve comparable results with two

phase commit protocols. We believe that the difference in performance is caused by the presence of additional

digital signatures in the message headers of Steward, adding 128 bytes to the 200 byte payload of each update.

The high bandwidth requirement of BFT causes it to achieve a very low throughput and high latency on the

16

S\Cw:lrJ .
BFr~

.or· ·..·· +- _+ .

i

Steward-f ••••

BFT~

.............. -+ ••
-+ +..-

............. .+- ...

.... ..

2500 ,------,,--~-~--~-~-~

2000

o'------~-~-~--~-~----.J

o 10 15 20 25 30

elienls

500

->. 1500
c

3
~

" woo
~
::>

)0252015

Clients

o 5 10

IIXl

90

80

i 70

60

=
~ 50
""2 40
;::

{
30 ":,,'

.'
::> 20

l
10 ..

Fig. 7. CAIRN Network Emulation - Write Update Throughput Fig. 8. CAIRN Network Emulation - Write Update Latency

between 405 Kbps(Brazil - Korea) and 1.3Mbps (US - Australia).

Figure 5 shows the average write update throughput as we increased the number of clients in the system, while

Figure 6 shows the average update latency. As seen in Figures 5 and 6, Steward is able to achieve its maximum

limit of about 84 updates/second when 27 clients inject updates into the system. The latency increases from about

200 ms for I client, to about 360 ms for 30 clients.

BFT is limited by the available bandwidth to a maximum of about 9 updates/sec, while the update latency starts

at 63] ms for one client, and jumps to the order of seconds when more than 6 clients are introduced.

Comparison with Non-Byzantine Protocols: Since Steward deploys a lightweight fault-tolerant protocol

between the wide area sites, we expect it to achieve performance comparable to existing non-Byzantine fault-

tolerant protocols commonly used in database replication systems, but with Byzantine guarantees (while paying

more hardware).

In the following experiment we compare the performance of our hierarchical Byzantine architecture with that

of two-phase commit protocols. In [] 5] we evaluated the performance of two-phase commit protocols [16] using

a wide area network setup across the US, called CAlRN [17]. We emulated the topology of the CAlRN network

using the Spines messaging system, and ran Steward and BFT on top of it. The main characteristic of the CAIRN

topology is that East and West Coast sites were connected through a single link of 38ms and 1.86Mbps.

Figures 7 and 8 show the average throughput and latency of write updates, respectively, of Steward and BFT

on the CAIRN network topology. Steward was able to achieve about 5] updates/sec in our tests, being limited

mainly by the bandwidth of the link between the East and West Coasts in CAIRN. In comparison, an upper bound

of two-phase commit protocols presented in [] 5] was able to achieve 76 updates/sec. As our architecture uses a

non-Byzantine fault-tolerant protocol between the sites, it was expected to achieve comparable results with two

phase commit protocols. We believe that the difference in performance is caused by the presence of additional

digital signatures in the message headers of Steward, adding]28 bytes to the 200 byte payload of each update.

The high bandwidth requirement of BFT causes it to achieve a very low throughput and high latency on the

CAIRN network. The maximum throughput achieved by BFT was 2.7 updateslsec and the update latency was over

a second, except when a single client injected updates in the entire system.

Summary: The performance results we presented show that our hierarchical Byzantine architecture achieves

performance comparable (though somewhat lower) to non-Byzantine protocols when run on wide area networks

with multiple sites, and is able to scale to networks that span across several continents. In addition, our experiments

show that the ability of our architecture to answer queries locally inside a site gives substantial performance

improvements beyond the qualitative benefit of allowing read-only queries in the presence of partitions. In contrast,

flat Byzantine protocols, while performing very well on local area networks, do not scale well to multiple sites

across a wide area network. They have high bandwidth requirements, and use additional rounds of communication

that increase individual update latency and reduce their total achievable throughput.

VII. RELATED WORK

Agreernenr and Consensus: At the core of many replication protocols is a more general problem, known as the

agreement or consensus problem. There are several models that researchers considered when solving consensus,

the strongest one being the Byzantine model in which a participant can behave in an arbitrary manner. Other

than the behavior of a participant (malicious or not), other relevant considerations are whether communication is

asynchronous or synchronous, whether authentication is available or not, and whether the participants communicate

over a flat network or not. A good overview of significant results is presented in [18]. Optimal results state that under

the assumption that communication is not authenticated and nodes are directly connected, in order to tolerate f

Byzantine failures, 3 f + 1 participants and f + 1 communication rounds are required. If authentication is available,

then f + 1 rounds are still required, but the number of participants just has to be greater than f + 1 [19]. An

important factor that must be taken into consideration is whether participants are directly connected or not. In [20],

Dolev shows that in an arbitrary connected network, if f Byzantine faults must be tolerated and the network is

f + 1 (2f + 1 if no signature exists) connected, then agreement can be achieved in 2 f + 1 rounds.

Byzantine Group Communicarion: Related with our work are group communication systems resilient to Byzantine

failures. The most well-known such systems are Rampart [21] and SecureRing [22]. Although these systems are

extremely robust, they have a severe performance cost and require a large number of un-attacked nodes to maintain

their guarantees. Both systems rely on failure detectors to determine which replicas are faulty. An attacker can

exploit this to slow correct replicas or the communication between them until enough are excluded from the group.

Another intrusion-tolerant group communication system is ITUA [23], [24], [25], [26]. The ITUA system,

developed by BBN and UIUC, focuses on providing intrusion tolerant group services. The approach taken considers

all participants as equal and is able to tolerate up to less than a third of malicious participants.

17

CAIRN network. The maximum throughput achieved by BFT was 2.7 updates/sec and the update latency was over

a second, except when a single client injected updates in the entire system.

Summary: The performance results we presented show that our hierarchical Byzantine architecture achieves

performance comparable (though somewhat lower) to non-Byzantine protocols when run on wide area networks

with multiple sites, and is able to scale to networks that span across several continents. In addition, our experiments

show that the ability of our architecture to answer queries locally inside a site gives substantial performance

improvements beyond the qualitative benefit of allowing read-only queries in the presence of partitions. In contrast,

flat Byzantine protocols, while performing very well on local area networks, do not scale well to multiple sites

across a wide area network. They have high bandwidth requirements, and use additional rounds of communication

that increase individual update latency and reduce their total achievable throughput.

VII. RELATED WORK

Agreement and Consensus: At the core of many replication protocols is a more general problem, known as the

agreement or consensus problem. There are several models that researchers considered when solving consensus,

the strongest one being the Byzantine model in which a participant can behave in an arbitrary manner. Other

than the behavior of a participant (malicious or not), other relevant considerations are whether communication is

asynchronous or synchronous, whether authentication is available or not, and whether the participants communicate

over a flat network or not. A good overview of significant results is presented in [18]. Optimal results state that under

the assumption that communication is not authenticated and nodes are directly connected, in order to tolerate]

Byzantine failures, 3] + 1 participants and] + 1 communication rounds are required. If authentication is available,

then] + 1 rounds are still required, but the number of participants just has to be greater than] + 1 [19]. An

important factor that must be taken into consideration is whether participants are directly connected or not. In [20],

Dolev shows that in an arbitrary connected network, if] Byzantine faults must be tolerated and the network is

] + 1 (2] + 1 if no signature exists) connected, then agreement can be achieved in 2] + 1 rounds.

Byzantine Group Communication: Related with our work are group communication systems resilient to Byzantine

failures. The most well-known such systems are Rampart [21] and SecureRing [22]. Although these systems are

extremely robust, they have a severe performance cost and require a large number of un-attacked nodes to maintain

their guarantees. Both systems rely on failure detectors to determine which replicas are faulty. An attacker can

exploit this to slow correct replicas or the communication between them until enough are excluded from the group.

Another intrusion-tolerant group communication system is ITVA [23], [24], [25], [26]. The ITVA system,

developed by BBN and DIVe, focuses on providing intrusion tolerant group services. The approach taken considers

all participants as equal and is able to tolerate up to less than a third of malicious participants.

Replicarion with Benign Faults: The two-phase commit (2PC) protocol [I 61 provides serializability in a distributed

database system when transactions may span several sites. It is commonly used to synchronize transactions in a

replicated database. Three-phase commit [Ske82] overcomes some of the availability problems of 2PC, paying the

price of an additional communication round, and therefore, additional latency. Paxos [I] is a very robust algorithm

for benign fault-tolerant replication. Paxos uses two rounds of messages in the common case to assign a total order

to updates and requires 2 f + 1 replicas in order to tolerate f faults.

Quorurlz Systerns with Byzantine Fault-Tolerance: Quorum systems obtain Byzantine fault-tolerance by applying

quorum replication methods. Examples of such systems include Phalanx [27], [28] and its successor Fleet [29], [30].

Fleet provides a distributed repository for Java objects. It relies on an object replication mechanism that tolerates

Byzantine failures of servers, while supporting benign clients. Although the approach is relatively scalable with the

number of replica servers, it suffers from the drawbacks of flat non-hierarchical Byzantine replication solutions.

Replication with Byzanrirze Fa~~lr-Tolerance: The first practical work to solve replication while withstanding

Byzantine failures is the work of Castro and Liskov [3]. Their algorithm requires 3 f + 1 replicas in order to tolerate

f faults. In addition, the client has to wait for f + 1 identical answers (which, for liveness guarantees may require

waiting for up to 2f + 1 answers) in order to make sure that a correct answer is received. The algorithm obtains

very good performance on local area networks. Yin et a]. [31] propose an improvement for the Castro and Liskov

approach by separating the agreement component that orders requests from the execution component that processes

requests. The separation allows utilization of the same agreement component for many different replication tasks.

It also reduce the number of processing storage replicas to 2f + I. Martin and Alvisi [32] recently introduced an

algorithm that is able to achieve Byzantine consensus in only two rounds, while using 5f + 1 servers in order to

overcome f faults. This approach trades lower availability (4f + 1 out of 5 f + 1 connected replicas are required,

instead of 2f + 1 out of 3f + 1 in BFT), for increased performance. The solution seems very appealing for local

area networks that provide high connectivity between the replicas. We considered using it within the sites in our

architecture to reduce the number of intra-site communication rounds. However, as we make use of threshold

signatures inside a site, the overhead of combining larger signatures of 4f + 1 shares would greatly overcome the

benefits of using one less communication round within the site.

Alternate architectures: An alternate hierarchical approach to scale Byzantine replication to wide area networks

can be based on having a few trusted nodes that are assumed to be working under a weaker adversary model.

For example, these trusted nodes may exhibit crashes and recoveries but not penetrations. A Byzantine replication

algorithm in such an environment can use this knowledge in order to optimize the performance and bring i t closer

to the performance of a fault-tolerant, non-Byzantine solution.

Such a hybrid approach was proposed in [33], [34] by Verissimo et al, where trusted nodes were also assumed

18

Replication with Benign Faults: The two-phase commit (2PC) protocol [16] provides serializability in a distributed

database system when transactions may span several sites. It is commonly used to synchronize transactions in a

replicated database. Three-phase commit [Ske82] overcomes some of the availability problems of 2PC, paying the

price of an additional communication round, and therefore, additional latency. Paxos [1] is a very robust algorithm

for benign fault-tolerant replication. Paxos uses two rounds of messages in the common case to assign a total order

to updates and requires 2f + 1 replicas in order to tolerate f faults.

Quorum Systems with Byzantine Fault-Tolerance: Quorum systems obtain Byzantine fault-tolerance by applying

quorum replication methods. Examples of such systems include Phalanx [27], [28] and its successor Fleet [29], [30].

Fleet provides a distributed repository for Java objects. It relies on an object replication mechanism that tolerates

Byzantine failures of servers, while supporting benign clients. Although the approach is relatively scalable with the

number of replica servers, it suffers from the drawbacks of flat non-hierarchical Byzantine replication solutions.

Replication with Byzantine Fault-Tolerance: The first practical work to solve replication while withstanding

Byzantine failures is the work of Castro and Liskov [3]. Their algorithm requires 3f + 1 replicas in order to tolerate

f faults. In addition, the client has to wait for f + 1 identical answers (which, for liveness guarantees may require

waiting for up to 2f + 1 answers) in order to make sure that a correct answer is received. The algorithm obtains

very good performance on local area networks. Yin et al. [31] propose an improvement for the Castro and Liskov

approach by separating the agreement component that orders requests from the execution component that processes

requests. The separation allows utilization of the same agreement component for many different replication tasks.

It also reduce the number of processing storage replicas to 2f + 1. Martin and Alvisi [32] recently introduced an

algorithm that is able to achieve Byzantine consensus in only two rounds, while using 5f + 1 servers in order to

overcome f faults. This approach trades lower availability (4f + lout of 5f + 1 connected replicas are required,

instead of 2f + lout of 3f + 1 in BFT), for increased performance. The solution seems very appealing for local

area networks that provide high connectivity between the replicas. We considered using it within the sites in our

architecture to reduce the number of intra-site communication rounds. However, as we make use of threshold

signatures inside a site, the overhead of combining larger signatures of 4f + 1 shares would greatly overcome the

benefits of using one less communication round within the site.

Alternate architectures: An alternate hierarchical approach to scale Byzantine replication to wide area networks

can be based on having a few trusted nodes that are assumed to be working under a weaker adversary model.

For example, these trusted nodes may exhibit crashes and recoveries but not penetrations. A Byzantine replication

algorithm in such an environment can use this knowledge in order to optimize the performance and bring it closer

to the performance of a fault-tolerant, non-Byzantine solution.

Such a hybrid approach was proposed in [33], [34] by Verissimo et aI, where trusted nodes were also assumed

to perform synchronously, providing strong global timing guarantees. The hybrid failure model of [33] inspired

the Survivable Spread [35] work, where a few trusted nodes (at least one per site) are assumed impenetrable, but

are not synchronous, may crash and recover, and may experience network partitions and merges. These trusted

nodes were implemented by Boeing Secure Network Server (SNS) boxes, which are limited computers designed

specifically not to be penetrable.

In our opinion, both the hybrid approach proposed in [34], and the approach proposed in this paper seem viable to

practically scale Byzantine replication to wide area networks. The hybrid approach makes stronger assumptions while

our approach pays more hardware and computational costs. Further developing both approaches and contrasting

them can be a fertile ground for future research.

VIII. CONCLUSIONS

This paper presented a hierarchical architecture that enables efficient scaling of Byzantine replication to systems

that span multiple wide area sites, each consisting of several potentially malicious replicas. The architecture reduces

the messase complexity on wide area updates, increasing the system's ability to scale. B'y confining the effect of

any malicious replica to its local site, the architecture enables the use of a benign fault-tolerant algorithm over the

wide area network, increasing system availability. Further increase in availability and performance is achieved by

the ability to process read-only queries within a site.

We implemented Steward, a fully functional prototype that realizes our architecture, and evaluated its performance

over several network topologies. The experimental results show considerable improvement over flat Byzantine

replication algorithms, bringing the performance of Byzantine replication closer to existing benign fault-tolerant

replication techniques over wide area networks.

[I] L. Lamport, "The part-time parliament," ACM Tra~lsactiorls on Conlputer Systerns, vol. 16, pp. 133-1 69, May 1998.
[2] Lamport, "Paxos made simple," SlGACTN: SIGACT News (ACM Special Interest Group on Autori7ata and Con7putability Theory),

vol. 32, 2001.
[3] M. Castro and B. Liskov, "Practical byzantine fault tolerance and proactive recovery," ACM Trans. Cornput. Syst., vol. 20, no. 4,

pp. 398-461, 2002.
[4] Y. G. Desmedt and Y. Frankel, "Threshold cryptosystems," in CRYPTO '89: Proceedings on Advances in cryptology, (New York, NY,

USA), pp. 307-315, Springer-Verlag New York, Inc., 1989.
[5] A. Shamir, "How to share a secret," Co~nrn~~rz. ACM, vol. 22, no. 11, pp. 612-613, 1979.
[6] V. Shoup, "Practical threshold signatures," Lecture Notes in Co~ilputer Science, vol. 1807, pp. 207-223, 2000.
[7] A. Herzbeg, S. Jarecki, H. Krawczyk, and M. Yung, "Proactive secret sharing or: How to cope with perpetual leakage," in CRYPTO

'95: Proceedings of the 15th Anr~ual lnternationnl C~yp to log j Cor?fewnce on Advances in Cr-yptology, (London, UK), pp. 339-352,
Springer-Verlag, 1995.

[8] L. Zhou, F. Schneider, and R. van Renesse, "APSS: Proactive Secret Sharing in Asynchronous Systems."
[9] P. Feldman, "A Practical Scheme for Non-Interactive Verifiable Secret Sharing," in Proceedings o f the 28th Annual Syrnposiurn on

Four~dntiorzs o f Colnputer Science, (1.0s Angeles, CA, USA), pp. 427-437, IEEE Computer Society, IEEE, October 1987.
[lo] R. Gennaro, S. Jarecki, H. Krawczyk, and T. Rabin, "Robust threshold dss signatures," 1nf: Coinput., vol. 164, no. 1, pp. 54-84, 2001.
[I I] R. L. Rivest, A. Shamir, and L. M. Adleman, "A method for obtaining digital signatures and public-key cryptosystems," Corl7rll~rrlicatio1~s

o f the ACM, vol. 21, pp. 12C126, Feb. 1978.

19

to perfonn synchronously, providing strong global timing guarantees. The hybrid failure model of [33] inspired

the Survivable Spread [35] work, where a few trusted nodes (at least one per site) are assumed impenetrable, but

are not synchronous, may crash and recover, and may experience network partitions and merges. These trusted

nodes were implemented by Boeing Secure Network Server (SNS) boxes, which are limited computers designed

specifically not to be penetrable.

In our opinion, both the hybrid approach proposed in [34], and the approach proposed in this paper seem viable to

practically scale Byzantine replication to wide area networks. The hybrid approach makes stronger assumptions while

our approach pays more hardware and computational costs. Further developing both approaches and contrasting

them can be a fertile ground for future research.

VIII. CONCLUSIONS

This paper presented a hierarchical architecture that enables efficient scaling of Byzantine replication to systems

that span multiple wide area sites, each consisting of several potentially malicious replicas. The architecture reduces

the message complexity on wide area updates, increasing the system's ability to scale. By confining the effect of

any malicious replica to its local site, the architecture enables the use of a benign fault-tolerant algorithm over the

wide area network, increasing system availability. Further increase in availability and perfonnance is achieved by

the ability to process read-only queries within a site.

We implemented Steward, a fully functional prototype that realizes our architecture, and evaluated its perfonnance

over several network topologies. The experimental results show considerable improvement over flat Byzantine

replication algorithms, bringing the perfonnance of Byzantine replication closer to existing benign fault-tolerant

replication techniques over wide area networks.

REFERENCES

[I] L. Lamport, "The part-time parliament," ACM Transactions on Computer Systems, vol. 16, pp. 133-169, May 1998.
[2] Lamport, "Paxos made simple," SIGACTN: SIGACT News (ACM Special Inrerest Group on Automata and Computability Theory),

vol. 32, 2001.
[3] M. Castro and B. Liskov, "Practical byzantine fault tolerance and proactive recovery," ACM Trans. Comput. Syst., vol. 20, no. 4,

pp. 398-461, 2002.
[4] Y. G. Desmedt and Y. Frankel, "Threshold cryptosystems," in CRYPTO '89: Proceedings on Advances in cryptology, (New York, NY,

USA), pp. 307-315, Springer-Verlag New York, Inc., 1989.
[5] A. Shamir, "How to share a secret," COl11mull. ACM, vol. 22, no. I I, pp. 612-613, 1979.
[6] V. Shoup, "Practical threshold signatures," Lecture Notes in Computer Science, vol. 1807, pp. 207-223, 2000.
[7] A. Herzberg, S. Jarecki, H. Krawczyk, and M. Yung, "Proactive secret sharing or: How to cope with perpetual leakage," in CRYPTO

'95: Proceedings of the 15th Annual International Cryptology COI~ference on Advances in Cryptology, (London, UK), pp. 339-352,
Springer-Verlag, 1995.

[8] L. Zhou, F. Schneider, and R. van Renesse, "APSS: Proactive Secret Sharing in Asynchronous Systems."
[9] P. Feldman, "A Practical Scheme for Non-Interactive Verifiable Secret Sharing," in Proceedings of the 28th Annual Symposium on

Foundations of Computer Science, (Los Angeles, CA, USA), pp. 427-437, IEEE Computer Society, IEEE, October 1987.
[10] R. Gennaro, S. Jarecki, H. Krawczyk, and T. Rabin, "Robust threshold dss signatures," b~f Comput., vol. 164, no. I, pp. 54-84, 2001.
[I I] R. L. Rivest, A. Shamir, and L. M. Adleman, "A method for obtaining digital signatures and public-key cryptosystems," Communications

of the ACM, vol. 21, pp. 120-126, Feb. 1978.

1121 Y. Amir, C. Danilov, D. Dolev, J. Kirsch, J. Lane, C. Nita-Rotaru, J. Olsen, and D. Zage, "Steward: Scaling byzantine fault-tolerant
systems to wide area networks," Tech. Rep. CNDS-2005-3, Johns Hopluns University and Purdue University, December 2005.

1131 "The spines project, http://www.spines.org/."
1141 "Planetlab." http://www.planet-lab.org/.
[I51 Y. Amir, C. Danilov, M. Miskin-Amir, J. Stanton, and C. Tutu, "On the performance of consistent wide-area database replication,"

Tech. Rep. CNDS-2003-3, December 2003.
[16] K. Eswaran, J. Gray, R. Lorie, and 1. Taiger, "The notions of consistency and predicate locks in a database system," Coii~n~unicarioii

of the ACM, vol. 19, no. 11, pp. 624-633, 1976.
[I71 "The CAIRN Network." http://www.isi.edu/div7/CAIRN/.
1181 M. J. Fischer, "The consensus problem in unreliable distributed systems (a brief survey)," in Fuiidarnei~tals of Coii~putatioiz Tlieo~?,

pp. 127-140, 1983.
1191 D. Dolev and H. R. Strong, "Authenticated algorithms for byzantine agreement," SIAM Journal of Computing, vol. 12,' no. 4, pp. 6 5 6

666, 1983.
1201 D. Dolev, "The byzantine generals strike again," Jouri~al of Algorithms, vol. 3, no. 1, pp. 14-30, 1982.
1211 M. K. Reiter, "The Rampart Toolkit for building high-integrity services," in Selected Papers from the liiternatiorial Workshop on Tlieory

and Practice in Distributed Systeins, (London, UK), pp. 99-1 10, Springer-Verlag, 1995.
1221 K. P. Kihlstrom, L. E. Moser, and P. M. Melliar-Smith, "The SecureRing protocols for securing group communication," in Proceedings

of the IEEE 3ls t Hawaii lnrernalional Conference on Systein Sciences, vol. 3, (Kona, Hawaii), pp. 317-326, January 1998.
1231 M. Cukier, T. Courtney, J. Lyons, H. V. Ramasamy, W. H. Sanders, M. Seri, M. Atighetchi, P. Rubel, C. Jones, F. Webber, P. Pal,

R. Watro, and J. Gossett, "Providing intrusion tolerance with itua," in Suppleinent qf the 2002 Intenzatioiial Conference on Dependable
Systeins and Networks, June 2002.

1241 H. V. Rarnasamy, P. Pandey, J. Lyons, M. Cukier, and W. H. Sanders, "Quantifying the cost of providing intrusion tolerance in group
communication systems," in The 2002 liileniational Coifei-ence on Dependable Systerns and Networks (DSN-2002), June 2002.

[25] P. Pandey, "Reliable delivery and ordering mechanisms for an intrusion-tolerant group communication system." Masters Thesis.
University of lllinois at Urbana-Champaign, 2001.

1261 H. V. Rarnasamy, "A group membership protocol for an intrusion-tolerant group communication system." Masters Thesis, University
of Illinois at Urbana-Champaign. 2002.

1271 D. Malkhi and M. K. Reiter, "Secure and scalable replication in phalanx," in SRDS '98: Proceedings of the Tlie 17th lEEE Syii~posi~tin
on Reliable Distributed Systeins, (Washington, DC, USA), p. 51, IEEE Computer Society, 1998.

1281 D. Malkhi and M. Reiter. "Byzantine quorum systems," Journal of Distributed Computing, vol. 11, no. 4, pp. 203-213, 1998.
1291 D. Malkhi and M. Reiter, "An architecture for survivable coordination in large distributed systems,'' IEEE Trai~sactions on Knowledge

and Data Engineering, vol. 12, no. 2, pp. 187-202, 2000.
1301 D. Malkhi. M. Reiter, D. Tulone, and E. Ziskind, "Persistent objects in the fleet system," in The znd DARPA lnfonnation Survivability

Conference and Exposition (DISCEX 11). (2001), June 2001.
[31] J. Yin, J.-P. Martin, A. Venkataramani, L. Alvisi, and M. Dahlin, "Separating agreement from execution for byzantine fault-tolerant

services," in SOSP, 2003.
1321 J.-P. Martin and L. Alvisi, "Fast byzantine consensus.," in DSN, pp. 4 0 2 4 1 1, 2005.
1331 M. Correia, L. C. Lung, N. F. Neves, and P. Verissimo, "Efficient byzantine-resilient reliable multicast on a hybrid failure model," in

Proc. of the 2lsr Syn7posi~tm on Reliable Distributed Systeins, (Suita, Japan), Oct. 2002.
[34] P. Verissirno, "Uncertainty and predictability: Can they be reconciled," in Future Directions in Distributed Coinputing, no. 2584 in

LNCS, Springer-Verlag, 2003.
1351 "Survivable spread: Algorithms and assurance argument,'' Tech. Rep. Technical Information Report Number D950-10757-1, The Boeing

Company, July 2003.

20

[12] Y. Amir, C. Danilov, D. Dolev, J. Kirsch, J. Lane, C. Nita-Rotaru, J. Olsen, and D. Zage, "Steward: Scaling byzantine fault-tolerant
systems to wide area networks," Tech. Rep. CNDS-2005-3, Johns Hopkins University and Purdue University, December 2005.

[13] "The spines project, http://www.spines.org/.''
[14] "Planetlab." http://www.planet-Iab.org/.
[15] Y. Amir, C. Danilov, M. Miskin-Amir, J. Stanton, and C. Tutu, "On the performance of consistent wide-area database replication,"

Tech. Rep. CNDS-2003-3, December 2003.
[16] K. Eswaran, J. Gray, R. Lorie, and I. Taiger, "The notions of consistency and predicate locks in a database system," CommunicaTion

of the ACM, vol. 19, no. II, pp. 624-633, 1976.
[17] "The CAIRN Network." http://www.isi.edu/div7/CAIRN/.
[18] M. J. Fischer, "The consensus problem in unreliable distributed systems (a brief survey)," in Fundamentals of Computation Theory,

pp. 127-140, 1983.
[19] D. Dolev and H. R. Strong, "Authenticated algorithms for byzantine agreement," SIAM Journal of Computing, vol. 12, no. 4, pp. 656

666, 1983.
[20] D. Dolev, "The byzantine generals strike again," Journal of Algorithms, vol. 3, no. I, pp. 14-30, 1982.
[21] M. K. Reiter, "The Rampart Toolkit for building high-integrity services," in Selected Papers from the International Workshop on Theory

alld Practice in Distributed Systems, (London, UK), pp. 99-110, Springer-Verlag, 1995.
[22] K. P. Kihlstrom, L. E. Moser, and P. M. Melliar-Smith, "The SecureRing protocols for securing group communication," in Proceedings

of the IEEE 31st Hawaii Inrernational Conference on System Sciences, vol. 3, (Kona, Hawaii), pp. 317-326, January 1998.
[23] M. Cukier, T. Courtney, J. Lyons, H. V. Ramasamy, W. H. Sanders, M. Seri, M. Atighetchi, P. Rubel, C. Jones, F. Webber, P. Pal,

R. Watro, and J. Gossett, "Providing intrusion tolerance with itua," in Supplement of the 2002 International Conference on Dependable
Systems and Networks, June 2002.

[24] H. V. Ramasamy, P. Pandey, J. Lyons, M. Cukier, and W. H. Sanders, "Quantifying the cost of providing intrusion tolerance in group
communication systems," in The 2002 International Conference on Dependable Systems and Networks (DSN-2002), June 2002.

[25] P. Pandey, "Reliable delivery and ordering mechanisms for an intrusion-tolerant group communication system" Masters Thesis,
University of Illinois at Urbana-Champaign, 2001.

[26] H. V. Ramasamy, "A group membership protocol for an intrusion-tolerant group communication system." Masters Thesis, University
of Illinois at Urbana-Champaign. 2002.

[27] D. Malkhi and M. K. Reiter, "Secure and scalable replication in phalanx," in SRDS '98: Proceedings of The The 17th IEEE Symposium
on Reliable Distributed Systems, (Washington, DC, USA), p. 51, IEEE Computer Society, 1998.

[28] D. Malkhi and M. Reiter, "Byzantine quorum systems," Journal of Distributed Computing, vol. II, no. 4, pp. 203-213, 1998.
[29] D. Malkhi and M. Reiter, "An architecture for survivable coordination in large distributed systems," IEEE Transactions on Knowledge

and Data Engineering, vol. 12, no. 2, pp. 187-202, 2000.
[30] D. Malkhi, M. Reiter, D. Tulone, and E. Ziskind, "Persistent objects in the fleet system," in The r d DARPA 1nfonnation Survivability

Conference and ExposiTion (DISCEX Il). (2001), June 2001.
[31] J. Yin, J.-P. Martin, A. Venkataramani, L. Alvisi, and M. Dahlin, "Separating agreement from execution for byzantine fault-tolerant

services," in SOSP, 2003.
[32] J.-P. Martin and L. Alvisi, "Fast byzantine consensus.," in DSN, pp. 402-411, 2005.
[33] M. Correia, L. C. Lung, N. F. Neves, and P. Verfssimo, "Efficient byzantine-resilient reliable multicast on a hybrid failure model," in

Proc. of The 21st Symposium on Reliable Distributed Systems, (Suita, Japan), Oct. 2002.
[34] P. Verissimo, "Uncertainty and predictability: Can they be reconciled," in Future Directions in Distributed Computing, no. 2584 in

LNCS, Springer-Verlag, 2003.
[35] "Survivable spread: Algorithms and assurance argument," Tech. Rep. Technical Information Report Number D950-1 0757-1, The Boeing

Company, July 2003.

	Scaling Byzantine Fault-Tolerant Replication to Wide Area Networks
	Report Number:
	
	Authors

	tmp.1307986960.pdf.eiWM9

