View metadata, citation and similar papers at core.ac.uk brought to you by fCORE

provided by Purdue E-Pubs

Purdue University

Purdue e-Pubs

Department of Computer Science Technical

Reports Department of Computer Science

1999

String pattern Matching For A Deluge Survival Kit

Alberto Apostolico

Maxime Crochemore

Report Number:
99-045

Apostolico, Alberto and Crochemore, Maxime, "String pattern Matching For A Deluge Survival Kit" (1999).
Department of Computer Science Technical Reports. Paper 1475.
https://docs.lib.purdue.edu/cstech/1475

This document has been made available through Purdue e-Pubs, a service of the Purdue University Libraries.
Please contact epubs@purdue.edu for additional information.

https://core.ac.uk/display/4951956?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://docs.lib.purdue.edu/
https://docs.lib.purdue.edu/cstech
https://docs.lib.purdue.edu/cstech
https://docs.lib.purdue.edu/comp_sci

STRING PATTERN MATCHING FOR
A DELUGE SURVIVYAL KIT

Alberto Apostelico
Maxime Crochemore

CSD TR #99-045
December 1999

STRING PATTERN MATCHING FOR
A DELUGE SURVIVAL KIT

Alberto Apostolico
and Maxime Crochemore

1. INTRODUCTION

This paper reviews a number of rather ubiquitous primitives related to
matching and searching with some clementary discrete structures such
as strings, regular expressions, and other aggreates, that are likely to be
of relevance, directly or indirectly, in the current and future infrastruc-
tures of very large volumes of data. In that confext, massive, scattered
and diverse information repositories will pose increasing needs for novel
approaches to their management by means of compression, inference,
comparison and retrieval, mining, and related principles and techniques.
Without pretending to be exhaustive, the selection of topics presented
in this paper was inspired by two main principles. The first one, was to
recognize that the data flood is forcing a paradigm shift to take place,
whereby the previous ambition to organize and funnel to the user as
much data as possible is being changed into that of limiting and filtering
what the limited ultimate bandwidth, the user himself, may actually
intake. The second, and related principle, is that, in computer science
jargon, search by value is going to be increasingly replaced by search
by contents and, in turn, by search by meaning. I{ is believed that,
while eminently syntactic in nature, most of the primitives considered
here shall still form the core of the semantic capabilities subtending au-
tomated association generation and other similar techniques of filtration
and inference.

Problems of matching and searching, and the combinatorial properties
that support their efficient solutions, may be classified according to a
number of paradigms. One way to classify these problems is according
to the type of structure (strings, arrays, trees, etc.) in terms of which
they are posed. Another is according to the model of computation used,

1

2

e.g., serial or parallel. Yet another one is according to whether the
manipulations that one seeks to optimize need be performed on-line, off-
line, in real time, etc. One could distinguish further between matching
and searching and, within the latter, between exact and approximate
searches, or vice versa. The classification used here privileges certain
aspects of exact or approximate searching, combinatorial issues such
as the identification of periodicities, symmetries and other regularities,
efficient implementations of ancillary functions such as compression and
encoding, etc., that are perceived as most relevant in the current context.
Due to space limitations we emphasize here problems on strings, but it
should be clear that most problems {albeit not their solutions) translate
straightforwardly to more complicated structures.

This paper is organized as follows. In the next section, we review some
fundamental Facts about regularities that manifest themselves in form
of repetitive substructures. In Section 3, we address issues of searching
and indexing: we describe there two central tools for these tasks, suf-
fix and subword automata, and consider their implementation issues in
massive data contexts. Section 4 deals with basic problems of counting
substring statistics and estimating empirical probabilities in early proba-
bilistic models. In Section 5, we address issues of filtering, fingerprinting
and related compaction fechniques that variously enter data reduction,
certification, watermarking, but also approximate patterns comparison
and search. In Section 6, we consider problems of compression, mining
for associations and other inference issues in strings.

Some preliminary notational conventions follow. Given an alphabet
T, we use L7 to denote the free semigroup generated by &, and set &* =
3+ U{A}, where A is the empty word. An element of Z¥ is called a séring
or sequence or word, and is denoted by one of the letters s, u, v, w, 2,y
and z. The same letters, upper case, are used to denote random strings.
We write £ = 71%2...%, when giving the symbols of & explicitly. The
number of symbols that form w is called the length of w and denoted
by |w|. If + = vwy, then w is a subsiring of = and the integer 1 + |v| is
its (starting) position in z. Let I = [£, §] be an interval of positions of a
string z. We say that a substring w of z begins in I if I contains the
starting position of 1, and that it ends in I if I' contains the position of
the last symbol of w.

2. BASIC REGULARITIES AND THEIR
DETECTION

It is customary to distinguish among three types of information: syn-
tactic, semantic, and pragmatic, the last one being an attempt to de-

String Pattern Matehing for a Deluge Survival Kit 3

scribe the understanding of meaning as a natural process. As much as
we would like to get to this third level, it is likely that we shall only be
able to occasionally grasp at the second one using tools and methods
of the first. In this section, we see that even restricting to syntactic
regularities does not make the job trivial.

Syntactic regularities in strings play a pervasive role in many facets
of data analysis. Searching for repeated patterns, periodicities, symme-
tries, cadences, and other similar forms or unusual patterns in objects is
a recurrent task in the compression of data, symbolic dynamics, genome
studies, intrusion detection, and countless other activities. In many
applications, such regularities represent redundancies and, as such, are
sought to be removed. This is the case of Data Compression. In textual
substitution methods, for example, strings that apppear many times in
a subject can be economically replaced by pointers to a single common
copy. In many other applications, these kind of regularities are sought
as carriers of information. This displays of duality for information in
this context has been known and debated since early years [125, 50].

We concentrate here on a very restricted class of regularities such as
cadences, periods, squares, repetitions, palindromes and approximate
versions thereof. The first thing to be said is that there are aveidable
and unavoidable such regularities (see, e.g., [38, 101]).

2.1 UNAVOIDABLE REGULARITIES

One remarkable application of the Pidgeon Hole Principle leads to
establish that if A is partitioned into % classes, then one of the classes
contains arbitrarily long arithmetic progressions.

More precisely, we say that the integers ¢; < #o < ... < i, are a
cadence for word z1%0...2y if Z¢, = 2, = ... = 24,. In this case we also
say that n is the order of the cadence.

Let now S be a finite subset of A. A cadence of type S is a cadence
of the form aS + 8 (i.e., an arithmetic cadence with common difference
o when a, § > 0) For example, abbabbabbaab is an arithmetic cadence
of order 4 with & = 3,8 = 3,5 = {1,2,3} The following theorems hols.

Theorem 1 If 4 is an alphabet with & letters and n is an integer, there
is an integer N = N(k,n) such that every word of length > N has an
arithmetic cadence of order n

Theorem 2 Let S be any finite subset of A and A an alphabet with &
letters. There exists an integer N depending only of § and k such that
every word of length > N has a cadence of type S.

4 -

2.2 SOME AVOIDABLE REGULARITIES:
PERIODS, PALINDROMES AND
SQUARES

Periods and periodicities are pervasive notions ol string algorithmics.
A string z has a period w if z is a prefix of w* for some integer k.
Alternatively, a string w is a period of a string z if z = w'v and v is a
possibly empty prefix of w. Often when this causes no confusion, we will
use the word “period” also to refer to the length or size fw| of a period w
of z. A string may have several periods. The shortest period (or period
length) of a string z is called the period of z. Clearly, a string is always
a period of itself. This period is called the trivial period.

A germane notion is that of a border. We say that a non-empty string
w is a border of a string z if z starts and ends with an occurrence of w.
That is, z = uw and z = wv for some possibly empty strings u and v.
Clearly, a string is always a border of itself. This border is called the
trivial border. The implications of these notions on fast string searching
are well understood. In fact, it is not difficult to see that two consecutive
occurrences of a word may overlap only if their distance equals one of
the periods of w.

A string can have many periods, and corresponding borders. The
smallest (resp. longer border) period is the period (resp., the border) of
the string. For example abaabaababaabaababacboabaabaab has borders
at gbaabaab, abaab and eb.

Once we know how to compute all periods of a string then we also
know how to compute all initial palindromes of a string. A pealindrome
is a string that reads the same forward and backward, i.e., w = w¥,
where w® is the em reverse of string w. For this, we run the algorithm
on w!w® where ! is not in the alphabet. Better palindrome detectors are
known. In 1976, G. Manacher showed that in fact all palindromes can
be found in linear time [104).

A string can avoid having any nontrivial period but will not take two
periods for long. We give here a weak version of an important result
known as the “periodicity lemma” [77, 102].

Lemma 1 If w has two periods of length p and ¢ and w is at least p+¢
then w has period ged(p, g).

Proof. Assume w.l.o.g. p > g and consider w; for arbitrary i. We have
that either i—q 2> 1 or 4+p < n. In the first case, z; = zi_g = Ti_g4p, in
the second case %; = 2;4p = Tiyp—g. Thus, p— g is a period. Repeating
the treatment on the pair p, p — ¢ leads to the claim. °

String Paltern Matching for a Deluge Survival Kit 5

procedure maxborder { y)
begin
bord[0) « —1; r « —1;
for m=1to hdo
while r > 0 and %41 # ¥ do
T + bord[r];
endwhile
r=r+1; bord[m]=1r
endfor
end

Figure 1.1 Computing the longest borders for all prefixes of y

The computation of the longest borders (and corresponding periods)
of all prefixes of a string is afforded in overall linear time and space.
We report one such construction in Figure 1.1, for the convenience of
the reader, but refer for details and proofs of linearity to discussions of
“failure functions™ and related constructs such as found in, e.g., [2, 11,
67].

Once the period structure of the pattern is unveiled, this immediately
yields a linear time string searching algorithm. The key element of the
algorithm is to maintain, during a2 text scanning, notion of the longest
prefix of the pattern matched so far, and use the border table to jump
over intermediate non-viable candidates. These developments will be
discussed some more later, in connection with subword automata.

Let w{w) denote the shortest non-zero period length of w. A string w
such that |w| > 2wr(w)} is said to be perfodic. By the periodicity lemma,
in a periodic string w, all periods lengths that are smaller than |w|/2,
must be multiples of the period length w{w). A string w such that setting
w = v* implies k = 1 is called primitive. A square is a string w in the
form w = vv with v a primitive string. It is natural to wonder whether
squares represent avoidable or unavoidable regularities. As is readily
seen, on an alphabet of two symbols we can only build a very short
string not containing any squares, i.e., a square-free string. In fact, in
the first three steps we must generate either 010 or 101, at which point
adding, say, 0 to 010, introduces the square 00 while adding 1 yields
0101.

At the beginning of the century, A. Thue [130, 131} found that over an
alphabet of at least 3 symbols he could build an indefinitely long square
free string. This was achieved by giving a square free morphism, i.c., a

6

rewriting rule that when applied to a square free string would preserve
square-freedom. The morphism considered by Thue is: rew(a} = abeab,
rew(b) = acabch and rew(c) = acheach. Later, S. Istrail (see [41]) gave
a more compact morphism that is square free if started on the letter a:
rev(a) = abc, rew(b) = ac, and rew(c) = b. As for a binary alphabet,
it is possible to show that we can build infinite cubefree strings, with
obvious meaning.

There are, in principle, about n?/2 possible ways to choose indices
i and j for the starting and ending positions of a substring in a string
of n symbols, and these might all correspond to distinct strings. Is it
posssible to have as many squares? As it turns out, there can be only
O(nlogn) squares. One way to prove this is by giving an algorithm that
enumerates all the squares. M. Crochemore showed in 1981 [64] that
this number of squares is also tight: the Fibonacci strings, defined by
Fy =a, F{ =b, and F; = F;_1F;_», attain this bound.

There are several efficient or optimal serial [103, 119, 64, 22, 86, 87]
and parailel [69, 68, 17, 13] algorithms to test square-freeness and detect
all squares. We will discuss some simple criterion and algorithm later.

2.3 QUASIPERIODS AND COVERS

In the Summer of 1990, A. Ehrenfeucht suggested that some repetitive
structures defying the classical characterizations of periods and repeti-
tions could be captured by resort to a germane notion of “quasiperiod”.
In [19] Apostolico and Ehrenfeucht defined gquasiperiodic strings as
strings which are entirely covered by occurrences of another (shorter)
string. They also gave an O{n log? n) time algorithm to find all maximal
quasiperiodic substrings within a given string. Apostolico, Farach and
Iliopoulos [20] gave an O(n) time algorithm that finds the quasiperiod of
a given string, namely the skorlest string that covers the string in ques-
tion. This algorithm was subsequently simplified and improved by Bres-
lauer {45] who gave an O(n) time on-line algorithm, and parallelized by
Breslauer [46] and Hliopoulos and Park [92], the latter giving an optimal-
speedup Oflog log n) time parallel CRCW-PRAM algorithm. Moore and
Smyth [112] gave an O{n} time algorithm that finds all strings that cover
a given string. These developments eventually led to the study by 1I-
iopoulos, Moore and Park [91) and by Ben-Amram et al. [37] of covers
which are not necessarily aligned with the ends of the string being cov-
ered, but are rather allowed to overflow on either side. The sequential
algorithm for this problem takes O{nlogn) time [91] and the parallel
counterpart [37] achieves an optimal speedup taking O(logn) time, but
using superlinear space.

String Pattern Matching for a Deluge Survival Kit 7

To understand these developments, it is convenient to modify slightly
the notion of a period. A nom-empty string u, |u] < |[w|, will be called
a period of w if w is a substring of u*, for some integer k > 1. Clearly,
if u is a period ol w, then its length |u| is a period length of w, since
fu| is a period length of u*. Moreover, if u = 3y, then any roistion yz
of u is also a period of w since (yz)*t! = y(zy)*z = yu*z contains w
as a substring. A period u of w that is also a prefix of w is called a left
aligned period. Clearly, given any period length = > 0 of w, the prefix
W17} is a left aligned period of w.

A period u is in fact a regular cover of w, where occurrences of u
appear in w spaced exactly {u] positions apart (other occurrences are
also allowed) and the occurrences on the sides can overflow. Given any
period u of w, consider the rotation % of u such that @ is also a prefix of
w (in other words, % is the rotation of u that is a left aligned period of
w). If w = &* for some integer k, namely if the regular cover of w by u
is also right aligned, then w is said to have an aligned regular cover u. If
w has no proper aligned regular covers (w itself is always a cover) then
w is primitive.

The shortest non-zero period length of w will be called the period
length of w and denoted w(w). A string w such that [w| > 27(w) is
said to be periodic. By the theorem above, in a periodic string w, all
periods lengths that are smaller than |w|/2, must be multiples of the
period length w(w).

2.3.1 General Covers. One may generalize the notion of a pe-
riod u that covers w with regular occurrences that are |u| positions apart
in w, to covers where the occurrences of u in w are not required to be
uniformly spaced, and are allowed, ir addition, to overflow on either side.
For example, the string w = ‘aabaacbab’ may be covered by occurrences
of u = ‘aba’, but the positions of these occurrences in w are not regular
and in fact aba is not a period of w. This type of covers were called
general covers in [91] where a covering string such as our u above is also
termed @ seed of w.

2.3.2 Aligned Covers. Some notable families of covers result by
considering covering strings u for w that are not necessarily regularly
spaced but are aligned on both sides of w and are not allowed to overflow.
Such strings u are said to be aligned covers of w. Given the similarity
between non-regular covers and regular covers (periods), aligned covers
u of w were named quesiperiods of w by Apostalico and Ehrenfeucht [19].
In addition, strings that do not have any non-trivial (shorter) aligned
covers were called superprimitive and strings that have shorter aligned

8

covers were termed gquasiperiodic. Observe that any periodic string is
also quasiperiodic, but noft every quasiperiodic string is periodic. Most
of our treatment here is confined to aligned covers, leaving general covers
to a future extension.

We describe next few easy facts about periods, borders, and aligned
covers.

Lemma 2 If a string z aligned-covers a string w then z is a border of
w.

Proof. Since the first symbol of w must be covered by z, the string w
must start with an occurrence of z. Since the last symbol of w must
also be covered by z, the string w must also end with an occurrence of
z. That is, z is a border of w. o

Note that by this last fact any cover of a string w can be represented
by a single integer that is the length of the border of w.

Lemma 3 If a string z covers a string w, then 2 covers also any possible
border v of w such that |v| > |z].

Proof. Given any prefix of w, it is covered by z except possibly at most
the last |z] — 1 symbols of the prefix. Similarly, given any suffix of w, it
is covered by z except possibly at most the first |z| — 1 symbols of the
suffix. Since v is a border of w, it is both a prefix and a suffix, and it
must be covered by z. °

Lemma 4 Every string has 2 unique quasiperiod.

Proof. Assume that a string w is covered by two strings » and v, and
let w.l.o.g. |u| < |v|. By Lemma 2 v is a border of w. By Lemma 3 u
covers w. Since u 7 v, then v is quasiperiodic. o

Lemma 5 If a string w has a border z, such that 2|z| > |w|, then 2
covers 1.

Proof. z covers the first half of w since it is a prefix of w and the last
half of 1w since it is also a suffix. Therefore, all symbols of w are covered
by z. °

3. INDEXING, TRANSDUCING AND
CHECKING

Various pattern matching techniques and tools (refer, e.g., to [11, 67])
have been developed in in the last two decades to detect and count all
distinct occurrences of an assigned substring w (the pattern) within a

Siring Pattern Matching for e Deluge Survival Kit 9

longer string = (the tezt}). As already mentioned, this problem can be
solved in O(|z[) time. In widespread applications, many queries of this
kind are performed on a relatively stable repository, and it makes sense
to preprocess the text archive so as to get an index on which searches
can be carried out in time proportional to the query, rather than archive
size. A number of structures achieve this objective, and we describe
some of them in this section.

3.1 SUBWORD TREES

Let z be a string of n symbols over the alphabet X and $ an extra
character not in . The ezpanded suffiz iree T, associated with z is a
digital search tree collecting all suffixes of £5. Thus, T is a tree with n
leaves, labeled from 1 to n. Each arc is labeled with a symbol of ZU{§}.
For any 4, 1 < ¢ < n, the concatenation of the labels on the path from the
root of 7% to leaf ¢ is precisely the suffix suf; = ziziy1...2z3. Moreover,
for any two suffixes suf; and suf; of 28, the path associated with their
longest common prefix is the same in Ty.

The tree can be interpreted as the state transition diagram of a de-
terministic finite automaton where all nodes and leaves are final states,
the root is the initial state, and the labeled arcs, which are assumed fo
point downwards, represent part of the state-transition function. The
state transitions not specified in the diagram lead to 2 unique non-final
sink state. Our automaton recognizes the (finite} language consisting of
all substrings of string . This shows how the tree can be used in an
on-line search: given a query pattern y, we follow the downward path in
the tree in response to consecutive symbols of y, one symbol at a time.
Clearly, ¥ occurs in z if and only if this process takes to a final state.
In terms of T, we say that the locus of a string y is the node «, if it
exists, such that the path from the root of T to « is labeled y. Thus,
a string y occurs in z if and only if y has a locus in 7;. Finding this
out takes O(f- |y|) character comparisons, where ¢ is the time necessary
to traverse a node, which is constant for a finite alphabet. Note that
this only answers whether or not y occurs in z. However, one can easily
prove the following

Lemma 6 If y has a locus « in Tz, then the occurrences of y in 2 are
all and only the labels of the leaves in the subtree of T rooted at a.

Thus, if we wanted to know where y occurs, it would suffice to visit
the subtree of T, rooted at node «, where « is the node such that the
path from the root of T, to ¢ is labeled y. Such a visit requires time
proportional to the number of nodes encountered, and the latter can

10

be ©(n?) on the expanded suffix tree. This is as bad as running an
offline search naively, but we will see shortly that a much better bound
is possible.

An algorithm for the construction of the expanded T is readily or-
ganized. We start with an empty tree and add to it the suffixes of =8
one at a time. Conceptually, the insertion of suffix suf; (i = 1,2,...,n)
consists of two phases. In the first phase, we search for suf; in Ti_;.
Note that the presence of § guarantees that every suffix will end in a
distinct leaf. Therefore, this search will end with failure sooner or later.
At that point, though, we will have identified the longest prefix of suf;
that has a locus in T;_i. Let head; be this prefix and « the locus of
head;. We can write suf; = head; - tail; with teil; nonempty. In the
second phase, we need to add to T;_; a path leaving node o and labeled
tail;. This achieves the transformation of T;_; into T;. It is clear that
this construction takes time ©(n?) and O(n?) space.

Tt is instructive to examine the cost of this procedure in terms of the
two main phases of each suffix insertion. If the symbols of & are all
different, then T contains ©@(n?) arcs. Finding the (empty) head only
charges linear time overall, and the heaviest charges come from adding
the tail paths. At the other extreme, consider z = g™~ . In this case,
tail paths charge linear time overall and the quadratic work is done in
order to find the heads.

It is easy to reduce the work charged by tails by resorting to a more
compact representation of T;. Specifically, we collapse every chain
formed by nodes with only one child into a single arc, and label that
arc with a substring, rather than with a symbol of £8. Such a compact
version of T has al most i internal nodes, since there are n + 1 leaves
in total and now every internal node is branching. Clearly, it takes little
to adapt the details of the direct construction.

With the new convention, the tree for a string formed by all different
symbols only requires 1 internal node, namely, the root. Except for arc-
labeling, the construction of such a tree is performed in linear time, since
adding a path takes now constant time per suffix. However, there is no
improvement in the management of the case £ = ¢®~1, in which finding
the heads still requires ©(n?) time.

While the topology of the tree requires now only O(n) nodes and
arcs, each arc is labeled with a substring of 8. We have seen that the
lengths of these labels may be ©(n?) (think again of the tree for a string
formed by all different symbols). Thus, as long as this labeling policy
is maintained, T will require ©(n?) space in the worst case, and it is
clearly impossible to build a structure requiring quadratic space in less
that quadratic worst-case time. Fortunately, a more efficient labeling

String Pattern Metching for o Deluge Survival Kit 11

is possible which allows us to store T in linear space. For this, it is
sufficient to encode each arc label into a suitable pair of pointers in the
form [4, j] to a single common copy of =. For instance, pointer ¢ denotes
the starting position of the label and j the end. Now T takes linear
space and it makes sense to investigate its construction in better than
quadratic {ime.

As already seen, the time consuming component of suffix insertion is
in finding the heads. For every 4, this phase starts at the root of ;-
and essentially locates the longest prefix head; of suf; that is also a
prefix of suf; for some j < i. Note that head; will no longer necessarily
end at a node of T;_;. When it does, we say that head; has a proper
locus in T;_y. If head; ends inside an arc leading from some node « to
some node 8, we call @ the coniracted locus and 3 the eztended locus of
head;. We use the word locus to refer to the proper or extended locus,
according to the case. It is trivial to upgrade head location in such a
way that the procedure creates the proper locus of head; whenever such
a locus does not already exist. Note that this part of the procedure only
requires constant time.

The above discussion embodies the obvious principle that the
construction of a digital search tree for an arbitrary set of words
{wn,ws, ..., wi} cannot be done in time better than the 22;:1 |w;| in the
worst case. This seems to rule out a better-than-quadratic construction
for Ty, even when the tree itself is in compact form. However, the words
stored in T are not unrelated, since they are all suffixes of a same string.
In fact, clever constructions, such as in [110, 132, 137] are available that
build the tree in time O{nlog|X|) and linear space. One key element in
such constructions is offered by the following easy facts.

Lemma 7 If w = av, a € I, has a proper locus in T, then so does v.
Lemma 8 For any ¢, 1 <1 < n, |head;,| > |head;| — 1.

Proof. Assume the contrary, ie., |headiy1| < |head;] — 1. Then,
head;;1 is a substring of head;, By definition, head; is the
longest prefix of sujf; that has another occurrence at some position
j < 1. Let ;Tjp1...Tj4[heaq;]-1 De such an occurrence. Clearly,
any substring of head; has an occurrence in Z;%Tji1..Zjtfheady]-1-
In particular, ;41%5¢2.-Tjtjheadi|-1 = Tit1Ti+2--Titfhead;|—1, hence
Tip1Ti42---Titfhead;]-1 Must be a prefix of head;1. o

To exploit this fact, suffiz links are maintained in the tree that lead
from the locus of each string av to the locus of its suffix v. Here we are
interested in Lemma 7 only for future reference.

Using these tools, McCreight proved the following

12

Theorem 3 The suffix tree in compact form for a string of n symbols
can be built in O(¢ - n) time and O(n) space, where t is the time needed
to traverse a node.

As the discussion unravels, we shal see several applications of suffix
trees and their companion structures, ranging from the detection of reg-
ularities, string statistics of various kinds, finding common subwords in
words, efc.

When it comes to the actual allocation in memory of a suffix tree, one
faces a number of design choices, prominent among which those pertain-
ing to the implementation of nodes. There are three main possibilities in
this regard. The first one is to implement each node as an array of size
[Z]. This yields fast searches, but is likely to introduce an unbearable
amount of waste even for small alphabets. The second option is to store
each node as a linked list (or, better, as a balanced search tree). This
keeps space to a minimum, buf introduces an overhead on the search.
Finally, one may implement the adjacency of a node as part of a global
hash coding. This yields expected constant time search within overall
O(nlogn) space.

In massive applications, even linear space can be problematic: at 20
bytes per node and with a number of nodes 1.5 times the number of
symbols in the input string, a text of size n needs approximately 30n
bytes of storage space. In general, although the size of the suffix tree
depends on the particular implementation, one might expect it to be
never lower than 20 bytes per input symbol {(or bps} in the worst case.
We refer to [97] for a comparative study of various space-efficient allo-
cations. Other alternatives have been studied more recently, specially
in connection with secondary memory, resulting in variants called blind
tries (see, e.g., [74] and references therein}.

A space-efficient alternative to a suffix tree is offered by the suffiz
array [107]. This is a essentially a table of the suffixes sorted in lex-
icographic order, plus some auxiliary information. The implied query
technique is inspired by binary search. Specifically, the suffix array of
the text z is the structure composed of the two tables POS and LCP.
Table POS satisfies the condition:

z[POS[1)..n] < z[POS[2)...n) < ... < z[POS[n]...n].

The second table LCP contains the prefixes common to consecutive
suffixes, i.e., LCP is defined, fori=1,...,n—1, by

LCP[i} = |lep(z[POSIi)...n), z[POS[i + 1]...n})|,
where {cp denotes the length of the longest common prefix of two words.

String Pattern Matching for a Deluge Survival Kit 13

The preparation of the text, lexicographical ordering of its suffixes
and common prefix calculations, can be carried out in time O(nlogn).
The reader is encouraged to obtain this by post-processing of a suffix
tree. This resulting structure can be shown to support O(m-+logn) time
search for a pattern of length m in the text. Note that ordinary binary
search would achieve only O(mlogn) time, but the technique in [107]
uses combinatorial properties of the longest common prefixes to reduce
the number of symbol comparisons and the total running time.

In many applications, notably, in data compression, suffix trees and
arrays bave to be buili repeatedly. This exacts a considerable toll irre-
spective of the method adopted. Ideally, one would like to build the tree
once and then maintain it, together with updated annotations of various
nature, following every substring selection and removal. Linear time al-
gorithms for dynamically maintaining the tree under deletion of a string
were originally proposed by McCreight together with his construction.
Similar problems have been studied by Fiala and Green [75] in the con-
text of sliding window compression. More recently, Larsson [98] showed
that Ukkonen’s algorithm can be easily extended to accommodate the
sliding window update of the suffix tree in amortized linear time. Gu
et al. [88] introduced a new data structure for dynamic text indexing
that supports insertion and deletion of a single character in O{logn)
time and the ¢ updates involving a substring w that occurs occ,, times
in O(|w| + ocey log i +ilog|w|). Additional recent efforts and references
addressing the dynamic maintenance of various indices are found in [74].

3.2 SUBWORD AUTOMATA AND FACTOR
TRANSDUCERS

An important companion to the suffix trees and arrays is the directed
acyclic word graph (DAWG), a data structure specifically designed to
represent the set Fac(z) of all substrings of a word. Roughly, the graph
Dz, called the suffiz dawg of z, may be obtained by identifying first and
then superimposing isomorphic subtrees of the uncompacted tree 7.
An advantage of dawgs is that each edge is labeled by a single symbol,
and they are somehow more convenient to use whenever information is
associated with edges rather than with nodes. We consider only dawgs
representing the set Fec(z), but it is clear that the analog structures
could be built for other sets of words, e.g., the set of subsequences of a
string.

The possible applications of suffix dawgs are essentially the same as
those of suffix trees. Indexing is the main purpose of these data struc-

14

tures. Below, we demonstrate the use of the suffix dawg of a pattern to
speed up its search in a text.

A node in the graph D; naturally corresponds to a set of substrings
of the text, namely, substrings having the same right context. It is
not difficult to be convinced that all these substrings have the following
property: their first occurrences end at the same position in the text.
The converse is not necessarily true, but this characterization gives an
intuition of the definitions that follow.

Let z be a substring of =, and let endpos(z) denote the set of all
positions in £ where an occurrence of z ends. Let y be another sub-
string of z. Clearly, the subtrees of T rooted at z and y are isomorphic
iff endpos(z) = endpos(y) (recall that z is completed by a special end
marker). In the graph D,, paths relative to substrings with the same
endpos sets end on a same node. The small size of dawgs is due to the
special structure of the family of sets endpos. We associate each node
v of the dawg with the length wal(») of the longest word leading to it
{from the source. The nodes of the dawg are, in fact, equivalence classes
of nodes of the uncompacted tree 7,. under subtree isomorphism. In this
sense, val(v) is the longest representative of its equivalence class. One
could also regard the nodes of the dawg as equivalence classes of sub-
strings of the text, since the nodes in T; are in one-to-one correspondence
with the distinct substrings of z.

The notion of border and failure function has an exact counterpart
in dawgs. Let v be a node of D, distinct from the source node. We
define suf[v] as the node g such that val(u) is the longest suffix of
vel(p) not equivalent to it, i.e., corresponding to a node other than u.
By convention, the suf of the source is the source itself. The table suf
is analogous to the table bord defined earlier. The links implied by the
table suf are called suffiz links. These links connect the nodes in a
tree structure, whereby suf[u] is interpreted as the father of x. It so
happens that this tree embodies the containment relation of the endpos
sets.

Theorem 4 For any string £ with » symbols over an arbitrary alphabet,
D has a number of nodes N < 2n, and a number of edges & < N+n-1.

Proof. The main property used here is that for any two endpos sets,
these are either disjoint or one is contained in the other. Thus, the
family of endpos sets has a tree structure. All leaves are pairwise disjoint
subsets of {1,2,...,n}. Hence, there are at most n leaves. We partition
the nades into two (disjoint) subsets according to whether or not wal(u)
is a prefix of . The number of nodes in the first subset is exactly n+1,
the number of prefixes of z. We now count the number of nodes in the

String Paitern Matching for a Deluge Survivel Kit 15

second subset. Let v be a node such that val(v) is not a prefix of z.
Then val(v) occurs in at least two different right contexts in z, whence
there are at least two nodes g and u' (corresponding to two different
factors of z) are such that suf[u] = suf(u'} = ». Hence u has at least
two children in the tree induced by suf. Since the tree has at most n
leaves (corresponding to non-empty prefixes), the number of its nodes is
smaller than n. In conclusion, D, contains at most (n+1)+{(rn—1} =2n
nodes.

To bound the number of edges, consider a spanning tree T over Dy,
and count separately the edges in the tree and those outside. Since there
are N nodes in the tree, this accounts for N — 1 edges. Let us count the
other edges of D,. With each such edge (v, u), we associate the suffix
zay of z such that z is the label of the path in T' going from the source
to v, a is the label on (v, ¢}, ¥ is the substring extending za into a suffix
of z. Tt is clear that this correspondence is one-to-one with the suffixes.
Moreover, the empty suffix is not considered, nor is z itself because it
is already in the tree. This leaves n — 1 suffixes, which is the maximum
number of edges outside T', whence the number of edges in D, cannot
exceed N +n— 1. °

Although the size of D; is linear, it is not always strictly minimal. If
minimality is understood in the sense of finite automata, i.e., restricted
to the number of nodes, then D, is the minimal automaton for the set of
suffixes of z. The minimal automaton for Fac(z) can be, indeed, slightly
smaller.

A simple construction of dawgs can be based on a transformation of
the suffix tree. The reader is referred to [42] for an on line construc-
tion. The basic procedure is the computation of the equivalence classes
associated with subtrees. This is based on a classical algorithm for tree
isomorphism. Here we just recall the final result without proof.

Lemma 9 Let T be a rooted ordered tree in which the edges are la-
beled by symbols from a finite alphabet. Then, isomorphic classes of all
subtrees of T can be computed in linear time.

An application of Lemma 9 provides a linear time transformation of
7. into a compact version of D, in which edges are labeled by words
and no node has only one outgoing edge. From this, the transition to
the final dawg is easy. Informally, the first step is to juxtapose nodes
of T, that are roots of isomorphic subtrees. The resulting structure
differs from a dawg in that edges are labeled by strings rather than
symbols. Breaking down each edge risks introducing a quadratic number
of nodes. The following approach preserves the linearity of space. Let
the weight of an edge be the length of its label, and let inedge(v) be the

16

heaviest incoming edge for v and z the corresponding label. Break down
inedge(v) its label into consecutive unit edges. At this point, for each
one of the other incoming edges of v with a label 2z can be implemented
by directing a new edge, labeled by the symbol @, to the node g, on the
chain now replacing inedge, such that the path from gz to v is labeled
by z. It is crucial that all these local transformations can be performed
on all nodes v independently.

This algorithm cannot be used directly to build the smallest automa-
ton accepting Fac{z). The on-line construction of these is more technical
than that of suffix dawgs given in [42, 7).

There is a very close relationship between our two ”good” representa-
tions for the set Fac(z). For this discussion, we assume that the string
z starts with a symbol occurring only at the beginning of z. In this case
the relation-ship between dawgs and suffix trees is particularly tight and
simple.

Lemma 10 Assume that £ has a unique left most symbol. Then the
following three properties are equivalent:

endpos(w) = endpos(y) in z;
first-pos(w®) = first-pos(y®) in z%;
w®, y® are contained in the same chain of the uncompacted T_r.

It follows as a corollary that the reversed val’s of nodes of the suffix
tree T,r are the longest representatives of equivalence classes of sub-
strings of . Hence the nodes of Tz coincide with those of D;. In
Tz, define the shortest eztension link sezi[a,v] as the node p such that
y = val(u) is the shortest word having prefix az, where z = val(v). If
there is no such node g, then sext[e, v} = nil. Observe the relationship
between sext links and suffix links. The following properties hold.

Theorem 5 If £ has the unique left most symbol then D, coincides
with the graph of sext links of T = T}xr.

Theorem 6 If z starts with a unique symbol then the tree of suffix
links of D, coincides with the suffix tree T».

Like trees, huge dawg such as arising in the design of thesaura for lan-
guage and speech applications, present considerable problems of efficient
storage and access. Compressed versions exist that variously expose and
exploit the relationship between D, and D, r. It is also possible to make
a symmetric version of a dawg, i.e., data structures that represent si-
multaneously Fac(z) and Fac(z?).

A simple application of either suffix trees or subword dawgs is to
compute a longest common substring of two strings. With trees, this

Siring Pattern Maiching for ¢ Deluge Survival Kit 17

is the deepest common node in the intersection of the two trees. With
dawgs, one may build on line the dawg of the shortest word and then
travel on this with the longer one. The overall algorithm results in an
approach to string-matching further highlighted below. The reader is
encouraged to work out the details.

First, build the dawg D, of the pattern. The text is scanned then
from left to right. At some generic step, letting w be the prefix of = that
has just been processed, we maintain that we know the longest suffix s
of w that is a substring of y. 'We want now to compute the same value
associated with the next prefix wa of z. It is clear that D), yields this
value immediately via forward transitions whenever sa is a substring of
y. If this is not the case, the next state in the dawg is reached via suffix
links. This is similar to using the links subtended by the computation
of borders. Each transition on a forward link corresponds to advancing
on z by one character, whereas a transitions on suffix links represent
forward shifts for the pattern relative to the text. Either action cannot
be performed more than n times in total, whence the overall linear time
bound.

3.3 SEARCHING FOR WORD SETS AND
REGULAR EXPRESSIONS

The most general exact searching problem may be cast in terms of
regular expressions. Regular expressions describe sets of strings resulting
by a finite number of concatenations (-}, union (4+) and star operator
(%) to the symbols of an alphabet, where the * operator is the reflexive
transitive closure of concatenation. For instance, (0-1)*+(0-1-1)" is the
set of all strings in either one of the forms 01010101... or 011011011011....
The problem is, given a regular expression £, to preprocess it in order to
locate all occurrences of words of the associated language lang(£) that
occur in any given word z.

The special case where £ is a finite set of words is efficiently handled by
suitable extensions of the dawg and its companion structures. The clas-
sical solution to the general problem is composed of two phases. First,
transform the regular expression £ into a nondeterministic automaton
that recognizes the language described by £, following a construction due
to Thompson (cfr [67]). Second, simulate the obtained automaton with
input word y in such a way that it recognizes each prefix of y that be-
longs to L* - lang(£). Both phases are linear in the input. In particular,
a nondeterministic automaton taking space linear in the length of the
regular expression is easily built by iterated serial/paraliel composition
of smaller automata over the alphabet £ U {\}, using transitions on the

18

empty symbol A as connectors. Composition of constituent automata
under each of the operations induced by -+, - or * can be implemented
to work in constant time. Combined with a prudent parsing of £ this
leads to the following result:

Theorem 7 Let £ be a regular expression. The nondeterministic au-
tomaton recognizing lang(£) can be computed and stored in time and
space O(|E]).

The derivation of such an automaton proves one half of a central
theorem of Kleene, which set the equivalence between the languages rec-
ognized by finite automata and those described by a regular expression.

Theorem 8 (Kleene, 1956) A language is recognized by a finite au-
tomaton and only if it is can be described by a regular expression.

However, it is well known that the transformation of a nondeterminis-
tic antomaton into a deterministic one is accompanied by an exponential
explosion in the number of states. This poses a problem in the searches,
since the search for end-positions of words in leng(€) is performed by
a simulation of a deterministic automaton recognizing Z*lang(£). To
circumvent this, the determinization is just simulated at search time: at
any given time during the search, the automaton will not be in a single
state, but rather in a set of states, the search itself taking care of dy-
namically maintaining knowledge of this set. A central notion for this
process, related to A-transitions, is that of A-closure for a set of states S.
This is the set of states Q reachable from @ solely through A-transitions.
Once the closure of a set of states is known, it is possible to compute
effectively the transitions induced by any input symbol.

The simulation of a regular-expression-matching automaton consists
of repeating the two operations “closure” and “transitions on a set of
states”. With careful implementation, based on standard manipulation
of sets and queues, the time and the space required to perform either
part is linear in the size of sets of states involved. This leads to the
following

Theorem 9 Given a regular expression £, testing whether a word y
belongs to lang(£) can be done in time O(|€| x |y|) and space O({€]).

Note that the original problem is different, in that it requires that
the answer to the test be reported for each substring of the text =, and
not only on s itself. But no transformation of the automatorn for (£} is
necessary. A mere transformation of the search phase of the algorithm is
sufficient: at each iteration of the closure computation, the initial state

String Pattern Matching for a Deluge Survival Kit 19

is integrated to the current set of states. By doing 50, each substring of
T is tested, and the following is established.

Theorem 10 Let £ be a regular expression and z be a word. Finding
all end-positions of subwords of = that are recognized by the automaton
associated with (£) can be performed in time O(|£| |z|) and space O(|£]).
The time spent on each symbol of z is O(|€]).

As mentioned, the drawback of performing regular-expression-
matching by deterministic automata is that the automaton can have
a number of states exponential in the length of £. This is the sitvation,
for example, when

m—{ times

£=ar(a+b)-?-(a+b)‘

for some m > 1; here, the minimal deterministic automaton recogniz-
ing L*lang(€)} has exactly 2™ states since the recognition process has
to memorize the last m symbols read from the input word z. However,
not all states of the deterministic automaton for L*lang(£) are neces-
sarily met during the search phase. This suggests a lazy construction
of the deterministic automaton during the search as a possible practical
alternative.

4. MODELING, COUNTING, ESTIMATING
AND SCORING

In many applications, repetitions of substrings and other substruc-
tures represent redundancies and, as such, may be sought just so as to
be removed. This is the case of Data Compression. In textual substitu-
tion methods, for example, strings that appear many times in a subject
can be economically replaced by pointers to a single common copy. In
many other applications, these same kinds of regularities are sought as
carriers of information. In applications ranging from Consumer Pre-
diction to Data Mining, Intrusion Detection and Security, Protein and
other Biological Sequence Classification, the idea is to infer a consistent
behavior from some protocol of past records and then use it to predict
future behavior or detect malicious practices. This entails some notion
of sequence similarity, whereby having established some set of behavioral
sequences as constituting the normal profile, any new sequence can be
compared to the dictionary and possibly classified or spotted as abnor-
mal. Learning takes place in general both from positive and negative
samples.

This display of somewhat of a duality for the notion of information
has been sensed and debated for decades [125, 50]. In Shannons terms,

20

for instance, the self-information of string z relative to a given source P
is measured by — log P(x). This notion is central to coding: the mean
codelength of any Uniquely Decipherable Code for strings of the same
length is lower bounded by the entropy, the mean of self information. For
Brillouin, information is related to redundancy and negentropy, entropy
is chaos.

Either way, in our applications we do not know the source proba-
bilities, which are in fact fictitious entities or models. One pervasive
problem is therefore to estimate the probabilities from the observed
strings, to be used in the design codes for compression or other pur-
poses. The domains in which this need arises are countless: Prediction,
Inference, Modeling, Learning, and Universal Coding, to quote a few.
From an informatin theoretic standpoint, an important question there
is how to define a notion of information relative to a class of sources.
From the standpoint of Pattern Matching, interesting questions revolve
around how computationally expensive it is to estimate probabilities and
related deviations within a given class. Below, we consider some pre-
liminary counts and statistical computations. Later in this chapter, we
will will also consider issues of modeling by Markov Chains and related
Finite State Automata sources.

4.1 BASIC STRING COUNTS AND
STATISTICS

The tree T is a remarkable compendium of the structure of a string. It
can be immediately adapted to solve problems such as finding the longest
repeated substring, the longest substring common to many strings, or
finding squares or palindromes, etc. To find squares, for instance, it
suffices to note the following:

Lemma 11 There is a square in & ifl there is a node g in T such that
the subtree rooted at p contains two consecutive leaves 7 and j such

j—i<fw(p)].

In fact, if j — ¢ < |w(p)| as stated, then the two occurrences of w{y)
at ¢ and j are adjacent or overlap, whence we must have a square. We
leave it for the reader to show that in the converse of the proof leaves ¢
and j are indeed consecutive as claimed. The reader might also find it
interesting to derive a similar criterion for the detecting of palindromes
on the tree of 2§k,

Also the count of occurrences of all substrings of a string « is an easy
application of T;. The number of occurrences (with overlap) of a string
w of x is trivially given by the number of leaves reachable from the node

String Pattern Matching for a Deluge Survival Kit 21

closest to the locus of w in Ty, and this is irrespective of whether or not
w ends in the middle of an arc. Thus, labeling every internal node o« of
T, with the number c(e) of the leaves in the subtree rooted at « yields
this statistics for all substrings of z.

The problem becomes more involved if we wanted to build a similar
index for the statistics without overlap, in which we count, for each
substring, its maximum number of nonoverlapping occurrences. It is
seen that this transition induces a twofold change in the structure: on
the one hand, the weight in each node does no longer necessarily coincide
with the number of leaves; on the other, extra nodes must be introduced
to account for changes in the statistics that occur in the middle of arcs.
The efficient construction of this augmented index in minimal form (i.e.,
with the minimum possible number of unary nodes) is quite elaborate
{23]. For a string =z, the resulting structure is denoted T(z) and called
the Minimal Augmented Suffic Tree of z. It is not difficult to build T;
in O(n?) time and space by embedding the necessary weighting as part
of the iterated suffix insertion procedure, hence at an expected cost of
O(nlogn} [24]. The iime required by tbe construction given in [23] is
instead Ofnlog?n) in the worst case. The number of auxiliary nodes
can be bounded by O(nlogn}, but it is not clear that such a bound is
tight.

Consider for a moment the problem of defining and computing em-
pirical probabilities. One problem here is that the notion of empirical
probability is not straightforward. Fortunately, empirical conditional
probabilities often turn out to be less controversial. One ingredient in
the computation of empirical probabilities is the count of occurrences
of a string in another string or set of strings. We concentrate on this
problem first. Since there can be O(n?) distinct substrings in a string of
n symbols, a table storing the number of occurrences of all substrings of
the string might take up in principle ©(n?) space. However, we just saw
that linear time and space suffice to build an index suitable to return,
for any string w, its)y count in z. Here we want to analyze this fact a
little more closely. We begin by formulating a “left-context™ property,
symmetric to one already seen, and conveniently adapted from [42).

QGiven two words z and y, let the start-sef of y in = be the set of
occurrences of y in z, 1.e., posz(y) = {i : y = %...x;} for some ¢ and j,
1 €£i<j<n Two strings y and z are equivalent on z if posz(y) =
posz(z). The equivalence relation instituted in this way is denoted by =,
and partitions the set of all strings over I into equivalence classes. Recall
that the indez of an equivalence relation is the number of equivalence
classes in it.

22
Lemma 12 The index %k of the equivalence relation =, obeys k < 2n.

Lemma 12 is established in analoogy to its right-context counter-
part seen in connection with dawgs. In the example of the string
abaahoabacbaababaababa, for instance, {ab, abe} forms one such Cj-class
and so does {ebaa, abaab,abacba}. Lemma 12 suggests that we might
only need to compute empirical probabilities for O(n) substrings in a
string with n symbols. The considerations developed earlier make this
statement more precise and in fact give one possible proofs of it.

We are now ready to consider more carefully the notion of empirical
probability. One way to define the empirical probability of w in & is to
take the ratio of the count of the number ¥, to |z| — [w]| + 1, where
the latter is interpreted as the maximum number of possible starting
positions for w in x. For w and v much shorter than = we have that the
difference between |z| — |w| + 1 and |z| — |wvl + 1 is negligible, which
means that the probabilities computed in this way and relative to words
that end in the middle of an arc do not change, i.e., we only need to
compute those associated with strings that end at a node of the compact
Te.

This notion of empirical probability, however, assumes that every po-
sition of £ compatible with w length-wise is an equally likely candidate.
This is not the case in general, since the maximum number of possible
occurrences of one string within another string depends crucially on the
compatibility of self-overlaps. For example, the pattern aba could occur
at most once every two positions in any text, abaab once every four, etc.
Compatible self-overlaps for a string z depend on the structure of the
periods of z. An alternative count can be defined as follows.

Definition The maximum possible number of occurrences of a string
w into another string = is equal to (=] ~ [w] + 1)/[v|, where © is the
smallest period of w.

According to this definition,in order to compute the empirical prob-
abilities of, say, all prefixes of a string we need to know the borders or
periods of all those prefixes. In fact, we know we can manage to carry
out all the updates relative to the set of prefixes of a same string in
overall linear time, thus in amortized constant time per update.

The construction of Fig. 1.1 may be applied, in particular, to each
suffix sujf; of a string £ while that suffix is being inserted as part of the
direct tree construction. This would result in an annotated version of T},
in overall quadratic time and space in the worst case. Note that, unlike in
the case of empirical probabilities previously considered, the period -and
thus also the empirical probabilities according to our definition above—
may change along an arc of Ty, so that we may need to compute explicitly

String Pattern Matching for a Deluge Survival Kit 23

all ©(n?) of them. However, if we were interested in such probabilities
only at the nodes of the tree, then these could still be computed in
overall linear time. The key to this latter fact is to run a suitably
adapted version of maxborder walking on suffix links “backward”, i.e.,
traversing them in their reverse direction, beginning at the root ol T
and then going deeper and deeper into the tree. One way to visualize
this process is as lollows. Imagine first the “co-tree” of T, formed by
the reversed suffix links: we can visit such a structure depth first and
simultaneously run a procedure much similar to maxborder to assign
periods to all nodes of T;. Correciness rests on the fact that for any
word w the periods of w and w? coincide. We shall see shortly that in
situations of interest to us we can limit computation to the nodes of 7.

Lemma 13 The set of empirical probabilities of all (short) words of =
that have a proper locus in T; can be computed in linear time and space.

Consider now conditional empirical probabilities, defined as the ratio
between the observed occurrences of so and the occurrences of s*, de-
noting string s followed by any other symbol. The first thing to observe
is that the value of this ratio persists along each arc of the tree, i.e.,

15(0‘5) = XS/XM' =1

for any word s ending in the middle of an arc of 7T; and followed there
by a symbol .

Let +' be the locus of string s’. Recall that sext[t/,o] is the node
v which is the locus of the shortest extension of as’ having a proper
locus in T;. Setting sext links is an easy linear post-processing of 7.
Along these line, attaching empirical conditional probabilities only to
the branching nodes of T; is doable and suffices. As there are O(n)
such nodes, and the alphabet is finite, the collection of all conditional
probability vectors for all subwords of = takes only linear space.

Lermma 14 The set of empirical conditional probabilities of all {short)
words of a string x over a finite alphabet can be computed in linear time
and space.

An important class of applications, which includes some core tasks of
molecular sequence analysis and information retrieval, involves counting,
estimating and comparing to expectation not the number occurrences of
a word in a text but rather the number of how sequences in a given
family that contain that word. With some provisos, the constructions
just highlighted may be adapted to deal with this notion. The reader is
encouraged to develop the details.

24

4.2 GLOBAL DETECTORS OF UNUSUAL
WORDS

As mentioned, the identification of strings that are, by some mea-
sure, redundant or rare in the context of larger sequences is variously
pursued in order to compress daba, unveil strucfure, infer minimal or
compact descriptions, and for purposes of feature extraction and classi-
fication. Once a statistical index is built and empirical probabilities are
computed, the next step is thus to annotate it with the expected values
and variances and measures of discrepancy thereof, under some adopted
probabilistic model. This may be still rather bulky in practice. For a
given probabilistic model and measure of departure from expected fre-
quency, it is possible to come up with an “observed” string such that all
of its ©(n?) substrings are surprisingly over- or under-represented. This
means that a table of the “surprising” substrings ol a string can contain
in principle a number of entries quadratic in the ength of that string. As
it turns out, it is possible to show that under several accepted measures
of frequency deviation, the candidates over- or underrepresented words
are restricted to the O(n) words that end at internal nodes of a compact
suffix tree. as opposed to the ©(n?) possible substrings. Combined with
some of the costructions discussed earlier in this section, this leads to
the design of global detectors for unusual words that take linear space
and linear time to build [16].

To make our discussion more precise, we need to agree on some mea-
sure of “surprise”. Perhaps the naivest possible measure is the diflerence:
bw = fuw— (n—|w|+1)p, where 5 is the product of symbol probabilities
for w and Z|w takes the value f,. Let us say that an over-represented
(respectively, under-represented} word 1w in some class C' is é-significant
if no extension (respectively, prefix} of w in C achieves at least the same
value of |4].

Theorem 11 The only over-represented d-significant words in T are
the O(n) ones that have a locus in T;. The only under-represented §-
significant words are the ones that represent one unit-symbol extensions
of words that have a locus in Ty,

Proof. We prove first that no over-represented §-significant word of =
may end in the middle of an arc of T;;. Specifically, any over-represented
d-significant word in z has a proper locus in T;. Assume for a contra-
diction that w is a é-significant over-represented word of # ending in
the middle of an arc of T;. Let z = wv be the shortest extension of
w with a defined locus in T, and let § be the probability associated
with v. Then, §; = f; — (n — [2| + 1)B§ = fz — (n — |w| — |v| + 1)Pd.

String Pattern Matching for a Deluge Survivel Kit 25

But we have, by construction, that f; = f,. Moreover, 5§ < p, and
(n—{w| — |v| +1) < (n — Jw| 4 1). Thus, & > &,. For this specification
of §, it is easy to prove symmetrically that the only candidates for &-
significant under-represented words are the words ending precisely one
symbol past a node of T3, ©

It is possible to prove similar properties for more sophisticated mea-
sures of surprise characterized by definitions of § of the more general
form: 6y = (fw ~ Ew)/Nw, where: (a) f,, is the frequency or count of
the number of times that the word w appears in the text; (b) E, is the
typical or average nonegative value for f,, (and E is often chosen to be
the expected value of the count); (c) N, is 2 nonnegative normalizing
factor for the difference. (The N is often chosen to be the standard
deviation for the count.)

Once one is restricted to the branching nodes of T, or their one-
symbol extensions, it becomes even possible to compute all typical count
values F (usually expectation) and their normalizing factors N (usually
standard deviation) and other measures discussed earlier in overall linear
time and space. For strings emitted by a source with i.i.d. symbols,
this is easy to see for expectations but becomes more complicated with
variances. To see this, let z be the observed string and y = y115... ym
(m < (n+1)/2) be an arbitrary but fixed pattern. Fori € {1,2,...,n—
m + 1}, define Z;]y to be 1 if y occurs in X starting at position ¢ and 0
otherwise. We are interested in the the expected value and variance of
Zly, the total number of occurrences of y in X:

n—m+1l
Zy=) Zly
i=1

It is immediate that E[Z|y] = (n — m + 1)p, where, with p; denoting
the probability for any given k that Xi =y, § = T2, p;.

For any symbol a in I, computing the expected value Z|ya from g and
the probability of a is trivially done in constant time. Thus, the expected
values associated with all prefixes of a string can be computed in linear
time. Atfaching these values to the nodes of T, is easily accomplished
in linear time by walking backward on suffix links.

Form < (n+1)/2, it is possible to express the variance in the following
form (the case m > (n + 1)/2 is quite similar) [16):

Var(Zly) = (n —m + 1)p(1 — p) — 52(2n — 3m + 2}(m — 1)

&m
+26) (n~m+1—), _ 4 105
=1

26
where the d;'s are the periods of y thal satisfy
1<d) <dg < ... <dg,, <min{m — 1,n —m).

Suppose that we wanted to compute the variance of Z|y for all sub-
strings ¢ of z in accordance to the formula above. Applying the formula
from scratch to each substring would require time ©(|z|*), since the
number of possible distinct words appearing ag substrings of z may be
quadratic in |z|. In [16}, the variance is computed for all prefixes of a
string y in overall time O{|y|), by making crucial use of a recurrence that
speeds up computation of the term

dm

B(m) =3 (n—m+ 1~ d)If g1y
=1

In this expression, B(m) refers to the prefix ¢1y2...ym of some string y,
S(m) = {bym}{= is the set of borders “at m" associated with the pe-
riods of y1ys...¥m and bord(wn) is the longest border of y1yo...ym. By
a simple adaptation of the maxborder it is possible to derive B(m)
quickly from knowledge of bord(m} and of the previously computed val-
ues B(1), B(2),..., B(m — 1). Specifically, letting the border associated
with period d; at position m to be

bl,m =m— dh

the following expression of B(m} holds:

B(m} = (n — 2m + 1 + bord(m)) 1T o 4(m)+1P5

Sbord{m)

+2(bo'rd(m) - m) z H;‘?f_-bt,bord(m]'i'lpj
i=1

+ (Miyord(my+195) Blbord(m)),

where the fact that B{m) = 0 for bord(m) < 0 yields the initial con-
ditions. Note that each product of probabilities can be extracted in
constant time from a precomputed table containing the products of
the probabilities of all consecutive prefixes of z. From knowledge of
n,m,bord(m) and these prefix probability products, the first term of
B(m) is computed in constant time. Except for (bord(m) — m), the
second term is essentially a sum of probability products taken over all
distinct borders of y172...ym- Thus, given such a sum and B(bord(m})
at this point enables one to compute B(m) whence also the variance, in

String Pattern Maiching for e Deluge Survival Kit 27

constant time. Maintaining knowledge of the value of such sums during
the computation of longest borders is easy, since the value of the sum

Shord(m)

T(m) = E H.?'l:bt.bord(m)"'lpj
i=1

obeys the recurrence:
T(m) = T(bord(m)) - INLy 0 g(my1107 + Wimpordipord(m))+1P4>

with T'(m) = 0 for bord(bord(m)} < 0. In conclusion, the following
holds.

Theorem 12 Under the independently distributed source model, the
mean and vertances of all prefizes of a siring can be compuied in time
and space linear in the length of that siring.

Application of this treatment o every suffix of a string yields the
mean and variance of all substrings in overall optimal quadratic time.
From what we have seen, the quest for surprising words under this model
can be limited to those ending at the internal nodes of 7;. Since also
the variances can be computed with our recurrence traveling backward
on suffix links, this results in a global detector of unusual words in linear
time and space.

5. FILTERING, FINGERPRINTING AND
APPROXIMATE SEARCHING

The underlying theme of this section is the derivation of succinct
albeit possibly approximate representations of objects. Hashing is one
obvious way to do this. In an early approach to fast string searching,
Karp, Miller and Rosenberg (cf. [69]) introduced a strategy based on
some notion of a label or signature for the substrings of a string z, as
follows. First, generate the list of labels for individual characters, giving
as a name to each character the position of its first occurrence in x.
Next, perform approximately log |z| stages, as follows. At the i-th stage,
compose all pairs of labels (I;, ;1 5:}, sort them in lexicographic order and
relabel each pair (whence also the substring it denotes) by the position
of its first occurrence in the sorted list. If this process is performed
on the concatenation of a pattern y and the text, then the occurrences
of ¢ can be intercepted subsequently by looking for positions of £ with
appropriate labels. We leave the details to the reader. Among its many
virtues [69)], this encoding has recentlly proved useful in capturing distant
relationships among files for compression purposes [40].

28

Another notable approach to pattern searches based on hash signa-
tures is due to Karp and Rabin [93). The idea here is to first filter out
candidates and then check then individually for exact matching. This
philosophy represents a precursor for many strategies dealing with mas-
sive data.

In the filtering stage, the pattern y is hashed into a number and then
a window of size |y| is slided on the text while the hash values of the
corresponding substrings are computed. To be effective in this context,
the hash function must be highly discriminating for strings. At the same
time, it should be quickly computed and updated in the transition from
one text window to the next. This is met by assimilating the symbols of
L with integers and defining the hash value % for string u by

Jz|-1
h{u} = (> wufi] x dl“[_l_i) mod g,

i=0

where g and d are two constants. Then, for each string v € £*, and
symbols a’,a"” € X, h(ve") is computed from h(a'v) by the formula

h(va") = ((h{a'v) — &’ x dl) x d+ &") mod .

During the search for pattern z, it suffices to compare the value h(y)
with the hash value associated with each substring of length m of text
z. If these two values are equal, that is, in case of collision, it is still
necessary to check whether the substring is equal to % or not by direct
symbol comparisons.

Convenient values for d are the powers of 2; in this case, all products
by d are computed as shifts on integers. The value of g is generally a
large prime (such that the quantities (g—1) xd+|Z|—1 and || xg~—1 do
not cause overflows), but it can also be the value of the implicit modulus
supported by integer operations. The operation of the algorithm is tllus-
trated in Figure 1.2, searching for the pattern ¥ = sense in the text z =
no defense for sense. Here, symbols are assimilated with their ASCII
codes (hence |E| = 256}, and the values of ¢ and d are set respectively to
31 and 2. This is a valid choice when the maximal integer is 21— 1. The
value of h(y) is (115x 16 + 101 x 8+110x 4--115x 2+ 101) mod 31 = 9.
Since only h(y[4...8]) and A{z[15...19]) are equal to k(y), only two sub-
strings of = need o be checked. The worst case complexity of this
string-searching is quadratic, but a prudent choice of the values for ¢
and p leads to O(m + n) expected time.

Signatures may be used to obtain substrings that encapsulate a given
text, but also strings that depart significantly from it. This is the gen-
eral problem of inverse pattern matching [7], that refers to the task of

String Pattern Matching for a Deluge Survival Kit 29

p 01 2 3 4 5 6 7 8 9 10111213 14 15 16 17 18 19
Zf[p] n ¢ 4 d e £ ¢ n 3 8 y f 0 T yu 8 & 0 5 e

hz[p.p+4) € 8 6 28 9 182826 22121724160 1 9 —— — —

Figure 1.2 Dlustrating Karp-Rabin’s algorithm,

inferring from a given textstring = a short pattern string y such that y
is, by some measure, most typical (or, alternatively, most anomalous)
in the context of z. This problem arises in a wide variety of applica-
tions and takes up numerous favors, among which in particular those
based on signatures or frequencies of pattern occurrences. When such
occurrences need not be exact, alternative measures of typicality can
be based on some notion of similarity among string, such as the Ham-
ming [89] or Levenshtein [100] distances. Given a textstring z and an
integer m, for example, one might ask for a pattern y that scores the
smallest (or largest) total number of mismatches when aligned with all
stubstrings of z. Noteworthy variants of the problem arise when the
constraint is added that y must be a substring of z, or, symmetrically,
that ¥ must not have any occurrence in z. Efficient (occasionally, op-
timal) sequential algorithms for the problem and its variants were pro-
vided in {7, 84). Computations of these and similar “distance preserving
signatures” (see e.g. [85]) find use in disparate contexts, including in-
formation retrieval, data compression, computer security and molecular
biology. In the two latter fields, in particular, highly anomalous patterns
are also often sought, e.g., in intrusion [123] or plagiarism detection, in
the synthesis of molecular probes in genome sequencing by hybridization
[4], in designing control (inactive} antisense oligonucleotides, etc.

As an example, we illustrate the simplest (min)} inverse pattern match-
ing problem, which is defined as follows: given a text stringz =z;--- 2,
and positive integer m < n, we want to produce a3 a pattern string
Ymin = Y1 -~ Ym (of length m) where ham(ymin,) < ham(y,z) for all
strings y € ™. The symmetric (Maz) Inverse Paliern Malching Prob-
lem seeks instead a pattern yasaz such that ham(yares,) > hamly, z)
with respect to all y € £™. Both versions of the problem are solved
by the same basic strategy. The naive algorithm for the min inverse
pattern matching problem is computing the hamming distance for every
possible substring of length m, and choosing the minimum. This algo-
rithm is clearly bad since it takes exponential time. However, an optimal
algorithm for solving the problem is readily set up. The idea is to “syn-
thesize” y by choosing its characters one at a time, in such a way that
each character will maximize the matches when meeting the positions

30

of the text it will face. The most difficult variant of the problem is the
Max external one, in which y is required not to appear in z. However,
also this variant has been shown o have an optimal linear time solution

[84].
5.1 APPROXIMATE SEARCHES

A natural departure from the the problem of ezact string searching,
consists of assuming that a symbol can (perhaps only at some definite
positions} match a small group of other symbols. At one extreme we
may have, in addition to the symbols in the input alphabet %, a don’t
care symbol ¢ with the property that ¢ matches any other character in
L. This gives raise to variants of string searching where, in principle,
¢ appears (i) only in the pattern, (ii} only in the text or (iii) both in
pattern and text. Here we briefly address the main variant (i).

One approach to this variant is to try and extend one of the fast string
searching algorithms by accommodating don’t cares in the pattern. How-
ever, the obvious transitivity on character equality, that subtends those
and other exact string searching, is lost with don’t cares. Some par-
tial recovery is possible when the number and positions of don't cares
is fixed. In this case, one may think of adapting some multiple pattern
automaton of the kind discussed earlier.

Manber and Baeza-Yates [106) considered the case where the pattern
embeds a string of at most k don’t cares, i.e., has the form y = u¢'v,
where t < k, u,v € £* and |u| < m for some given k, m. Their algorithm
is off-line in the sense that the text z is preprocessed to build the suffix
array associated with it. This operation costs O(nlog|X|) time in the
worst case. Once this is done, the problem reduces to one of efficient
implementation of 2-dimensional orthogonal range queries.

A landmark paper by Fischer and Paterson [78} exposed the similar-
ity of string searching to multiplication, thereby obtaining a number of
interesting algorithms for exact string searching and some of its vari-
ants. It is not dificult to see that string matching problems can be
rendered as special cases of a general linear product. Given two vectors
X and Y, their fnear product with respect to two suitable operations
® and @, is denoted by X 8 Y, and is a vector Z = ZpZ4, ... Znyn
where Z; = @, ;= Xi®Y; for k =10,...,m+n. If we interpret @
as the boolean A and ® as the symbol equivalence =, then a match
of the reverse Y® of Y, occurs ending at position k£ in X, where
m<k<n,if[Xgm... Xg] = [Ym... Yo}, that is, with obvious meanirg,
if (X % Y); =TRUE. This observation brings string searching into the
family of boolean, polynomial and integer multiplications thereby lead-

Siring Pattern Matching for a Deluge Survival Kit 31

ing quickly to an O(nlogm loglogm) time solution even in the presence
of don’t cares, provided that the size of T is fixed.

Some central notions of similarity are based on three basic edit opera-
tions on strings. Given any string w we consider the deletion of a symbol
from w, the inseriion of a new symbol in w and the substitution of one
of the symbols of w with another symbol from I. It may be assumed
that each edit operation has an associated nonnegative real number rep-
resenting the cost of that operation, so that the cost of deleting from
w an occurrence of symbol a is denoted by D{e}, the cost of inserting
some symbol a between any two consecutive positions of w is denoted
by I(a) and the cost of substituting some occurrence of a in w with an
occurrence of b is denoted by S(g, b).

Letting now = and y be two strings of respective lengths |z] = n and
ly| = m < n, the string editing problem for inpuft strings = and y consists
of finding 2 sequence of edit operations or edit script I' of minimum cost
that transforms y into z. The cost of I is the edit dislance from y to z.
Edit distances where individual operations are assigned integer or unit
costs occupy a special place. Such distances are often called Levenshtein
distances, since they were introduced by W. Levenshtein in connection
with error correcting codes [100). String editing finds applications in
a broad variety of contexts, ranging from speech processing to geology,
from text processing to molecular biclogy.

It is not difficult to see that the general (i.e., with unbounded alphabet
and unrestricted costs) problem of edit distance computation is solved
by a serial algorithm in ©(mn) time and space, through dynamic pro-
gramming. Due to its widespread application of the problem, however,
such a solution and a few basic variants were discovered and published
in a diverse literature (cf., e.g. [21]). An §(mn) lower bound was es-
tablished for the problem by Wong and Chandra for the case where
the queries on symbols of the string are restricted to tests of equality.
For unrestricted tests, a lower bound Q(n logn} was given by Hirschberg.
Algorithms slightly faster than O(mn) were devised by Masek and Pater-
son, through resort to the so-called “Four Russians Trick *. The “Four
Russians” are Arlazarov, Dinic, Kronrod, and Faradzev. Along these
lines, the total execution time becomes 6(n?/ logn) for bounded alpha-
bets and O(n?%(loglogn)/ logn) for unbounded alphabets. The method
applies only to the classical Levenshtein distance metric, and does not
extend to general cost matrices. To this date, the problem of finding
either tighter lower bounds or faster algorithms is still open. Details
and references can be found in, e.g., [11, 21]).

The computation of edit distances by dynamic programming is readily
set up. For this, let C(4,7), (0 <i < [yl, 0 £j < ||} be the minimum

32

cost of transforming the prefix of y of length ¢ into the prefix of z of
length j. Let wy denote the kth symbol of string w. Then C(0,0) = 0,
C(5,0) = Cz — 1,0) + D(w) (2 = L,2,..,]y]), C(0,7) = C(0,7 — 1) +
I(z;) (7 =1,2,...,|z[), and C(3,7) will be given by

min{C(i — 1,7 — 1) + S(wi, %), C(i—1,7) + D(wi), CE, 7 — 1)+ I(z;)}

foralls,§, (1 <4 <|y|,1 <7 <|z|). Observe that, of all entries of the C-
matrix, only the three entries C{i—1,j—1), C(i—1, 3}, and C(%,5—1) are
involved in the computation of the final value of C(z,7). Hence C(3,7)
can be evaluated row-by-row or column-by-column in 9 (|y||z|) = ©(mn)
time. An optimal edit script can be retrieved at the end by backtracking
through the local decisions that were made by the algorithm.

A few important problems are special cases of string editing, includ-
ing the longest common subsequence problem, local alignment , i.e., the
detection of local similarities of the kind sought typically in the analysis
of molecular sequences such as DNA and proteins, and some important
variants of string searching with errors, or searching for approximate
occurrences of a pattern string in a text string. As highlighted in the
following brief discussion, a solution to the general string editing problem
implies typically similar bounds for all these special cases.

In many cases of great practical interest, such as e.g., with genomic
sequence analysis, the space occupied by the edit distance matrix is
unbearable and linear space methods are sought. We refer to [14, ?] for
details and references.

Sequence similarity is a natural and useful filter for exfracting match-
ing information from huge data repositories. some of the fastest and
most efficient searches routines work by first detecting regions of strong
local resemblance, using conceptual tools of the kind represented by the
following lemma.

Lemma 15 If =z and y mafch with at most k differences, then z
and y must have at least one identical substring of length r =

|maz{|z],{yl}/(k + 1)

Proof. Let wlo.g. |z| = mas{|s|,|y|}, and divide z into consecutive
intervals of length r. In the alignment, each interval aligns to some part
of y, determining k + 1 subalignments. If each of these subalignments
contained at least one error, then we would have more than %k errors.
Thus, at least one of the intervals must match exactly a corresponding
interval of y.)
More about searching with errors is said in the next subsection.

String Pattern Maiching for a Deluge Survival it 33

5.2 STRING SEARCHING WITH ERRORS

Consider the problem of computing, for every position of the
textstring =, the best edit distance achievable between y and a substring
w of z ending at that position. Under the unit cost criterion, a solution
is readily derived from the recurrence for string editing. The first obvi-
ous change consists of setting all costs to 1 except that S{y;,z;) = 0 for
yi = z;. Thus, we have now, for all 4,7, (1 <: < [y],1 <7 < |zf),

C(,7) =min{CE—-1,7~-1)+1, C(i—1,5)+1, CEj5~1)+1}.

A second change aflects the the initial conditions, so that we have
now C(0,0) =0, C(:,0) =1 (:=1,2,..,m}, C(0,7) =0 (j = 1,2,...,n).
This has the effect of setting to zero the cost of prefixing y by any prefix
of z. In other words, any prefix of the text can be skipped free of charge
in an optimum edit script.

The computation of C is then performed in much the same way as
before, thus taking &(|ly||z|) = O(mn) time. This time around we are
interested in the entire last row of matrix C at the outset.

In practice, it is often more interesting to locate only those segments
of z that present a high similarity with y under the adopted measure.
Formally, given a paftern y, a text £ and an integer &, this restricted
version of the problem consists of locating all terminal positions of sub-
strings w of © such that the edit distance between w and y is at most X.
The recurrence given above will clearly produce this information. How-
ever, there are more efficient methods to deal with this restricted case.
In fact, a time complexity O(kn) and even sublinear expected time are
achievable. We refer to, e.g., [11, 67] for detailed discussions. In the fol-
lowing, we review some basic principles subtending an O(kn) algorithm
for string searching with k differences. Note that when & is a constant
the corresponding time complexity is linear.

The crux of the method is to limit computation to O(k) elements in
each diagonal of the matrix C. These entries will be called eztremal
and may be defined as follows: a diagonal entry is d-extremal if it is
the deepest entry on that diagonal to be given value d {d = 1,2, ..., k).
Note that a diagonal might not feature any, say, l-extremal entry, in
which case it would correspond to a perfect match of the pattern. The
identification of d-extremal entries proceeds from extension of entries
already known to be {d—1)-extremal. Specifically, assume we knew that
entry C(3,7) is (d — 1)-extremal. Then, any entry reachable from C(%, j)
through a unit vertical, horizontal or diagonal-mismatch step possibly
followed by a maximal diagonal stream of matches is d-extremal at worst.
In fact, the cost of a diagonal stream of matches is 0, whence the cost of

34

an entry of the type considered cannot exceed d. On the other hand, that
cost cannot be smaller than d — 1, otherwise this would contradict the
assumption C(7, 7} = d—1. Let entries reachable from a (d— 1)-extremal
entry C(%,§) through a unit vertical, horizontal or diagonal-mismatch
step be called d-adjacent. Then the following program encapsulates the
basic computations.

Algorithm k-err :
element array z{l :], y[1 : m], C[0: m;0 : n; integer &
begin
(PHASE 1: initializations}
set first row of C fo 6;
find the boundary set Sy of 0-exiremal eniries
by ezact siring searching;
(PHASE 2: identify k-extremal entries)
ford = 1tok do
begin
walk one step horizontally, vertically and
{on mismatch) diagonally
from each (d — 1)-eztremal entry in set Syy_yy
to find d-adjacent eniries;
Jrom each d-adjacent eniry, compute the farthest
d-valued eniry reachable diagonally from it;
end
fori = 1ton—-m+1do
begin
select lowest d-entry on diagonal 3
and put it in the sei Sy of d-exiremal eniries
end
end.

1t is easy to check that the algorithm performs & iterations in each
one of which it does essentially a constant number of manipulations on
each of the n diagonals. In turn, each one of these manipulations takes
constant time except at the point where we ask to reach the farthest
d-valued entry from some other enfry on a same diagonal. We would
know how to answer quickly that question if we knew how to handle
the following query: given two arbitrary positions ¢ and j in the two
strings y and =z, respectively, find the longest common prefix between
the suffix of y that starts at position i and the suffix of = that starts
at position 7. In particular, our bound would follow if we knew how to

String Pattern Matching for e Deluge Survival Kit 35

process each query in constant time. It is not known how that could be
done without preprocessing becoming somewhat heavy. On the other
hand, it is possible to have it such that ail queries have a cumulative
amortized cost of O(kn). This possibility rests on efficient algorithms for
performing lowest common ancestor queries in trees. Space limitations
do not allow us to belabor this point any further.

In massive applications, even time O(kn) may be prohibitive. Using
filtration methods it is possible to set up sublinear expected time queries.
As already highlighted, one possibility is to first look for regions with
exact replicas of some patiern segment and then scrutinize those regions.
Another, is to look for segments of the text that are within a small
distance of some fixed segments of the pattern. Some of the current top
performers in molecular database searches are engineered around these
ideas [6, 133, 26, 53]. In fact, the whole issue of filtration search may
be regarded as a form of pattern discovery [33, 34, 35, 36], probably
a fundamental application of future Pattern Mafching and one that is
discussed more extensively later in this chapter.

The special case where insertions and deletions are forbidden is also
solved by an algorithm very similar to the above and within the same
time bound. This variant of the problem is often called string searching
with mismalches. A probabilistic approach to this problem is implicit in
[53]. When & cannot be considered a constant, an interesting alternative
results from Abrahamson’s approach to multiple-value string searching
[1] which results in an algorithm of time O(nm!/2 logm loglog'/2 m).

6. COMPRESSING, LEARNING, MINING,
AND DISCOVERING

Data compression brings savings in storage space and transmission
time, two commodities in increasingly scarce supply. From the perspec-
tive of the data flood ahead, compression also helps in the formation
of succinct descriptors and models, thereby helping in overcoming the
ultimate limitations imposed by the narrow bandwitdth of the final user.
Because of this, efficient, innovative compression methods will continue
to play an important role.

Of the two main broad classes of compression, standard lossy methods
such as Mpeg, Jpeg, Wavelets etc. have a definite numerical flavor and
derive a limited influence from Pattern Matching. By contrast, nearly
every present and future lossless method will use more or less sophisti-
cated Pattern Matching techniques. Among the basic methods in this
class, we find Run-Length and Hufiman Encoding, the latter being fur-
ther subdivided into static and dynamic codes, Arithmetic Codes, Macro

36

Schemes such as the Ziv-Lempel methods underlying compress, gzip and
other popular tools, the more recent Burrows-Wheeler transform sub-
tending bzip, Predictive Codes, etc. These and others are reviewed in
this section.

6.1 STANDARD COMPRESSION METHODS

We outline here some classical yet practical text compression algo-
rithms. Algorithmic efficiency is but one of the parameters against which
the efficiency of a method is assessed. The final compression ratio is
equally, if not more, important. This latter depends on the nature of
the input data. Typically, the final size of compressed textfiles vary from
30% to 50% of the size of the input.

In standard lossless compression, two main strategies are applied. The
first strategy is a statistical method that takes into account the fre-
quencies of symbols to build a uniquely decipherable code optimal with
respect to the compression. This is considered in Subsection 6.1.1. Sub-
section 6.1.2 presents a refinement of the coding algorithm of Huffman
based on the binary representation of numbers. Hufflman codes contain
new codewords for the symbols occurring in the text. In this method,
fixed-length blocks of bits are encoded by diflerent codewords. In the
second strategy, repeated substrings of variable-length from the text are
spotted and suitably encoded. This will be seen in Subsection 6.1.3.
Due to its ability to capture context dependency, this second strategy
often provides better compression ratios.

6.1.1 Huffman coding. The Huffman method is an optimal sta-
tistical coding, in which each character or fixed block of characters of
the text is replaced by a codeword in such a way, that longer and longer
codewords are assigned to rarer and rarer characters. The method works
for any block length, however, the running time grows exponentially with
length.

The Huffman algorithm uses prefiz codes, i.e., sets of words in which
no word is a prefiz of another. The advantage with such codes is that
decoding is instenlaneous, in the sense that it can be carried out while
the encoded string is being received.

A prefix code on the alphabet {0,1} is represented in a natural way
by a binary digital trie in which the leaves are labeled by the original
characters, and the path from the root to a character spells out the
characters codeword. The specific assignment of codewords depends on
the frequencies of the individual characters. The complete compression
algorithm consists of three stages: count of character frequencies, con-
struction of the prefix code, encoding of the text. The last two steps

String Pattern Malching for a Deluge Survival Kit 37

use information computed by their preceding step. Decoding is a simple
exercise.

The static Huffman method has two main drawbacks: first, if the
frequencies of characters the source text are not known @ priory, then
the input text has to be read twice; second, the coding tree must be
included in the compressed file. This is avoided by dynamically updating
the coding tree for the consecutive prefixes of the text while consecutive
symbols are processed. By mimicing the coding process, decoding will
expose the tree precisely in the same order.

6.1.2 Arithmetic coding. In arithmetic coding, symbols are
treated as digits of a numeration system, and texts as decimal parts
of numbers between 0 and 1. The interval [0, 1] is first partitioned into
|Z| subintervals of size proportional to the probabilities or frequencies of
symbols. The same partition is then recursively applied to subintervals
as consecutive text symbols are read, thereby mapping the text itself
into some subinterval of [0,1[. Compression is achieved because higly
probable texts ebd up mapped in wider intervals thus requiring fewer
bits in their description.

Formally, let the interval associated with symbola; € X (1 < ¢ < ||Z}
be denoted I{a;} = [i, 2:[. The intervals satisfy the conditions: { = 0,
higi=1,and §; =hiyforl <i < |Z]. Note that I(a;) N I(a;) =0 if
a; # a;.

The encoding consists of computing the interval corresponding to the
input text. We begin with the initial interval [0,1[. The generic step
deals with a symbol a; of the source text by transforming the current
interval [{, k[into [, h'[where ' = 1+ (h—I) *; and &' = I+ (h—1) % h;.
;From a theoretical standpoint, ! alone would suffice to encode the input
text.

The decoding phase recapitulates the encoding. Specifically, the first
step of decoding consists of identifying the symbol a; such that [€ I(a;).
At that point, [is replaced by

-1

e ——
A
and the process is repeated until / = 0. The main problem with arith-

metic coding is coping with finite precision while performing arithmetics
on real numbers.

6.1.3 LZW Coding. Ziv and Lempel designed a class of com-
pression methods based on the idea of self reference: while the textfile is

38

scanned, substrings or phrases are identified and stored in a dictionary,
and whenever, later in the process, a phrase or concatenation of phrases
is encountered again, this is compactly encoded by suitable pointers
[99, 140, 141). Of the several existing versions of the method, we describe
below the one known as Lempel-Ziv-Welsh method, which is incarnated
by by the compress feature under the UNIX operating system.

For the encoding, a dictionary is initialized with all the characters of
the alphabet. At the generic iteration, we have just read a segment w
of the text. With o the symbol following this occurrence of w, we now
proceed as follows: If we is in the dictionary we read the next symbol,
and repeat with segment wa instead of w. If, on the other hand, wa is
not in the dictionary, then we append the dictionary index of w to the
output file, and add wa to the dictionary; then reset w t0 ¢ and resume
processing from the text symbol following ¢. Once w is initialized to
be the first symbal of the source text, “w belongs to the dictionary” is
established as an invariant in the above loop.

Decoding is symmetric, in particular, the dictionary is recovered while
the decompression process runs. The basic routine is as follows. We start
with a basic dictionary of symbols. Then, when we read the encoding
¢ from the compressed file, we write to the output file the segment w
having index ¢ in the dictionary, and add to the dictionary the word wa
where ¢ is the first letter of the next segment. Except for a special case,
Note that we can infer the appropriate dictionary index for wa. A very
special case requiring extra care occurs if the symbol ¢ is also the first
symbol of w. We leave the analysis of this case and its (easy) recovery
for an exercise.

6.1.4 The Burrows-Wheeler Transform. A recen, imagina-
tive approach due to M. Burrows and D.J. Wheeler [51] successfully
exploits the delicate interplay between locality of reference and pointer
size. Assuming an input string & = dadcbbe, the encoding performs the
following steps. First, we build a table of the cyclic shifts of x, as follows.

S50 dadcbbe
St adcbhbbed
52 debbeda
53 cbbedad
54 bbedade
S§ bedaded
56 edadcbb

Next, these rotations are lexicographcally sorted, resuliing in the ta-
ble:

§§ bbedade

Siring Pattern Matching for a Deluge Survival Kit 39

S5 bedadch
52 debbeda
S50 daedcbhbbe
58 chbedad
51 adcbbhed
S6 edadchb

It turns out that strings like the string ¥ = cbaedde in the last column
are highly compressible, e.g., by run-length. In fact, the first column
confains sorted symbols that are each immediately adjacent in = to the
corresponding symbol in the last column. It is expected then that, in
correspondence with a run on the first column, the last one also contains
a run. Note that it is possible to go back from the last column y to the
first column y' = bbddeae simply by sorting y. More importantly, from
knowledge of y,% and of the rank 7 of the original string in the sorted
list, it is possible to reconstruct the the original sequence z. This is
achieved by setting up a suitable transformation vector T' that tells, for
each row j, where in z is row § + 1. This vector can be figured out by
looking at y and ¢/ as shown in the table below.

0 4
185
282
3 S0
4S8
5 51
6 S6

L - T T - VO - T

TrRRBbBO R o0

Clearly, we have T'(4) = 0 since ¢ moves, but what about row 17 The
b there could go to either row 0 or 1. The important property is, since
y' is sorted then rows beginning with a same character are also sorted.
Thus, the first b in row 1 moves to row 0, the second b comes from row
6. The final touch of the method is to perforin move-to-front encoding
of y. In practice, all 256 codes are kept in a list, and each time a char
is to be output, its position is sent to the list, then moved to the front.
The result is a string with many of 0’s and small integers,which can be
compressed using entropy encoders. For example, y = {itWiwiit would
be encoded as [116,0,0,88,1,119,1,0,0].

The sorting inherent to the Burrows-Wheeler method is suitably im-
plemented with suffix arrays, resulting in a relatively fast process.

6.2 DATA COMPRESSION USING
ANTIDICTIONARIES

Yet another basic text compression method, called DCA, uses some
“negative” information about the text, which is described in terms of

40

antidictionaries [58, 59, 61, 62, 60]. Contrary to the Ziv and Lempel
methods that are centered on dictionaries or sets of words occurring as
substrings in the text, this method takes advantage from words that do
not occur as substrings in the text and are said to be forbidden. It is
natural to call such sets of words antidictionaries.

6.2.1 Encoding and decoding. Let = be the text on a binary
alphabet and let F(z) be the set of substrings of 5. For instance, if
£ = 01001010 then F(z) = {¢,0,1,00,01,10,001,010,100,101,...}.
The antidictionary AD is a fector code (no word of the set is a sub-
string of another word of the set) included in £*\ F(z). For example,
{000,10101, 11} is an antidictionary for z = 01001010.

The compression algorithm processes the input file on-line. At the
generic step, we have read some prefix w of 2, and inspect the symbol,
say, a, that immediately follows w. If there exists a word w € AD that
is a suffix of we, then the symbol a is deleted, since it is predictable
through resort to the antidictionary. The compression algorithm based
on this principle is listed below. In order to be able to decode the output
of the encoder, an additional mechanism is necessary. To simplify the
exposition, we assume here that the encoder produces also the length of
the original text. The decoder works in a fashion which is dual to the
encoder, and is presented immediately following it. It uses its knowledge
of the length in order to decide when to halt.

The advantage of having a factor code as antidictionary is that the test
at Line 3 in the decoder can be satisfied by only one word va. Therefore,
no useless word is stored in the antidictionary.

6.2.2 Implementing finite antidictionaries. The antidic-
tionary queries invoked by the above algorithms are implemented as
follows. Starting with the trie of words in the antidictionary, the au-
tomaton A(AD) is built that accepts all strings of which no substring
appears in the antidictionary. This is an application of the Aho-Corasick
algorithm to the trie, and results in a linear-time algorithm. With this
automaton in place, and while reading the text to encode, whenever a
transition leads to a state associated with a word of the antidictionary
the decoder outputs the dual symbol.

The automaton A(AD) can be easily transformed into a (finite-state)
transducer T(AD) that realizes the compression algorithm. The decom-
pression may be similarly realized by a dual transducer, which is ob-
tained by interchanging input and output labels in the first transducer
(with an additional halting instruction to stop the decoding).

String Patterrn Matching for a Deluge Survival Kit 41

ENCODER (anti-dictionary AD, word z € {0,1}*})
¥ &
for a « first to last symbol of =
if for any suffix v of the processed text, v0,vi € AD
output a;
return (|z[, 7);

1

2

3

4

5
DECODER (anti-dictionary AD, integer n, word -y € {0,1}*)
1. wee;

2. while jw| <n

3 if for some suffix v of w and some a € {0,1}, va € AD
4 W W - O,

5 else

6 b + next symbol of v;

7 wew-b

B. return (w);

Figure 1.3 Antidictionary based compression

The automaton A(AD) (or the transducer 7(AD)) has an interest-
ing synchronization property, which makes it possible to develop al-
gorithms to search compressed texts or to desing parallel version of
the encoding and decoding algorithms. With & the maximal length
of words in AD, this property is as follows: given any two paths
(QIsals 9’2) T (kaaka qk-H.) and (q!hals q,2) e (Qi;!akr q;c-H,) having the
same label @) ---a;, then the two ending states gxy; and g}, coin-
cide. Thus, the encoding of a part of the text certainly depends on its
left context, but this is limited to up to a length of X only.

6.2.3 How to build Antidictionaries. In practical applica-
tions, the antidictionary is not given a priori but it must be derived
either from the text to be compressed or from a2 family of texts pro-
duced by the same source as the one producing the text. There exist
several criteria to build efficient antidictionaries, that variously depend
on different aspects or parameters that one wishes to optimize in the
‘compression process. In turn, each criterion gives rise to a different
algorithm and implementation.

The general methods to build antidictionaries are based on data struc-
tures that store substrings of words, such as suffix tries, suffix trees,
dawgs, and suffix or factor automata. In these structures, it is possible

42

to consider a notion of suffix link. This link is essential to design efficient
algorithms to build representations of sets of minimal forbidden words
in term of tries or trees. This approach leads to antidictionary construc-
tions that take time linear in the length of the fext fo be compressed.

A rough solution to control the size of antidictionaries is obviously to
bound the length of the words that are admitted in it. A better solution
in the static compression scheme is to prune the trie of the antidictionary
on the basis of a tradeoff between the space of the trie to be transmitted
and the gain in compression. However, the first solution is enough to
gel compression rates that reach asymptotically the entropy for balanced
sources, even if this is not true for general sources. Both solutions can
be engineered to run in linear time.

6.2.4 Variations. The static compression scheme presented
above requires to read the text twice. Several variations and improve-
ments can be elaborated upon based on clever combinations of two fea-
tures suitably injected in the model, namely, statistical filters and dy-
namic implementations. These are classical features, often included in
most data compression methods.

Statistical considerations can be used in the construction of antidic-
tionaries. If a forbidden word is responsible for erasing few bits of the
text in the compression algorithm while its description as an element of
the antidictionary is “expensive”, then the compression rate improves
by excluding that word from the antidictionary. On the other hand,
one can introduce in the antidictionary a word that is not forbidden but
occurs very rarely in the text. In this case, the compression algorithm
may produce some errors in predicting the next letter. In order to keep
a lossless compression scheme, encoder and decoder must be adapted to
manage such errors. Typical errors occur in the case of antidictionaries
built for fixed sources as well as in the dynamic approach. Even with
errors, assuming that they are rare with respect to the longest word
(length) of the antidictionary, the compression scheme may be shown to
preserve the synchronization property.

6.3 SEARCHING COMPRESSED TEXT

For data stored in compressed form, navigation through compressed
databases poses additional pattern matching questions. The first ques-
tion is whether it may be more efficient to decompress the data before
processing a search or other standard query or, given the possibility,
it might be more expedient to perform the query directly on the com-
pressed data. The answer depends of course on the particular prob-
lem instance, as well as on compression method, algorithmic complexity,

String Pattern Matching for a Deluge Survivel Kit 43

memory space available, etc. Among the various methods of compression
the Ziv-Lempel family of compressors have received the largest atten-
tion, beginning with studies by by Amir, Benson and Farach (8] and
Farach and Thorup [73]. Along these lines, string search in compressed
text was developed for the paradigm by Ziv and Lempel [140] and its
subsequent variant by Welch [138]. The complexities for the searches are
respectively of O(nlogn’ 4+ m) and O(nlogm -+ m), where n' is the size
of the decompressed text and m the size of the pattern. Thus, compared
to linear time string searching in plain texts, an extra log factor emerges.
For large patterns, it makes sense to consider instances of the problem
where also the pattern compressed. This case was studied by Gasieniec
and Rytter (83}, who gave algorithms and provide respectively ol time
O((n +m)3) and O({n +m) log®(n+m)) (with c a positive constant) for
the LZ and LZW compressors.

Searching files compressed by Huffman encoding is a classical problem
treated, e.g., in [113]. Shibata et al. [127] give a linear-time searching
algorithm for files compressed by using antidictionaries.

Mixed techniques have also been developed in which the compression
is designed to reduce the searching time. Examples of this approach may
be found in [105] and [115). The main drawbacks with the techrique is
that it often leads to less efficient compression and that of course it will
not work with text compressed by standard methods.

6.4 LEARNING PROBABILISTIC
AUTOMATA AND MODELING BY
MARKOV CHAINS

Compression is but one of the domains within which the need arises to
develop models of sources. In fact, as already mentioned, the statistical
modeling of sequences is a central paradigm of machine learning that
finds multiple uses in many domains. The probabilistic automata typ-
ically built in these contexts are subtended by uniform, fixed-memory
Markov models. In practice, such automata tend to be bulky and com-
putationally imposing both during their synthesis and use. In [122],
much more compact, tree-shaped variants of probabilistic automata are
described which assume an underlying Markov process of variable mem-
ory length. These variants, called PSTs were successfully applied to
learning and prediction of protein families in [39).

In one such automaton, each edge is labeled by a symbol, each node
corresponds o a unique string —the one obtained by traveling from that
node to the root- and nodes are weighted by a probability vector giving
the distribution over the next symbol. The construction starts with a

44

tree consisting of just the root node (i.e., the tree associated with the
empty word) and adds paths as follows. It considers the substrings from
a family § of strings in order of increasing length. For each substring s
considered, it is checked whether there is some symbol ¢ in the alphabet
for which the empirical probability of observing it in & after s is sig-
nificant and significantly different from the probability of observing it
after the longest suffix suf(s) of s. Whenever these conditions hold, the
path relative to the substring (and possibly its necessary but currently
missing ancestors) are added to the tree.

Given now a string, its weighting by a tree is done by scanning the
string one letter after the other while assigning a probability to every
symbol, in succession. The probability of a symbol is calculated by walk-
ing down the tree in search for the longest suffix that appears in the tree
and ends immediately before that symbol, and multiplying the corre-
sponding conditional probability. Since, following each input symbol,
the search for the deepest node must be resumed from the root, this
process cannot be carried out on-line nor in linear-time in the length of
the tested sequence.

As is easy to see, the process of learning the automaton from a given
training set § of sequences requires ©(In?) worst-case time, where n is
the total length of the sequences in § and L is the length of a longest
substring of S to be considered for a candidate state in the antomaton.
Once the automaton is built, predicting the likelihood of a query se-
quence of m characters may cost time ©(m?) in the worst case. A more
efficient computation of empirical probabilities and conditional proba-
bilities, of the kind described in an earlier section of this chapter, leads
to equivalent automata that can be learned in time linear in the input
size, and will subsequently prediction a string of m symbols in O(m)
time. We refer to [15] for details.

6.5 EPISODES AND AUTOMATIC
ASSOCIATION GENERATION

Many interesting problems can be cast in the emerging contexts of
data mining and tnformation eztraction. As is well known, while tradi-
tional data base queries aim at retrieving records based on their isolated
contents, these contexts focus on the identification of patterns occurring
across records, and aim at the retrieval of information based on the dis-
covery of intereating rules present in large collection of data. Central to
these developments is the notion of an assocfation rule, which is an ex-
pression of the form &) -+ S5 where §; and S5 are sets of data attributes
endowed with sufficient confidence and support. Sufficient support for a

String Pattern Matching for a Deluge Survivael Kit 45

rule is achieved if the number of records whose aitributes include S1US,
is at least equal to some pre-set minimum value. Confidence is measured
instead in terms of the ratio of records having 51 U Ss over those having
51, and is considered sufficient if this ratio meets or exceeds some pre-set
minimum. Clearly, a statistic of the number of records endowed with
the given atiributes must be computed as a preliminary step, and this
is often a bottleneck for the process of information extraction. We refer
to [3] and [117] for a broader discussion of these concepts.

Some of the considerations developed earlier in this chapter may be
regarded from a perspective of automatic generation of association rule.
Lemma 12, for instance, can be rephrased by saying that for every word
ending in the middle of an arc in 7%, a rule is exposed whereby any
occurrence of that word in = implies an occurrence also of its extension
to the nearest node. From this perspective, the construction of the tree
may be regarded as a means for the discovery of this rule.

In a real discovery, though, we do not know a-priori the rule that will
be discovered. Along these lines, looking for squares, palindromes etc.
is only half a discovery, in so far as the “rule” (e.g., ww, ww™) which
we are after is known beforehand. Even so, some mild extensions of this
problem may already fit the mining paradigms.

For example, consider the problem of finding, for a given textstring z
of n symbols and an integer constant d, and for any pair (y,z) of sub-
words of z, the number of times that y and 2z occur in tandem (i.e., with
no intermediate occurrence of either one in between) within a distance
of d positions of z. Although in principle there might be n* distinct
subword pairs in £, Lemma 12 tells us that it suffices to consider a fam-
ily of only n? such pairs, with the property that for any neglected pair
(w',2), there is a corresponding pair (y, z) contained in our family and
such that: {¢) @’ is a prefix of w and z' is a prefix of z, and (i¢) the
tandem index of (w', 2} equals that of (w, z). We leave it as an exercise
for the reader to find an efficient algorithm for the construction of the
table of all such tandem indices. The particularization of the problem
to the tandem index of occurrences of the same pattern, which is in fact
a relaxed square detection problem, has also been studied recently [49].

A. Amir et al. [9] have used tries to organize and speed up the discov-
ery of association rules in a fypical data base, the entries of which are
sets of attributes. The first step consists of transforming each record into
a string by numbering the different attributes. Next, every set is consid-
ered as a string sorted by order of the attribute number. At this point,
a trie is built by incremental insertion of all i-elements sorted sets for
i=1,2,..4n4c, in Succession, where i5,; is some suitable bound. The
nodes of the trie are weighted by the count of the number of records

46

leading to each node {a measure of the support for that node). The
data structure at the outset encodes all potential covers, a cover in
this context being a set of attributes with support exceeding a certain
minsupport value. To generate associations, one observes that once an
association of the form § — {a} is generated for an attribute, this gives
a handle to narrowing down the space of potential attributes of the form
{a,b}, in the sense that only if both associations § U {a} — {e} and
S U {b} - {b} exist, one can hope for association § — {e,b} fo exist.
This leads to the following scheme for associaton generations.

m For each node of the trie, let 5 = s155...8 — k be the label of the
path from the root to that node. Exfract, in succession, each s;
and check the resulting string 3 for its support. Whenever the ratio
supp(s)/supp(s;...8{—18i31...88) > minconf then §— §; — §; is
an assoctation rule.

= We now have association rules with only one set on the right hand
side. These rules are now combined to generate multiple rules. Le.,
for every pair of rules, generate a new rule with a consequent of
size 2, and test its confidence level. Repeat the process to obtain
rules with consequents of increasing size.

Other discoveries can be modeled in terms of the detection of special
kinds of subsequences. A pattern y = y; ...y occurs as a subsequence
of a text z =z, ...z, ilf there exist indices 1 <4, <fp <--- < <n
such that z;, = 1, 2y, = y2, -+, Z4,, = ¥m; in this case we also say that
the substring w = zj 2i,41... 2, of © is a realization of y beginning
at position 4, and ending at position i, in z. Given two strings ¢ =
Z£1...Zq and ¥y = Y1 ... Yym Over an alphabet X, the problem of testing
whether y occurs as a subsequence of 1 is trivially solved in linear time. It
is also known that a simple O{n log|Z|) time preprocessing of z makes it
easy to decide subsequently for any z and in at most |y| log |Z| character
comparisons, whether P is a subsequence of z. These problems become
more complicated if one asks instead whether y occurs as a subsequence
of some substring w of z of bounded length. One way to answer the
question is by identifying all distinct minimal realizations w of y. By a
realization w being minimal with respect to =z, it is meant that y is not a
subsequence of any proper substring of w. Variants of this problem arise
in numerous applications, ranging from information retrieval and mining
recurrent events in telecommunications (see, e.g., [108]) to molecular
sequence analysis (see, e.g., [136]) and intrusion and misuse detection in
a computer system.Algorithms for the so-called episode matching [108)
problem, which consists of finding the earliest occurrences of ¥ in all

String Pattern Matching for a Deluge Survival Kit 47

minimal realizations of P in T have been given in [70}. An occurrence
1199 ... 4 Of ¥ in a realization w is an earliest occurrence if the string
1192 . .. i, 15 lexicographically smallest with respect to any other possible
occurrence of ¥ in . The algorithms in [70] perform within roughly
Q(nm) time, without resorting to any auxiliary structure or index based
on the structure of the text.

Many modern pattern or motif characterizations and discovery algo-
rithms will come from the flourishing area of Bioinformatics, a micro-
cosmos within which most problems of managing the data and infor-
mation flood find early and somewhat controlled reflections (see, e.g.,
[33, 34, 35, 36]). Prominent in this context is the issue of aligning
multiple sequences [21]. This application is explosive in computational
demand and is typically approached by way of heuristics. These, in
turn, are variously centered around ideas of hinging putative alignments
around similar subpatterns of various kinds. One difficulty in this regard
is the lack of a unified notion of global comparison, which compounds
with the inherent intractability of most exact methods. One way to
approcah the problem is then to look for “anchor” sets of consecutive
columns where a same (short) pattern seems to appear in all sequences.
Recursively hinging a global solution around these anchors gives a han-

dle for a divide and conquer heuristics. The discovery of anchor patterns

fits somewhat into the paradigm of association rule generation. These
patterns can be sought among the substrings or subsequences of the
sequences, or combinations thereof. For example, one could use the la-
beling of Karp, Miller, and Rosenberg to label substrings and then lock
for regions with a concentration of identical labels. A variation on this
theme is due to Sagot et al. [124] and is based on the notion of 2 model
(direct product of subsets of the alphabet} that extends the notion of
a consensus sequence. Models capture the similarity between some cat-
egories of symbols as is the case with aminocacids in the comparison of
proteins. For fixed lengths, there is a linear-time algorithm to gener-
ate all the models common fo a set of strings on the basis of hypotheses
based on two parameters: a quorum for the number of implied sequences,
and the maximum acceptable number of errors between the models and
their actual occurrences.

References

[1] K. Abrahamson. Generalized string matching. STAM J. Computing,
16(6):1039-1051, 1987.

{2] A.V. Aho and M.J. Corasick. Efficient string matching. C. ACM,
18(6):333-340, 1975.

[3] R. Agrawal, T. Imielinski, and A. Swami. Mining association rules
between sets of items in large databases. In Proc. ACM SIGMOD,
pp-207-216, Washington DC May 1993.

[4] B. Alberts, D. Bray, J. lewis, M. Raff, K. Roberis and J.D. Watson.
Molecular Biology of the Cell. Garland Publishing, N.Y., 1989,

[5] S.F. Altschul and D.J. Lipman. Tree, stars, and multiple biological
sequence alignment. STAM J. Appl. Math. 49:197-209, 1989.

[6] S. Altschul, W. Gish, W. Miller, E.W. Myers and D. Lipman, Basic
Linear alignment search tool. J. Mol. Biology 215, 403-410 (1990).

(7] A. Amir, A. Apostolico and M. Lewenstein. Inverse Pattern Match-
ing. J. of Algorithms, 1997, Vol. 24, No. 2, pp. 325-339.

[8] A. Amir, G. Benson, M. Farach. Let sleeping files lie: pattern match-
ing in Z-compressed files. In Proc. of 5th Annual ACM-STAM Sym-
posium on Discrete Algorihms. 1994.

9] A. Amir, R. Feldman and R. Kashi. A New and Versatile Method
for Association Generation. Information Systems, to appear, (pre-
liminary version appeared in PKDD 97).

[10] A. Amir, M. Farach and G. Benson. Let Sleeping Files Lie: Pattern
Matching in Z-Compressed Files. Journal of Computer and System
Sciences, 1996, Vol. 52, No. 2, pp. 299-307.

49

50

[11]

[12]

[13]

(14

[15]

[16]

[17]

(18]

[29]
[20]

21]

A. Apostolico and Z. Galil (Eds.), Pattern Matching Algorithms,
Oxford University Press, New York (1997).

A. Apostolico. The Myriad Virtues of Subword Trees. In A. Apos-
tolico and Z. Galil, editors, Combinatorial Algorithms on Words,
volume 12 of NATO ASI Series F, pages 85-96. Springer-Verlag,
Berlin, Germany, 1985.

A. Apostolico. Optimal Parallel Detection of Squares in Strings.
Algorithmica, 8:285-319, 1992.

A. Apostolico “String Editing and Longest Common Subse-
quences”, (INVITED PAPER), Handbook of Formal Languages (G.
Rozenberg and A. Salomaa, Eds.}, Vol II, pp. 361-398 Springer-
Verlag (1996).

A. Apostolico and G. Bejerano, Optimal Amnesic Probabilistic Au-
tomata or How to Learn and Classify Proteins in Linear Time and
Space, to appear, Proceedings of RECOMBGO (1999).

A. Apostolico, M.E. Bock, S. Lonardi and X, Xu. Efficient Detec-
tion of Unusual Words, Technical Report 97-050, Purdue University
Computer Science Department (1996). Journal of Computational
Biology, in press.

A. Apostolico, D. Breslauer, and Z. Galil. Optimal Parallel Algo-
rithms for Periods, Palindromes and Squares. In Proc. 19tk Inter-
national Colloguium on Automata, Languages, and Programming,
number 623 in Lecture Notes in Computer Science, pages 296-307.
Springer-Verlag, Berlin, Germany, 1992.

A. Apostolico and D. Breslauer. Of Periods, Quasiperiods, Repe-
titions and Covers. In Structures in Logic and Computer Science:
A Colleciion of Essays in Honor of A. Fhrenfeucht, J. Mycielski,
(. Rozenberg and A. Salomaa, Eds., number 1261 in Lecture Notes
in Computer Science, pages 236-248. Springer-Verlag, Berlin, Ger-
many, 1992.

A. Apostolico and A. Ehrenfeucht. Efficient Detection of Quasiperi-
odicities in Strings. Theoret, Comput. Sci., 119:247-265, 1993.

A. Apostolico, M. Farach, and C.S. Iliopoulos. Optimal Superprim-
itivity Testing for Strings. Inform. Process. Lett., 39:17-20, 1991.

A. Apostolico and R. Giancarlo. Sequence Alignment in Molecular
Biology. Journal of Computational Biology (1998

References 51

[22] A. Apostolico and F. P. Preparata. Optimal off-line detection of
repetitions in a string. Theoret. Comput. Sci., 22:297-315, 1983.

[23] A. Apostolico and F. P. Preparata. Data structures and algorithms
for the strings stastitics problem. Algorithmica, 15(5):481-494, May
1996.

[24] A. Apostalico and W. Szpankowski. Self-alignment in words and
their applications. J. Algorithms, 13(3):446-467, 1992.

[25] R. Ash. Information Theory. Tracts in mathematics, Interscience
Publishers, J. Wiley & Sons, 1985.

[26] R. Baeza-Yates and C. Perleberg, Fast and practical approximate
string matching. Proc. JII Symp. on Combinatorial Paitern match-
ing, Srpinger LNCS, 185-92 (1992).

[27]) M. P. Béal. Codage Symbolique. Masson, 1993.

[28] M.-P. Béal, F. Mignosi, A. Restivo. Minimal Forbidden Words and
Symbolic Dynamics. in (STACS'96, C. Puech and R. Reischuk,
eds., LNCS 1046, Springer, 1996} 555-566.

[29] G. Bejerano and G. Yona, Modeling Protein Families Using Prob-
abilistic Suffix Trees. Proceedings of RECOMBY9 (S. Istrail, P.
Pevzner and M. Waterman, eds.), 15-24, Lyon, France, ACM Press
(April 1999).

[30] T. C. Bell, J. G. Cleary, I. H. Witten. Text Compression. Prentice
Hall, 1990.

[31) J. Berstel. Fibonacci Words — a Survey. in (The Book of L,
G. Rozenberg, A. Salomaa, eds., Springer Verlag, 1986).

[32] J. Berstel and D. Perrin. Finite and infinite words. in (Al
gebraic Combinatorics on Words, J. Berstel, D. Perrin, eds.,
Cambridge University Press, to appear) Chapter 1. Available at
http://vwww-igm.univ-mlv.fr/ berstel.

[33] A. Brazma, I Jonassen, J. Vilo, and E. Ukkonen. Predicting Gene
Regulatory Elements in Silico on a Genomic Scale. Genome Re-
search Vol. 8, Issue 11 (pp. 1202-1215) November 1998.

[34] A. Brazma, I. Jonassen, J. Vilo and E. Ukkonen Pattern Discovery
in Biosequences. Proceedings of Fourth International Colloguium on
Gremmatical Inference (ICGI-98) (1433) (pp. 255-270) July 1998.
Springer.

52

[35]

(36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

(44]
[45]

[46]

A. Brazma, J. Vilo, E. Ukkonen and K. Valtonen. Data Mining for
Regulatory Elements in Yeast Genome. Fifth Infernational Confer-
ence on Intelligent Systems for Moleculor Biology, ISMB-97 (pp.
65-74) June, 1997. AAAI Press.

A. Brazma, I. Jonassen, I. Eidhammer and D. Gilbert. Approaches
to the Automatic Discovery of Patterns in Biosequences. Journal of
Compuialional Biology 5:2, 279-306 {1998).

A. Ben-Amram, O. Berkman, C. Iliopolous, and K. Park. Comput-
ing the Covers of a String in Linear Tme. In Proc. 5th ACM-SIAM
Symp. on Discrete Algorithms, pages 501-510, 1994.

D. R. Bean, A. Ehrenfeucht, and G.F. McNulty. Avoidable patterns
in strings of symbols. Pacific J. Math., 85:261-294, 1979.

G. Bejerano and G. Yona, Modeling Protein Families Using Prob-
abilistic Suffix Trees. Proceedings of RECOMBY9 (S. Istrail, P.
Pevzner and M. Waterman, eds.}, 15-24, Lyon, France, ACM Press
(April 1999).

J. Bentley and D. Mcllroy, “Data compression using long common
strings,” in Proceedings of the IEEE Data Compression Conference,
Mar. 1999, pp. 287-295,

J. Berstel. Sur les mots sans carré définis par un morphism. In
Proc. 6th International Collogutum on Automata, Languages, and
Programming, number 71 in Lecture Notes in Computer Science,
pages 16-25. Springer-Verlag, Berlin, Germany, 1979.

A. Blumer, J. Blumer, A. Ehrenfeucht, D. Haussler, M.T. Chen and
J. Seileras. The Smallest Automaton Recognizing the Subwords of
a Text. Theoretical Computer Science, 40:31-55, 1985.

A. Blumer, A., J. Blumer, A. Ehrenfeucht, D. Haussler, and R.
McConnell. Complete Inverted Files for Efficient Text Retrieval
and Analysis. Journal of the ACM, 34(3): 578-595, 1987.

R.P. Brent. Evaluation of General Arithmetic Axpressions. J. As-
soe. Comput. Mach., 21:201-206, 1674.

D. Breslauer. An On-Line String Superprimitivity Test. Inform.
Process. Lett., 44(6):345-347, 1992.

D. Breslauer. Testing String Superprimitivity in Parallel. nform.
Process. Lett., 49(5):235-241, 1994.

References 53

[47] D. Breslauer and Z. Galil. A Lower Bound for Parallel String Match-
ing. STAM J. Comput., 21(5):856-862, 1992.

[48] D. Breslauer and Z. Galil. Finding all Periods and Initial Palin-
dromes of a String in Parallel. Algorithmica, 1995.

[49] G.S. Brodal, R. Lyngso, C.N.S. Pedersen, and J. Stoye. Finding
Maximal Pairs with Bounded Gap. Proc. 10th Combinatorial Pat-
tern Matching, 342-351. Springer Verlag LNCS volume 1645 (1999).

[50] L. Brillouin, Science and Information Theory, Academic Press
(1971).

(51) M. Burrows and D. J. Wheeler, “A block-sorting lossless data com-
pression algorithm,” Tech. Rep. 124, Digital Equipments Corpora-
tion, May 1994. '

[52] H. Carillo and D.J. Lipman. The multiple sequence alignment prob-
lem in biology. SJTAM J. Appl. Math. 48:1073-1083, 1988.

(53] W.I. Chang and E.L. Lawler, Sublinear expected time approximate
string matching and biological applications. Algorithmical2, 327-44
(1994).

(54] M.T. Chen and J. Seiferas. Efficient and Elegant Subword-tree
Construction. In A. Apostolico and Z. Galil, editors, Combinatorial
Algorithms on Words, volume 12 of NATO AST Series F, pages 97—
107, Springer-Verlag, Berlin, Germany, 1985.

[55] S.C. Chan, A.K. Wong and D.K. Chiu. A survey of multiple se-
quence comparison methods. Bull. Math. Biol. 54:563-598, 1992.

[66] C. Choffrut, K. Culik. On Extendibility of Unavoidable Sets. Dis-
crete Appl. Math., 9, 1984, 125-137.

[57] M. Crochemore, C. Hancart. Automata for matching patterns. in
(Handbook of Formal Languages, G. Rozenberg, A. Salomaa, eds.”,
Springer-Verlag”, 1997, Volume 2, Linear Modeling: Background
and Application} Chapter 9, 399-462.

[68] M. Crochemore, F. Mignosi, A. Restivo. Minimal Forbidden Words
and Factor Automata. in (MFCS5’98, L. Brim, J. Gruska, J.
Slatugka, eds., LNCS 1450, Springer, 1998) 665-673.

[58] M. Crochemore, F. Mignosi, A. Restivo. Automata and Forbidden
Words. Informalion Processing Letters 67 (1998) 111-117.

54

[60] M. Crochemore, F. Mignosi, A. Restivo, S. Salemi. Text Com-
pression Using Antidictionaries. Tech. Rept. IGM-98-10, Institut
Gaspard Monge, 1998. DCA home page at URL http://www-igm.univ-
mlv.Irf~mac/DCA.html

61] M. Crochemore, I'. Mignosi, A. Restivo, S. Salemi. Search in Com-
g
pressed Data. in preparation.

[62] M. Crochemore, F. Mignosi, A. Restivo, S. Salemi. A Compressor
Compiler. in preparation.

[63] R. Cole, M. Crochemore, Z. Galil, L. Gasieniec, R. Hariharan,
S. Muthukrishnan, K. Park, and W. Rytter. Optimally Fast Par-
allel Algorithms for Preprocessing and Pattern Matching in One
and Two Dimensions. In Proc. 34th IEEE Symp. on Foundations
of Computer Science, pages 248-258, 1993.

[64] M. Crochemore. An optimal algorithm for computing the repeti-
tions in a word. Inform. Process. Lett., 12(5):244-250, 1981,

[65] M. Crochemore. Sharp characterizations of squarefree morphisms.
Inform. Process. Lett., 18:221-226, 1982.

[66) M. Crochemore. Transducers and repetitions. Theoret. Comput.
Sci., 12:63-86, 1986.

[67] M. Crochemore and W. Rytter, Test Algorithms, Oxford University
Press, New York (1994).

[68] M. Crochemore and W. Rytter. Efficient parallel algorithms to test
square-freeness and factorize strings. Inform. Process. Lett., 38:57-
60, 1991.

[69] M. Crochemore and W. Rytter. Usefulness of the Karp-Miller-
Rosenberg algorithm in parallel computations on strings and arrays.
Theoret. Comput. Sci., 88:59-82, 1991.

[70] G. Das, R. Fleischer, L. Gasieniek, D. Gunopulos, J. Kirkkiinen,
Episode Matching, CPM’97, Proceedings of the 8th Annual Sym-
posium on Combinetorial Paitern Matching, (A. Apostolico and J.
Hein, Eds.), Springer Verlag LNCS 1264, 12-27 (1997).

[71] V. Diekert, Y. Kobayashi. Some Identities Related to Automata,
Determinants, and Mobius Functions. Report Nr. 1997/05, Univer-
sitdt Stuttgart, Fakultdt Informatik, 1997.

References 55

(72] R. S. Ellis. Eniropy, Large Deviations, and Statistical Mechanics.
Springer Verlag, 1985.

(73] M. Farach, M. Thorup. String matching in Lempel-Ziv compressed
strings. In Proc. of 27th Symposium on Theory of Computing 1994,
703-713.

[74]) P. Ferragina, Dynamic Data Structures for String Matching Prob-
lems, Doctoral Thests, University of Pisa (1997).

[75] E. R. Fiala and D. H. Greene, “Data compression with finite win-
dows,” Communications of the ACM, vol. 32, pp. 450-505, 1989.

[76] F.E. Fich, R.L. Ragde, and A. Wigderson. Relations Between
Concurrent-write Models of Parallel Computation. STAM J. Com-
put., 17(3):606-627, 1988.

{77] N.J. Fine and H.S. Wilf. Uniqueness Theorems for Periodic Func-
tions. Proc. Amer. Math. Soc., 16:109-114, 1965.

[78] M.J. Fischer and M.S. Paterson. String matching and other prod-
ucts. Complegzity of Computation, R.M. Karp (editor), STAM-AMS
Proceedings, 7:113-125, 1974.

[79] K. S. Fu and T. L. Booth. Grammatical inference: Introduction
and survey — Part 1. IEEE Trensactions on Systems, Man and
Cybernetics, 5:95-111, 1975.

[80] K. S. Fu and T. L. Booth. Grammatical inference: Introduction
and survey — Part II. IEEE Transactions on Systems, Maon and
Cybernetics, 5:112-127, 1975.

[81] J. Gailly. Frequently Asked Questions in data compression, Internet.
URL http://www.landfield.com/faqs/compression-faq/ ’

[82] L. Gatlin, nformation Theory and the Living Systems., Columbia
University Press, 1972.

[83] L. Gasieniec, W. Rytter Almost optimal fully LZW-compressed
pattern matching In Data Compression Conference, J. Storer, ed,
1999.

[84] L. Gasieniec, P. Indyk and P. Krysta, External Inverse Pattern
Matching, Proceedings of the 8th Annual Symposium on Combinat-
gorial Pattern Malching, Springer-Verlag LNCS 1264, pp. 90-101
(1997).

o6

[85]

[86}

[87]

[88]

(89]

[80]

[91]

[92]

(93]
fo4]
[o5)
(96]

[97]

D. Greene, M. Parnas, and F. Yao. Multi-index hashing for infor-
mation retrieval. Proc. 35th Annual Sympostum on Foundations of
Computer Science, pages 722-731, 1994.

D. Gusfield and J. Stoye. Simple and Flexible Detection of Contigu-
ous Repeats Using a Suffix Tree. pp 140-152, 9th CPM 98, Springer
LNCS 1448.

D. Gusfield and J. Stoye. Linear Time Algorithms for Finding and
Representing all Tandem Repeats in a String. Technical report
CSE-98-4, UC Davis Computer Science. 1998.

M. Gu, M. Farach, and R. Beigel, “An efficient algorithm for dy-
namic text indexing,” in Proceedings of the Fifih Annual ACM-
SIAM Symposium on Discrete Algorithms, Arlington, VA, 1994,
pp- 697-704.

R. W. Hamming. Error detecting and error correcting codes. Bell
System Tech. J., 29:147-160, 1950.

R. N. Horspool, “The effect of non-greedy parsing in Ziv-Lempel
compression methods,” in DCC: Data Compression Conference.
1995, pp. 302-311, IEEE Computer Society TCC.

C.S. Diopoulos, D.W.G. Moore, and K. Park. Covering a String.
In Proc. 4th Symp. on Combinatorial Pattern Maiching, number
684 in Lecture Notes in Computer Science, pages 5462, Berlin,
Germany, 1993. Springer-Verlag,.

C.S. Iliopoulos and K. Park. An Optimal O(loglogn)-time Algo-
rithm for Parallel Superprimitivity Testing. J. Korea Information
Science Society, 21(8):1400-1404, 1994.

R. Karp and M.O. Rabin, Efficient Randomized Pattern Matching
Algorithms, IBM J. Res. Dey. 31, 249-260 (1987).

J. G. Kemeny, J. L. Snell. Finite Markov Chairs. Van Nostrand
Reinhold, 1960.

D.E. Knuth, J.H. Morris, and V.R. Pratt. Fast Pattern Matching
in Strings. STAM J. Comput., 6:322-350, 1977.

A. N. Kolmogorov. Three approaches to the quantitative definition
of information. Problemi Pederachi Inf., 1, 1965.

5. Kurtz, “Reducing the space requirments of suffix trees,” Tech.
Rep. 98-03, Technischen Fakultit, Universitat Bielefeld, 1998.

References 57

(98] N.J. Larsson, “Extended application of suffix trees to data compres-
sion,” in DCC: Datae Compression Conference. 1996, pp. 190-199,
IEEE Computer Society TCC.

[99] A.Lempel and J. Ziv. On the complexity of finite sequences. JEEE
Trans. on information Theory, 22:75-81, 1976.

[100] V.I. Levenshtein. Binary codes capable of correcting deletions,
insertions and reversals. Soviet Phys. Dokl., 6:707-710, 1966.

{101) M. Lothaire. Combinatorics on Words. Addison-Wesley, Reading,
MA, U.S.A., 1983.

f102] R. C. Lyndon and M. P. Schutzenberger. The equation a™ = §¢P
in a free group. Michigan Math. J., 9:289-298, 1962.

(103] M.G. Main and R.J. Lorentz. An o(nlogn) algorithm for finding
all repetitions in a string. J. of Algorithms, pages 422-432, 1984.

[104] G. Manacher. A new Linear-Time “On-Line" Algorithm for Find-
ing the Smallest Initial Palindrome of a String. J. 4ssoc. Comput.
Mach., 22, 1975.

{105] U. Manber. A text compression scheme that allows fast searching
directly in the compressed file. In M. Crochemore and D. Gusfield,
editors, Proceedings of the 5th Annual Symposium on Combinatorial
Pattern Matching, number 807 in Lecture Notes in Computer Sci-
ence, pages 113-124, Asilomar, CA, 1994, Springer-Verlag, Berlin.

[106] U. Manber and R. Baeza-Yates. An algorithm for string matching
with a sequence of don’t cares. Inform. Process. Lett. 37 (1991),
No. 3, 133-136.

(107) U. Manber and E. Myers. Suffix Arrays: a New Method for On-
line String Searches. SIAM Journal on Compuling, 22(5):935-948,
1993.

[108] H. Mannila, H. Toivonen and A.I. Vercamo, Discovering Frequent
Episodes in Sequences, KDD’95, Proceedings of the Ist Interna-
tional Conference on Knowledge Discovery and Date Mining, AAAT
Press, 210-215 (1995).

[109] P. Martin-Lof. The definition of random sequences. Information
and Conirol, 9, 1966,

[110}] E.M. McCreight. A Space Economical Suffix Tree Construction
Algorithm. J. Aassoc. Comput. Mach., 23:262-272, 1976.

o8

f111] M. Morse, G. Hedlund. Symbolic Dynamics II: Sturmian trajec-
toires. Amer. J. Math. 62 (1940) 1-40.

[112] D. Moore and W.F. Smyth. Computing the Covers of a String
in Linear Time. In Proc. 5th ACM-SIAM Symp. on Discrete Algo-
rithms, pages 511-515, 1994.

[113] E. Moura, G. Navarro, N. Ziviani, R. Beaza-Yates. Direct pattern
matching on compressed texts. In Proc. SPIRE’98, IEEE CS Press,
1998, 80-95.

[114] S. Muthukrishnan. Non-standard Stringology: Algorithms and
Complexity. Proc. 26th Annual Symposium on the Theory of Com-
puiing, pages 770-779, 1994.

[115] G. Navarro, M. Raffinot. Pattern matching in compressed texts.
To appear.

[116) M. Nelson, J. Gailly. The Data Compression Book. M&T Books,
New York, NY, 1996. 2nd edition.

[117] G. Piatesky-Shapiro and W.J. Frawley, Eds., Krowledge Discovery
in Databases. AAAI Press/MIT Press, 1991.

[118] K.R. Popper. The Logic of Scieniific Discovery. Hutchinson, Lon-
don, 1959.

[119] M. Rabin, Discovering Repetitions in Strings, in Combinatorial
Algorithms on Words {(A. Apostolico and Z. Galil, eds.), Springer
Verlag pp. 279-288 (1985).

[120} J. Rissanen, A universal Data Compression System, IEEE Trans.
Inform. Theory 29(5): 656-664 (1983).

[121] J. Rissanen, Complexity of Strings in the Class of Markov Sources,
IEEE Trans. Inform. Theory 32(4): 526-532 (1986).

* [122] D. Ron, Y. Singer and N, Tishby, The Power of Amnesia: Learn-
ing Probabilistic Automata with Variable Memory Length. Machine
Learning, 25:117-150 (1996).

(123} D. Russel and G.T. Gangemi, Sr. Computer Securily Basics.
O’Reilly and Associates, Inc., Sebastopol, California, 1991.

(124] M.-F. Sagot, A. Viari and H. Soldano. Multiple sequence com-
parison — A peptide matching approach. Theoret. Comput. Sci.
180(1-2):115-137, 1997.

Heferences 59

[125] C.E. Shannon and W. Weaver, The Mathematical Theory of Com-
munication University of Illinois Press, Urbana (1949).

[126] C.E. Shannon. Prediction and entropy of printed english. Bell
System Technicel J., 50-64, January, 1951.

[127] Y. Shibata, M. Takeda, A. Shinohara, S. Arikawa. Pattern match-
ing in text compressed by using antidictionaries. in Combinatorial
Pattern Maiching, M. Crochemore and M. Paterson, eds, number
1645 in LNCS, Springer, 1999, 37-49.

(128] J.A. Storer. Data Compression: Methods and Theory. Computer
Science Press, 1988.

[129] J.A. Storer and T. G. Szymanski. Data compression via textual
substibution. Journel of the ACM, 29(4):928-951, October 1982.

[130] A. Thue. Uber unendliche zeichenreihen. Norske Vid. Selsk. Skr.
Mai. Nat. Ki. (Cristiania), (7):1-22, 1906.

[131] A. Thue. Uber die gegensettige lage gleicher teile gewisser zeichen-
reihen. Norske Vid. Selsk. Skr. Mat. Nat. Kl. (Cristiania), (1):1-67,
1912.

[132] E. Ukkonen. Ou-line Constructin of Suffix Trees. Algorithmica,
14:249-260, 1995.

[133] E. Ukkonen. Approximate string matching and the g-gram dis-
tance. In: R. Capocelli, A. De Santis and U. Vaccaro (eds.), SE-
QUENCES II - Meihods in Communication, Security, and Com-
puter Science, 300-312, Springer 1993.

[134] R. von Mises. Probability, Statistics and Truth. MacMillan, New
York, 1939.

[135] S. Watanabe. Knowing and Guessing. Wiley, New York, 1969.

[136) M. Waterman, Introduction to Computalional Biology, Chapman
and Hall (1995).

[137] P. Weiner. Linear Pattern Matching Algorithms. In Proc. 14th
Symposium on Switching and Automate Theory, pages 1-11, 1973.

[138] T.A. Welch. A technique for high performance data compression.
IEEE Trans. on Compuiers, 17:8-19, 1984.

(139] LH. Witten, A. Moffat, T. C. Bell. Managing Gigabytes. Van
Nostrand Reinhold, 1994.

	String pattern Matching For A Deluge Survival Kit
	Report Number:
	

	tmp.1307986960.pdf.GkLH5

