
Purdue University Purdue University

Purdue e-Pubs Purdue e-Pubs

Department of Computer Science Technical
Reports Department of Computer Science

1999

String pattern Matching For A Deluge Survival Kit String pattern Matching For A Deluge Survival Kit

Alberto Apostolico

Maxime Crochemore

Report Number:
99-045

Apostolico, Alberto and Crochemore, Maxime, "String pattern Matching For A Deluge Survival Kit" (1999).
Department of Computer Science Technical Reports. Paper 1475.
https://docs.lib.purdue.edu/cstech/1475

This document has been made available through Purdue e-Pubs, a service of the Purdue University Libraries.
Please contact epubs@purdue.edu for additional information.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Purdue E-Pubs

https://core.ac.uk/display/4951956?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://docs.lib.purdue.edu/
https://docs.lib.purdue.edu/cstech
https://docs.lib.purdue.edu/cstech
https://docs.lib.purdue.edu/comp_sci

STRING PATTERN MATCHING FOR
A DELUGE SURVIVAL KIT

Alberto Apostolico
Maxime Crochemore

CSD TR #99·045
December 1999

STRING PATTERN MATCHING FOR
A DELUGE SURVIVAL KIT

Alberto Apostolico
and Maxime Crochemore

1. INTRODUCTION
This paper reviews a number of rather ubiquitous primitives related to

matching and searching with some elementary discret.e structures such
as strings, regular expressions, and other aggreates, that are likely to be
of relevance, directly or indirectly, in the current and future infrastruc
tures of very large volumes of data. In that context, massive, scattered
and diverse information repositories will pose increasing needs for novel
approaches to their management by means of compression, inference,
comparison and retrieval, mining, and related principles and techniques.
Without pretending to be exhaustive, the selection of topiCs presented
in this paper was inspired by two main principles. The first one, was to
recognize that -the data flood is forcing a paradigm shift to take place,
whereby the previous ambition to organize and funnel to the user as
much data as possible is being changed into that of limiting and filtering
what the limited ultimate bandwidth, the user himself, may actually
intake. The second, and related principle, is that, in computer science
jargon, search by value is going to be increasingly replaced by search
by contents and, in turn, by search by meaning. It is believed that,
while eminently syntactic in nature, most of the primitives considered
here shall still form the core of the semantic capabilities subtending au
tomated association generation and other similar techniques of filtration
and inference.

ProbleID5 of matching and searching, and the combinatorial properties
that support their efficient solutions, may be classified according to a
number of paradigms. One way to classify these problems is according
to the type of structure (strings, arrays, trees, etc.) in terms of which
they are posed. Another is according to the model of computation used,

1

2

e.g., serial or parallel. Yel; another one is according to whether the
manipulations that one seeks to optimize need be performed oil-line, off
line, in real time, etc. One could distinguish further between matching
and searching and, within the latter, between exact and approximate
searches, or vice versa. The classification used here privileges certain
aspects of exact or approximate searching, combinatorial issues such
as the identification of periodicities, symmetries and other regularities,
efficient implementations of ancillary functions such as compression and
encoding, etc., that are perceived as most relevant in the current context.
Due to space limitations we emphasize here problems on strings, but it
should be clear that most problems (albeit not their solutions) translate
straightforwardly to more complicated structures.

This paper is organized as follows. In the next section, we review some
fundamental facts about regularities that manifest themselves in form
of repetitive substructures. In Section 3, we address issues of searching
and indexing: we describe there two central tools for these tasks, suf
fix and subword automata, and consider their implementation issues in
massive data contexts. Section 4 deals with basic problems of counting
substring statistics and estimating empirical probabilities in early proba
bilistic models. In Section 5, we address issues of filtering, fingerprinting
and related compaction techniques that variously enter data reduction,
certification, watermarking, but also approximate patterns comparison
and search. In Section 6, we consider problems of compression, mining
for associations and other inference issues in strings.

Some preliminary notational conventions follow. Given an alphabet
E, we use E+ to denote the free semigroup generated by E, and set E t =
E+ U{A}, where Ais the empty word. An element ofE+ is called a string
or sequence or word, and is denoted by one of the letters s, u, v, w, x, y
and z. The same letters, upper case, are used to denote random strings.
We write x = XIX2 ••• X n when giving the symbols of x explicitly. The
number of symbols that form w is called the length of wand denoted
by Iwl. If x = tlwy, then w is a substring of x and the integer 1 + Ivl is
its (starling) position in x. Let I = [i, j] be an interval of positions of a
string x. We say that a substring w of x begins in I if I contains the
starting position of w, and that it ends in I if I contains the position of
the last symbol of w.

2. BASIC REGULARITIES AND THEIR
DETECTION

It is customary to distinguish among three types of information: syn
tactic, semantic, and pragmatic, the last one being an attempt to de-

String Pattern Matching for a Deluge Survival Kit 3

scribe the understanding of meaning as a natural process. As much as
we would like to get to this third level, it is likely that we shall only be
able to occasionally grasp at the second one using tools and methods
of the first. In this secl;ion, we see that even restricting to syntactic
regularities does not make the job trivial.

Syntactic regularities in strings playa pervasive role in many facets
of data analysis. Searching for repeated patterns, periodicities, symme
tries, cadences, and other similar forms or unusual patterns in objects is
a recurrent task in the compression of data, symbolic dynamics, genome
studies, intrusion detection, and countless other activities. In many
applications, such regularities represent redundancies and, as such, are
sought to be removed. This is the case of Data Compression. Tn textual
substitution methods, for example, strings that apppear many times in
a subject can be economically replaced by pointers to a single common
copy. In many other applications, these kind of regularities are sought
as carriers of information. This displays of duality for information in
this context has been known and debated since early years [125, 50].

We concentrate here on a very restricted class of regularities such as
cadences, periods, squares, repetitions, palindromes and approximate
versions thereof. The first thing to be said is that there are atloidable
and unatloidable such regularities (see, e.g., [38, 101]).

2.1 UNAVOIDABLE REGULARITIES
One remarkable application of the Pidgeon Hole Principle leads to

establish that if N is partitioned into k classes, then one of the classes
contains arbitrarily long arithmetic progressions.

More precisely, we say that the integers tl < "t2 < ... < tn are a
cadence for word .:l:lX2 ...Xr if xh = xh = ... = Xtn • In this case we also
say that n is the order of the cadence.

Let now S be a finite subset of N. A cadence of type S is a cadence
of the form as + (J (i.e., an arithmetic cadence with common difference
a when a, (J > a) For example, abbabbabbaab is an arithmetic cadence
of order 4 with a = 3, (J = 3, S = {I, 2,3} The following theorems hols.

Theorem 1 H A is an alphabet with k letters and n is an integer, there
is an integer N = N(k, n) such that every word of length 2:: N has an
arithmetic cadence of order n

Theorem 2 Let S be any finite subset of N and A an alphabet with k
letters. There exists an integer N depending only of Sand k such that
every word of length 2:: N has a cadence of type S.

4

2.2 SOME AVOIDABLE REGULARITIES:
PERIODS, PALINDROMES AND
SQUARES

Periods and periodicities are pervasive notions of string algorithmics.
A string z has a period w if z is a prefix of wk for some integer k.
Alternatively, a string w is a period of a string z if z = wiv and v is a
possibly empty prefix of w. Often when this causes no confusion, we will
use the word llperiod" also to refer to the length or size Iwl of a period w
of z. A string may have several periods. The shortest period (or period
length) of a string z is called the period of z. Clearly, a string is always
a period of itself. This period is called the trivial period.

A germane notion is that of a border. We say that a non-empty string
w is a border of a string z if z starts and ends with an occurrence of w.
That is, z = uw and z = W11 for some possibly empty strings tL and v.
Clearly, a string is always a border of itself. This border is called the
trivial border. The implicaHons of these notions on fast string searching
are well understood. In fact, it is not difficult to see that two consecutive
occurrences of a word may overlap only if their distance equals one of
the periods of w.

A string can have many periods, and corresponding borders. The
smallest (resp. longer border) period is the period (resp., the border) of
the string. For example abaabaababaabaababaabaabaabaab has borders
at abaabaab, abaab and abo

Once we know how to compute all periods of a string then we also
know how to compute all initial palindromes of a string. A palindrome
is a string that reads the same forward and backward, i.e., W = w R ,

where wR is the em reverse of string W. For this, we run the algorithm
on w!wR where! is not in the alphabet. Better palindrome detectors are
known. In 1976, G. Manacher showed that in fact all palindromes can
be found in linear time [104].

A string can avoid having any nontrivial period but will not take two
periods for long. We give here a weak version of an important result
known as the "periodicity lemma" [77, 102].

Lemma 1 If w has two periods of length p and q and w is at least p +q
then w has period gcd(P, q).

Proof. Assume w.l.o.g. p > q and consider Wi for arbitrary i. We have
that either i-q ~ 1 or i+p $. n. In the first case, Xi = Xi_q = Xi_q+p, in
the second case Xi = xi+p = Xi+p_q' Thus, p - q is a period. Repeating
the treatment on the pair PI p - q leads to the claim. 0

String Pattern Matching for a Deluge Suroival Kit 5

procedure maxborder (Y)
begin
bord[O) <- -1; r <- -1;
for m= 1 to hdo

while r ~ 0 and Yr+l i= Ym do
r <- bord[r];

endwhile
r = r + 1; bord[m) = r

endfor
end

Figure 1.1 Computing the longest borders for all prefixes of y

The computation of the longest borders (and corresponding periods)
of all prefixes of a string is afforded in overall linear time and space.
We report one such construction in Figure 1.1, for the convenience of
the reader, but refer for details and proofs of linearity to discussions of
"failure functions'" and related constructs such as found in, e.g., [2, 11,
67).

Once the period structure of the pattern is unveiled, this immediately
yields a linear time string searching algorithm. The key element of the
algorithm is to maintain, during a text scanning, notion of the longest
prefix of the pattern matched so far, and use the border table to jump
over intermediate non-viable candidates. These developments will be
discussed. some more later, in connection with subword automata.

Let 1l'(w) denote the shortest nOD-zero period length of w. A string w
such that Iwl ;::: 21l'(w) is said to be periodic. By the periodicity lemma,
in a periodic string w, all periods lengths that are smaller than Iwl/2,
must be multiples of the period length 1l'(w). A string w such that setting
w = uk implies k = 1 is called. primiti1Je. A square is a string w in the
form w = vv with v a primitive string. It is natural to wonder whether
squares represent avoidable or unavoidable regularities. As is readily
seen, on an alphabet of two symbols we can only build a very short
string not containing any squares, i.e., a square-free string. In fact, in
the first three steps we must generate either 010 or 101, at which point
adding, say, 0 to DID, introduces the square 00 while adding 1 yields
OWL

At the beginning of the century, A. Thue [130,131) found that over an
alphabet of at least 3 symbols he could build an indefinitely long square
free string. This was achieved. by giving a square free morphism, Le., a

6

rewriting rule that when applied to a square free string would preserve
square-freedom. The morphism considered by Thue is: rew(a) = abeab,
rew(b) = acabcb and rew(c) = acbcacb. Later, S. Istrail (see [41]) gave
a more compact morphism that is square free if started on the letter a:
reveal = abc, rew(b) = ac, and rew(c) = b. As for a binary alphabet,
it is possible to show that we can build infinite cube/ree strings, with
obvious meaning.

There are, in principle, about n2/2 possible ways to choose indices
i and j for the starting and ending positions of a substring in a string
of n symbols, and these might all correspond to distinct strings. Is it
posssible to have as many squares? As it turns out, there can be only
O(nlogn) squares. One way to prove this is by giving an algorithm that
enumerates all the squares. M. Crochemore showed in 1981 [64] that
this number of squares is also tight: the Fibonacci strings, defined by
Fo = a, F I = b, and Fi = Fi- I Fi- 2 , attain this bound.

There are several efficient or optimal serial [103, 119, 64, 22, 86, 87]
and parallel [69, 68, 17, 13] algorithms to test square-freeness and detect
all squares. We will discuss some simple criterion and algorithm later.

2.3 QUASIPERIODS AND COVERS

In the Summer of 1990, A. Ehrenfeucht suggested that some repetitive
structures defying the classical characterizations of periods and repeti
tions could be captured by resort to a germane notion of "quasiperiod".
In (19] Apostolico and Ehrenfeucht defined quasiperiodic strings as
strings which are entirely covered by occurrences oj another (shorter)
string. They also gave an O(n log2 n) time algorithm to find all maximal
quasiperiodic substrings within a given string. Apostolico, Farach and
Iliopoulos [20) gave an O(n) time algorithm that finds the quasiperiod of
a given string, namely the shortest string that covers the string in ques
tion. This algorithm was subsequently simplified and improved by Bees
lauer [45J who gave an O(n) time on-line algorithm, and parallelized by
Breslauer [461 and Iliopoulos and Park [92], the latter giving an optimal
speedup O(log log n) time parallel CReW-PRAM algorithm. Moore and
Smyth [112] gave an O(n) time algorithm that finds all strings that cover
a given string. These developments eventually led to the study by D
iopoulos, Moore and Park [91J and by Ben-Amram et al. [37J of covers
which are not necessarily aligned with the ends of the string being cov
ered, but are rather allowed to overflow on either side. The sequential
algorithm for this problem takes O(nlogn) time [91] and the parallel
counterpart [37] achieves an optimal speedup taking O(log n) time, but
using superlinear space.

String Pattern Matching for a Deluge Survival Kit 7

To understand these developments, it is convenient to modify slightly
the notion of a period. A non-empty string u, lui ~ Iwl, will be called
a period of w if w is a substring of uk, for some integer k ;::: 1. Clearly,
if u is a period of w, then its length lui is a period length of w, since
lui is a period length of uk. Moreover, if u = xy, then any rotation yx
of u is also a period of w since (yx)k+l = y(xy)kx = yukx contains w
as a substring. A period tL of w that is also a prefix of w is called a left
aligned period. Clearly, given any period length 7f > 0 of w, the prefix
W[l...1l") is a left aligned period of w.

A period u is in fact a regular cover of w, where occurrences of u
appear in w spaced exactly luI positions apart (other occurrences are
also allowed) and the occurrences on the sides can overflow. Given any
period u of w, consider the rotation uof u such that il is also a prefix of
w (in other words, u is the rotation of u that is a left aligned period of
w). If w = (i for some integer k, namely if the regular cover of w by 1L

is also right aligned, then w is said to have an aligned regular cover u. If
w has no proper aligned regular covers (w itself is always a cover) then
w is primitive.

The shortest non-zero period length of w will be called the period
length of wand denoted n(w). A string w such that [wi ~ 27f(w) is
said to be periodic. By the theorem above, in a periodic string w, all
periods lengths that are smaller than Iwl/2, must be multiples of the
period length 1r(w).

2.3.1 General Covers. One may generalize the notion of a pe
riod u that covers w with regular occurrences that are lui positions apart
in w, to covers where the occurrences of u in ware not required to be
uniformly spaced, and are allowed, in addition, to overflow on either side.
For example, the string w = 'aabaabab' may be covered by occurrences
of u = 'aba', but the positions of these occurrences in w are not regular
and in fact aba is not a period of w. This type of covers were called
general covers in [91] where a covering string such as our u above is also
termed a seed of w.

2.3.2 Aligned Covers. Some notable families of covers result by
considering covering strings 'U for w that are not necessarily regularly
spaced but are aligned on both sides ofwand are not allowed to overflow.
Such strings u are said to be aligned covers of w. Given the similarity
between non-regular covers and regular cOvers (periods), aligned covers
u of w were named quasiperiods of w by Apostolico and Ehrenfeucht [19].
In addition, strings that do not have any non-trivial (shorter) aligned
covers were called superprimitive and strings that have shorter aligned

8

covers were termed quasiperiodic. Observe that any periodic string is
also quasiperiodic, but not every quasiperiodic string is periodic. Most
of our treatment here is confined to aligned covers, leaving general covers
to a future extension.

We describe next few easy facts about periods, borders, and aligned
covers.

Lemma 2 If a string z aligned-covers a string w then z is a border of
w.

Proof. Since the first symbol of w must be covered by z, the string w
must start with an occurrence of z. Since the last symbol of w must
also be covered by z, the string w must also end with an occurrence of
z. That is, z is a border of w. <>

Note that by this last fact any cover of a string w can be represented
by a single integer that is the length of the border of w.

Lemma 3 If a string z covers a string w, then z covers also any possible
border V of w such that Ivl ~ Izi.

Proof. Given any prefix of w, it is covered by z except possibly at most
the last Izi - 1 symbols of the prefix. Similarly, given any suffix of w, it
is covered by z except possibly at most the first Iz] - 1 symbols of the
suffix. Since v is a border of w, it is both a prefix and a suffix, and it
must be covered by z. <>

Lemma 4 Every string has a unique quasiperiod.

Proof. Assume that a string w is covered by two strings u and v, and
let w.l.o.g. lui:::; Iv]. By Lemma 2 v is a border of w. By Lemma 3 u
covers w. Since u 1= v, then v is quasiperiodic. <>

Lemma 5 If a string w has a border z, such that 21z1 ~ Iwl, then z
covers w.

Proof. z covers the first half of w since it is a prefix of w and the last
half of w since it is also a suffix. Therefore, all symbols of w are covered
~z. <>

3. INDEXING, TRANSDUCING AND
CHECKING

Various pattern matching techniques and tools (refer, e.g., to [11, 67])
have been developed in in the last two decades to detect and count all
distinct occurrences of an assigned substring w (the pattern) within a

String Pattern Matching for a Deluge Survival Kit 9

longer string x (the text). As already mentioned, this problem can be
solved in O(lxl) time. In widespread applications, many queries of this
kind are performed on a relatively stable repository, and it makes sense
to preprocess the text archive so as to get an index on which searches
can be carried out in time proportional to the query, rather than archive
size. A number of structures achieve this objective, and we describe
some of them in this section.

3.1 SUBWORD TREES

Let x be a string of n symbols over the alphabet E and $ an extra
character not in E. The expanded sujJiz tree Tz associated with x is a
digital search tree collecting all suffixes or xS. Thus, Tz is a tree with n
leaves, labeled from 1 to n. Each arc is labeled with a symbol of EU {S}.
For any i, 1 ~ i ~ n, the concatenation of the labels on the path from the
root of Tz to leaf i is precisely the suffix 8ufi = X,Xi+l",Xn$. Moreover,
for any two suffixes sufi and suJi of x$, the path associated with their
longest common prefix is the same in Tz .

The tree can be interpreted as the state transition diagram of a de
terministic finite automaton where all nodes and leaves are final states,
the root is the initial state, and the labeled arcs, which are assumed to
point downwards, represent part of the state-transition function. The
state transitions not specified in the diagram lead to a unique non~final

sink state. Our automaton recognizes the (finite) language consisting of
all substrings of string x. This shows how the tree can be used in an
on-line search: given a query pattern VI we follow the downward path in
the tree in response to consecutive symbols of y, one symbol at a time.
Clearly, y occurs in x if and only if this process takes to a final state.
In terms of T:z;, we say that the locus of a string y is the node a, if it
exists, such that the path from the root of Tz to a is labeled y. Thus,
a string y occurs in x if and only if y has a locus in Tz . Finding this
out takes OCt 'Iyl) charact.er comparisons, where t is the time necessary
to traverse a node, which is constant for a finite alphabet. Note that
this only answers whether or not y occurs in x. However, one can easily
prove the following

Lemma 6 If y has a locus 0: in TZ', then the occurrences of y in x are
all and only the labels of the leaves in the subtree of Tz rooted. at a.

Thus, if we wanted to know where y occurs, it would suffice to visit
the subtree of T:z; rooted at node a, where 0: is the node such that the
path from the root of Tz to a is labeled y. Such a visit requires time
proportional to the number of nodes encountered, and the latter can

10

be 8(n2) on the expanded suffix tree. This is as bad as running an
offline search naively, but we will see shortly that a much better bound
is possible.

An algorithm for the construction of the expanded Tx is readily or
ganized. We start with an empty tree and add 00 it the suffixes of x$
one at a time. Conceptually, the insertion of suffix sufi (i = 1,2, ... ,n)
consists of two phases. In the first phase, we search for sufi in Ti_l_

Note that the presence of $ guarantees that every suffix will end in a
distinct leaf. Therefore, this search will end with failure SOODer or later.
.At that point, though, we will have identified the longest prefix of sufi
that has a locus in Ii-t. Let heat4. be this prefix and a the locus of
heac4. We can write sufi = headj . taih with tailj nonempty. In the
second phase, we need to add to Ti_l a path leaving node a and labeled
taili. This achieves the transformation of Ti_I into 1j. It is clear that
this construction takes time 8(n2) and O(n2) space.

It is instructive to examine the cost of this procedure in terms of the
two main phases of each suffix insertion. If the symbols of x are all
different, then Tx contains 8(n2) arcs. Finding the (empty) head only
charges linear time overall, and the heaviest charges come from adding
the tail paths. At the other extreme, consider x = an-I. In this case,
tail paths charge linear time overall and the quadratic work is done in
order to find the heads.

It is easy to reduce the work charged by tails by resorting to a more
compact representation of T:z:. Specifically, we collapse every chain
formed by nodes with only one child into a single arc, and label that
arc with a substring, rather than with a symbol of x$. Such a compact
version of T:z; has at most n internal nodes, since there are n + 1 leaves
in total and now every internal node is branching. Clearly, it takes little
to adapt the details of the direct construction.

With the new convention, the tree for a string formed by all different
symbols only requires 1 internal node, namely, the root. Except for arc
labeling, the construction of such a tree is performed in linear time, since
adding a path takes now constant time per suffix. However, there is no
improvement in the management of the case x = an-I, in which finding
the heads still requires 8(n2) time.

While the topology of the tree requires now only O(n) nodes and
arcs, each arc is labeled. with a substring of x$. We have seen that the
lengths of these labels may be 8(n2) (think again of the tree for a string
formed by all different symbols). Thus, as long as this labeling policy
is maintained, T:z: will require 8(n2) space in the worst case, and it is
clearly impossible to build a structure requiring quadratic space in less
that quadratic worst-case time. Fortunately, a more efficient labeling

String Pattern Matching for a Deluge Survival Kit 11

is possible which allows us to store Tx in linear space. For this, it is
sufficient to encode each arc label into a suitable pair of pointers in the
form [i, i] to a single common copy of x. For instance, pointer i denotes
the starting position of the label and j the end. Now Tz takes linear
space and it makes sense to investigate its construction in better than
quadratic time.

As already seen, the time consuming component of suffix insertion is
in finding the heads. For every i, this phase starts at the root of Ti_1

and essentially locates the longest prefix headj of sufi that is also a
prefix of sufi for some j < i. Note that headi will no longer necessarily
end at a node of 1i-1. When it does, we say that headj has a proper
locus in 7;--1. If head;, ends inside an arc leading from some node 0: to
some node P, we call 0: the contracted locus and {3 the extended locus of
headi. We use the word locus to refer to the proper or extended. locus,
according to the case. It is trivial to upgrade head location in such a
way that the procedure creates the proper locus of headj whenever such
a locus does not already exist. Note that this part of the procedure only
requires constant time.

The above discussion embodies the obvious principle that the
construction of a digital search tree for an arbitrary set of words
{Wll W2, ••• , wd cannot be done in time better than the Ef=l[Wil in the
worst case. This seems to rule out a better-than-quadratic construction
for Tx , even when the tree itself is in compact form. However l the words
stored in Tx are not unrelated, since they are all suffixes of a same string.
In fact, clever constructions, such as in [110, 132, 137} are available that
build the tree in time O(nloglEI) and linear space. One key element in
such constructions is offered by the following easy facts.

Lemma 7 If w = av, a E E, has a proper locus in Tx, then so does v.

Lemma 8 For any i, 1 ::; is n, [heat:4+l1 ~ Iheadil-l.

Proof. Assume the contrary, Le., Iheadi+ll < Iheadil - 1. Then,
heac4+l is a substring of head;. By definition, headi is the
longest prefix of sufi that has another occurrence at some position
j < i. Let Xjxj+l",Xj+lheadil-1 be such an occurrence. Clearly,
any substring of heac4 has an occurrence in XjXH1",xj+lheadl!-1'

In particular, Xj+lXj+2.. ,xHlheadil_1 = Xi+1Xi+2, ..XHlhead,:l-l, hence
Xi+lXi+2...Xi+lheod;l-l must be a prefix of head;+l' ()

To exploit this fact, suffix links are maintained in the tree that lead
from the locus of each string av to the locus of its suffix v. Here we are
interested in Lemma 7 only for future reference.

Using these tools, McCreight proved the following

12

Theorem 3 The suffix tree in compact form for a string of n symbols
can be built in O(t· n) time and Den) space, where t is the time needed
to traverse a node.

As the discussion unravels, we shaI see several applications of suffix
trees and their companion structures, ranging from the detection of reg
ularities, string statistics of various kinds, finding common suhwords in
words, etc.

When it comes to the actual allocation in memory of a suffix tree) one
faces a number of design choices, prominent among which those pertain
ing to the implementation of nodes. There are three main possibilities in
this regard. The first one is to implement each node as an array of size
lEI. This yields fast searches, but is likely to introduce an unbearable
amount of waste even for small alphabets. The second option is to store
each node as a linked list (or, better, as a balanced search tree). This
keeps space to a minimum, but introduces an overhead on the search.
Finally, one may implement the adjacency of a node as part of a global
hash coding. This yields expected constant time search within overall
9(nlogn) space.

In massive applications, even linear space can be problematic: at 20
bytes per node and with a number of nodes 1.5 times the number of
symbols in the input string, a text of size n needs approximately 30n
bytes of storage space. In general, although the size of the suffix tree
depends on the particular implementation, one might expect it to be
never lower than 20 bytes per input symbol (or bps) in the worst case.
We refer to [97] for a comparative study of various space-efficient allo
cations. Other alternatives have been studied more recently, specially
in connection with secondary memory, resulting in variants called blind
tries (see, e.g., [74] and references therein).

A space-efficient alternative to a suffix tree is offered by the suffix
array [107]. This is a essentially a table of the suffixes sorted in lex
icographic order, plus some auxiliary information. The implied query
technique is inspired by binary search. Specifically, the suffix array of
the text x is the structure composed of the two tables POS and LCP.
Table POS satisfies the condition:

x[POS[1J ...nJ < ,,[POS[2J...n] < ... < ,,[POS[n]...n].

The second table LCP contains the prefixes common to consecutive
suffixes, i.e., LCP is defined, for i = 1, ... ,n - 1, by

LCP[i) = Ilcp("[POS[i] ...n],,,[POS[i + 1]...nJ)I,

where lcp denotes the length of the longest common prefix of two words.

String Pattern Matching for a Deluge Survival Kit 13

The preparation of the text, lexicographical ordering of its suffixes
and common prefix calculations, can be carried out in time O(n log n).
The reader is encouraged to obtain this by post-processing of a suffix
tree. This resulting structure can be shown to support O(m+logn) time
search for a pattern of length m in the text. Note that ordinary binary
search would achieve only O(mlogn) time, but the technique in [107]
uses combinatorial properties of the longest common prefixes to reduce
the number of symbol comparisons and the total running time.

In many applications, notably, in data compression, suffix trees and
arrays have to be built repeatedly. This exacts a considerable toll irre
spective of the method adopted. Ideally, one would like to build the tree
once and then maintain it, together with updated annotations of various
nature, following every substring selection and removal. Linear time al
gorithms for dynamically maintaining the tree under deletion of a string
were originally proposed by McCreight together with his construction.
Similar problems have been studied by Fiala and Green [75J in the con
text of sliding window compression. More recently, Larsson [981 showed
that Ukkonen's algorithm can be easily extended to accommodate the
sliding window update of the suffix tree in amortized linear time. Gu
et al. (8B} introduced a new data structure for dynamic text indexing
that supports insertion and deletion of a single character in D(logn)
time and the i updates involving a substring w that occurs OCCur times
in DOwl + 0CCw logi +i log lwl). Additional recent efforts and references
addressing the dynamic maintenance of various indices are found in [74].

3.2 SUBWORD AUTOMATA AND FACTOR
TRANSDUCERS

An important companion to the suffix trees and arrays is the directed
acyclic word graph (DAWG), a data structure specifically designed to
represent the set Fac(x) of all substrings of a word. Roughly, the graph
Dz, called the suffix dawg of x, may be obtained by identifying first and
then superimposing isomorphic subtrees of the uncompacted. tree Tx .

An advantage of dawgs is that each edge is labeled by a single symbol,
and they are somehow more convenient to use whenever information is
associated with edges rather than with nodes. We consider only dawgs
representing the set Fac(x), but it is clear that the analog structures
could be built for other sets of words, e.g., the set of subsequences of a
string.

The possible a.pplications of suffix dawgs are essentially the same as
those of suffix trees. Indexing is the main purpose of these data struc-

14

tures. Below, we demonstrate the use of the suffix dawg of a pattern to
speed up its search in a text.

A node in the graph D;r. naturally corresponds to a set of substrings
of the text, namely, substrings having the same right context. It is
not difficult to be convinced that all these substrings have the following
property: their first occurrences end at the same position in the text.
The converse is not necessarily true, but this characterization gives an
intuition of the definitions that follow.

Let z be a substring of x, and let endpos(z) denote the set of all
positions in X where an occurrence of z ends. Let y be another sub
string of x. Clearly, the subtrees of T:r: rooted at z and y are isomorphic
iff endpos(x) = endpos(y) (recall that x is completed by a special end
marker). In the graph D x , paths relative to substrings with the same
endpos sets end on a same node. The small size of dawgs is due to the
special structure of the family of sets endpos. We associate each node
v of the dawg with the length val (v) of the longest word leading to it
from the source. The nodes of the dawg are, in fact, equivalence classes
of nodes of the uncompacted tree Tx under subtree isomorphism. In this
sense, val(v) is the longest representative of its equivalence class. One
could also regard the nodes of the dawg as equivalence classes of sub
strings of the text, since the nodes in Tz are in one-to-one correspondence
with the distinct substrings of x.

The notion of border and failure function has an exact counterpart
in dawgs. Let v be a node of Dz distinct from the source node. We
define suf[vJ as the node ~ such that val(/l) is the longest suffix of
val(/l) not equivalent to it, Le., corresponding to a node other than /l.
By convention, the suI of the source is the source itself. The table sui
is analogous to the table bard defined earlier. The links implied by the
table sui are called suffix links. These links connect the nodes in a
tree structure, whereby suffp] is interpreted as the father of J1.. It so
happens that this tree embodies the containment relation of the endpos
sets.

Theorem 4 For any string x with n symbols over an arbitrary alphabet,
Dx has a number of nodes N $ 2n, and a number of edges E < N +n-l.

Proof. The main property used here is that for any two endpos sets,
these are either disjoint or one is contained in the other. Thus, the
family of endpos sets has a tree structure. All leaves are pairwise disjoint
subsets of {1,2, ... , n}. Hence, there are at most n leaves. We partition
the nodes into two (disjoint) subsets according to whether or not val(ll)
is a prefix of x. The number of nodes in the first subset is exactly n + 1,
the number of prefixes of x. We now count the number of nodes in the

String Pattern Matching for a Deluge Survival Kit 15

second subset. Let v be a node such that val(v) is not a prefix of x.
Then val(v) occurs in at least two different right contexts in x, whence
there are at least two nodes JL and JL' (corresponding to two different
factors of x) are such that su/lfLJ = sujlfL1 = v. Hence JL has at least
two children in the tree induced by suj. Since the tree has at most n
leaves (corresponding to non-empty prefixes), the number of its nodes is
smaller than n. In conclusion, Dz contains at most (n +1) + (n-1) = 2n
nodes.

To bound the number of edges, consider a spanning tree T over D z ,
and count separately the edges in the tree and those outside. Since there
are N nodes in the tree, this accounts for N -1 edges. Let us count the
other edges of Dx . With each such edge (V,I£), we associate the suffix
zay of x such that z is the label of the path in T going from the source
to v, a is the label on (v, JL), y is the substring extending za into a suffix
of x. It is clear that this correspondence is one-to-one with the suffixes.
Moreover, the empty suffix is not considered, nor is x itself because it
is already in the tree. This leaves n - 1 suffixes, which is the maximum
number of edges outside T, whence the number of edges in Dz cannot
exceedN+n-l. 0

Although the size of Dz is linear, it is not always strictly minimal. If
minimality is understood in the sense of finite automata, i.e., restricted
to the number of nodes, then Dz is the minimal automaton for the set of
suffixes of x. The minimal automaton for Fac(x) can be, indeed, slightly
smaller.

A simple construction of dawgs can be based on a transformation of
the suffix tree. The reader is referred to [42] for an on line construc
tion. The basic procedure is the computation of the equivalence classes
associated with subtrees. This is based on a classical algorithm for tree
isomorphism. Here we just recall the final result without proof.

Lemma 9 Let T be a rooted ordered tree in which the edges are la
beled by symbols from a. finite alphabet. Then, isomorphic classes of all
subtrees of T can be computed in linear time.

An application of Lemma 9 provides a linear time transformation of
Tz into a compact version of DZI in which edges are labeled by words
and no node has only one outgoing edge. From this, the transition to
the final dawg is easy. Informally, the first step is to juxtapose nodes
of Tz that are roots of isomorphic subtrees. The resulting structure
differs from a dawg in that edges are labeled by strings rather than
symbols. Breaking down each edge risks introdUcing a quadratic number
of nodes. The following approach preserves the linearity of space. Let
the weight of an edge be the length of its label, and let inedge(v) be the

16

heaviest incoming edge for 1I and z the corresponding label. Break down
inedge(v) its label into consecutive unit edges. At this point, for each
one of the other incoming edges of v with a label az can be implemented
by directing a new edge, labeled by the symbol a, to the node f.L, on the
chain now replacing inedge, such that the path from f.L to v is labeled
by z. It is crucial that all these local transformations can be performed
on all nodes v independently.

This algorithm cannot be used directly to build the smallest automa
ton accepting Fac(x). The on-line construction of these is more technical
than that of suffix dawgs given in 142, 1].

There is a very close relationship between our two IIgood" representa
tions for the set Fac(x). For this discussion, we assume that the string
x starts with a symbol occurring only at the beginning of x. In this case
the relation·ship between dawgs and suffix trees is particularly tight and
simple.

Lemma 10 Assume that x has a unique left most symbol. Then the
following three properties are equivalent:

endpos(w) = endpos(y) in X;
first~pos(wR) = first~pos(yR) in x R;
wR, yR are contained in the same chain of the uncompacted T:;&"R.

It follows as a corollary that the reversed val's of nodes of the suffix
tree TXR are the longest representatives of equivalence classes of sub
strings of x. Hence the nodes of TxR coincide with those of D z . In
TZ1 define the shorte.st extension link sext[a, v] as the node p such that
y = val(p) is the shortest word having prefix az, where z = val(v). If
there is no such node p, then sext[a, v} = nil. Observe the relationship
between sext links and suffix links. The following properties hold.

Theorem 5 If x has the unique left most symbol then Dz coincides
with the graph of sext links of T = TxR.

Theorem 6 If x starts with a unique symbol then the tree of suffix
links of Dx coincides with the suffix tree TxR.

Like trees, huge dawg such as arising in the design of thesaura for lan
guage and speech applications, present considerable problems of efficient
storage and access. Compressed versions exist that variously expose and
exploit the relationship between Dz and DxR. It is also possible to make
a symmetric version of a dawg, i.e., data structures that represent si
multaneoUllly Fac(x) and Fac(xR).

A simple application of either suffix trees or subword dawgs is to
compute a longest common substring of two strings. With trees, this

String Pattern Matching for a Deluge Survival Kit 17

is the deepest common node in the intersection of the two trees. With
dawgs, one may build on line the dawg of the shortest word and then
travel on this with the longer one. The overall algorithm results in an
approach to string-matching further highlighted below. The reader is
encouraged to work out the details.

First, build the dawg Dy of the pattern. The text x is scanned then
from left to right. At some generic step, letting w be the prefix of x that
has just been processed, we maintain that we know the longest suffix s
of w that is a substring of y. We want now to compute the same value
associated with the next prefix wa of x. It is elear that D y yields this
value immediately via forward transitiol18 whenever sa is a substring of
y. If this is not the case, the next state in the dawg is reached via suffix
links_ This is similar to using the links subtended by the computation
of borders. Each transition on a forward link corresponds to advancing
on x by one character, whereas a transitions on suffix links represent
forward shifts for the pattern relative to the text. Either action cannot
be performed more than n times in total, whence the overall linear time
bound.

3.3 SEARCHING FOR WORD SETS AND
REGULAR EXPRESSIONS

The most general exact searching problem may be cast in terms of
regular expressions. Regular expressions describe sets of strings resulting
by a finite number of concatenations ('), union (+) and star operator
(*) to the symbols of an alphabet, where the * operator is the reflexive
transitive closure of concatenation. For instance, (0·1)'" + (O·l·l)'" is the
set ofall strings in either one of the forms 01010101... or 011011011011....
The problem is, given a regular expression t, to preprocess it in order to
locate all occurrences of words of the associated language lang(t) that
occur in any given word x.

The special case where £ is a finite set of words is efficiently handled by
suitable extensions of the dawg and its companion structures. The elas·
sical solution to the general problem is composed of two phases. First,
transform the regular expression t into a nondeterministic automaton
that recognizes the language described by £, following a construction due
to Thompson (efr [67]). Second, simulate the obtained automaton with
input word y in such a way that it recognizes each prefix of y that be
longs to E'" ·lang(t). Both phases are linear in the input. In particular,
a nondeterministic automaton taking space linear in the length of the
regular expression is easily built by iterated serial/parallel composition
of smaller automata over the alphabet E U {>"}, using transitions on the

18

empty symbol>' as connectors. Composition of constituent automata
under each of the operations induced by +, . or· can be implemented
to work in constant time. Combined with a prudent parsing of £ this
leads to the following result:

Theorem 7 Let e be a regular expression. The nondeterministic au
tomaton recognizing lang(£) can be computed and stored in time and
space 0(1&1).

The derivation of such an automaton proves one half of a central
theorem of Kleene, which set the equivalence between the languages rec
ognized by finite automata and those described by a regular expression.

Theorem 8 (Kleene, 1956) A language is recognized by a finite au~

tomaton and only if it is can be described by a regular expression.

However, it is well known that the transformation of a nondeterminis
tic automaton into a deterministic one is accompanied by an exponential
explosion in the number of states. This poses a problem in the searches,
since the search for end-positions of words in lang(&) is performed by
a simulation of a deterministic automaton recognizing E*lang(E). To
circumvent this, the determinizaHon is just simulated at search time: at
any given time during the search, the automaton will not be in a single
state, but rather in a set of states, the search itself taking care of dy
namically maintaining knowledge of this set. A central notion for this
process, related to A-transitions, is that of A-closure for a set of states S.
This is the set of states Q reachable from Q solely through A-transitions.
Once the closure of a set of states is known, it is possible to compute
effectively the transitions induced by any input symbol.

The simulation of a regular-expression-matching automaton consists
of repeating the two operations "'closure" and "transitions on a set of
states". With careful implementation, based on standard manipulation
of sets and queues, the time and the space required to perform either
part is linear in the size of sets of states involved. This leads to the
following

Theorem 9 Given a regular expression G, testing whether a word y
belongs to lang(£) can be done in time 0(1£1 x Iyl) and space 0(1£1)·

Note that the original problem is different, in that it requires that
the answer to the test be reported for each substring of the text x, and
not only on x itself. But no transformation of the automaton for (£) is
necessary. A mere transformation of the search phase of the algorithm is
sufficient: at each iteration of the closure computation, the initial state

String Pattern Matching for a Deluge Survival Kit 19

is integrated to the current set of states. By doing so, each substring of
x is tested, and the following is established.

Theorem 10 Let £ be a regular expression and x be a. word. Finding
all end-positions of subwords of x that are recognized by the automaton
associated with (£) can be performed in time O(I£llxl) and space 0(1£1)·
The time spent on each symbol of x is 0(1£1).

As mentioned, the drawback of performing regular-expression
matching by deterministic automata is that the automaton can have
a number of states exponential in the length of £. This is the situation,
for example, when

m-l times.
£ = ;(a + b)··· (a + b)

for some m ;;:: 1; here, the minimal deterministic automaton recogniz
ing E-lang(£) has exactly 2m states since the recognition process has
to memorize the last m symbols read from the input word x. However,
not all states of the deterministic automaton for r:-lang(£) are neces
sarily met during the search phase. This suggests a lazy construction
of the deterministic automaton during the search as a possible practical
alternative.

4. MODELING, COUNTING, ESTIMATING
AND SCORING

In many applications, repetitions of substrings and other substruc
tures represent redundancies and, as such, may be sought just so as to
be removed. This is the case of Data Compression. In textual substitu
tion methods, for example, strings that appear many times in a subject
can be economically replaced by pointers to a single common copy. In
many other applications, these same kinds of regularities are sought as
carriers of information. In applications ranging from Consumer Pre
diction to Data Mining, Intrusion Detection and Security, Protein and
other Biological Sequence Classification, the idea is to infer a consistent
behavior from some protocol of past records and then use it to predict
future behavior or detect malicious practices. This entails some notion
of sequence similarity, whereby having established some set of behavioral
sequences as constituting the normal profile, any new sequence can be
compared to the dictionary and possibly classified or spotted as abnor
mal. Learning takes place in general both from positive and negative
samples.

This display of somewhat of a duality for the notion of information
has been sensed and debated for decades [125, 50). In Shannons terms,

20

for instance, the self-information of string x relative to a given source P
is measured by -logP(x). This notion is central to coding: the mean
codelength of any Uniquely Decipherable Code for strings of the same
length is lower bounded by the entropy, the mean of self information. For
Brillouin, information is related to redundancy and negentropy, entropy
is chaos.

Either way, in our applications we do not know the source proba
bilities, which are in fact fictitious entities or models. One pervasive
problem is therefore to estimate the probabilities from the observed
strings, to be used in the design codes for compression or other pur
poses. The domains in which this need arises are countless: Prediction,
Inference, Modeling, Learning, and Universal Coding, to quote a few.
From an informatin theoretic standpoint, an important question there
is how to define a notion of information relative to a class of sources.
From the standpoint of Pattern Matching, interesting questions revolve
around how computationally expensive it is to estimate probabilities and
related deviations within a given class. Below, we consider some pre
liminary counts and statistical computations. Later in this chapter, we
will will also consider issues of modeling by Markov Chains and related
Finite State Automata sources.

4.1 BASIC STRING COUNTS AND
STATISTICS

The tree T:z; is a remarkable compendium of the structure of a string. It
can be immediately adapted to solve problems such as finding the longest
repeated substring, the longest substring common to many strings, or
finding squares or palindromes, etc. To find squares, for instance, it
suffices to note the following:

Lenuna 11 There is a square in x iff there is a node p. in T:z; such that
the subtree rooted at p. contains two consecutive leaves i and j such
j -i ~ Iw(~)I.

In fact, if j - i ~ IW(f.L)1 as stated, then the two occurrences of w(jL)
at i and j are adjacent or overlap, whence we must have a square. We
leave it for the reader to show that in the converse of the proof leaves i
and j are indeed consecutive as claimed. The reader might also find it
interesting to derive a similar criterion for the detecting of palindromes
on the tree of x$xR •

Also the count of occurrences of all substrings of a string x is an easy
application of T:z;. The number of occurrences (with overlap) of a string
w of x is trivially given by the number of leaves reachable from the node

String Pattern Matching for a Deluge Survival Kit 21

closest to the locus of w in Tx , and this is irrespective of whether or not
wends in the middle of an arc. Thus, labeling every internal node Q' of
Tx with the number c(a) of the leaves in the subtree rooted at Q' yields
this statistics for all substrings of z.

The problem becomes more involved if we wanted to build a similar
index for the statistics without overlap, in which we count, for each
substring, its maximum number of nonoverlapping occurrences. It is
seen that this transition induces a twofold change in the structure: on
the one hand, the weight in each node does no longer necessarily coincide
with the number of leaves; on the other, extra nodes must be introduced
to account for changes in the statistics that occur in the middle of arcs.
The efficient construction of this augmented index in minimal form (i.e.,
with the minimum possible number of unary nodes) is quite elaborate
(23J. For a string x, the resulting structure is denoted T(x) and called
the Minimal Augmented Suffix Tree of x. It is not difficult to build Tx
in O(n2) time and space by embedding the necessary weighting as part
of the iterated suffix insertion procedure, hence at an expected cost of
O(nlogn) [24). The time required by the construction given in [23] is
instead O(n log2 n) in the worst case. The number of auxiliary nodes
can be bounded by O(nlogn), but it is not clear that such a bound is
tight.

Consider for a moment the problem of defining and computing em
pirical probabilities. One problem here is that the notion of empirical
probability is not straightforward. Fortunately, empirical conditional
probabilities often turn out to be less controversial. One ingredient in
the computation of empirical probabilities is the count of occurrences
of a string in another string or set of strings. We concentrate on this
problem first. Since there can be O(n2) distinct substrings in a string of
n symbols, a table storing the number of occurrences of all substrings of
the string might take up in principle E>(n2) space. However, we just saw
that linear time and space suffice to build an index suitable to return,
for any string w, its XtlI count in x. Here we want to analyze this fact a
little more closely. We begin by formulating a "left-context" property,
symmetric to one already seen, and conveniently adapted from [42J.

Given two words x and y, let the start-set of y in x be the set of
occurrences ofy in x, i.e., posx(y) = {i: y = Xi •••Xj} for some i and j,
1 ~ i ~ j ~ n. Two strings y and z are equivalent on x if pos:z:(y) =
pos:z:(z). The equivalence relation instituted in this way is denoted by =:z:
and partitions the set of all strings over E into equivalence classes. Recall
that the index of an equivalence relation is the number of equivalence
classes in it.

22

Lemma 12 The index k of ~he equivalence relation =:1: obeys k < 2n.

Lemma 12 is established in analoogy to its right-context counter
part seen in connection with dawgs. In the example of the string
abaababaabaababaababa, for instance, {ab, aba} forms one such Ci-class
and so does {abaa,abaab,abaaba}. Lemma 12 suggests that we might
only need to compute empirical probabilities for O(n) substrings in a
string with n symbols. The considerations developed earlier make this
statement more precise and in fact give one possible proofs of it.

We are DOW ready to consider more carefully the notion of empirical
probability. One way to define the empirical probability of w in x is to
take the ratio of the count of the number XW to Ixl - Iwl + I, where
the latter is interpreted as the maximum number of possible starting
positions for w in x. For wand v much shorter than x we have that the
difference between lxl - Iwl + 1 and Ixl - Iwvl + 1 is negligible, which
means that the probabilities computed in this way and relative to words
that end in the middle of an arc do not change, i.e., we only need to
compute those associated with strings that end at a node of the compact
T%"

This notion of empirical probability, however, assumes that every po
sition of x compatible with w length-wise is an equally likely candidate.
This is not the case in general, since the maximum number of possible
occurrences of one string within another string depends crucially on the
compatibility of self-overlaps. For example, the pattern abo. could occur
at most once every two positions in any text, abaab once every four, etc.
Compatible self-overlaps for a string z depend on the structure of the
periods of z. An alternative count can be defined as follows.

Definition The maximum possible number of occurrences of a string
w into another string x is equal to (Ixl -Iw[+ l}j[ul, where u is the
smallest period of w.

According to this definition,in order to compute the empirical prob
abilities of, say, all prefixes of a string we need to know the borders or
periods of all those prefixes. In fact, we know we can manage to carry
out all the updates relative to the set of prefixes of a same string in
overall linear time, thus in amortized constant time per update.

The construction of Fig. 1.1 may be applied, in particular, to each
suffix sufi of a string x while that suffix is being inserted as part of the
direct tree construction. This would result in an annotated version ofTx
in overall quadratic time and space in the worst case. Note that, unlike in
the case ofempirical probabilities previously considered, the period -and
thus also the empirical probabilities according to our definition above-
may change along an arc ofTx, so that we may need to compute explicitly

String Pattern Matching for a Deluge Suroival Kit 23

all 6(n2) of ~hem. However, if we were in~eres~ed in such probabili~ies

only at the nodes of the tree, then ~hese could still be computed in
overall linear ~ime. The key ~o this la~ter fact is to run a sui~ably

adap~ed version of maxborder walking on suffix links "backward", i.e.,
traversing them in their reverse direc~ion, beginning a~ ~he roo~ of T:z:
and then going deeper and deeper into the tree. One way to visualize
this process is as follows. Imagine first the "co-tree" of T:z: formed by
the reversed suffix links: we can visit such a structure depth first and
simultaneously run a procedure much similar to maxborder ~o assign
periods to all nodes of T:z;. Correctness rests on the fac~ that for any
word w the periods of wand wR coincide. We shall see shortly ~ha~ in
situations of interest to us we can limit computation to the nodes of Tz .

Lemma 13 The set of empirical probabilities of all (shor~) words of X

that have a proper locus in Tz can be computed in linear time and space.

Consider now conditional empirical probabilities, defined as the ratio
between the observed occurrences of sO" and the occurrences of s*, de
noting string s followed by any other symbol. The first thing ~o observe
is that the value of ~his ratio persists along each arc of the tree, Le.,

P(uls) = x.lx•• = 1

for any word s ending in the middle of an arc of Tz and followed there
by a symbol 0".

Let v' be the locus of string s1. Recall that sext[zI,cr] is the node
v which is the locus of the shortest extension of as' having a proper
locus in Tz . Setting sext links is an easy linear post-processing of Tz .
Along these line, attaching empirical conditional probabilities only ~o

the branching nodes of T:z; is doable and suffices. As there are O(n)
such nodes, and the alphabet is finite, the collection of all conditional
probability vectors for all subwords of x takes only linear space.

Lemma 14 The set of empirical conditional probabilities of all (short)
words of a string x over a finite alphabet can be computed in linear time
and space.

An important class of applications, which includes some core tasks of
molecular sequence analysis and information retrieval, involves counting,
estimating and comparing to expectation not the number occurrences of
a word in a text but rather the number of how sequences in a given
family that contain that word. With some provisos, the constructions
jus~ highlighted may be adapted to deal with this notion. The reader is
encouraged to develop the details.

24

4.2 GLOBAL DETECTORS OF UNUSUAL
WORDS

As mentioned, ~he identification of strings that are, by some mea
sure, redundant or rare in the context of larger sequences is variously
pursued in order to compress data, unveil structure, infer minimal or
compact descriptions, and for purposes of feature extraction and classi
fication. Once a statistical index is buill; and empirical probabilities are
computed, the next step is thus 00 annotate it with the expected values
and variances and measures of discrepancy thereof, under some adopted
probabilistic model. This may be still rather bulky in practice. For a
given probabilistic model and measure of departure from expected fre
quency, it is possible to come up with an "observed" string such that all
of its 8(n2

) substrings are surprisingly over- or under-represented. This
means that a table of the "surprising" substrings of a string can contain
in principle a number of entries quadratic in the ength of that string. As
it turns out, it is possible to show that under several accepted measures
of frequency deviation, the candidates over- or underrepresented words
are restricted to the O(n) words that end at internal nodes of a compact
suffix tree. as opposed to the 8(n2) possible substrings. Combined with
some of the costructions discussed earlier in this section, this leads to
the design of global detectors for unusual words that take linear space
and linear time to build (16]'

To make our discussion more precise, we need to agree on some mea
sure of "surprise" 0 Perhaps the naivest possible measure is the difference:
Ow = fw - (n-Iwl+l)p, where pis the product ofsymbol probabilities
for wand Z[w takes the value fw. Let us say that an over-represented
(respectively, under-represented) word w in some class C is o-significant
if no extension (respectively, prefix) of w in C achieves at least the same
value of 101.

Theorem 11 The only over-represented o-significant words in x are
the O(n) ones that hatle a locus in T:&,o The only under-represented 0
significant words are the ones that represent one unit-symbol extensions
of words that hatle a locus in Tz .

Proof. We prove first that no over-represented a-significant word of x
may end in the middle of an arc of Tz . Specifically, any over-represented
a-significant word in x has a proper locus in T:&" Assume for a contra
diction that w is a a-significant over-represented. word of x ending in
the middle of an arc of Tx. Let z = wv be the shortest extension of
w with a defined locus in Tx , and let Ii be the probability associated.
with v. Then, 0. = f. - (n -Izl + I)M = f. - (n -Iwl -Ivl + I)M·

String Pattern Matching for a Deluge Survival Kit 25

But we have, by construction, that f: = fw. Moreover, pq < p, and
(n -Iwl-Ivl +1) < (n -Iwl + 1). Thus, Oz > ow. For 'his speciJicaOion
of 0, it is easy to prove symmetrically that the only candidates for 0
significant under-represented words are the words ending precisely one
symbol past a node of T:c. 0

It is possible to prove similar properties for more sophisticated mea
sures of surprise characterized by definitions of 0 of the more general
form: Ow = (fw - Ew)/Nw, where: (a) fw is the frequency or count of
the number of times that the word w appears in the text; (b) Ew is the
typical or average nonegative value for fw (and E is often chosen to be
the expected value of the count)j (c) Nw is a nonnegative normalizing
factor for the difference. (The N is often chosen to be the standard
deviation for the count.)

Once one is restricted to the branching nodes of T:c or their one
symbol extensions, it becomes even possible to compute all typical count
values E (usually expectation) and their normalizing factors N (usually
standard deviation) and other measures discussed earlier in overall linear
time and space. For strings emitted by a source with ii.d. symbols,
this is easy to see for expectations but becomes more complicated with
variances. To see this, let x be the observed string and y = YlY2· .. Ym
(m < (n+ 1)/2) be an arbitrary but fixed pattern. For i E {l, 2, ... ,n
m + l}, define Zilv to be 1 if Y occurs in X starting at position i and 0
otherwise. We are interested in the the expected value and variance of
Zly, the total number of occurrences of y in X:

n-m+l

Zly = I: Z,IY·
i=l

It is immediate that E[ZjV] = (n - m + l)p, where l with Pi denoting
the probability for any given k that Xk = Yi, P= IIf:;lPi.

For any symbol a in E, computing the expected value Z]Va from p and
the probability of a is trivially done in constant time. Thus, the expected
values associated with all prefixes of a string can be computed in linear
time. Attaching these values to the nodes of T:c is easily accomplished
in linear time by walking backward on suffix links.

For m $. (n+l)/2, it is possible to express the variance in the following
form (the case m > (n + 1)/2 is quite similar) [16],

Var(Zly) = (n - m + 1)fi(1- fi) - fi'(2n - 3m + 2)(m -1)

'm
+2p ~)n - m + 1 - dt)I1j=m_dl+1Pi

1=1

26

where ~he d,'s are the periotb of y that satisfy

1 ~ d1 < d2 < < dam ~ min(m - I, n - m).

Suppose that we wanted to compute the variance of Zly for all sub
strings y of x in accordance to the formula above. Applying the formula
from scratch to each substring would require time 6(lxI3), since the
number of possible distinct words appearing as substrings of x may be
Quadratic in Ixl. In [16], the variance is computed for all prefixes of a
string y in overall time O(IYI), by making crucial use of a recurrence that
speeds up computation of the term

'm
B(m) = l)n - m + 1 - dz)IIj=m-dl+lPj·

1=1

In this expression, B(m) refers to the prefix VIY2".Ym of some string Y,
S(m) = {bl,m}j~'t is the set of borders Uat m" associated with the pe
riods of YlY2 ...Ym and bord(m) is the longest border of YlY2 ...Ym. By
a simple adaptation of the maxborder it is possible to derive B(m)
quickly from knowledge of bord(m) and of the previously computed val
ues B(1),B(2), ... ,B(m -1). Specifically, letting the border associated
with period d, at position m to be

the following expression of B(m) holds:

B(m) = (n - 2m + 1 + bord(m))Ilj;""'(m)+lP;

Sbor4(m)

+2(bord(m) - m) L IIj;bj ,bord(m)+IPj
1=1

+ (!Ij=""'(m)+lP;) B(bord(m)),

where the fact that B(m) = 0 for bord(m) ~ 0 yields the initial con
ditions. Note that each product of probabilities can be extracted in
constant time from a precomputed table containing the products of
the probabilities of all consecutive prefixes of x. From knowledge of
n, m, bord(m) and these prefix probability products, the first term of
B(m) is computed in constant time. Except for (bord{m) - m), the
second term is essentially a sum of probability products taken over all
distinct borders of YIY2' ..Ym- Thus, given such a sum and B(bord{m))
a.t this point enables one to compute B(m) whence also the variance, in

String Pattern Matching for a Deluge Survival Kit 27

constant time. Maintaining knowledge of the value of such sums during
the computation of longest borders is easy, since the value of the sum

Sbord(m)

T(m) = L Ilj;bj,bord(m)+tPj
':::1

obeys the recurrence:

T(m) = T(bord(m))· IIi='''d(m)+lP; + IIi=fKn-d(fKn-d(m»+lP;'

with T(m) = 0 for bord(bord(m)) ~ O. In conclusion, the following
holds.

Theorem 12 Under the independently distributed source model, the
mean and variances of all prefixes of a string can be computed in time
and space linear in the length of that string.

Application of this treatment to every suffix of a string yields the
mean and variance of all substrings in overall optimal quadratic time.
From what we have seen, the quest for surprising words under this model
can be limited to those ending at the internal nodes of Tz. Since also
the variances can be computed with our recurrence traveling backward
on suffix links, this results in a global detector of unusual words in linear
time and space.

5. FILTERING, FINGERPRINTING AND
APPROXIMATE SEARCHING

The underlying theme of this section is the derivation of succinct
albeit possibly approximate representations of objects. Hashing is one
obvious way to do this. In an early approach to fast string searching,
Karp, Miller and Rosenberg (cf. [69]) introduced a strategy based on
some notion of a label or signature for the substrings of a string x, as
follows. First, generate the list of labels for individual characters, giving
as a name to each character the position of its first occurrence in x.
Next, perform approximately log Ixl stages, as follows. At the i-th stage,
compose all pairs of labels (Ii, 1i+21), sort them in lexicographic order and
relabel each pair (whence also the substring it denotes) by the position
of its first occurrence in the sorted list. If this process is performed
on the concatenation of a pattern y and the text, then the occurrences
of 11 can be intercepted subsequently by looking for positions of x with
appropriate labels. We leave the details to the reader. Among its many
virtues [69], this encoding has recentlly proved useful in capturing distant
relationships among files for compression purposes [40},

28

Another notable approach to pattern searches based on hash signa
tures is due to Karp and Rabin [93]. The idea here is to first filter Qut
candidates and then check then individually for exact matching. This
philosophy represents a precursor for many strategies dealing with mas
sive data.

In the filtering stage, the pattern 11 is hashed into a number and then
a window of size Iyl is slided on the text while the hash values of the
corresponding substrings are computed. To be effective in this context,
the hash function must be highly discriminating for strings. At the same
time, it should be quickly computed and updated in the transition from
one text window to the next. This is met by assimilaHng the symbols of
E with integers and defining the hash value h for string tL by

(

IUI-l)
h(u) = ~ 'U[i] X d1u!-1-i mod q,

where q and d are two constants. Then, for each string v E r:., and
symbols a', a" E E, h(vall

) is computed frOID h(a'v) by the formula

h(va") = «(h(a'v) - a' x dl'l) x d +a") mod q.

During the search for pattern x, it suffices to compare the value h(y)
with the hash value associated with each substring of length m of text
x. If these two values are equal, that is, in case of collision, it is still
necessary to check whether the substring is equal to x or not by direct
symbol comparisons.

Convenient values for d are the powers of 2; in this case, all products
by d are computed as shifts on integers. The value of q is generally a
large prime (soch that the quantities (q-l) xd+IEI-l and lEI xq-l do
not cause overflows), but it can also be the value of the implicit modulus
supported by integer operations. The operation of the algorithm is illus
trated in Figure 1.2, searching for the pattern y = sense in the text x =
no deJense Jar sense. Here, symbols are assimilated with their ASCII
codes (hence lEI = 256), and the values of q and d are set respectively to
31 and 2. This is a valid choice when the maximal integer is 216 -1. The
value of h(y) is (115 x 16+ 101 x 8+ 110 x 4+ 115 x 2+101) mod 31 = 9.
Since only h(y[4...8]) and h(x[15...19]) are equal to h(y), only two sn1>
strings of x need to be checked. The worst case complexity of this
string-searching is quadratic, but a prudent choice of the values for q
and p leads to O(m +n) expected time.

Signatures may be used to obtain substrings that encapsulate a given
text, but also strings that depart significantly from it. This is the gen
eral problem of inverse pattern matching [7], that refers to the task of

String Pattern Matching for a Deluge Suroiual Kit 29

pOI 2 3 4 5 6 7 8 9 W 11 12 U M U 16 17 18 W

:J:[p] noudefenseuforusense

h(:z:[p...p+ 4]) 8 8 6 28 9 18 28 26 22 12 17 24 16 0 1 9 - - --

Figure 1.2 lllustrating Karp-Rabin's algorithm.

inferring from a given textstring x a short pattern string y such that Y
is, by some measure, most typical (or, alternatively, most anomalous)
in the context of x. This problem arises in a wide variety of applica
tions and takes up numerous flavors, among which in particular those
based on signatures or frequencies of pattern occurrences. When such
occurrences need not be exact, alternative measures of typicality can
be based on some notion of similarity among string, such as the Ham
ming [89] or Levenshtein [100] distances. Given a textstring x and an
integer m, for example, one might ask for a pattern Y that scores the
smallest (or largest) total number of mismatches when aligned with all
substrings of ::c. Noteworthy variants of the problem arise when the
constraint is added that y must be a substring of x, or, symmetrically,
that y must not have any occurrence in::c. Efficient (occasionally, op
timal) sequential algorithms for the problem and its variants were pro
vided in [7, 84J. Computations of these and similar "distance preserving
signatures" (see e.g. [85]) find use in disparate contexts, including in
formation retrieval, data compression, computer security and molecular
biology. In the two latter fields, in particular, highly anomalous patterns
are also often sought, e.g., in intrusion [123J or plagiarism detection, in
the synthesis of molecular probes in genome sequencing by hybridization
(4], in designing control (inactive) antisense oligonucleotides, etc.

As an example, we illustrate the simplest (min) inverse pattern match
ing problem, which is defined as follows: given a text string x = Xl ••• X n
and positive integer m ~ n, we want to produce as a pattern string
Ymin = YI'" Ym (of length m) where ham(Ymin,X) ~ ham(y,x) for all
strings y E Em. The symmetric (Maz) Inverse Pattern Matching Prob
lem seeks instead. a pattern YMa:z; such that ham(YMa:z;,x) ~ ham(y,x)
with respect to all Y E EFn. Both versions of the problem are solved
by the same basic strategy. The naive algorithm for the min inverse
pattern matching problem is computing the hamming distance for every
possible substring of length m, and choosing the minimum. This algo
rithm is clearly bad since it takes exponential time. However, an optimal
algorithm for solving the problem is readily set up. The idea is to "syn
thesize" Y by choosing its characters one at a time, in such a way that
each character will maximize the matches when meeting the positions

30

of ~he text it will face. The most difficult variant of the problem is the
Max external one, in which y is required not to appear in x. However,
also this variant has been shown to have an optimal linear time solution
[841·

5.1 APPROXIMATE SEARCHES

A natural departure from the the problem of exact string searching,
consists of assuming that a symbol can (perhaps only at some definite
positions) match a small group of other symbols. At one extreme we
may have, in addition to the symbols in the input alphabet E, a don't
care symbol ¢ with the property that ¢ matches any other character in
E. This gives raise to variants of string searching where, in principle,
¢ appears (i) only in the pattern l (ii) only in the text or (iii) both in
pattern and text. Here we briefly address the main variant (i).

One approach to this variant is to try and extend one of the fast string
searching algorithms by accommodating don't cares in the pattern. How
ever, the obvious transitivity on character equality, that subtends those
and other exact string searching, is lost with don't cares. Some par
tial recovery is possible when the number and positions of don't cares
is fixed. In this case, one may think of adapting some multiple pattern
automaton of the kind discussed earlier.

Manber and Baeza-Yates [106] considered the case where the pattern
embeds a string of at most k don't cares, i.e., has the form y = 11.¢iv,
where i .::; k, 11., V E E· and lui S m for some given k, m. Their algorithm
is off-line in the sense that the text x is preprocessed to build the suffix
array associated with it. This operation costs O(n log lEI) time in the
worst case. Once this is done, the problem reduces to one of efficient
implementation of 2-dimensional orthogonal range queries.

A landmark paper by Fischer and Paterson [78] exposed the similar
ity of string searching to multiplication, thereby obtaining a number of
interesting algorithms for exact string searching and some of its vari
ants. It is not difficult to see that string matching problems can be
rendered as special cases of a general linear product. Given two vectors
X and Y, their linear product with respect to two suitable operations
o and EEl, is denoted by X ~ Y, and is a vector Z = ZOZl ... Zm+n
where Zk = EBi+;=,I,: Xi ®Y; for k = 0, ... ,m + n. If we interpret E9
as the boolean 1\ and 0 as the symbol equivalence ==, then a match
of the reverse yR of Y, occurs ending at position k in X, where
m .::; k'::; n, if [Xk_m ... Xk] == [Ym ... Yo], that is, with obvious meaning,
if (X ~ Y)k =TRUE. This observation brings string searching into the
family of boolean, polynomial and integer multiplications thereby lead~

String Pattern Matching for a Deluge SuroilJaI Kit 31

iog quickly to an O(nlogm loglogm) time solution even in the presence
of don't cares, provided that the size of :E is fixed.

Some central notions of similarity are based on three basic edit opera
tions on strings. Given any string w we consider the deletion of a symbol
from w, the insertion of a new symbol in wand the substitution of one
of the symbols of w with another symbol from E. It may be assumed
that each edit operation has an associated nonnegative real number rep~

resenting the cost of that operation, so that the cost of deleting from
w an occurrence of symbol a is denoted by D(a), the cost of inserting
some symbol a between any two consecutive positions of w is denoted
by I(a) and the cost of substituting some occurrence of a in w with an
occurrence of b is denoted by S(a, b).

Letting now x and y be two strings of respective lengths Ixl = nand
Iyl = m ::; n, the string editing problem for input strings x and y consists
of finding a sequence of edit operations or edit script r of minimum cost
that transforms y into x. The cost of r is the edit distance from y to x.
Edit distances where individual operations are assigned integer or unit
costs occupy a special place. Such distances are often called Levenshtein
distances, since they were introduced by W. Levenshtein in connection
with error correcting codes [100). String editing finds applications in
a broad variety of contexts, ranging from speech processing to geology,
from text processing to molecular biology.

It is not difficult to see that the general (Le., with unbounded alphabet
and unrestricted costs) problem of edit distance computation is solved
by a serial algorithm in 8(mn) time and space, through dynamic pro
gramming. Due to its widespread application of the problem, however,
such a solution and a few basic variants were discovered and published
in a diverse literature (d., e.g. [21]). An Q(mn) lower bound was es
tablished for the problem by Wong and Chandra for the case where
the queries on symbols of the string are restricted to tests of equality.
For unrestricted tests, a lower bound n(n logn) was given by Hirschberg.
Algorithms slightly faster than 8(mn) were devised by Masek and Pater
son, through resort to the so-called "Four Russians Trick». The "Four
Russians» are Arlazarov, Dinic, Kronrod, and Faradzev. Along these
lines, the total execution time becomes 6(n2jlogn) for bounded alpha
bets and O(n2(loglogn)/logn) for unbounded alphabets. The method
applies only to the classical Levenshtein distance metric, and does not
extend to general cost matrices. To this date, the problem of finding
either tighter lower bounds or faster algorithms is still open. Details
and references can be found in, e.g., [11, 21]).

The computation of edit distances by dynamic programming is readily
set up. For this, let C(i, i), (0::; i ~ [yl, 0:$ i ::; Ixl) be the minimum

32

cost of transforming the prefix of y of length i into the prefix of x of
length j. Let Wk denote the Hh symbol of string w. Then C(O, 0) = 0,
C(i, 0) ~ C(i - 1,0) + D(y;) (i ~ 1,2, ... , Iyl), C(O,j) = C(O,j - 1) +
lex;) (j = 1,2, ... , lxI), and C(i, j) will be given by

min{C(i -1,j - 1) + S(Yi,X;), C(i -1,j) + D(y,), C(i,j -1) + lex;)}

for all i,j, (1 ::; i :s; Ivl,! '5: j '5: Ixl). Observe that, of all entries oCthe C
matrix, only the three entries C(i-l,i -1), C(i-l, j), and C(i,j -1) are
involved in the computation of the final value of C(i,;), Hence C(i,;)
can be evaluated row-by-row or column-by-column in 8(jvllxl) = 0(mn)
time. An optimal edit script can be retrieved at the end by backtracking
through the local decisions that were made by the algorithm.

A few important problems are special cases of string editing, includ
ing the longest common subsequence problem, local alignment, i.e., the
detection of local similarities of the kind sought typically in the analysis
of molecular sequences such as DNA and proteins, and some important
variants of string searching with errors, or searching for approximate
occurrences of a pattern string in a text string. As highlighted in the
following briefdiscussion, a solution to the general string editing problem
implies typically similar bounds for all these special cases.

In many cases of great practical interest, such as e.g., with genomic
sequence analysis, the space occupied by the edit distance matrix is
unbearable and linear space methods are sought. We refer to [14, 1] for
details and references.

Sequence similarity is a natural and useful filter for extracting match·
ing information from huge data repositories. some of the fastest and
most efficient searches routines work by first detecting regions of strong
local resemblance, using conceptual tools of the kind represented by the
following lemma.

Lemma 15 If x and y match with at most k differences, then x
and y must have at least one identical substring of length r =
lmax{lxl, Iyl}/(k + I)J

Proof. Let w.l.o.g. Ixl = max{lxl,lyl}, and divide x into consecutive
intervals of length r. In the alignment, each interval aligns to some part
of y, determining k + 1 subalignments. If each of these subalignments
contained at least one error, then we would have more than k errors.
Thus, at least one of the intervals must match exactly a corresponding
interval of y. 0

More about searching with errors is said in the next subsection.

String Pattern Matching for a Deluge Survival Kit 33

5.2 STRING SEARCHING WITH ERRORS

Consider the problem of computing, for every position of the
textstring x, the best edit distance achievable between Y and a substring
w of x ending at that position. Under the unit cost criterion, a solution
is readily derived from the recurrence for string editing. The first obvi
ous change consists of setting all costs to 1 except that S(Yi, Xj) = 0 for
Yi = Xj' Thus, we have now, for all i,j, (1::; i ::; [YI,I ::; j ::; [xD,

C(i,j) ~ min{C(i -1,j -1) + 1, C(i -1,j) + 1, C(i,j -1) + I}.

A second change affects the the initial conditions, so that we have
now C(O, 0) = 0, C(i,O) ~ i (i = 1,2, ... , m), C(O,j) ~ 0 (j = 1,2, ... , n).
This has the effect of setting to zero the cost of prefixing Y by any prefix
of x. In other words, any prefix of the text can be skipped free of charge
in an optimum edit script.

The computation of C is then performed in much the same way as
before, thus taking e(ly[lxl) = 8(mn) time. This time around we are
interested in the entire last row of matrix C at the outset.

In practice, it is often more interesting to locate only those segments
of x that present a high similarity with Y under the adopted measure.
Formally, given a pattern y, a text x and an integer k, this restricted
version of the problem consists of locating all terminal positions of sub
strings w of x such that the edit distance between w and y is at most k.
The recurrence given above will clearly produce this information. How
ever, there are more efficient methods to deal with this restricted case.
In fact, a time complexity O(kn) and even sublinear expected time are
achievable. We refer to, e.g., [H, 67] for detailed discussions. In the fol
lowing, we review some basic principles subtending an O(kn) algorithm
for string searching with k differences. Note that when k is a constant
the corresponding time complexity is linear.

The crux of the method is to limit computation to O(k) elements in
each diagonal of the matrix C. These entries will be called extremal
and may be defined as follows: a diagonal entry is d-extremal if it is
the deepest entry on that diagonal to be given value d (d = 1,2, ... , k).
Note that a diagonal might not feature any, say, I-extremal entry, in
which case it would correspond to a perfect match of the pattern. The
identification of d-extremal entries proceeds from extension of entries
already known to be (d -1)-extremaL Specifically, assume we knew that
entry C(i,j) is (d-I)~extremal. Then, any entry reachable from C(i,j)
through a unit vertical, horizontal or diagonal-mismatch step possibly
followed by a maximal diagonal stream of matches is d-extremal at worst. \
In fact, the cost of a diagonal stream of matches is 0, whence the cost of

34

an entry of the type considered cannot exceed d. On the other hand, that
cost cannot be smaller than d - 1, otherwise this would contradict the
assumption C(i,j) = d-l. Let entries reachable from a (d-I)-extremal
entry C(i,j) through a unit vertical, horizontal or diagonal-mismatch
step be called d-adjacent. Then the following program encapsulates the
basic computations.

Algorithm k-err :
element array x[l : n], y[l : m], e[O : mj 0 : n]j integer k

begin
(PHASE 1: illitializations)

set first row of G to 0,-
find the boundary set So of O-extremal entries
by exact string searching;

(PHASE 2: identify k-extremal entries)
ford=ltokdo

begin
walk one step horizontally, vertically and
(on mismatch) diagonally
from each (d - I)-extremal entry in set S(d_l)

to /ind d-adjacent entries;
from each d-adjacent entry, compute the farthest
d-valued entry reachable diagonally /rom it;
end

fori = Iton-m+ldo
begin
select lowest d-entf-y on diagonal i
and put it in the set Sd of d-extremal entries
end

end.

It is easy to check that the algorithm performs k iterations in each
one of which it does essentially a constant number of manipulations on
each of the n diagonals. In turn, each one of these manipulations takes
constant time except at the point where we ask to reach the farthest
d-valued entry from some other entry on a same diagonaL We would
know how to answer quickly that question if we knew how to handle
the following query: given two arbitrary positions i and j in the two
strings y and x, respectively, find the longest common prefix between
the suffix of y that starts at position i and the suffix of x that starts
at position j. In particular, our bound would follow if we knew how to

String Pattern Matching for a Deluge SUnJival Kit 35

process each query in constant time. It is not known how that could be
done without preprocessing becoming somewhat heavy. On the other
hand, it is possible to have it such that all queries have a cumulative
amortized cost of O(kn). This possibility rests on efficient algorithms for
performing lowest common ancestor queries in trees. Space limitations
do not allow us to belabor this point any further.

In massive applications, even time O(kn) may be prohibitive. Using
filtration methods it is possible to set up sublinear expected time queries.
As already highlighted l one possibility is to first look for regions with
exact replicas of some pattern segment and then scrutinize those regions.
Another, is to look for segments of the text that are within a small
distance of some fixed segments of the pattern. Some of the current top
performers in molecular database searches are engineered around these
ideas [6, 133, 26, 53]. In factI the whole issue of filtration search may
be regarded as a form of pattern discovery [33, 34, 35, 36], probably
a fundamental application of future Pattern Matching and one that is
discussed more extensively later in this chapter.

The special case where insertions and deletions are forbidden is also
solved by an algorithm very similar to the above and within the same
time bound. This variant of the problem is often called string searching
with mismatches. A probabilistic approach to this problem is implicit in
[53]. When k cannot be considered a constant, an interesting alternative
results from Abrahamson's approach to multiple-value string searching
[1] which results in an algorithm of time O(nm1(210gm log Iog1(2 m).

6. COMPRESSING, LEARNING, MINING,
AND DISCOVERING

Data compression brings savings in storage space and transmission
time, two commodities in increasingly scarce supply. From the perspec
tive of the data flood ahead, compression also helps in the formation
of succinct descriptors and models, thereby helping in overcoming the
ultimate limitations imposed by the narrow bandwitdth of the final user.
Because of this l efficient, innovative compression methods will continue
to play an important role.

or the two main broad classes of compression, standard lossy methods
such as Mpeg, Jpeg, Wavelets etc. have a definite numerical flavor and
derive a limited influence from Pattern Matching. By contrast l nearly
every present and future lossless method will use more or less sophisti
cated Pattern Matching techniques. Among the basic methods in this
class, we find Run-Length and Huffman Encoding, the latter being fur
ther subdivided into static and dynamic codes, Arithmetic Codes, Macro

36

Schemes such as the Ziv-Lempel methods underlying compress, gzip and
other popular tools, the more recent Burrows-Wheeler transform sub
tending bzip, Predictive Codes, etc. These and others are reviewed in
this section.

6.1 STANDARD COMPRESSION METHODS

We outline here some classical yet practical text compression algo
rithms. Algorithmic efficiency is but one of the parameters against which
the efficiency of a method is assessed. The final compression ratio is
equally, if not more, important. This latter depends on the nature of
the input data. Typically, the final size of compressed textfiles vary from
30% to 50% of the size of the input.

In standard lossless compression, two main strategies are applied. The
first strategy is a statistical method that takes into account the fre
quencies of symbols to build a uniquely decipherable code optimal with
respect to the compression. This is considered in Subsection 6.1.1. Sub
section 6.1.2 presents a refinement of the coding algorithm of Huffman
based on the binary representation of numbers. Huffman codes contain
new codewords for the symbols occurring in the text. In this method,
fixed-length blocks of bits are encoded by different codewords. In the
second strategy, repeated substrings of variable-length from the text are
spotted and suitably encoded. This will be seen in Subsection 6.1.3.
Due to its ability to capture context dependency, this second strategy
often provides better compression ratios.

6.1.1 Huffman coding. The Huffman method is an optimal sta
tistical coding, in which each character or fixed block of characters of
the text is replaced by a codeword in such a way, that longer and longer
codewords are assigned. to rarer and rarer characters. The method works
for any block length, however, the running time grows exponentially with
length.

The Huffman algorithm uses prefix codes, Le., sets of words in which
no word is a prefix of another. The advantage with such codes is that
decoding is instantaneous, in the sense that it can be carried out while
the encoded. string is being received.

A prefix code on the alphabet {O,l} is represented in a natural way
by a binary digital trie in which the leaves are labeled by the original
characters, and the path from the root to a character spells out the
characters codeword. The specific assignment of codewords depends on
the frequencies of the individual characters. The complete compression
algorithm consists of three stages: count of character frequencies, con
struction of the prefix code, encoding of the text. The last two steps

String Pattern Matdling for a Deluge Survival Kit 37

use information computed by their preceding step. Decoding is a simple
exercise.

The static Huffman method has two main drawbacks: first, if the
frequencies of characters the source text are not known a priori, then
the input text has to be read twicej second, the coding tree must be
included in the compressed file. This is avoided by dynamically updating
the coding tree for the consecutive prefixes of the text while consecutive
symbols are processed. By mimLcing the coding process, decoding will
expose the tree precisely in the same order.

6.1.2 Arithmetic coding. In arithmetic coding, symbols are
treated as digits of a numeration system, and texts as decimal parts
of numbers between °and 1. The interval (0, I[is first partitioned into
lEI subintervals of size proportional to the probabilities or frequencies of
symbols. The same partition is then recursively applied to subintervals
as consecutive text symbols are read, thereby mapping the text itself
into some subinterval of [0, 1[. Compression is achieved because higly
probable texts ebd up mapped in wider intervals thus requiring fewer
bits in their description.

Formally, let the interval associated with symbol Q..j E E (1 SiS liED
be denoted I((1j) = [Ii, h.j[. The intervals satisfy the conditions: It = 0,
hlEI = 1, and I; = h;-1 for 1 < i S lEI. Note that 1(",) n 1(0;) = 0 if
Q.i =f aj.

The encoding consists of computing the interval corresponding to the
input text. We begin with the initial interval [0,1[. The generic step
deals with a symbol ~ of the source text by transforming the current
interval [I, h[into [I', h'[where I' = 1+ (h -I) .1; and h' = l+ (h -I). hi.
l.From a theoretical standpoint, I alone would suffice to encode the input
text.

The decoding phase recapitulates the encoding. Specifically, the first
step of decoding consists of identifying the symbol eli such that I E I(Q..j).
At that point, I is replaced by

I
f l-li

<- h;-~'

and the process is repeated until l = O. The main problem with arith
metic coding is coping with finite precision while performing arithmetics
on real numbers.

6.1.3 LZW Coding. Ziv and Lempel designed a class of com
pression methods based on the idea of self reference: while the textfile is

38

scanned, substrings or phrases are identified and stored in a dictionary,
and whenever, later in the process, a phrase or concatenation of phrases
is encountered again, this is compacHy encoded by suitable pointers
[99, 140, 141]. Of the several existing versions of the method, we describe
below the one known as Lempel-Ziv-Welsh method, which is incarnated
by by the compress feature under the UNIX operating system.

For the encoding, a dictionary is initialized with all the characters of
the alphabet. At the generic iteration, we have just read a segment w
of the text. With a the symbol following this .occurrence of W, we now
proceed as follows: If wa is in the dictionary we read the next symbol,
and repeat with segment wa instead of w. If, on the other hand, wa is
not in the dictionary, then we append the dictionary index of w to the
output file, and add wa to the dictionary; then reset w to a and resume
processing from the text symbol following a. Once w is initialized to
be the first symbol of the source text, "w belongs to the dictionary" is
established as an invariant in the above loop.

Decoding is symmetric, in particular, the dictionary is recovered while
the decompression process runs. The ba.sic routine is a.s follows. We start
with a ba.sic dictionary of symbols. Then, when we read the encoding
c from the compressed file, we write to the output file the segment w
having index c in the dictionary, and add to the dictionary the word wa
where a is the first letter of the next segment. Except for a special case,
Note that we can infer the appropriate dictionary index for wa. A very
special case requiring extra care occurs if the symbol a is also the first
symbol of w. We leave the analysis of this case and its (easy) recovery
for an exercise.

6.1.4 The Burrows-Wheeler Transform. A recent, imagina
tive approach due to M. Burrows and D.J. Wheeler [51] successfully
exploits the delicate interplay between locality of reference and pointer
size. Assuming an input string x = dadcbbe, the encoding performs the
following steps. First, we build a table of the cyclic shifts of x, as follows.

80 dadcbbe
81 adcbbed
82 dcbbeda
83 cbbedad
8-1 bbedadc
85 bedadcb
86 edadcbb

Next, these rotations are lexicographcally sorted, resulting in the ta·
hie:

8-1 bbedadc

String Pattern Matching for a Deluge Survival Kit 39

85 bedadcb
82 dcbbeda
80 dadcbbe
89 cbbedad
81 adcbbed
86 edadcbb

It turns out that strings like the string y = cbaedde in the last column
are highly compressible, e.g., by run-length. In factI the first column
contains sorted symbols that are each immediately adjacent in x to the
corresponding symbol in the last column. It is expected then that, in
correspondence with a run on the 6rst column, the last one also contains
a run. Note that it is possible to go back from the last column y to the
6rst column y' = bbddcae simply by sorting y. More importantly, from
knowledge of y, 'II and of the rank i of the original string in the sorted
list, it is possible to reconstruct the the original sequence x. This is
achieved by setting up a suitable transformation vector T that tells, for
each row i, where in x is row i + 1. This vector can be figured out by
looking at y and if as shown in the table below.

084 c b
185 b b
282 a d
980 e d
489 d c
581 d a
686 b e

Clearly, we have T(4) = 0 since c moves, but what about row 1? The
b there could go to either row 0 or 1. The important property is, since
U is sorted then rowS beginning with a same character are also sorted.
Thus, the first b in row 1 moves to row 0, the second b comes from row
6. The final touch of the method is to perform move-to-front encoding
of y. In practice, all 256 codes are kept in a list, and each time a char
is to be output, its position is sent to the list, then moved to the front.
The result is a string with many of D's and small integers,which can be
compressed using entropy encoders. For example, y = tttWtwttt would
be encoded as [116,0,0,88,1,119,1,0,0].

The sorting inherent to the Burrows-Wheeler method is suitably im
plemented with suffix arrays, resulting in a relatively fast process.

6.2 DATA COMPRESSION USING
ANTIDICTIONARIES

Yet another basic text compression method, called DCA, uses some
"negative" information about the text, which is described in terms of

40

antidictionaries [58, 59, 61, 62, 60]. Contrary to the Ziv and tempel
methods that are centered on dictionaries or sets of words occurring as
substrings in the text, this method takes advantage from words that do
not occur as substrings in the text and are said to be forbidden. It is
natural to call such sets of words antidictionaries.

6.2.1 Encoding and decoding. Let x be the text on a binary
alphabet and let F(x) be the set of substrings of x. For instance, if
x = 01001010 then F(x) = {e,O,l,OO,Ol,10,OOl,OlO,100,101, ...}.
The antidictionary AD is a factor code (no word of the set is a sub
string of another word of the set) included in E· \ F(x). For example,
{ODD, 10101, 11} is an antidictionary for x = 01001010.

The compression algorithm processes the input file on-line. At the
generic step, we have read some prefix w of x, and inspect the symbol,
say, a, that immediately follows w. If there exists a word u E AD that
is a suffix of wa, then the symbol a is deleted, since it is predictable
through resort to the antidictionary. The compression algorithm based
on this principle is listed below. In order to be able to decode the output
of the encoder, an additional mechanism is necessary. To simplify the
exposition, we assume here that the encoder produces also the length of
the original text. The decoder works in a fashion which is dual to the
encoder, and is presented immediately following it. It uses its knowledge
of the length in order to decide when to halt.

The advantage of having a factor code as antidictionary is that the test
at Line 3 in the decoder can be satisfied by only one word va. Therefore,
no useless word is stored in the antidictionary.

6.2.2 Implementing finite antidictionaries. The antidic
tionary queries invoked by the above algorithms are implemented as
follows. Starting with the trie of words in the antidictionary, the au
tomaton A(AD) is built that accepts all strings of which no substring
appears in the antidictionary. This is an application of the Aho-Corasick
algorithm to the trie, and results in a linear-time algorithm. With this
automaton in place, and while reading the text to encode, whenever a
transition leads to a state associated with a word of the antidictionary
the decoder outputs the dual symbol.

The automaton A(AD) can be easily transformed into a (finite-state)
transducer T(AD) that realizes the compression algorithm. The decom
pression may be similarly realized by a dual transducer, which is ob
tained by interchanging input and output labels in the first transducer
(with an additional halting instruction to stop the decoding).

String Pattern Matching for a Deluge Survival Kit 41

ENCODER (anti-dictionary AD, word x E {O, 1}*)
1. , ~ Ej

2. for a t- first to last symbol of x
3. if for any suffix v of the processed text, vO, v1 r:J. AD
4. output aj

5. return (lxi, ,);

DECODER (anti-dictionary AD, integer n, word, E {O, 1}")
1. w t-E;
2. while Iwl < n
3. if for some suffix v ofw and some a E {O,lh va E AD
4. wt-w·...,aj
5. else
6. b t- next symbol of,j
7. wt-w·bj
8. return (w)j

Figure 1.3 Antidictionary based compression

The automaton A(AD) (or the transducer 7(AD)) has an interest
ing synchronization property, which makes it possible to develop al
gorithms to search compressed texts or to desing parallel version of
the encoding and decoding algorithms. With k the maximal length
of words in AD, this property is as follows: given any two paths
(qt. at. '12) ... (qk. ak. qk+tl and (q" at. ¢,) ... (<t" ak. ¢.+l) having the
same label al· ··ak, then the two ending states qk+l and q1+l coin
cide. Thus, the encoding of a part of the text certainly depends on its
left context, but this is limited to up to a length of k only.

6.2.3 How to build Antidictionaries. In practical applica
tions, the antidictionary is not given a priori but it must be derived
either from the text to be compressed or from a family of texts pro
duced by the same source as the one producing the text. There exist
several criteria to build efficient antidictionarics, that variously depend
on different aspects or parameters that one wishes to optimize in the
·compression process. In turn, each criterion gives rise to a different
algorithm and implementation.

The general methods to build antidictionaries are based on data struc
tures that store substrings of words, such as suffix tries, suffix trees,
dawgs, and suffix or factor automata. In these structures, it is possible

42

to consider a notion of suffix link. This link is essential to design efficient
algorithms to build representations of sets of minimal forbidden words
in term of tries or trees. This approach leads to antidictionary construc
tions that take time linear in the length of the text to be compressed..

A rough solution to control the size of antidictionaries is obviously to
bound the length of the words that are admitted in it. A better solution
in the static compression scheme is to prune the trie of the antidictionary
on the basis of a tradeoff between the space of the trie to be transmitted
and the gain in compression. However, the first solution is enough to
get compression rates that reach asymptotically the entropy for balanced
sources, even if this is not true for general sources. Both solutions can
be engineered to run in linear time.

6.2.4 Variations. The static compression scheme presented
above requires to read the text twice. Several variations and improve
ments can be elaborated upon based on clever combinations of two fea
tures suitably injected in the model, namely, statistical filters and dy
namic implementations. These are classical features, often included in
most data compression methods.

Statistical considerations can be used in the construction of antidic
tionaries. If a forbidden word is responsible for erasing few bits of the
text in the compression algorithm while its description as an element of
the antidictionary is "expensive", then the compression rate improves
by excluding that word from the antidictionary. On the other hand,
one can introduce in the antidictionary a word that is not forbidden but
occurs very rarely in the text. In this case, the compression algorithm
may produce some errors in predicting the next letter. In order to keep
a lossless compression scheme, encoder and decoder must be adapted to
manage such errors. Typical errors occur in the case of antidictionaries
built for fixed sources as well as in the dynamic approach. Even with
errors, assuming that they are rare with respect to the longest word
(length) of the antidictionary, the compression scheme may be shown to
preserve the synchronization property.

6.3 SEARCHING COMPRESSED TEXT

For data stored in compressed form, navigation through compressed.
databases poses additional pattern matching questions. The first ques
tion is whether it may be more efficient to decompress the data before
processing a search or other standard query or, given the possibility,
it might be more expedient to perform the query directly on the com
pressed data. The answer depends of course on the particular prob
lem instance, as well as on compression method, algorithmic complexity,

String Pattern Matching for a Deluge SlJnJival Kit 43

memory space available, etc. Among the various methods of compression
the Ziv-Lempel family of compressors have received the largest atten
tion, beginning with studies by by Amir, Benson and Farach [8] and
Farach and Thorup [73]. Along these lines, string search in compressed
text was developed for the paradigm by Ziv and Lempel [140] and its
subsequent variant by Welch [138]. The complexities for the searches are
respectively of O(n logn' +m) and O(n logm + m), where n' is the size
of the decompressed text and m the size of the pattern. Thus, compared
to linear time string searching in plain texts, an extra log factor emerges.
For large patterns, it makes sense to consider instances of the problem
where also the pattern compressed. This case was studied by G§Sieniec
and Rytter [83), who gave algorithms and provide respectively of time
O((n+m)') and O(n+m) log'(n+m») (with c a po,itive coostaot) for
the LZ and LZW compressors.

Searching files compressed by Huffman encoding is a classical problem
treated, e.g., in [113]. Shibata et al. [127] give a linear-time searching
algorithm for files compressed by using antidictionaries.

Mixed techniques have also been developed in which the compression
is designed to reduce the searching time. Examples of this approach may
be found in [105] and [115]. The main drawbacks with the technique is
that it often leads to less efficient compression and that of course it will
not work with text compressed by standard methods.

6.4 LEARNING PROBABILISTIC
AUTOMATA AND MODELING BY
MARKOV CHAINS

Compression is but one of the domains within which the need arises to
develop models of sources. In fact, as already mentioned, the statistical
modeling of sequences is a central paradigm of machine learning that
finds multiple uses in many domains. The probabilistic automata typ
ically built in these contexts are subtended by uniform, fixed-memory
Markov models. In practice, such automata tend to be bulky and com
putationally imposing both during their synthesis and use. In [122],
much more compact, tree-shaped variants of probabilistic automata are
described which assume an underlying Markov process of variable mem
ory length. These variants, called PSTs were successfully applied to
learning and prediction of protein families in [39].

In one such automaton, each edge is labeled by a symbol, each node
corresponds to a unique string -the one obtained by traveling from that
node to the root- and nodes are weighted by a probability vector giving
the distribution over the next symbol. The construction starts with a

44

tree consisting of just the root node (i.e., the tree associated with the
empty word) and adds paths as follows. It considers the substrings from
a family S of strings in order of increasing length. For each substring 8

considered, it is checked whether there is some symbol u in the alphabet
for which the empirical probability of observing it in S after s is sig
nificant and significantly different from the probability of observing it
after the longest suffix su/es) of s. Whenever these conditions hold, the
path relative to the substring (and possibly its necessary but currently
missing ancestors) are added to the tree.

Given now a string, its weighting by a tree is done by scanning the
string one letter after the other while assigning a probability to every
symbol, in succession. The probability of a symbol is calculated by walkR
ing down the tree in search for the longest suffix that appears in the tree
and ends immediately before that symbol, and multiplying the corre
sponding conditional probability. Since, following each input symbol,
the search for the deepest node must be resumed from the root, this
process cannot be carried out on-line nor in linear-time in the length of
the tested sequence.

As is easy to see, the process of learning the automaton from a given
training set S of sequences requires 8(Ln2) worst-case time, where n is
the total length of the sequences in Sand L is the length of a longest
substring of S to be considered for a candidate state in the automaton.
Once the automaton is built, predicting the likelihood of a query se
quence of m characters may cost time 8(m2) in the worst case. A more
efficient computation of empirical probabilities and conditional proba
bilities, of the kind described in an earlier section of this chapter, leads
to equivalent automata that can be learned in time linear in the input
size, and will subsequently prediction a string of m symbols in O(m)
time. We refer to [15] for details.

6.5 EPISODES AND AUTOMATIC
ASSOCIATION GENERATION

Many interesting problems can be cast in the emerging contexts of
data mining and information extraction. As is well known, while tradi
tional data base queries aim at retrieving records based on their isolated
contents, these contexts focus on the identification of patterns occurring
across records, and aim at the retrieval of information based on the dis
covery of interesting rules present in large collection of data. Central to
thes~ developments is the notion of an association rule, which is an ex
pression of the form 8 1 -l- 82 where 8 1 and 82 are sets of data attributes
endowed with sufficient confidence and support. Sufficient support for a

String Pattem Matching JOT" a Deluge Suroival Kit 45

rule is achieved if the number of records whose attributes include 81 U82
is at least equal to some pre-set minimum value. Confidence is measured
instead in terms of the ratio of records having 81 US2 over those having
S1, and is considered sufficient if this ratio meets or exceeds some pre-set
minimum. Clearly, a statistic of the number of records endowed with
the given attributes must be computed as a preliminary step, and this
is often a bottleneck for the process of information extraction. We refer
to [3] and [117] for a broader discussion of these concepts.

Some of the considerations developed earlier in this chapter may be
regarded from a perspective of automatic generation of association rule.
Lemma 12, for instance, can be rephrased by saying that for every word
ending in the middle of an arc in Tz • a rule is exposed whereby any
occurrence of that word in x implies an occurrence also of its extension
to the nearest node. From this perspective, the construction of the tree
may be regarded as a means for the discovery of this rule.

In a real discovery, though, we do not know a-priori the rule that will
be discovered. Along these lines, looking for squares, palindromes etc.
is only half a discovery, in so far as the "rule" (e.g., ww, wwR) which
we are after is known beforehand. Even so, some mild extensions of this
problem may already fit the mining paradigms.

For example, consider the problem of finding, for a given textstring x
of n symbols and an integer constant d, and for any pair (y, z) of sub
words of x, the number of times that y and z occur in tandem (i.e., with
no intermediate occurrence of either one in between) within a distance
of d positions of x. Although in principle there might be n 4 distinct
subword pairs in x, Lemma 12 tells us that it suffices to consider a fam
ily of only n2 such pairs. with the property that for any neglected pair
(w',z1), there is a corresponding pair (y,z) contained in our family and
such that: (i) w is a prefix of wand zI is a prefix of z, and (ii) the
tandem index of (w', z') equals that of (w, z). We leave it as an exercise
for the reader to find an efficient algorithm for the construction of the
table of all such tandem indices. The particularization of the problem
to the tandem index of occurrences of the same pattern, which is in fact
a relaxed square detection problem, has also been studied recently [49].

A. Amir et al. [9] have used tries to organize and speed up the discov
ery of association rules in a typical data base, the entries of which are
sets of attributes. The first step consists of transforming each record into
a string by numbering the different attributes. Next, every set is consid~

ered as a string sorted by order of the attribute number. At this point,
a trie is built by incremental insertion of all i-elements sorted sets for
i = 1,2, ...imaz , in succession, where imaz is some suitable bound. The
nodes of the trie are weighted by the count of the number of records

46

leading to each node (a measure of the support [or that node). The
data structure at the outset encodes all potential covers, a cover in
this context being a set of attributes with support exceeding a certain
minsupport value. To generate associations, one observes that once an
association of the form S --t {a} is generated for an attribute, this gives
a handle to narrowing down the space of potential attributes of the form
{a, b}, in the sense that only if both associations S U {a} -+ {a} and
S U {b} -t {b} exist, one can hope for association S -+ {a,b} to exist.
This leads to the following scheme for associaton generations.

• For each node of the trie, let s = 8152 ..•8 - k be the label of the
path from the root to that node. Extract, in successionl each Si

and check the resulting string § for its support. Whenever the ratio
supp(s)/SUpp(31 ...Si_lSHl ...Sk) ~ mincO'll! then S - Si --t Sj, is
an association rule.

• We now have association rules with only one set on the right hand
side. These rules are now combined to generate multiple rules. I.e.,
for every pair of rules, generate a new rule with a consequent of
size 2, and test its confidence level. Repeat the process to obtain
rules with consequents of increasing size.

Other discoveries can be modeled in terms of the detection of special
kinds of subsequences. A pattern '11 = '111 ••• Vm occurs as a subsequence
of a text x = Xl ••• Xn iff there exist indices 1 '$ 'h < i z < ... < i m :::; n
such that XiI = VI, Xi2 = '112, .", Xim = Ymi in this case we also say that
the substring w = xitXidl ... Xi m of x is a realization of '11 beginning
at position i 1 and ending at position i m in x. Given two strings x =

Xl ••• Xn and '11 = '111 ••• Ym over an alphabet E, the problem of testing
whether '11 occurs as a subsequence of x is trivially solved in linear time. It
is also known that a simple O(n log lEI) time preprocessing of x makes it
easy to decide subsequently for any x and in at most 1'111 log lEI character
comparisons, whethe~ P is a subsequence of x. These problems become
more complicated if one asks instead whether '11 occurs as a subsequence
of some substring w of x of bounded length. One way to answer the
question is by identifying all distinct minimal realizations w ofV. By a
realization w being minimal with respect to x, it is meant that '11 is not a
subsequence of any proper substring of w. Variants of this problem arise
in numerous applications, ranging from information retrieval and mining
recurrent events in telecommunications (see, e.g., [108]) to molecular
sequence analysis (see, e.g., [136]) and intrusion and misuse detection in
a computer system.Algorithms for the so-called episode matching [108]
problem, which consists of finding the earliest occurrences of '11 in all

String Pattern Matching for a Deluge Suroival Kit 47

minimal realizations of P in T have been given in [70J. An occurrence
i 1i 2 ••• im of y in a realization w is an earliest occurrence if the string
i 1i 2 •.• i m is lexicographically smallest with respect to any other possible
occurrence of y in $. The algorithms in (70] perform within roughly
O(nm) time, without resorting to any auxiliary structure or index based
on the structure of the text.

Many modern pattern or motif characterizations and discovery algo
rithms will come from the flourishing area of Bioinformatics, a micro
cosmos within which most problems of managing the data and infor
mation flood find early and somewhat controlled reflections (see, e.g.,
[33, 34, 35, 36]). Prominent in this context is the issue of aligning
multiple sequences [21]. This application is explosive in computational
demand and is typically approached by way of heuristics. These, in
turn, are variously centered around ideas of hinging putative alignments
around similar subpatterns of various kinds. One difficulty in this regard
is the lack of a unified notion of global comparison, which compounds
with the inherent intractability of most exact methods. One way to
approcah the problem is then to look for uanchor" sets of consecutive
columns where a same (short) pattern seems to appear in all sequences.
Recursively hinging a global solution around these anchors gives a han
dle for a divide and conquer heuristics. The discovery of anchor patterns
fits somewhat into the paradigm of association rule generation. These
patterns can be sought among the substrings or subsequences of the
sequences, or combinations thereof. For example, one could use the la
beling of Karp, Miller, and Rosenberg to label substrings and then look
for regions with a concentration of identical labels. A variation on this
theme is due to Sagot et al. [124] and is based on the notion of a model
(direct product of subsets of the alphabet) that extends the notion of
a consensus sequence. Models capture the similarity between some cat
egories of symbols as is the case with aminoacids in the comparison of
proteins. For fixed lengths, there is a linear-time algorithm to gener
ate all the models common to a set of strings on the basis of hypotheses
based on two parameters: a quorum for the number of implied sequences,
and the maximum acceptable number of errors between the models and
their actual occWTenees.

References

[1] K. Abrahamson. Generalized string matching. SIAM J. Computing,
16(6):10311-1051, 1987.

{2] A.V. Aho and M.J. Corasick. Efficient string matching. C. ACM,
18(6):333-340, 1975.

[3] R. Agrawal, T. Imielinski, and A. Swami. Mining association rules
between sets of items in large databases. In Proc. ACM SIGMOD,
pp.207-216, Washington DC May 1993.

[4] B. Alberts, D. Bray, J. lewis, M. Raff, K. Roberts and J.D. Watson.
Molecular Biology of the CelL Garland Publishing, N.Y., 1989.

[5] S.F. Altschul and D.J. Lipman. Tree, stars, and multiple biological
sequence alignment. SIAM J. Appl. Math. 49:197-209, 1989.

[6] S. Altschul, W. Gish, W. Miller, E.W. Myers and D. Lipman, Basic
Linear alignment search tool. J. Mol. Biology 215, 403-410 (1990).

[7] A. Amir, A. Apostolico and M. Leweostein. Inverse Pattern Match
ing. J. of Algorithms, 1997, Vol. 24, No.2, pp. 325·339.

[8] A. Amir, G. Benson, M. Farach. Let sleeping files lie: pattern match
ing in Z-compressed files. In Pmc. oJ 5th Annual ACM-SIAM Sym
posium on Discrete Algorihms. 1994.

[9] A. Amir, R. Feldman and R. Kashi. A New and Versatile Method
for Association Generation. Information Systems, to appear, (pre
liminary version appwed in PKDD 97).

[10] A. Amic, M. Farach and G. Benson. Let Sleeping Files Lie: Pattern
Matching in Z-Compressed Files. Journal oJ Computer and System
Sciences, 1996, Vol. 52, No.2, pp. 299-307.

49

50

[11] A. Apostolico and Z. Galil (Eds.), Pattern Matching Algo1ithms,
Oxford University Press, New York (1997).

[12] A. Apostolico. The Myriad Virtues of Subword Trees. In A. Apos
tolico and Z. Galil, editors, Combinatorial Algorithms on Words,
volume 12 of NATO ASI Series F, pages 85-96. Springer-Verlag,
Berlin, Germany, 1985.

[13] A. Apostolico. Optimal Parallel Detection of Squares in Strings.
AIgo7itkmica, 8:285-319, 1992.

[14] A. Apostolico "String Editing and Longest Common Subse
quencesu

, (INVITED PAPER), Handbook of Formal Language8 (G.
Rozenberg and A. Salomaa, Eds.), Vol II, pp. 361-398 Springer
Vedag (1996).

[15] A. Apostolico and G. Bejerano, Optimal Amnesic Probabilistic Au
tomata or How to Learn and Classify Proteins in Linear Time and
Space, to appear, Proceedings of RECOMBOO (1999).

[16] A. Apostolico, M.E. Bock, S. Lonardi and X. Xu. Efficient Detec
tion of Unusual Words, Technical Report 97-050, Purdue University
Computer Science Department (1996). Journal of Computational
Biology, in press.

[17] A. Apostolico, D. Breslauer, and Z. Galil. Optimal Parallel Algo
rithms for Periods, Palindromes and Squares. In Proc. 19th Inter
national Colloquium on Automata, Languages, and Programming,
number 623 in Lecture Notes in Computer Science, pages 296-307.
Springer-Verlag, Berliu, Germany, 1992.

[18] A. Apostolico and D. Breslauer. Of Periods, Quasiperiods, Repe
titions and Covers. In Structures in Logic and Computer Science:
A Collection of Essays in Honor oj A. Ehrenfeucht, J. Mycielski,
G. Rozenberg and A. Salomaa, Eds., number 1261 in Lecture Notes
in Computer Science, pages 236-248. Springer-Verlag, Berlin, Ger
many, 1992.

[19] A. Apostolico and A. Ehrenfeucht. Efficient Detection of Quasiperi
odicities in Strings. Theoret. Comput. Sci., 119:247-265, 1993.

[20] A. Apostolico, M. Farach, and C.S. TIiopoulos. Optimal Superprim
itivity Testing for Strings. Inform. ProWlS. Lett., 39:17-20, 1991.

[21] A. Apostolico and R. Giancarlo. Sequence Alignment in Molecular
Biology. Journal of Computational Biology (1998

References 51

[22] A. Apostolico and F. P. Preparata. Optimal off-line detection of
repetitions in a string. Theoret. Comput. Sci., 22:297-315, 1983.

[23J A. Apostolico and F. P. Preparata. Data structures and algorithms
for the strings stastitics problem. Algorithmica, 15(5):481--494, May
1996.

[24] A. Apostolico and W. Szpankowski. Self-alignment in words and
their applications. J. Algorithms, 13(3):446-467, 1992.

[25) R. Ash. Information Theory. Tracts in mathematics, Interscience
Publishers, J. Wiley & Sons, 1985.

[26] R. Baeza-Yates and C. Perleberg, Fast and practical approximate
string matching. Proc. III Symp. on Combinatorial Pattern match~

ing, Srpinger LNCS, 185-92 (1992).

[27] M. P. Bea!. Codage Symbolique. Masson, 1993.

[28J M.-P. Beal, F. Mignosi, A. Restivo. Minimal Forbidden Words and
Symbolic Dynamics. in (STACS'g6, C. Puech and R. Reischuk,
eds., LNCS 1046, Springer, 1996) 555-566.

[29J G. Bejerano and G. Yona, Modeling Protein Families Using Prob·
abilistic Suffix Trees. Proceedings of RECOMB99 (S. Istrail, P.
Pevzner and M. Waterman, eds.), 15--24, Lyon, France, ACM Press
(April 1999).

[30J T. C. Bell, J. G. Cleary, 1. H. Witten. Text Compression. Prentice
Hall, 1990.

[3lJ J. Berstel. Fibonacci Words - a Survey. in (The Book of L,
G. Rozenberg, A. Salomaa, eds., Springer Verlag, 1986).

[32] J. Berstel and D. Perrin. Finite and infinite words. in (Al
gebraic CombinatoriC8 on Words, J. Berstel. D. Perrin, eels.,
Cambridge University Press, to appear) Chapter 1. Available at
http://wvw-igm.univ-mlv.fr/berstel.

[33] A. Brazma, I. Jonassen, J. Vilo, and E. Ukkonen. Predicting Gene
Regulatory Elements in Silico on a Genomic Scale. Genome Re
search Vol. 8, Issue 11 (pp. 1202-1215) November 1998.

[34] A. Brazma, I. Jonassen, J. Vilo and E. Ukkonen Pattern Discovery
in Biosequences. Proceedings oj Fourth International Colloquium on
Grammatical Inference (ICGI-98) (1433) (pp. 255-270) Jnly 1998.
Springer.

52

[35J A. Brazma, J. Vila, E. Ukkonen and K. Valtonen. Data Mining for
Regulatory Elements in Yeast Genome. Fifth International Confer
ence on Intelligent Systems for Molecular Biology, ISMB-97 (pp.
65~74) June, 1997. AAAI Press.

(36] A. Brazma, 1. Jonassen, 1. Eidhammer and D. Gilbert. Approaches
to the Automatic Discovery of Patterns in Blosequences. Journal of
Computational Biology 5:2, 279-306 (19gB).

[37] A. Ben-Amram, O. Berkman, C. Iliopolous, and K. Park. Comput
ing the Covers of a String in Linear Tme. In Pmc. 5th ACM-BIAM
Symp. on Discrete Algorithms, pages 501-510, 1994.

[38] D. R. Bean, A. Ehrenfeucht, and G.F. McNulty. Avoidable patterns
in strings of symbols. Pacific J. Math., 85:261-294, 1979.

[39J G. Bejerano and G. Yana, Modeling Protein Families Using Prob
abilistic Suffix Trees. Proceedings of RECOMB99 (S. rstrail, P.
Pevzner and M. Waterman, eds.), 15-24, Lyon, France, ACM Press
(April 1999).

[40] J. Bentley and D. McIlroy, "Data compression using long common
strings," in Proceedings of the IEEE Data Comprusion Conference,
Mar. 1999, pp. 287-295.

[41] J. Beratel. Sur les mots sans carre definis par un morphism. In
Proc. 6th International Colloquium on Automata, Languages, and
Programming, number 71 in Lecture Notes in Computer Science,
pages 16-25. Springer-Verlag, Berlin, Germany, 1979.

[42] A. Blumer, J. Blumer, A. Ehrenfeucht, D. Haussler, M.T. Chen and
J. Seiferas. The Smallest Automaton Recognizing the Subwords of
a Text. Theoretical Computer Sc£ence, 40:31-55, 1985.

[43] A. Blumer, A., J. Blumer, A. Ehrenfeucht, D. Haussler, and R
McConnell. Complete Inverted Files for Efficient Text Retrieval
and Analysis. Journal of the ACM, 34(3): 578~595, 1987.

[44] R.P. Brent. Evaluation of General Arithmetic Axpressions. J. As
soc. Comput. Mach., 21:201-206, 1974.

[45] D. Breslauer. An On-Line String Superprimitivity Test. Inform.
Process. Lett., 44(6)'345-347, 1992.

[461 D. Breslauer. Testing String Superprimitivity in Parallel. Inform.
Process. Lett., 49(5P35-241, 1994.

References 53

[47] D. Breslauer and Z. Galil. A Lower Bound for Parallel String Match
ing. SIAM J. Compot., 21(5),856-862, 1992.

[48] D. Breslauer and Z. Galil. Finding all Periods and Initial Palin
dromes of a String in Parallel. Algorithmica, 1995.

[49] G.S. Brodal, R. Lyngso, C.N.S. Pedersen, and J. Stoye. Finding
Maximal Pairs with Bounded Gap. Proc. 10th Combinatorial Pat
tern Matching, 342-351. Springer Verlag LNCS volume 1645 (1999).

[50] L. Brillouin, Science and Information Theory, Academic Press
(1971).

[51] M. Burrows and D. J. Wheeler, "'A block-sorting lossless data com
pression algorithm," Tech. Rep. 124, Digital Equipments Corpora
tion, May 1994.

[52] H. Carillo and D.J. Lipman. The multiple sequence alignment prob
lem in biology. SIAM J. Appl. Math. 48,1073-1083, 1988.

[53] W.I. Chang and E.L. Lawler, Sublinear expected time approximate
string matching and biological applications. Algorithmica12, 327-44
(1994).

[54] M.T. Chen and J. Seiferas. Efficient and Elegant Subword-tree
Construction. In A. Apostolico and Z. Galil, editors, Combinatorial
Algorithms on Words, volume 12 of NATO ASI Series F, pages 97
107. Springer-Verlag, Berlin, Germany, 1985.

[55] S.C. Chan, A.K. Wong and D.K. Chiu. A survey of multiple se
quence comparison methods. Bull. Math. Bioi. 54:563-598, 1992.

[56] C. Choffrut, K. Culik. On Extendibility of Unavoidable Sets. Dis
crete AppI. Math.• 9, 1984, 125-137.

[57) M. Crochemore, C. Hancart. Automata for matching patterns. in
(Handbook of Fonnal Languages, G. Rozenberg l A. Salomaa l eds.",
Springer-Verlag" I 1997, Volume 2, Linear Modeling: Background
and Application) Chapter 9, 399-462.

[58) M. Crochemore l F. Mignosi, A. Restivo. Minimal Forbidden Words
and Factor Automata. in (MFCW9B, L. Brim l J. Gruska l J.
SI.tuSka, OOs., LNCS 1450, Springer, 1998) 665-673-

[59] M. Crochemore l F. Mignosi l A. Restivo. Automata and Forbidden
Words. Information Procusing Letters 67 (1998) 111-117.

54

[60J M. Crochemore, F. Mignosi, A. ResHvo, S. Salemi. Text Com
pression Using Antidictionaries. Tech. Rept. IGM-98-1O, Institut
Gaspard Monge, 1998. DCA home page at URL http://www-igm.univ.

m!v,rr!,,-,mac/DCA.html

[61] M. Crochemore, F. Mignosi, A. Restivo, S. Salemi. Search in Com
pressed Data. in preparation.

[62] M. Crochemore, F. Mignosi, A. Restivo, S. Salemi. A Compressor
Compiler. in preparation.

[63] R Cole, M. Crochemore, Z. Galil, L. Gl}Sieniec, R. Hariharao,
S. Muthukrishnan, K. Park, and W. Rytter. Optimally Fast Par
allel Algorithms for Preprocessing and Pattern Matching in One
and Two Dimensions. In Proc. 34th IEEE Symp. on Foundations
of Computer Science, pages 248-258, 1993.

[64] M. Crochemore. An optimal algorithm for computing the repeti·
tions in a word. Inform. Process. Lett., 12(5):244-250, 1981.

[65] M. Crochemore. Sharp characterizations of squarefree morphisms.
Inform. Process. Lett., 18:221-226, 1982.

[66] M. Crochemore. Transducers and repetitions. Theoret. Comput.
Sci., 12:63-86, 1986.

[67] M. Crochemore and W. Rytter, Text Algorithms, Oxford University
Press, New York (1994).

[68] M. Crochemore and W. Rytter. Efficient parallel algorithms to test
square-freeness and factorize strings. Inform. Process. Lett., 38:57
60, 1991.

[69] M. Crochemore and W. Rytter. Usefulness of the Karp-Miller
Rosenberg algorithm in parallel computations on strings and arrays.
Theoret. Comput. Sci., 88:59-82, 1991.

I70] G. Das, R. Fleischer, L. G~ieniek, D. Gunopulos, J. Kiirkkiiinen,
Episode Matching, CPM'97, Proceedings of the 8th Annual Sym
posium on Combinatorial Pattern Matching, (A. Apostolico and J.
Hein, Ed,.), Springer Verlag LNCS 1264, 12-27 (1997).

[71] V. Diekert, Y. Kobayashi. Some Identities Related to Automata,
Determinants, and Mobius Functions. Report Nr. 1997/05, Univer
sitiit Stuttgart, Fakultiit Informatik, 1997.

References 55

[72] R. S. Ellis. Entropy, Large Deviations, and Statwtical MechaniC.'J.
Springer Verlag, 1985.

[73] M. Farach, M. Thorup. String matching in Lempel-Ziv compressed
strings. In Proc. of 27th Symposium on Thet)ry oj Computing 1994,
703-713.

[74) P. Ferragina, Dynamic Data Structures for String Matching Prob
lems, Doctoral Thesis, University of Pisa (1997).

[75] E. R. Fiala and D. H. Greene, "Data compression with finite win
dows," Communications oj the ACM, vol. 32, pp. 490-505, 1989.

[76] F.E. Fich, R.L. Ragde, and A. Wigderson. Relations Between
Concurrent-write Models of Parallel Computation. SIAM J. Com
put., 17(3):606-627, 1988.

(77] N.J. Fine and H.S. Wil£. Uniqueness Theorems for Periodic Func
tions. Pmc. Amer. Math. Soc., 16:109-114, 1965.

[78] M.J. Fischer and M.S. Paterson. String matching and other prod
ucts. Complexity 01 Computation, R.M. Karp (editor), SIAM-AMS
Proceedings, 7:113-125, 1974.

[79] K. S. Fu and T. L. Booth. Grammatical inference: Introduction
and survey - Part I. IEEE Transactions on Systems, Man and
Cybernetics, 5:95-111, 1975.

[80] K. S. Fu and T. L. Booth. Grammatical inference: Introduction
and survey - Part II. IEEE 1ransactions on Systems, Man and
Cybernetics, 5:112-127, 1975.

[81] J. Gailly. Frequently Asked Questions in data compression, Internet.
URL http://www.landfield.colD/faqs/compression-faqJ

[82] L. Gatlin, Information Theory and the Liuing Systems., Columbia
University Press, 1972.

[83] L. GiiSieniec, W. Rytter Almost optimal fully LZW-compressed
pattern matching In Data Compression Conference, J. Storer, ed,
1999.

[84] L. Gl}Sieniec, P. Indyk and P. Krysta, External Inverse Pattern
Matching, Proceedings of the 8th Annual Symposium on Combinat
gorial Pattern Matching, Springer-Verlag LNCS 1264, pp. 90-101
(1997).

56

[85] D. Greene, M. Parnas, and F. Yao. Multi-index hashing for infor
mation retrieval. Proc. 35th Annual Symposium on Foundations 0/
Computer Science, pages 722-731, 1994.

[86] D. Gusfield and J. Stoye. Simple and Flexible Detection of Contigu
ous Repeats Using a Suffix Tree. pp 140-152, 9th CPM 98, Springer
LNCS 1448.

[87] D. Gusfield and J. Stoye. Linear Time Algorithms for Finding and
Representing all Tandem Repeats in a String. Technical report
CSE-98-4, UC Davis Computer Science. 1998.

[88] M. Gu, M. Farach, and R. Beigel, "An efficient algorithm for dy
namic text indexing," in Proceedings of the Fifth Annual ACM
SIAM Symposium on Discrete Algorithms, Arlington, VA, 1994,
pp.697-704.

[89] R. W. Hamming. Error detecting and error correcting codes. Bell
System Tech. J., 29:147-160, 1950.

[90] R. N. Horspool, "The effect of non-greedy parsing in Ziv-Lempel
compression methods," in DCC: Data Compression Conference.
1995, pp. 302-311, IEEE Computer Society TCe.

[91] e.s. lliopoulos, D.W.G. Moore, and K. Park. Covering a String.
In Pmc. 4th Symp. on Combinatorial Pattern Matching, number
684 in Lecture Notes in Computer Science, pages 54-62, Berlin,
Germany, 1993. Springer-Verlag.

[92] C.S. Iliopoulos and K. Park. An Optimal O(loglogn)-time Algo
rithm for Parallel Superprimitivity Testing. J. Korea Information
Science Society, 21(8):1400--1404, 1994.

[93) R. Karp and M.D. Rabin, Efficient Randomized Pattern Matching
Algorithms, IBM J. Res. Dev. 31, 249-260 (1987).

[94] J. G. Kemeny, J. L. Snell. Finite Markov Chains. Van Nostrand
Reinhold, 1960.

[95] D.E. Knuth, J.H. Morris, and V.R. Pratt. Fast Pattern Matching
in Strings. SIAM J. Comput., 6:322-350, 1977.

[96] A. N. Kolmogorov. Three approaches to the quantitative definition
of information. Problemi Pederachi InJ., 1, 1965.

[97J S. Kurtz, "Reducing the space requirments of suffix trees," Tech.
Rep. 98-03, Technischen Fakultat, Universitat Bielefeld, 1998.

References 57

[98J N. J. Larsson, "Extended application ofsuffix trees to data compres
sion,u in DCC: Data Compression Conference. 1996, pp. 190-199,
IEEE Computer Society TCC.

[99] A.Lempel and J. Ziv. On the complexity of finite sequences. IEEE
nuns. on information Theory, 22:75-81, 1976.

[lOOJ V.I. Levenshtein. Binary codes capable of correcting deletions,
insertions and reversals. Soviet Phys. Dokl., 6:707-710, 1966.

[lOlJ M. Lothaire. Combinatori~ on Words. Addison-Wesley, Reading,
MA, U.S.A., 1983.

[102] R. C. Lyndon and M. P. Schutzenberger. The equation am = bTl(fJ

in a free group. Michigan Math. J., 9:289-298, 1962.

[103] M.G. Main and RJ. Lorentz. An o(n log n) algorithm for finding
all repetitions in a string. J. of Algorithms, pages 422-432, 1984.

[104] G. Manacher. A new Linear-Time "On-Line" Algorithm for Find
ing the Smallest Initial Palindrome of a String. J. Assoc. Gomput.
Mach., 22, 1975.

[105J U. Manber. A text compression scheme that allows fast searching
directly in the compressed file. In M. Crochemore and D. Gusfield,
editors, Proceedings olthe 5th Annual Symposium on Combinatorial
Pattern Matching, number 807 in Lecture Notes in Computer Sci
ence, pages 113-124, Asilomar, CA, 1994. Springer~Verlag, Berlin.

[106] U. Manber and R. Baeza-Yates. An algorithm for string matching
with a sequence of don't cares. Inform. Process. Lett. 37 (1991),
No.3, 133-136.

[107] U. Manber and E. Myers. Suffix Arrays: a New Method for On
line String Searches. SIAM Journal on Computing, 22(5):935-948,
1993.

[108] H. Mannila, H. Toivonen and A.I. Vercamo, Discovering Frequent
Episodes in Sequences, KDD'95 j Proceedings of the 1st Interna
tional Conference on Knowledge Discovery and Data Mining, AAAI
Pres" 210·215 (1995).

[109] P. Martin-LoC. The definition of random sequences. Information
and Control, 9, 1966.

[110J E.M. McCreight. A Space Economical Suffix Tree Construction
Algorithm. J. Assoc. Comput. Mach., 23:262-272, 1976.

58

[111] M. Morse, G. Hedlund. Symbolic Dynamics II: Sturmian trajec
toires. Amer. J. Math. 62 (1940) 1-40.

[112] D. Moore and W.F. Smyth. Computing the Covers of a String
in Linear Time. In Proc. 5th ACM-SIAM Symp. on Discrete AlgoR
rithms, pages 511-515, 1994.

{1l3] E. Moura, G. Navarro, N. Ziviani, R. Beaza-Yates. Direct pattern
matching on compressed texts. In Proc. SPIRE'98, IEEE CS Press,
1998, 90-95.

[114) S. Muthukrishnan. Non-standard Stringology: Algorithms and
Complexity. Proc. 26th Annual Symposium on the Theory of Com
puting, pages 770-779, 1994.

[115] G. Navarro, M. Raffinot. Pattern matching in compressed texts.
To appear.

[116] M. Nelson, J. Gailly. The Data Compression Book. M&T Books,
New York, NY, 1996. 2nd edition.

[117} G. Piatesky-Shapiro and W.J. Frawley, Eds., Knowledge Discovery
in Databases. AAAI Press/MIT Press, 1991.

[118] K.R. Popper. The Logic oj Scientific Discovery. Hutchinson, Lon
don, 1959.

[119] M. Rabin, Discovering Repetitions in Strings, in Combinatorial
Algorithms on Words (A. Apostolico and Z. Galil, eds.), Springer
Verlag pp. 279-288 (1985).

[120} J. Rissanen, A universal Data Compression System, IEEE 7hlns.
In/Om<. Theory 29(5)' 656-664 (1983).

(121] J. Rissanen, Complexity of Strings in the Class of Markov Sources,
IEEE Thms. In/om<. Theory 32(4), 526-532 (1986).

[122] D. Ron, Y. Singer and N. Tishby, The Power of Amnesia: Learn
ing Probabilistic Automata with Variable Memory Length. Machine
Learning, 25'117-150 (1996).

[123] D. Russel and G.T. Gangemi, Sr. Computer Security Basics.
O'Reilly and Associates, Inc., Sebastopol, California, 1991.

[124] M.-F. Sagot, A. Viari and H. Soldano. Multiple sequence com
parison - A peptide matching approach. Theoret. Comput. Sci.
180(1-2PI5-137, 1997.

References 59

[125] C.E. Shannon and W. Weaver, The Mathematical Theory of Com
munication University ofIllinois Press, Urbana (1949).

[126] C.E. Shannon. Prediction and entropy of printed english. Bell
System Technical J., 50·64, January, 1951.

[127] Y. Shibata, M. Takeda, A. Shinohara, S. Arikawa. Pattern match
ing in text compressed by using antididionaries. in Combinatorial
Pattern Matching, M. Crochemore and M. Paterson, eds, number
1645 in LNCS, Springer, 1999,37-49.

[128] J.A. Storer. Data Compression: Methods and Theory. Computer
Science Press, 1988.

(129] J.A. Storer and T. G. Szymanski. Data compression via textual
substitution. JOU171.al 01 the ACM; 29(4):928-951, October 1982.

[130] A. Thue. Ubee unendliche zeichenreihen. Norske Vid. Selsk. Skr.
Mat. Nat. KI. (Cristiania), (7}:1-22, 1906.

[131] A. Thue. Uber die gegenseitige lage gleicher teile gewisser zeichen
reihen. Norske Vid. Selsk. Skr. Mat. Nat. Kl. (Cristiania), (1):1-67,
1912.

[132] E. Ukkonen. On-line Constructin of Suffix Trees. Algorithmica,
14,249-260, 1995.

[133) E. Ukkonen. Approximate string matching and the q-gram dis
tance. In: R. Capocelli, A. De Santis and U. Vaccaro (OOs.) , SE
QUENCES II - Methods in CommunicationJ Security, and Com
puter Science, 300-312, Springer 1993.

[134] R. von Mises. Probability, Statistics and '!ruth. MacMillan, New
York, 1939.

[135] S. Watanabe. Knowing and Guessing. Wiley, New York, 1969.

(136] M. Waterman, Introduction to Computational Biology, Chapman
and Han (1995).

[137] P. Weiner. Linear Pattern Matching Algorithms. In Proc. 14th
Symposium on Switching and Automata Theory, pages 1-11, 1973.

[138J T.A. Welch. A technique for high performance data compression.
IEEE nuns. on Computers, 17:8-19, 1984.

[139] I.H. Witten, A. Moffat, T. C. Bell. Managing Gigabytes. Van
Nostrand Reinhold, 1994.

	String pattern Matching For A Deluge Survival Kit
	Report Number:
	

	tmp.1307986960.pdf.GkLH5

