
Purdue University Purdue University

Purdue e-Pubs Purdue e-Pubs

Department of Computer Science Technical
Reports Department of Computer Science

1999

Compression of Biological Sequences by Greedy Off-Line Textual Compression of Biological Sequences by Greedy Off-Line Textual

Subsitution Subsitution

Alberto Apostolico

Stefano Lonardi

Report Number:
99-037

Apostolico, Alberto and Lonardi, Stefano, "Compression of Biological Sequences by Greedy Off-Line
Textual Subsitution" (1999). Department of Computer Science Technical Reports. Paper 1467.
https://docs.lib.purdue.edu/cstech/1467

This document has been made available through Purdue e-Pubs, a service of the Purdue University Libraries.
Please contact epubs@purdue.edu for additional information.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Purdue E-Pubs

https://core.ac.uk/display/4951952?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://docs.lib.purdue.edu/
https://docs.lib.purdue.edu/cstech
https://docs.lib.purdue.edu/cstech
https://docs.lib.purdue.edu/comp_sci

COMPRESSION OF BIOLOGICAL SEQUENCES BY
GREEDY OFF-LINE TEXTUAL SUBSTITUTION

Alberto Apostolico
Stcfano Lonal'di

Department of ComputeI' Sciences
PUl'due Univel'sity

West Lafayctte, IN 47907

CSD TR #99-037

Novembcl' 1999

COMPRESSION OF BIOLOGICAL SEQUENCES

BY

GREEDY OFF-LINE TEXTUAL SUBSTITUTION *

Alberto Apostolico Stefano Lonardi

Purdue University and Unlversita di Padova

1. Introduction and Summary

For some notable classes of data, the two tasks of compression and analysis or inter­
pretation are often and subtly intertwined. Biological sequences, specially DNA, have
been long been regarded in this spirit (see, e.g., [6]). The deoxyribonucleic acid (DNA)
c9nstitutes the physical medium in which all properties of living organisms are en­
coded. The knowledge of its sequence is fundamental in molecular biology. Molecular
sequence databases (e.g., EMBL, Genbank, DDJB, Entrez, SwissProt, etc.) currently
collect hundreds of thousand of sequences of nucleotides and amino-acids from bio­
logical laboratories all over the world, reaching into the thousands of gigabytes, and
are under continuous expansion. .

DNA compression by standard methods such as, e.g., the Lempel-Ziv family of
schemes does not seem to fully exploit the redundancies inherent to those sequences.
The design of ad hoc methods for the compression of genetic sequences constitutes,
therefore, an interesting and worthwhile task. Along these lines, a corpus of spe·
cialized approaches to DNA compression has been developed in the recent past. As
highlighted above, pendant notions of information content and structure have been as­
sociated with the compressibility of a sequence. From such a perspective, the amount
of compression achievable on genetic sequences has been used in the detection of
fragments carrying biological significance, or in assessing the relatedness of fragments
and sequences, We refer to, e.g., (2, 6, 7, 8, 10, 11, 12, 15, 16] and references therein
for a sampler of the rich literature existing on these subjects.

In bio-sequence repositories and other applications, like for instance in the pro­
duction of a CD-ROM or magnetic disk for massive data dissemination, one could
afford the extra cost of performing compression off-line in exchange for some gain
in compression [5]. In view of the intractability of optimal off-line macro schemes

• Corresponding Address: Department of Computer Sciences, Purdue University, 1398 Computer
Sciences Building, West Lafayette, IN 4.7907, USA. {axa.stelo}lIlcs . purdue . edu Work supported
in part by NSF Grant CCR-9700276, by Purdue Research Foundation Grant 690-1398-314.5, and by
the Italian Ministry of University and Research.

1

[18], various approximate schemes have been considered. Here we follow one of the
simplest possible steepest descent paradigms. This will consist of performing repeated
stages in each one of which we identify a substring of the current version of the text
yielding the maximum compression, and then replace all those occurrences except
one with a pair of pointers to the untouched occurrence. This is somewhat dual with
respect to the bottom up vocabulary buildup scheme considered by Rubin [17] and,
more recently, in [9]. As seen in [3], this simple scheme already poses some interesting
algorithmic problems. In terms of performance, the method does outperform current
Lempel-Ziv implementations in most of the cases. Here we show that, on biolog­
ical sequences, it beats all other generic compression methods and approaches the
performance of methods specifically built around some peculiar regularities of DNA
sequences, such as tandem repeats and palindromes, that are neither distinguished nor
treated selectively here. The most interesting performances, however, are obtained in
the compression of entire groups of genetic sequences forming families with similar
characteristics. This is becoming a standard and useful way to group sequences in a
growing number of important specialized databases. On such inputs, the approach
presented here yields scores that are not only better than those of any other method,
but also improve increasingly with increasing input size. This is to be attributed to
a certain ability to capture distant relationships among the sequences in a family, a
feature the merits of which were dramatically exposed in the recent paper [4].

2. Overview of the Method

The basic structure of greedy off-line compression was detailed in [3]. At the generic
step, a word is selected such that its encoding would yield the highest contrac­
tion in the text. To estimate such a contraction without actually carrying out
the encoding, we need to know, for each substring, its maximum possible num­
ber of nonoverlapping occurrences in the text. For example, w = aba occurs 11
times in x = abaababaabaababaabababababaa, with starting positions in the set
{1 , 4, 6, g, 12, 14, 17,19,21,23, 25}, but only 7 mutually disjoint occurrences can be
chosen at most.

Figure 1 displays a linked implementation of the augmented suffix tree index struc­
ture that supports such a statistics. With respect to a standard statistical index, a
twofold modification is neeq.ed. On the one hand, the weight (statistics) in each node
does no longer coincide with the number of leaves in the subtree rooted at that node,
as it would be the case with a standard suffix tree. On the other, auxiliary unary
nodes are needed in order to pin down changes in the statistics that occur in the
middle of arcs. The efficient construction of this augmented index in minimal form
(i.e., with the minimum possible number of unary nodes) is quite elaborate and takes
O(nlog' n) time and O(nlog n) space. (refer to [3J and references therein). The result
is called the Minimal Augmented Suffix Tree of x. Alternatively, it is not difficult to
build T~ in O(n log n) expected time by straightforward iterated suffix insertions.

We discuss now some encodings and related gain measures. It is not easy to define
precisely an a-priori measure of the gain function G that drives the substring selection
at each stage, since at the time when we need to estimate the contraction potentially

2

abll. Ilba $•.b•b• . . ,
, , ~.bo. , 1 bo'-...

bo abo aha .. $

~, 1 bo'

\.b • b a .b • aha .. $

~.bo .. ,- ~ , ~ bo'

\bo • bo bo a bo aba •. $

, ~aboL ~ bo', , •
ba .bo aba .. $

, ~ , boO
~ ~

,,,."," 10"""""""""'.""
II. b b .. b • • b • • b • b • .. b • b • $

Figure 1: linked implementation of the minimal augmented suffix tree for abllllhllb••baababllababa$. The label of a
leaf is the starting position of the suffix described on the path from the root to that leaf. Each node is weighed by the
maximum possible number of nonoverlapping occurrences for a string lenninating at any of the symbols on the preceding
arc. Beginning with :<I standard tree, insertions of unary nodes and weight changes are needed in order [0 produce this type
of index,

induced by a particular substring, we do not have all the costs in place. Letting l(i)
be the number of bits needed .to encode integer i, we fix tentatively l(i) = [l.ogil
at the time the gain is computed. We consider three alternative measures of gain,
assuming w is the current candidate word.

In Scheme 1, we assume that all the Iw nonverlapping occurrences of the string
ware removed from the text, while w itself is saved in an auxiliary data structure
that thus contains: (1) the string w, which is Bmw bits long, where m w = Iwl and
B = log lEI; (2) the length mw of w, at a cost of l(mw) bits; and (3) the fw positions
of w in x, at a global cost bounded by Iwl(n) bits. The corresponding gain is given
by G,(w) = Bfwmw - Bmw - l(mw) - l(fw) - fwl(n) = (fw - I)Bmw -l(mw) ­
l(fw) - fw1(n).

In Scheme 2, we assume that one of the Iw copies of w is kept in the original text,
marked by a "literal identification" bit, while the remaining Iw -1 copies are encoded
by pointers, each pointer being preceded by a suitable identification bit. For this, we
need an auxiliary bit vector. In summary, we need (B+1)mw bits for the original copy
of w, and (fw-1){l(n)+I(mw)+ 1) bits for the fw-1 pointers. The difference between
these expressions yields G,(w) = (B+ l)fwmw - (B +l)mw- (fw -1)(I(n) +l(mw)+
1)(fw-1)(B+1)mw-(fw-1)(l(n)+l(mw)+1) = (fw-1)«(B+l)mw-l(n)-I(mw)-I).

In Scheme 3, words in the textfile are replaced by pointers to their corresponding
entries in an external dictionary. Thus, following the selection of w at the generic iter­
ation, w is added as a new entry into the dictionary and all of its occurrences become
pointers to that entry. This still requires an auxiliary bit~vector except possibly for the
the words in the dictionary. The plain text representation of all the occurrences of w

3

..ito (78,521)papor2 (82,199)
encoder 3iu time in !i:::e time in'

OFF-LINEj 30,848 3.21 16,426 1.66
OFF-LINB:! 33,757 3.01 17,741 2.2'1
OFF-LINE3 30,219 2.38 10,086 2.38

, • , ••• , •• ,. " " u " " " .. ,. "

~ , , ,
Figure 3: A first glance at the three OFF-LIN"E encoders" perfor­
mances on a 300Mh~ Solaris machine.

d_'1 I~:::, ..

Bmw + (l(d) + l)fw + l(mw)

encoder !i:e b"
GZw 91,827 2.38
PACK 86,281 2.19
COMPRESS 86,009 2.18
BZIP2 85,705 2.17
BZIP 84,809 2.15
OFF.LINE3 77,764 1.97
eDNA 10 76,471 1.94
BIOCOMPRESS2 [8J 75,682 1.92
AED [IJ 75,407 1.913

Figure 2: Illustrating Scheme 3 for w= aba: d is the
si~e of lhe diclionary, "(1)" denotes a pointer to the
first entry in lhe dictionary, Land P mark literals and
poinlers, respectively.

Figure 4: Comparing OFF-LINE with DNA-specific compres- .
sion programs on lhe third chrrmosome (chrlII) of the yeast
(315,344 bps)The parameter '(pc represents the average num­
ber of bits per character in the compressed representalion (some
final sizes are extrapolate<! from Table 1 or [1]).

requires (B+ l)fwmw bits. The costs of the pointer-based representation are now (see
Figure 2): Bmw bits for the string w in the dictionary, l(mw) to store the length m w ,

l(d)jw for the lw pointers inside the text, where d is the size of the dictionary. The"re­
suIting expression for G3 (w) is G3 (w) = (B +l)fwmw -Bmw - (l(d) +l)fw -l(mw) =
B(Jw -l)mw + fwmw - (l(d) + l)fw -I(mw).

It is important to observe that, for any of the above specifications of G and any
word w in x, G(w) is a monotone increasing function of mU/. Moreover, the maximum
number of nonoverlapping occurrences of w in x does not change in the middle of an
arc of T:r:. Therefore, the word maximizing the gain at each stage always ends on a
node of 1':r:. If now w is this word, then its occurrences are suitably encoded, and the
whole process is repeated until the gain becomes zero or negligible, according to some
predetermined threshold.

3. Results

The three schemes just described were embedded in as many encoders, respectively
called OFF-LINE!, OFF-LINEz and OFF-LINE3' implemented in C++, and exten­
sively tested. Table 3 offers a first glance of the performances of the three encoders
on two typical inputs, namely, paper2 from the Calgary Corpus and mito, the mito­
chondrial DNA sequence ofthe yeast (Saccharomyces Cerevisiae). Running times are
in the order of 2-3 minutes for files of about 80 KB on a 300 Mhz machine running
under Solaris. In terms of compression, the best encoder is OFF-LINE3, followed by
OFF-LINEI and, at some distance, OFF-LINE2.

Testing performances among textual substitution methods over the entire Calgary
Corpus, OFF-LINEJ outperforms the other two encoders on most inputs. As a whole,
OFF-LINE encoders perform better than the rest on most inputs, and loose marginally
to GZIP where they do. Crossing the boundary of textual substitution methods, the

4

block-sorting techniques BZIP and BZIP2 outperform GZIP and OFF-LINE on the
whole Calgary Corpus. As is seen next, a different scenario is displayed when we turn
to biological data sets.

We compare the performance of OFF-LINE encoders with those of standard com­
pression programs in the Table 1. The encoder OFF-LINE3 outperforms each and
every general purpose encoder on the fourteen chromosomes and the mitochondrial
DNA of the yeast. It should be noted that the actual compressions are very small and
sometimes negative. In fact, raw biological sequences (notably, those coming from
coding regions [13]) are known to be hard to compress. However, even comparing
our encoders with programs specifically designed to compress DNA, the difference in
performance is not large, as shown in the Figure 4.

It is worthwhile to highlight such DNA-specific analyzers and compressors. As
mentioned, information theoretic analyses of biological sequences mingle with the
very dawn of bioinformatics studies (see, e.g., [6]), but this area has known recently
a considerable revival of interest in view of the massive production of genomic se­
quences of various kinds. In this context, the detection of redundancy serves not only
the purpose of achieving more compact descriptors, but also, and perhaps more im­
portantly, may act as a filter of possibly relevant biological functions. The tenet there
is that an incompressible string is more random and thus less likely than a repetitive
one to carry some biological function.

Due to mutations, errors in the sequencing process, and other biological events,
a substantial part of the redundancy present in DNA manifests itself in form of
consecutive (tandem) repeats of the same word or motif, and palindromes. However,
such tandem repeats and palindromes are not exact. Rather, they may occur with
substitutions, insertions or deletions of symbols. Moreover, palindromes are actually
complemented, meaning that in the reverse half of the word the base Ais mirrored by
a T (and vice-versa), while C is mirrored -by a G (and vice-versa).

Among the recent dedicated approaches to DNA compression, the one by Grum­
bach and Tahi [7, 8], called BIOCOMPREss2, extends LZ-77 to catch very distant
repeats and complementary palindromes.

Loewenstern and Yianilos [10] consider the problem of computing good estimates
of the entropy of DNA sequences by building a PPM-like predictive model. With
respect to the original PPM, they extend the context model by allowing mismatches.
Their algorithm estimates the parameters of the model, called CDNA, via a learning
process that tries to optimize a complex objective function. The general problem is
known to be)\fP-complete, but they devise more realistic approximation schemes.

Allison, Edgoose and Dix propose the most computationally intensive approach
to DNA compression [I}. They search for both approximate repeats and approximate
palindromes. Their primary purpose is not to compress the text, but rather to model
the statistical properties of the data as accurately as possible and to find patterns and
structures within them. They build a model with parameters such as the probability
of repeats) of the length of repeats, and of mismatches within repeats. The parameters
of the model are estimated by an expectation maximization algorithm that takes time
O(n2

) at each iteration. Their results may well be taken to represent the current "state
of the art", but as said the algorithm is extremely slow.

5

File Size Huffman. LZ-78 LZ.77 BWT BWT
{bytes} PACK COMPRESS GZIP BZIP BZIP2 OPF-L1NE3

chrI 230,195 63,144 62,935 66,264 61,674 62,373 56,015
chrII 813,131 222,597 219,845 236,837 218,163 221,032 201,180
chrIII 315,344 86,281 86,009 91,827 84,809 85,105 77,764
chrIV 1,522,191 416,516 409,957 440,056 407,799 411,250 370,796
chrV 514,860 157,415 155,944 161,149 154,580 155,131 141,910
chrVI 270,148 74,077 73,873 78,925 72,838 73,651 67,391
chrVII 1,090,936 298,680 294,417 317,282 293,079 296,245 269,265
chrVIIl 562,638 154,110 152,265 163,135 151,240 152,992 139,271
chrlX 439,885 120,669 118,965 127,805 118,182 119,553 109,303
chrX 745,443 20<1,152 201,783 216,148 200,325 202,223 184,287
chrXI 666,448 182,377 180,100 194,119 179,306 180,901 IG5,478
chrXII 1,078,171 295,441 291,754 305,653 288,112 290,800 259,898
chrXIIl 924,430 253,176 249,099 267,127 248,450 250,735 227,610
chrXIV 784,328 215,020 212,219 228,757 210,988 212,816 194,947
chrXV 1,091,282 298,762 294,921 317,971 293,838 297,279 2119,921
chrXVI 9<18,061 286,579 264,113 278,651 254,947 257,590 233,150
mito 78,521 18,149 17,890 19,369 17,962 18,094 16,086

TClbie 1: CompClring OFF-LINE: with other compression programs_on the chr'l.mospmes of the yeast.
,

Finally, we run OFF-LINEa on families of related and unrelated genetic sequences.
Entries in most genetic databases are flat text files containing one or more sequences
that are usually functionally related, with some annotations. The fastaformat is the
most commonly used standard for storing and exchanging genetic files, The generic..
fasta file contains one or more blocks. Each block is composed by one or more
annotation lines each starting with the symbol >, followed by the genetic sequence.

Table 2 shows the results of running OFF-LINE3 on several families of sequences
of the yeast genome. The complete dataset is available at http://wvw . cs .purdue.
edu/homes/stelo/Off-line/. The ,file Spor...All...2x. fasta is artificially obtained
by concatenating Spor...All.fasta with itself, in an attempt to probe into extreme
cases of inter-sequence correlation {4]. The last two families (8 and 9) are a segment
of all the upstream regions of the yeast and thus not strongly related. Table 2 shows
that not only the absolute performance of OFF-LINE, but also its relative advantage
over the other methods improves as the input size increases. Likewise, as soon as the
input files contain sequences not as strongly related, the improvements, while still
present, decay immediately, as shown for files 8 and 9 in the table. The ability to
capture distant relationships is enhanced in the comparison with GZIP and BZIP2
as we move from their default window sizes (9DDKb in BZIP2) to smaller sizes. The
results, shown in Figure 7, suggest that the relative advantage of OFF-LINE will
increase as it will be applied to larger and larger families.

4. Fine Tunings

The most time-consuming activity of the compression phase is the construction of
the index trie and its annotation with the values of the gain. We employed three
heuristics to overcome the high computational demands of a "full-fledged" version of
the compressor.

Table 5 shows the results achieved by one of these heuristics on the basic algorithm,
in which more than just one substring selection and substitution is performed between

6

mitopapor2

Q 5I.1:~ time'min 311:C lime min'
1 30,773 19.70 16,326 7.06
2 30,780 10.36 16,367 4.06
5 30,785 5.06 16,405 2.24

10 30,787 3.21 16,4.46 1.66
20 30,826 2.39 16,476 1.36
50 30,904 1.97 16,632 1.28

100 30,923 1.86 16,702 1.37
1,000 30,923 1.98 16,702 1.47

Figure 5: Performances of OFF-LINI,\ for dilTerenl sizes of the candidates heap. We fixed lIlin.ol;C = 2, IIlin..length = 2,
I:=: 100.

two consecutive updates of the statistical index. Of course, such an approach saves
time on one hand, but it risks blurring the perception of the best candidates for
.substitution. In our implementation, a heap is maintained with the statistical index,
containing at each step the Q best words in terms of G, for some chosen value of
the parameter Q. Between any two consecutive index reconstructions, the Q strings
in the heap are retrieved and used in succession in a contraction step for the text.
It is possible at some point that a string from the heap will no longer be found in
the contracted text. In fact, part of the words in the heap turn out to be useless in
general. In -any case, as soon as all words in the heap have been considered, a new
augmented trie is built on the contracted text.

As the Table displays, the number of individual substring substitution passes over
the text grows with the maximum allowed size of the heap. On the other hand,
we spend less and less time building weighted tries. The overall result is, within a
wide interval, a considerable speed up with respect to the eager version of OFF-LINE
without substantial penalty in compression performance. When the size of the heap
becomes too large '(approximately Q > 100 in our experiments) only a small subset
of the words in the heap is used: most of the computational effort is spent in pattern
searching, which results in deterioration of both speed and compression.

Whenever one can assume it as being highly unlikely that very long words occur
frequently in a text, then building the statistics for all the substrings can be a waste
of resources. Pruning the tree speeds up considerably the implementation and saves
large amounts of memory. Pruning the tree does not mean that we could completely
miss the word involved in a long substitution. If the current best substitution is a
word w longer than the threshold 1, then the encoder will eventually choose some
substring of w of length 1 because that substring occurs without overlap at least as
many times as w. The table in Figure 6 shows that the pruned version of OFF-LINEl
at 1= 100 performs almost ten time faster and achieves exactly the same compression
as the version that builds the complete tree.

The collective speed-up gained from these heuristics combined is significant: our
original implementation took several hours to compress those files while afterwards
it would complete in few minutes. What is even better, the corresponding loss of
efficiency in terms of compression is almost negligible.

As documented in some additional tables, a few hundred iterations of the word
selection loop of OFF-LINE suffice on inputs of the order of 100,000 symbols. This sug­
gests that dedicated fine-grained parallel architectures of this kind would implement

7

Figure 6: Comparing the performance of OFF-LINE I for different
choices of the maximum allow~d length of a candidate for substitu­
tion. We tilted min..occ "" 4,1 "" 4,Q =10.

Family LZ·77 BWT
GZIr> -1 BZIP2 -1 OFF-LINEJ

(a) 76,629(~9.1%) 63,332(14.2%) 54,317
(7) 153,103 57.0% 126,314(47.890) 65,891

I ~izc fim~rrn;n ~ize lim~ rnin
10 30,986 2.58 17,044 0.29
50 30,664 2.62 16,491 1.32

100 30,636 2.68 16,470 1.38
~ 30,636 19.39 16,470 10.31

78 603 80
112 474 128

61 309 68
383 1297 441
109 276 118

22 226 30
10:14 1009 162

91 264 102
51 543 63

108 376 123
49 302 58

444 1443 499
187 706 212

24 4:41 72
128 924 147
193 755 217

Si=~

230,195
813,137
315,344

1,522,191
574,860
270,148

1,090,936
562,638
139,885
745,143
666,448

1,078,171
924,430
784.,328

1,091,282
918,061

File
chrI
chrII
chrIII
chrIV
chrV
chrVI
chrVII
chrVIII
chrIX
chrX
chrXI
chrXII
chrXIII
chrXIV
chrXV
chrXVI

Figure 8: Iterations of the maio loop of OFF-LINE
on the chromosomes of the yeast.

Illitepapar2

Figure 7: Constraining the compe.titors to work on small win­
dows enhances the g;'lin of OFP-LINE. Here the input strings 6
and 7 correspond, respectively, to the families of Spor.All.f...st....
Spor.All.2x.fastll (cf. table 2 for their respective statistics).

Family TO~~/ ~i:) Huffma.n LZ-78 LZ-77 BWT
bytes k PACK COMPRESS GZIP BZIP2 -9 OFF·LINEJ

(1) 25,008 29 7,996{ II .090) 7,875(9.6%) 8,008{1I.1%) 7,300(2.!>%) 7,110
(2) 31,039 36 9,937{12.!>90) 9,646(9.8%) 9,862{1I.8%) 9,045(3.8%) 8,697
(3) 32,871 36 10,59°(12.290) 10,223(9.091) 10,379(10.4%) 9,530(2.4%) 9,:101
(.) 54,325 63 17,295(14.6%) 16,395(8.991) 16,961(12.9%) 15,490(4.690) 14,778
(5) 0 112,507 130 36,172(11.190) 33,440(11.0%) 33,829(12.0%) 31,793(6.191) 20,758
(') 0" 222,453 258 70,755(23.2%) 63,939(u.o%) 68,136(20.J90) 61,674(1l.99:.) 54,317
(7) 444,906 51' 141,431 53.4901 124,637 t7 .190 135,816.!>1.590 85,1<12 22.69:. 05,891
(8) 399,615 191 121,700(1'l.390) 115,029(1.2290) 115,023(7.229:.) 112,363(:5.090) 106,722
(9) 1,001,002 477 305,054 11.9'" 286,971 6.4'" 285,064 5.690 280,334 4.1'" 268,612

Table 2: Comparing OFP-LINE3 with other com~ession programs on families of sequences of the yeast. The figures
in parentheses report percentage g;'lins achieved by OFF-LINE:3. k is the number of upstream sequences in each ramify,
individual sequence length is 800 bps except in the last two rows. where it ;s 2.000. The alphabet consists of about 50
symbols. The input strings 1-9 correspond, in this order to the families of Spor.E'arlyll. fasta. Spor.EarlyI. fast ...,
HBldBn..GCr. fasta, SperJfiddl0. fast... , HBldBn.All.f8JIt ... , Spor..Al1. fasta. Spor..All..2x .fast", .A.ll.lJp_400k. fast",
All.lJp.1l1. f ...stll.

virtually instantaneous encoders for biosequences and general inputs alike. Figure
8 shows the modest number of iterations of the main loop performed by OFF-LINE

on our inputs. The experiments reported in Figures 5 and 6 show that such a num­
ber of iterations is negligible in a parallel context. Therefore, the most expensive
tasks, represented by the tree constructions, can be limited considerably in a parallel
implementation, turning the method into an oI;L-line, even real· time application.

Since the number of iterations performed determines the size of the vocabulary,
whence ultimately of pointers, this generates "quantization" phenomena in the neigh­
borhood of certain values that play critical roles in a computer program. Figure 9
displays the sensitivity of the current implementations to pointer encodings at the
crossing of one byte. The two curves plot the sizes of the compressed strings mito and
paper2, respectively, at all consecutive stages of the iterated substitutions performed
by OFF-LINE3' Following a steady increase until iteration 256, the compression starts
decreasing as soon as OFF-LINE3 must employ more than one byte to represent a
pointer. In addition to this, the erratic shape of the plot for paper2 suggests, with

8

-,
""" ----,- -,-
,- -
"M

l ,- l ...,- -,=
,- -,-
I."" -• • ,. ,. - - - •- " 'CD "" "'"..-

Figure 9: Compressed sizes of mito (left) and papor2 (right) versus number or iterations of OPF-LINEJ_

its several local minima, that it is hard at run time to pin down precisely the best
moment when to stop the iterations. .- -.
5. Concluding Remarks

We have presented a small battery of compressors that perform well on all data but
especially well on biological data. The basic para.digm is uncluttered, relatively easy
to program, and acceptably fast in comparison .to ad~hocl considerably slower and
more involved methods.

Besides the obvious challenge of d~veloping versions specifically tailored to bio­
logical sequence data, a number of interesting questions emerged in the course of the
experiments which shall warrant further study and experimentation. These include
analysis of allowing variable window sizes, beUer approximations of the gain, fine­
tuning of the number of iterations and of the encoding at the outset. As already noted
in [3], OFF-LINE may be usefully regarded also as a paradigm for inferring hierar­
chical grammatical structures in sequences, along the lines of [14], which appears to
yield interesting insights into the structure of biological and general sequences alike.

Acknowledgements. We are thankful to E. Rivals, J. Storer and F. Tahi for helpful
discussions.

References

[1] L. Allison, T. Edgoose, and T. 1. Dix. Compression of strings with approximate repeats.
InteU. Sys. in Mol. BioI., pages 8-16, 1998.

[2] L. Allison, D. Powell, and T. I. Dix. Compression and Approximate Matching, Com­
puter Journal, 42, vol.1, pages 1-10, 1999.

[3] A. Apostolico and S. Lonarm. Some theory and practice of greedy off-line textual
substitution. In J. A. Storer and M. Cohn, eds., Data Compression Conference, pages
119-128, Snowbird, Utah, 1998.

9

[4] J. Bentley and D. McIrlroy. Data compression using long common strings. In J. A.
Storer and M. Cohn, eds., Data Compression Conference, pages 287-295, Snowbird,
Utah, 1999.

[5] S. DeAgostino and J. A. Storer. On-line versus off-line computation in dynamic text
compression. Inform. Process. Lett., vo1.59, no.3, pages 169-174, 1996.

[6J L. Gatlin. Information Theory and the Living Systems. Columbia University Press,
1972.

[7] S. Grumbach and F. Tam. Compression of DNA sequences. In J. A. Storer and
M. Cohn, eds., Data Compression Conference, pages 340-350, Snowbird, Utah, 1993.

[8] S. Grumbach and F. Tahi. A new challenge for compression algorithms: genetic se­
quences. Inform. Proc. and Mngm., vo1.30, no.6, pages 875-886, 1994.

[9] N. J. Larsson'_and A. Moffat. Offline dictionary-based compression, In J. A. Storer and
M. Cohn, eds., Data Compression Conference, pages 296-305, Snowbird, Utah, 1999.

[10] D. M. Loewenstern and P. N. Yianilos. Significant lower entropy estimates for natural
DNA sequences. In J. A. Storer and M. Cohn, eds., Data Compression Conference,
pages 151-160, Snowbird, Utah, 1997. Also, Journal of Computational Biology, vo1.6,
no.1, 199~:.

[11] D. M. Loewenstern, H. M. Berman, and H. Hirsch. Maximum a posteriori classification
of DNA structure from sequence information. Pacific Symp. Biocomputing, pages 667­
678,1998.

[12] A. Milosavljevic and J. Jurka. Discovery by m.inimallength encoding: a case study in
molecular evolution. Machine Learning, vo1.l2, pages 69-87, 1993.

[13J C. Nevill-Manning, and I. H. Witten. Protein is incompressible. In J. A. Storer and
M. Cohn, eds., Data Compression Conference, pages 257-266, Snowbird, Utah, 1999.

[14J C. Nevill~Ma.nning, I. H. Witten, and D. Maulsby. Compression by induction of hier­
archical grammars. In J. A. Storer and M. Cohn, eds., Data Compression Conference,
pages 244-253, Snowbird, Utah, 1994.

[15J E. Rivals, J. P. Delahaye, M. Dauchet, and O. Delgrange. A guaranteed compres­
sion scheme for repetitive DNA sequences. In J. A. Storer and M. Cohn, eds., Data
Compression Conference, page 453, Snowbird, Utah, 1996.

[16} E. Rivals, O. Delgrange, J. P. Delahaye, M. Dauchet, M. O. Delorme, A. Renaut, and
E. Ollivier. Detection of significant patterns by compression algorithms: the case of
approximate tandem repeats in DNA sequences. CABIOS, vo1.13, no.2, pages 131-136,
1997.

[17] F. Rubin. Experiments in text file compression. Communications of the ACM, vol.19,
no.ll, pages 617-623, Nov. 1976.

[18J J. A. Storer. Data Compression: Methods and Theory. Computer Science Press, 1988.

10

	Compression of Biological Sequences by Greedy Off-Line Textual Subsitution
	Report Number:
	

	tmp.1307986960.pdf.wdeol

