
Purdue University Purdue University 

Purdue e-Pubs Purdue e-Pubs 

Department of Computer Science Technical 
Reports Department of Computer Science 

1998 

Bond System Monitor Bond System Monitor 

Kyung-Koo Jun 

Ladislau Bölöni 

Ruibing Hao 

Dan C. Marinescu 

Report Number: 
98-026 

Jun, Kyung-Koo; Bölöni, Ladislau; Hao, Ruibing; and Marinescu, Dan C., "Bond System Monitor" (1998). 
Department of Computer Science Technical Reports. Paper 1414. 
https://docs.lib.purdue.edu/cstech/1414 

This document has been made available through Purdue e-Pubs, a service of the Purdue University Libraries. 
Please contact epubs@purdue.edu for additional information. 

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Purdue E-Pubs

https://core.ac.uk/display/4951937?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://docs.lib.purdue.edu/
https://docs.lib.purdue.edu/cstech
https://docs.lib.purdue.edu/cstech
https://docs.lib.purdue.edu/comp_sci


BOND SYSTEM MONITOR

Kyung-Koo Jun
Ladislau Boloni

Ruibing Hao
Dan C. Marinescu

Department of Computer Sciences
Purdue University

West LarayeUe, IN 47907

CSD-TR #98-026
August 1998



Bond system monitor

Kyung-Koo Jun, Ladislau Baloni, Ruibing Hac, and Dan C. Marinescu
uunkk, baroni, hao, dcm@cs.purdue.edu)

Computer Sciences Department, Purdue University
W. Lafayette, IN 47907, U.S.A.

August 6, 1998

Abstract

Bond is a message-oriented middleware for network compuling on a grid of autonomous
nodes. It consists of a distributed object communication fabric, servers, and agents. Core
servers are permanem objects providing services such as directory service, dispatching,
authentication, monitoring, and others. The Bond system monitor is responsible for
starring up core servers, keeping them running, and balancing the load among them. In
this paper, we discuss lhe remote server stan-up and the execu(ables failure detection
functions of the monitor and present the backup monitor.

Contents:

I. Abbreviations and terms
2. Introduction
3. System monitor

Remote server stan-up
Failure detection
BackUp monitor

4. Future work
5. Conclusions

1. Abbreviations and terms

Backup system monitor: core server; it takes control of the system when
the primary system monitor fails_

Shadow of a Bond object: abstraction supporting communication with a
remote object. A shadow is a local object acting as a proxy for the
remote object, like CORBA's stubs_

DSVN - Directory Server Virtual Network; collection of shadows of
directory servers. This object allows any server to communicate with
the directory servers.

Workspace: a container object. It provides references to a subset of
local objects.

Monitor-info object: an object that provides information to the system
monitor. This object is created at the workspace creation time.

Sub-protocol: sub-set of KQML messages used by objects to implement
different functions. It is equivalent to method invocation in CORBA
or RMI.

Performative: component of a KQML message describing the action to be
performed.



PrimarY copy: the original object replicated to a remote workspace.
Prima~ system monitor: core server responsible for configuration

management, availability and load balancing.
ResidentVN - Resident Virtual Network: a collection of shadows of

residents.
Secondary copy: the replicated object in a workspace from the primary

copy.
Subscription: the action allowing a workspace called subscriber to

monitor another workspace called publisher.
SystemVN - System Virtual Network: a collection of shadows of all

active executables.

2. Introduction

Bond is a Message Oriented Middleware, MOM, for network computing on
a grid consisting of autonomous nodes. It consists of a distributed
object communication fabric, servers, and agents. Core servers are
permanent objects providing services such as directory service,
dispatching, authentication, monitoring, and others. Agents provide
support for activities like scheduling, brokerage, remote execution of
computations, and so on. The survey of Bond is presented in [IJ, (2], [3],
[4] and reviewed briefly below.

The Bond objects are persistent network objects, communicate with
each other, can be instantiated and run remotely, and can be saved on
permanent storage [2] ,[4]. Objects in the memory are said to be active
while objects in the secondary storage are passive [3].

The Bond object hierarchy is presented in [3]. In this hierarchy:

that implement

It implements the common
unique bondID, address,

bondObject: is the root of the hierarchy.
fields of all Bond objects (e.g., name,
and type).

bondData: is the common ancestor for the objects that
persistent data in the external storage.

bondExecutable; is the common ancestor of the classes
executable programs such as servers and agents

represents

Shadow objects provide a high level abstraction for a unidirectional
communication channel linking two objects together [I]. When an object
needs to communicate, it involves a directo~ service. If the object is
found, a shadow of the remote object is created and the connection is
established. The say method of a shadow object allows a string to be
transmitted to the remote object whose say method in turn is invoked to
process the message. The realize method creates a local copy of the
remote object by serialization [3].

A virtual network is an abstraction for a set of objects
functionally related to one another [1], [4]. It is a local collection
of shadow objects. An object creates a virtual network to manage a set
of related remote objects. For example, a directory server maintains
the virtual network of the registered executables [3].

KQML , the Knowledge Query and Manipulation Language [5], [6]
as an inter-object communication language. KQML messages,
performatives, allow to encode basic abstractions like

2

is used
called

asking,



replying, achieving, subscribing, or notifying while the contents of
the messages are partially encoded in parameters and partially assuming
to be known by both parties [2]. There are several classes of
performatives: informative performatives like tell and deny, effector
performatives like achieve and unachieve, notification performatives
like subscribe and discard, networking performatives like register and
unregister.

Sub-protocols (2] are sub-sets of the KQML messages, exchanged among
objects in a particular semantic relationship like client-server
interactions, monitoring, event handling, cooperation, etc. For
example, the property access sub-protocol is used for retrieving and
modifying properties of objects.

The basic element of Bond architecture is a cell, a collection of
Bond objects, coexisting on a given host [1]. The cell consists of a
local directory (a collection of references for local objects), a
resident (the main control thread of the cell), other threads spawned
by the resident, including a messaging thread, and two mailboxes, an
inbox and an outbox.

The local messaging thread waits for messages delivered to its
inbox, then parses them to determine the local destination objects and
invokes the say method on the target object. The say method of the
shadow places a message in the outbox of the messaging thread, which in
turn transmits it to the inbox of the destination cell.

A workspace is a container object for collection of references to
local objects. In case of a remote object, the local copy should be
created by the realize method of the shadow. A particular instance of
the workspace is a user's workspace consisting of all objects owned by
the user. A Bond executable is an ancestor of all executable programs
and has one workspace. The executable is called the owner of the
workspace. The workspace contains the virtual network of the owner.

The descendents of the Bond executable object are servers, agents,
residents, and wrappers [3]. Servers are permanent; their life-time is
of the same order as the life-time of the system and provide system
wide services like directory service, authentication & software
distribution service, monitoring, persistent storage service,
dispatching. Agents are started upon request e.9., scheduling agents
and security agents. They work in conjunction with one or more objects
and terminate at the completion [4]. Residents are the main threads of
control of a cell and Bond executables are started from them, as
discussed later. The functions of wrappers are discussed in (3).

3. System monitor

The system moni tor is a
configuration management, remote
error and failure detection and
balancing.

server with three functions:
start-up and shutdown of servers,
recovery, and (c) core servers

{al
{bl

load

The sys tern moni tor has three
Network (SystemVN) , the Resident
Directory Server Virtual Network

virtual
Virtual
(DSVN) .

3

networks: the System Virtual
Network (ResidentVN) , and the
The SystemVN consists of the



shadows of all active executables. The ResidentVN and the DSVN
the shadows of residents and directory servers respectively.
section, we discuss the server start-up, the failure detection,
backup moni tor.

Remote server start-up

contain
In this
and the

Bond executables run within a cell. A cell must be started on a host
to run an executable. Cells are started from the command line using an
initiator or by remote execution methods provided by the operating
systems. The initiator initializes the cell, and leaves the cell
running with two threads, a resident and a messaging thread [1]. Other
threads running Bond executables are started remotely by the system
monitor or locally from the command line parameter of the initiator.

The system monitor uses the agent control sub-protocol to start up
the server. Once started the server must register with both the system
monitor and one of the directory servers using the registration sub
protocol. At least one directory server should be available if a cell
exists. The system monitor starts a directory server on the first
registering cell automatically.

The agent control subprotocol is used to control the execution of
the Bond executables. It consists of two performatives as shown in
Table 1. The registration subprotocol is used by the Bond executables
to register with the system monitor and the directory server. It
consists of two performatives as shown in Table 2.

Performative : content Parameters Description
achieve start agent :agent type of ask to initiate

object the execution of
the object

tell new agent : agent ID of new notify the start
object up

Table 1. Agent control sub-protocol

Performative : content Parameters Description
achieve register : name bondID A Bond executable

:address address named bondID at
address registers
with the system
monitor and the
directory server

recommend type :narne bondID The system monitor
one : address address recommends an

executable the
type server named
bandID at address

Table 2. Registration sub-protocol

4



Figure 1 illustrates the server start-up process on a cell: the
system monitor sends to a resident a request to start up a server; the
resident starts up the server, which in turn registers with the
monitor; the system monitor recommends one directory server with which
the server should register. The system monitor is started from the
command line parameter of the initiator.

1. (achiev~ :contenl stan-agent)

3. (tell :conlent new-agent)

4.(achieve :conte

6.(achieve ;content register)

Figure 1. The server start up procedure on a remote host. The resident
running on that host is contacted by the system monitor using the agent
control sub-protocol. Once started the server registers with the monitor
and the directory server using the registration sub-protocol

Failure detection

The system monitor is responsible
servers and residents. We first discuss

for detecting the failure
workspace synchronization.

of

An executable has one workspace containing references to local
objects. Synchronization of workspace is an abstraction for replicating
active objects in a workspace. The original object is called a primary
copy and the replicated object is called a secondary copy. An
executable may subscribe to a set of objects in the workspace owned by
another executable. In this case, the secondary copy of the object
subject to synchronization is guaranteed "to follow N the primary copy.

All properties of the primary copy are replicated. The subscription
relationship is established between two workspaces using the monitoring
sub-protocol. The workspace that contains primary copies is called a

5



publisher and the one that includes secondary copies is called a
subscriber.

The moni toring sub-protocol is used by publishers and subscribers
for workspace synchronization. In addition, it allows one executable to
monitor other executables. The sub-protocol consists of four
performatives as shown in Table 3. The subscribe and discard
performatives are used to initiate and terminate a subscription. The
subscribe perforrnative has two parameters: interest specifies objects
by Bond ID or type; frequency specifies the desired message interval.

Publishers send periodically, at specified intervals, tell
performatives to subscribers. The bondID and address of the primary
copy, included as the parameter value of the message are used to
construct the shadow, then the realize method is invoked to create the
secondary copy. The parameter modified (yes/no) indicates whether the
primary copy was changed since the last message. If a message does not
arrive within the expected interval, the subscriber notifies the
publisher of the missing message, using the ask-one performative.

Performative : content Parameters Description
subscribe monitor info :interest ask to send

messages interest at an
: frequency interval
interval

discard monitor-stop ask to stop sending
ask one monitor poll ask immediate

reporting
tell monitor report :value reply with the

messages requested data
:modified
yes,no

Table 3. Monitoring sub-protocol

The system monitor uses the workspace synchronization to detect the
failure of servers and residents. The monitoring shown in Figure 2
consists of the following steps:

1) The system monitor subscribes to servers and residents.
2) The executable being monitored replies with periodic messages.
3) The system monitor checks the message interval by the timer.
4) If a periodic message is not received, the monitor times out and

sends inquiry messages_
5) No response to the inquiry messages is considered as the failure

of the executable.

6



1. subscribe

Figurc 2. The systcm monitor subscribes to all executables and
receives the periodic messages. The time-out triggers the monitor to
send the inquiry message.

We discuss in more detail the mechanisms used for monitoring. The
system monitor subscribes to the monitor-info object of the executables
using the subscribe performative. The monitor-info is the object
containing the bondID and the shadow of the executable. Every
executable has one monitor-info, created by default when its workspace
is instantiated.

The monitoring-message sent periodically by the monitored executable
consists of the tell performative and the bondID and the address of its
monitor-info object. The system monitor constructs the shadow of the
executable's monitor-info object and creates a local copy, using the
realize method. Then it adds to this object a new property, due-time,
that specifies the time by which the next monitoring-message should
arrive. Whenever monitoring-messages arrive, a new due-time is
calculated considering both the current time and the subscribed
interval.

The system monitor expects periodic monitoring-messages from every
executable it has subscribed to and decides that an executable is not
running if a monitoring-message is overdue. This is a fail-stop failure
[7]. To confirm the failure, the system monitor sends an ask-one
per formative using the bondID and the shadow of the executable
available from the owner and owner-shadow properties of the monitor
info object. The number of inquiry messages is recorded in the How-may
ask-one property of the monitor-info object. If this number exceeds a
pre-defined limit, the system monitor concludes that the executable is
down.

7



Backup monilor

To tolerate the failure of the primary system monitor a backup
monitor is provided. The primary monitor starts up and monitors the
execution of Bond servers including the backup monitor _ The backup
monitor runs on standby at first and replaces the failed primary
monitor.

The primary monitor is started by a system administrator I then it
starts up the backup monitor on a remote cell. The backup monitor
subscribes to the SystemVN of the primary that in turn subscribes to
the monitor-info object of the backup monitor. The primary and the
backup monitors start exchanging periodic messages.

The backup monitor not only detects the failure of the primary but
also replicates the SystemVN of the primary. The DSVN and ResidentVN of
the backup are constructed and updated from the local copy of the
SystemVN.

In case of the failure of the backup monitor, the primary just
initiates another backup monitor. Figure 3 illustrates the primary
monitor failure_ The backup monitor becomes a new primary and
subscribes to monitor-info objects of all active executables in its
Sys temVN. The subscription lets the executables replace the primary
monitor shadow with the backup monitor shadow in their virtual
networks_ A new backup monitor is started.

3.Multicast new
Address &
Subscribe

c 0 ~mu,"bI0Execulable

I.tell

tell

2.ask-one

Figure 3. Once the backup monitor discovers the primary monitor is down, it becomes
the primary monitor. It multicasts its address and subscribe messages to active
executables. Another backup monitor is started up.

8



4. Future work

Future work
synchronization

consists of a
models, and the

procedure
directory

for remote
servers load

server shutdown,
balancing.

The remote server shutdown procedure should be modified to allow
self-termination. The virtual networks containing the shadow of the
terminated server should be notified about the change; the servers
should identify a list of local objects, which must be saved before
termination and restored later e.g., a virtual network of servers.

Two new synchronization models will be added. In the Immediate
synchronization model property changes of the primary copy trigger the
"immediate" notification of the subscribers. Smart synchronization is
the hybrid of delayed and immediate models. The publisher notifies the
changes immediately and it sends a periodic message if there is no
change during the subscribed interval. Each subscription is named after
the synchronization models. The delayed subscription is proper for the
failure detection, the immediate subscription for event handling, and
the smart subscription for consistency between primary and secondary
copies.

since directory servers periodically poll the status of registered
executables, the directory server with a large number of registrations
may be overloaded. The system monitor should distribute executables
evenly to each directory server. The system monitor subscribes to
directory servers to obtain the number of registered executables and
recommends the directory server with the smallest number of registered
executables.

5. Conclusions

In this paper we present the system monitor, its functions and the
backup monitor. The system monitor is the core server providing the
server start-up and the monitoring service based on the workspace
synchronization. We discuss the agent control sub-protocol used by the
system monitor to control executable objects, the registration sub
protocol used by an executable object to register with the system
monitor and a directory server, and the monitoring sub-protocol for
workspace synchronization. The workspace synchronization is an
abstraction for replicating objects between workspaces. The delayed
synchronization occurs at the fixed intervals.

References

1. L. Boloni, K. Jun, M. Sirbu, and D. C. Marinescu. Seamless
Metacomputing with Bond. Technical Report CSD-TR #98-010, Purdue
University, April 1998.

2. L. Boloni, K. Jun, T. Daniels, and D. C. Marinescu. Message patterns
in the Bond Distributed Object System. Technical Report CSD-TR #98
004, Purdue University, March 1998.

3. L. Boloni, Bond Objects -- a white paper. Technical Report CSD-TR
#98-002, Purdue University, February 1998.

9



Laszewski. A
Computations.

Distributed

Lee, and G.
Distributed
performance

4. R. Hao, L. Boloni, and D. C. Marinescu. Bond System Security and
Access Control Models. Technical Report CSD-TR #98-019, Purdue
University, June 1998.

5. T. Finin, et al. Specification of the KQML Agent-Communication
Language. DARPA Knowledge Sharing Initiative draft, June 1993.

6. Y. Labrou and T. Finin. A Proposal for a new KQML Specification.
UMBC TR-CS-97-03.

7. P. Stelling, I. Foster, C. Kesselman, C.
Fault Detection Service for Wide Area
Proc. 7 th IEEE Symp. on High
Computing, to appear, 1998.

10


	Bond System Monitor
	Report Number:
	

	tmp.1307986960.pdf.WHrem

