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Abstract

In this paper we discuss scheduling on a computational grid of au
tonomous nodes. A two level process involyes a meta-scheduler whose
objective 1s to generate an optimal schedule and reduce the total ex
ecution time of an work-flow, and local schedulers whose objective is
to optimize the utilization of local resources. We introduce several
resource allocation and consumption models and discuss issues perti
nent to decision making with incomplete and/or outdated information.
Then we present a stock market model for sched uliug on a computer
grid with autonomous nodes.

1 Introduction

A computational grid is a large-scale, heterogeneous collection of autonomous
systems, geographically distributed and interconnected by low latency and
high bandwidth networks. The mission of a grid is to provide dependable
services at a low cost for a large community of users and to support collabo
rative work. The term l'computational grid" is based on the analogy with the
"power grid", it reflects the desire to view the network as a pool of resources
and to provide a commodity very much like the electric power and it does
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not imply any particular topology of the network. The most difficult prob
lems in a computational grid are the management and control of resources,
dependability and security.

A power grid interconnects a large number of resources with an even
larger number of consumers, for example the North American power grid has
about 10,000 generators, 100,000 transmission lines, 70,000 sub-stations and
130,000,000,000 customers. Similarly, computational grids can be intercon
nected with one another to form regional, national and even global grids with
possibly millions of systems and hundreds of millions of users. Networks of
workstations, NOWs, represent particular forms of grids.

The heterogeneity of the grid nodes implies hardware heterogeneity and
software diversity. Processors have different instruction sets, the architecture
of the nodes is different, there are MIMD as well as SIMD, distributed and
shared memory systems, the local resources of each node, main memory,
secondary and tertiary storage, are different. Specialized nodes provide mass
storage, image processing, and so on. The software available differs from
node to node. The grid should support permanent services whose life-time
is of the order of the life-time of the system, as well as transient services,
activated on-demand to satisfy a request of one user of the system.

Autonomy implies that new systems can be added to the grid and existing
systems can be removed from the grid without affecting applications running
on the grid. The management of local resources of each node of the grid are
under the control of a local agent, that may cooperate with external agents
to solve problems with a scope broader than a single system but once a task
is accepted, the system can work in isolation to complete that task.

Low latency and high bandwidth networks are required to guarantee an
acceptable response time. Some of the applications of the grid may be data
intensive, others may involve visualization and computation steering, some
may require real-time delivery constraints. A computational task for the
grid is specified as a work flow of activities and requires concurrent access to
multiple resources and coordination among different activities.

Efforts to identify the long-term research problems for computational
grids and the short-term strategies for building grids are under way [15].
The industry is building commercial grids for transaction-oriented reactive
applications using distributed object frameworks. The driving force in build
ing such grids are "natural grid applications" like the electronic commerce
where the distribution is part of the problem not part of the solution. In the
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case of grids for scientific and engineering applications the grid is viewed as
the only viable solution for solving problems that cannot be solved using the
largest systems available at a given time.

A number of ongoing meta-computing projects (4], (7], (8],[9],[11] inves
tigate environments able to transform a computer grid into a user's meta
computer with abundant resources. Such an environment is expected to
provide services we are accustomed to from single computer systems like di
rectory, event, monitoring, scheduling and other services needed to support
dependable computing. In this paper we are concerned only with resource
allocation.

2 Resource availability and consumption
models

In a meta-computing environment we expect support for scheduling depen
dent tasks [1], [2], [3], [13], [14]. The dependency graph is derived from the
meta-program provided as input to a scheduling agent whose functions are:
(a) map computational tasks to services, (b) map services to grid nodes, (c)
ensure the data flow required by the meta-program. Scheduling on a grid
of autonomous nodes raises difficult problems inherent to any decentralized
system. The problems become even less tractable when there is contention
for system resources.

Further complications arise when the knowledge about the time of need
and the amount of each resource is imprecise. In the general case the knowl
edge of the individual needs of work-flows and of the resource availability
is imprecise. Most systems require the user to provide estimates of the re"
source consumption of individual tasks of a work-flow. Sometimes the system
maintains history databases and attempts to infer the resource consumption
based upon past executions. Gathering status information about individual
resources in a system with a large number of nodes is non-trivial because of
the dynamics of the system, new nodes join the system, others quit. There
is also a considerable overhead for gathering status information and the in
formation becomes obsolete quickly.

When the execution time of individual components of a meta~program

and the data transfer times over the network are known a meta-scheduler is
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able to pre-compute an optimal schedule. An optimal schedule is one that
minimizes the total execution time of the meta-program and it can only be
enforced when there is no contention [or system resources, a situation un
likely to occur on a computer grid with independent nodes. It follows that
a meta-scheduler for a grid should pre-compute a family of near optimal
schedules and attempt to adjust to the actual load of the grid. After the
fact it can estimate the quality of service provided by the grid by comparing
the actual schedule with the optimal one. When the execution time of the
meta-components is not known, the meta-scheduler will only be able to com
pute an optimal schedule after the fact. The meta-scheduler will assign each
component of the meta-program to the fastest system it can execute on and
ensure that each component starts the execution at the earliest time after
data dependency are satisfied, a strategy called best eff01·t scheduling.

We now discuss models for scheduling on a computer grid involving local
and meta-schedulers. Local schedulers control resource allocation on each
node of the grid, their objective is to satisfy a class of preferred customers
and maximize the throughput of the local system. A meta-scheduler is a
transient agent whose objective is to optimize the execution of the application
it controls.

In our models decisions are made by local agents that have access to ac
curate information about the local system and by remoLe agents that have
incomplete or possibly ouLdated information about the state of grid nodes.
Network latency and bandwidth limit the quality and the quantity of in
formation available to a remote decision making agent. To quantify Lhese
concepts we introduce the following notations:

6 - network latency;
7/J - event realization delay;
T - time needed by the remote agent to make a decision;
{3 - network bandwidth available for transmitting state information;
TJ - frequency of state information updates;
I - amount of state information required by the remote decision making

agent;
A - amount of control information sent by the remote agent to individual

nodes;
C - amount of information for coordination of remote decision making

agents;
() - the life-time of a model parameter;
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I Guaranteed Access (G) INon guaranteed Access (N) I-

Deterministic execution (D) GD ND
Non-deterministic execution (N) GN NN

Table 1: Scheduling Models for a Computing Grid with Autonomous Nodes.

A first relation relates the quantity of information needed to make deci
sions to the available bandwidth: "I x I +A +C .$ fJ.

A second relation expresses that fact that one needs to hide behind a
temporal firewall all parameters of a model whose life-time is shorter than
the time needed to gather information, to calculate an action and send back
the necessary directives to nodes of the grid, () ~ (1{J + 26 + 'tA +7).

The first resource availability model is based upon the assumption that
access to resources is guaranteed. This model corresponds to systems which
support resource reservations or to those with dedicated resources. For exam
ple, in a real-time system, critical tasks require exclusive access to resourcesj
a large parallel system is shared using reservation schemes. A multi-computer
system is space shared among different process groups and in this case one
uses a batch queuing reservation system. The reservation schemes we are
considering are slightly more sophisticated, they imply multi-class schedulers
and guaranteed CPU time for each class.

The other availability model is based upon non-guaranteed resource ac
cess. In this case once a component is ready to run, the meta-scheduler
determines where to execute the component subject to a set of constrains
and based upon some knowledge of the state of the system. A network of
resource brokers and QoS monitors provides the information necessary to
map computations to available resources in an optimal way.

The deterministic execution resource consumption model, is based upon
the assumption that the resources needed for each task and the time when
they are needed are known in advance and the actual resource consumption
will never exceed our expectations. In case of non-dete7'11linistic execution
we may have no knowledge about the needs of a task, as is the case of a
transient service provided by a newly written program, we may know an
estimated value and be assured that there are small deviations from this
expected value, or that there are large deviations from the expected value,
as in the case of cases apply to some permanent and transient services.
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Scheduling of meta programs with components whose execution time is a
random variable requires characterization of the work requirements imposed
upon the grid. If X(O,t] is the amount of work generated by a meta-program
in the interval [O,t] and X[O,t] has stationary increments then the effective
bandwidth oj a meta-program [10] is: a(s, t) = list x (ogE[e'xX[O,,] for °<
s, t < 00 If X[O, tl = LX,[O, t] where X,[O, t] are independent then a(s, t) =
L fii(S, t). Analysis of several types of sources including periodic ones, policed
and shaped sources can be carried out.

When we combine the models described above we end up with the four
cases presented in Table 1. The model studied extensively is GD, guaranteed
access and deterministic execution. In this case an optimal or near optimal
schedule can be pre-computed; the most difficult aspect of this computation
is searching a possibly large solution space for optimal schedules. A variety
of approximate methods can be used to reduce the time needed to compute a
near-optimal solution, for example genetic algorithms and simulated anneal
ing Schedulers based upon a data flow model are used for the ND case for
example the one presented in [12]. Efforts to address the GN model are also
reported [3]. But the most difficult problems are raised by the NN model.
In the following section we introduce a model that has the potential to ac
commodate the uncertainties concerning resource availability and resource
needs.

3 A stock market model for scheduling on a
computer grid

We propose a macro model for resource allocation and consumption on a
computer grid. The stock market provides intriguing answers to questions
like estimation of the "value" of a resource based upon market consensus.
Both the providers of a service and the consumers may act to raise or lower
the price of a resource viewed as a commodity, based upon the demand for
that resource. High demand for a resource will raise its price, low demand
will lower the price. At the same time, the consumers of the resource may
influence the price based upon the quality of service evaluated after the fact.

Trading involves a decentralized system. Individuals with little or no ex
perience contact brokers who have global knowledge of all the stocks. Brokers
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provide advise and act as proxies for the. individual clients. Finally, brokers
trade on the floor of a clearinghouse.

In our model meta-schedulers are transient agents whose only objective
is to minimize the execution time of an work-flow without knowing the state
of the individual resources available in the system, they are like clients with
money but no knowledge of the stocks. Meta-schedulers need to work with
system broke7's, agents capable to locate resources and carry out the trading.
In turn, local brokers manage resources available on every node of the net
work. There is also the need for a clearinghouse, the equivalent of the Stock
Exchange. The model does not support scheduling of activities with hard
deadlines. In most cases a best-effort polley is implemented.

The model we propose is suitable for dynamic systems consisting of large
numbers of nodes and many consumers. The consumer population and the
the number of nodes varies rapidly. We also assume that many nodes arC
capable to provide the same service and that each consumer generates work
flows, or contracLs in our terminology, with many sub-contracts. Only under
these assumptions the value of a resource established through market consen
sus is meaningful and brokers playa useful role. If a service is available only
on few nodes the consumer of the service may contact directly the service
providers.

Still missing from the model arc indications on how to handle uncertain
ties about the amount of resources needed to accomplish a task. Relaying
on information supplied by the user leads to under utilization of resources
when the user takes a conservative approach or to a waste of resources in
case of aggressive specification. Databases with historic information are per
fectly suitable to provide hints when the variability of resource consumption
is low. For example, the time needed to improve the dynamic range of an
image through histogram equalization is a function of the image size, known
a-priori. But the time taken by an algorithm to identify objects on an image
depends not only upon the image size, but also upon the actual number of
objects present in the image.

We assume that critical resources are the CPU time needed to complete
a task and the communication time. The implicit assumption is that once a
task is allocated CPU time on a node of the grid other resources needed by
the task, for example main memory, disk space, and so on are allocated as
well. The alternative is to consider vectors of resources and negotiate using
these vectors.
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We propose to use concepts from futures and options markets to accom
modate the variability of resource consumption. A system broker acquires
options to resources anticipating the needs of the potential consumers. Each
acquisi tion is an option to acquire a specified amount of resources at a given
time in the future for a given price per unit of resource. Clients, in our case
meta-schedulers, contact system brokers with requests providing the start-up
time and the estimated time of use of the resource. On the service provider
side, local brokers offer to provide access to resources knowing the current
state of the system.

Before describing our model in more detail we introduce the basic con
cepts pertinent to futures and options markets [14]. An European call option
is a contract with the following conditions: at a prescribed time in the future
known as the expiry date the holder of an option may purchase an asset for
a prescribed amount, known as the exercise price. The other party of the
contract is called the writer and has the obligation to sell the asset if the
holder chooses to buy it. An American option is one that may be exercised
at any time prior to expiry. Note that this contract is a right and not an
obligation. Since the option confers to the buyer a right with no obligation
it must have some value. The buyer must pay a price for this option at the
time of signing the contract.

The price of options magnifies changes in the price of the asset, this effect
is called gearing. An example will illustrate the amplification effect. Assume
that the price of a call option is 10% of the current price of an asset and
the value of the asset doubles by the expiry date. If the exercise price of the
option is 20% lower than the market value of the asset at the expiration date
of the contract, than the buyer of the option will make a 400% profit. If the
value of the asset at the contract signing time was $1,000 then the cost of
the call option was $100, the market value of the asset at the expiry date
was $2,000, and the value of the contract was $1,600. The buyer made $400
on an investment of only $100.

Two critical questions are: (a) what is the value of an option, and (b) how
can the writer minimize the risk associated with its obligation. While the
price of the asset at the expiry date is not known at the time of purchesing
an option, it seems reasonable that the higher is the price of the asset now,
the higher the price is likely to be in the future. Therefore, the value of a
call option today depends upon the today's price of the asset. The value of
the option depends also upon the exercise price, the lower the exercise price,
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the higher the option value_ The call option price is also a function of the
expiry date. Just before the expiry date there is little time for the price of
the asset to change. Last but not least, the option value depends upon the
volatility of the asset and the interest rates.

The right to sell an asset is called a put option, it allows a holder to sell an
asset on a certain date for a prescribed amount. The writer is then obliged
to buy the asset. The put option has payoff properties opposite to that of
a call option. The holder of a call option wishes the price of the asset to
raise, the holder of a put option wants the price of the asset to be as low as
possible. The value of a put option increases with the exercise price.

Meta
scheduler

,;,"'"

.: Systom Brola!r

I'

SVslom Brokor

/
l---/

I

Local Broker

•.-'Put ---,
'OpIIons •

CI""""g HOUse. i"--- :------, Local BltIkor

.. I

I=:J.~

Figure 1: Stockmarkect model consists of meta-schedulers, system brokers,
local brokers, and clearing house

We consider the following model for meta-scheduling on a grid, shown in
Fig. 1.

(a) There are n resources, each under the control of a local broker. The
local broker sells immediate access to the local resouce at the current price
when the resource is available and issues put options reflecting its belief that
there will be an excess of capacity at some future time. A put option is a
tuple identifying the resource, the exercise time, the value, and the amount.

If LB~egin is the total values of the assets available for the local broker LBi
at the beginning of the scheduling period and LBfnd the value at the ~nd,

the objective is to maximize the local b7'Oker gain ratio defined as: LBrm =
LBrnd / LB~egin. Here LB'tnd = Lk if with tr the amount of each transaction
carried out by the local broker. There is no reward for resources that have
not been consumed. A local broker unable to make any trade will have a gain
LBrin = aand the gain for a profitable one will be LBrin > 1. The current
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price of a resource Vi = Price(l'esoul'ce;), i = 1, n is established through
market consensus.

(b) There are m« n independent system brokers, SBj, j = I,m. At
the beginning of each scheduling cycle a system broker is allocated an initial
capital SA~Cgln and it invests some of it into catl options and some into buying
immediate access to resources. Its objective is to maximize the system broker
gain ratio defined as: SBrin = SBrdjSB;egin. Here SB;nd = L.kiJ with tJ
the amount of each transaction performed by the system broker. A system
broker unable to make any trade will have a gain SBrin = o. The gain of a
broker able to break even will be sByain = 1 and a profitable one will have
SBfain > 1.

A call option is a tuple identifying the resource, the exercise time, the
value, and the amount. The broker sells assets and options in response to
requests from meta-schedulers or other system brokers.

(c) A meta-scheduler is assigned an initial capital to cover the cost of
completing the meta-program it controls. The meta-scheduler maps compu
tational tasks onto services and multicasts contract requests to the network
of system brokers. It receives bids from system brokers, selects the best bid
for each-subcontract, and issues firm orders.

The model requires the development of several algorithms.
Call-option and negotiation a/g01'ithms for a system broker. Call options

are issued based upon prediction of client needs. The negotiatIon algorithms
enable the system broker to sell the options it hold to clients or acquire from
other system or local brokers resources that may allow the broker to present
attractive global packages to clients. The objective of the algorithm is to
maximize the gain ratio of the system broker.

Put-option algorithms for a local broker. The put-option algorithm is
based upon predicition of local resource availability and the current state of
the local system. The objective of the algorithm is to maximize the gain
ratio of the local broker.

Seleclion algorithms for a meta-scheduler. The objective of the meta
scheduler is to ensure the earliest completion time of the the meta-program
subject to the funds available for the project.

Quality of service algorithms for a meta-scheduler. After the completion
of each sub-contract the meta-scheduler will evalute the quality of service.
Quality of service reports will be provided to the system brokers.

Resource price agreement alg01ithms for brokers and the clearinghouse.
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The updated price of a resource is based upon the current market value,
the offers and the demands for each resource. The price is also influenced
by the quality of service reports. Such reports are provided by individual
meta-schedulers at the completion of each sub-contract.

Option price agreement algorithms for brokers and the clearinghouse. The
price of an option will reflect the current market value, the exercise price,
the expiry date, and the volatility of the resource.

Each of these algorithms have to be designed and implemented, then eval
uated independently using analitical and simulation methods. The validation
of these models will be rather challenging because a computational grid is
still a fiction. Testing these ideas on small-scale testbeds will always raise
the question if conclusions drawn on small scale models can be extended to
large-scale systems.

Once the question of the feasibility of the model we propose is answered,
one had to compare this model with other scheduling models. To carry out
these comparisons one needs synthetic workloads for a computational grid.
From this brief discussion it follows that the evaluation of the model is a
challenging research topic in itself.

The local and system brokers will use prediction for resource availability
and consumption. When the data model is known it is understood how to
do optimal predictions. But in our case the data model is not known and we
need a universal prediction algorithm [16].

Information theory exploits the duality between the growth rate of wealth
and the entropy rate in the stock market for defining competitively optimal
and growth rate optimal portfolio strategies [6] and may provide useful hints
on the design of the algorithms introduced above.

4 Conclusions

In this paper we discuss resource allocation and consumption models and pro
pose a stock market scheduling model for a computer grid with autonomous
nodes. At the present time we are investigating analitical and simulation
tools to evaluate the model and qualitative arguments supporting the model.
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