
Purdue University Purdue University

Purdue e-Pubs Purdue e-Pubs

Department of Computer Science Technical
Reports Department of Computer Science

1998

Optimizing Orthogonal Persistence for Java (M.S. Thesis) Optimizing Orthogonal Persistence for Java (M.S. Thesis)

Kumar Jagadeeshwaraiah Brahnmath

Report Number:
98-016

Brahnmath, Kumar Jagadeeshwaraiah, "Optimizing Orthogonal Persistence for Java (M.S. Thesis)"
(1998). Department of Computer Science Technical Reports. Paper 1405.
https://docs.lib.purdue.edu/cstech/1405

This document has been made available through Purdue e-Pubs, a service of the Purdue University Libraries.
Please contact epubs@purdue.edu for additional information.

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Purdue E-Pubs

https://core.ac.uk/display/4951933?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://docs.lib.purdue.edu/
https://docs.lib.purdue.edu/cstech
https://docs.lib.purdue.edu/cstech
https://docs.lib.purdue.edu/comp_sci

OPTIl\tllZING ORTHOGONAL
PERSISTENCE FOR JAVA

Kumllr Brahnmath

Department of Computer Sciences
Purdue University

West Lafayette, IN 47907

CSD-TR #98-016
May 1998

(Master's Thesis)

OPTIMIZING ORTHOGONAL PERSISTENCE FOR JAVA

A Thesis

Submitted to the Faculty

of

Purdue University

by

Kumar Jagadeeshwaraiah Brahnmath

In Partial Fulfillment of the

Requirements for the Degree

of

Master of Science

May 1998

REVISED May 15, 1998

To Rachel

II

III

ACKNOWLEDGMENTS

Thanks to my advisor Antony Hosking, who was responsible for getting me interested

in persistent systems and who has been a cheerful guide and teacher throughout my time

at Purdue. Thanks to my committee members Jens PaIsberg and Aditya Mathur. Thanks

to Nate Nystrom for providing invaluable assistance in understanding BLOAT. Thanks to

all the members of the lab: Gustavo, Mike, Aria, Anshul and Raghu. Thanks to the Plama

group at Glasgow and Sunlabs. Thanks to my wife Rachel for her loving support and

thanks [0 my parents and Giri, who gave me support from afar. Thanks to Lyle, Judy, Eli

and Dani for everything they have done for me.

1V

TABLE OF CONTENTS

Page

LIST OF TABLES V11

LIST OF FIGURES

ABSTRACT .

1 INTRODUCTION

1.1 Orthogonal persistence

1.2 Overheads of persistence

1.3 Persistence optimizations .

1.4 Contributions

1.5 Overview ..

2 OPTIMIZING ORTHOGONAL PERSISTENCE

2.1 Read barriers

2.2 Write barriers

2.3 Swizzle barriers

2.3.1 Swizzle policies

2.3.2 Detecting and handling object faults

2.4 Barrier redundancy .

2.5 Barrier optimizations

2.5.1 Read and write barrier optimization

2.5.2 Range swizzle optimization

viii

Ix

1

2

3

4

5

5

6

6

7

7

7

8

10

11

11

12

v

Page

3 ANALYSIS AND OPTIMIZATION 14

3.1 Background 14

3.1.1 Induction variables 14

3.1.2 Terminology ... 14

3.1.3 Sequence variables 16

3.1.4 Control flow graphs . 17

3.1.5 Loops and loop inversion. 18

3.1.6 SSAform 19

3.1.7 Demand-driven SSA graph . 20

3.2 PRE over access path expressions 21

3.2.1 Terminology and notation 22

3.2.2 Barrier optimizations 24

3.3 Type-based alias analysis . . 25

3.4 Partial redundancy elimination 26

3.4.1 Java constraints on optimization 29

3.5 Demand-driven induction variable analysis (DIVA) 29

3.5.1 Cycles in SSA graphs 29

3.5.2 Detecting sequences 30

3.5.3 Tarjan's algorithm 30

3.6 Range swizzle optimizations with DNA 31

3.6.1 Classifying sequences 32

3.6.2 Well-behaved loops. . 33

3.6.3 Hoisting swizzle barriers 34

4 IMPLEMENTATION 35

4.1 The PJama persistent system 35

4.1.1 Architecture of PJama 35

4.1.2 Swizzling in Plama .. 37

4.1.3 Array swizzling. _ .

4.2 Implementation of persistence optimizations.

4.2.1 Bytecode-to-bytecode class transformation

4.2.2 Read and write barrier optimization for Plama

4.2.3 Range swizzle optimization for Plama .

4.2.4 Cache management .

VI

Page

38

38

39

40

42

42

5 EXPERIMENTS . . . -

5.1 Read and write barrier optimization

5.1.1 Benchmarks.

5.1.2 Metrics

5.1.3 Results

5.2 Range swizzle optimization .

5.2.1 Benchmarks.

5.2.2 Results

5.3 Conclusions

5.4 Future work

5.4.1 Persistence-enabled optimizations

5.4.2 Persistence-enabling optimizations _

44

44

44

46

46

47

47

48

48

49

50

50

BIBLIOGRAPHY. .. 51

LIST OF TABLES

VII

Table Page

2.1 Barrier expressions 11

3.1 Access expressions 23

3.2 Intennediate representation for access expressions. 25

3.3 FieldTypeDecl(YlP" YlP2) - - 26

3.4 Classification ofsees based on frequency of operations 33

4.1 Bytecodes requiring barriers 40

4.2 New read and write barrier bytecodes 41

4.3 New swizzle barrier bytecodes .. 43

5.1 Small 007 database configuration 45

5.2 Results of read barrier optimizations 47

5.3 Results of write barrier optimizations _ 48

5.4 Results of range swizzle optimizations 49

LIST OF FIGURES

Vlll

Figure Page

2.1 Edge Marking 9

2.2 Node Marking . 10

2.3 A loop with swizzle barriers 13

2.4 After range swizzle optimization 13

3.1 Basic sequence variable . 15

3.2 Basic loop counter ... 15

3.3 Sequence variable lattice. 18

3.4 Loop representation in the eFO 19

3.5 Loop inversion and Hoisting .. 20

3.6 Loop representation in the SSA form . 21

3.7 Demand-driven SSA graph .. 22

3.8 PRE for arithmetic expressions 27

3.9 PRE for access expressions . 27

3.10 PRE for barrier expressions . 28

3.11 see classification. . . . 31

3.12 sec classification(cont.). 32

3.13 sec classification (cont.). 33

3.14 A well-behaved loop ... 34

4.1 PJama's Object Cache Architecture. 36

IX

ABSTRACT

Brahnmath, Kumar Jagadeeshwaraiah. M.S., Purdue University, May 1998. Optimizing
Orthogonal Persistence for Java. Major Professor: Antony Hosking.

Persistent programming languages provide object persistence across program invoca­

tions, by treating volatile memory as a cache for stable storage. Orthogonal persistence

allows any object to be potentially persistent, without any restriction on its type. Adding or­

thogonal persistence to a language environment presents several perfonnance-related chal­

lenges. This work is aimed at reducing the various overheads associated with orthogonal

persistence. The costs being targeted are read barriers, write barriers and swizzle barri­

ers. A read barrier checks the cache residency of the target object while a write barrier

marks the target as dirty in the cache. Many of these read and write barriers are redundant,

and applying partial redundancy elimination of pointer-based access path expressions can

be very beneficial in eliminating them. Swizzling is the translation of an object reference

from an external, persistent fonnat to an internal, transient format; a swizzle barrier checks

and makes sure that a reference is swizzled. Swizzle barriers have the added overhead that

they are usually associated with iteration over container objects like arrays. Hence, there is

a need for an additional optimization to merge multiple swizzle barriers into one inclusive

barrier. By induction variable analysis, the bounds of a variable being used to loop through

an array can be detennined. We exploit this information to develop a range swizzle opti­

mization technique to reduce the overhead of swizzle barriers. We have implemented our

analysis and optimization framework for an orthogonally persistent Java system. In experi­

ments perfonned on several benchmarks and applications, our optimizations eliminated on

average 83 percent of read barriers, 25 percent of write barriers and 66 percent of swizzle

barriers.

1 INTRODUCTION

Thesis statement:

The overheads oforthogonal persistence can be reduced significantly by pro­

gram analysis and optimization.

The traditional model of system development has been to write application programs in

general-purpose programming languages, which create and manipulate data structures, in­

teracting with the users of the system. Long-term storage for non-transient data is usually

provided either via raw operating system files or a database management system (DBMS).

The data types provided by the language and those created by the programmer usually do

not translate directly into the file system or the DBMS world. Thus programmers must pro­

vide routines to perform this translation or utilize existing middle-ware which provides that

functionality. In both cases, an artificial barrier is erected between the program in volatile

memory and the data it needs, stored away in the labyrinth of the file system or DBMS.

Hand-coded translation is error-prone since type safety and integrity cannot be guaranteed,

thus decreasing system reliability and complicating extension and maintenance. With the

growing use of object-oriented languages, there is also the added complexity of translat­

ing from the language object model to the DBMS (e.g. relational) data model and vice

versa. This is difficult since there is no natural mapping between the two. All these com­

plexities lead to an impedance mismatch [Copeland and Maier 1984] between application

programming languages and the data storage subsystem.

Persistent programming languages have been designed with the explicit goal of erasing

these barriers and provide a natural, safe interface to data, regardless of where it is located

and orthogonal to its type. The Java™ programming language, with its regular structure

and safety features, provides a good platform for persistence [Moss and Hosking 1996].

2

One such prototype is the system implemented at the University of Glasgow [0 support

orthogonal persistence for Java [Atkinson et at. 1996]. Other efforts are also underway

[Wileden et al. 1996; Garthwaite and Nettles 1996J. The key challenge now is to minimize

the overheads of persistence, thereby making it a viable medium for system development.

This thesis demonstrates a significant reduction of the overheads of orthogonal persistence

by a combination of program analysis and optimization techniques.

1.1 Orthogonal persistence

A persistent system [Atkinson and Morrison 1995] treats pennanent storage as a stable

extension of volatile memory, in which objects may be dynamically allocated. but which

persists from one program invocation to the next. A persistent programming language

and object store together preserve object identity: every object has a unique identifier (in

essence an address, possibly abstract, in the store), objects can refer to other objects, fonn­

ing complex structures, and they can be modified, with such modifications visible in future

accesses using the same unique object identifier.

The language principles of transparency and orthogonality have been repeatedly artic­

ulated [Atkinson and Morrison 1995; Moss and Hosking 1996] as important in the design

of persistent programming languages, enabling the full power of the persistence abstrac­

tion. Transparency means that from the programmer's perspective access to persistent ob­

jects does not require writing explicit code to transfer them between stable store and main

memory. Thus, a program that manipulates persistent (or potentially persistent) objects

looks similar to a program concerned only with transient objects. Instead of explicitly

programmed reads and writes, the language's compiler and/or run-time system contrive to

automatically cache persistent objects in volatile memory on demand for manipulation by

the program. This is somewhat reminiscent of virtual memory: cache misses in a persis­

tent system are called object faults and trigger retrieval of the missing object from srable

storage into volatile memory.

Treating persistence as orthogonal to type encourages the view that a language can be

extended to suppon persistence with minimal disturbance of its existing syntax and store

3

semantics. Any object created dynamically can be made persistent by just referring to it

from an already persistent object; this is usually termed persistence by reachability. Thus,

programmers need add little to their understanding of the language in order to begin writing

persistent programs. A common way to achieve orthogonal persistence is by treating per­

sistent storage as a stable extension of the dynamic allocation heap. This allows a uniform

and transparent treatment of both transient and persistent data; persistence is orthogonal

to the way in which objects are defined (i.e.,their types), allocated, and manipulated in the

heap.

1.2 Overheads of persistence

There are a number of techniques for object faulting based on hardware support for

memory mapping, which is transparent to the compiler [Lamb et 31. 1991; Singhal et al.

1992; Wilson and Kakkad 1992; White and DeWitt 1994]. However the restrictions that

such approaches impose are often unacceptable, resulting in a lack of control over explicit

buffer management, location independence and true object identity [Kemper and Kossman

1995], not to mention a performance penalty [Hosking and Moss 1993]. In the absence of

such hardware support for object faulting, compilers for persistent programming languages

must generate explicit code before each operation that may access a persistent object to

check that it is resident in memory, and to fault it in if not. Similarly, to support efficient

migration of updates back to stable storage, compilers must generate code along with every

operation that updates a persistent object to signal that it eventually must be copie,d back

to stable storage, either when replaced in the cache or during stabilization of the persistent

store, These checks are generically tenned the persistence read barrier and write barrier,

respectively. In general they can subsume additional functionality, such as negotiation of

locks on shared objects to control for concurrent access. As such, read and write barriers

represent significant overhead to the execution of any persistent program. Since many of

these barriers are applied to the same objects repeatedly, there is a significant amount of

redundancy that can be exploited to reduce the overhead.

4

The identifier used to store and retrieve an object from stable storage is called its persis­

tent identifier (PID). The representation of object identifiers in virtual memory is usually

different from their PID fonn. This means that a conversion has to take place before a

persistent object can be accessed by a program. Swizzling is the process of converting an

object reference from its external, persistent format to an internal, transient fonnat and

caching it for future use [Moss 1992]. The motivation for swizzling is that object access

can be achieved through fast internal addressing as opposed to slow persistent identifier

(PID) translation. However swizzling has two inherent costs: the time required for the

first PID translation, and the space required to cache the translated identifier (which is im­

plementation dependent). A swizzle barrier checks to see if a reference is swizzled, and

swizzles it, if not already. This barrier is inserted when a reference is not guaranteed to

be always in swizzled state. They typically occur in the body of loops traversing container

objects like arrays.

The performance penalty paid by these barriers is exacerbated for languages that pro­

vide orthogonal persistence, since they unify the persistent and transient object address

spaces such that any given reference may refer to either a persistent or transient object.

Since every access (read or write) might be to a persistent object, they must all be pro­

tected by an appropriate barrier. Optimizations to remove redundant barriers have been

postulated in the past but have never been fully specified and evaluated [Richardson 1990;

Hosking and Moss 1990; 1991; Moss and Hosking 1995; Hosking 1995; 1997].

1.3 Persistence optimizations

We seek to reduce the overheads of persistence by program analysis and optimization.

To reduce the number of read and write barriers executed we avoid applying barriers to acw

cesses where program analysis shows that the barrier is redundant. We use a combination of

type based alias analysis (TBAA) [Diwan et al. 1998] and partial redundancy elimination

(PRE) [Morel and Renvoise 1979] on access path expressions to identify redundant read

and write barriers and eliminate them. To reduce the overhead of swizzle barriers on array

accesses in loops, we apply induction variable analysis [Gerlek et 31. 1995] to discover the

5

range of elements that are actually accessed and swizzle all those references in one swiz­

zle operation outside the loop that traverses the array_ This work aims at demonstrating

the effectiveness of these techniques to reduce the fundamental overheads of orthogonal

persistence.

1.4 Contributions

The major contributions of this work towards achieving the goal of reducing the ovecw

heads of orthogonal persistence are:

• Demonstrating the application of partial redundancy elimination over access path
expressions to eliminate redundant read and write barriers.

• Developing range swizzle optimizations based on demand-driven induction variable
analysis to reduce the swizzle barrier overhead.

• An implementation for the Plama prototype for orthogonal persistence in Java.

• Experimental evidence of the effectiveness of our analyses for the elimination of
redundant read, write and swizzle barriers.

1.5 Overview

The rest of the thesis is organized as follows. Chapter 2 describes the overheads of or­

thogonal persistence in detail, defines the analysis and optimization problem and provides

necessary background information. In chapter 3 we describe our program analysis and op­

timization framework. The application of partial redundancy elimination over access path

expressions to eliminate redundant barriers is explained. The Demand-driven Induction

Variable Analysis (DIVA) technique and its application for range swizzle optimizations is

also presented. Chapter 4 describes implementation issues and the optimization framework

for the PJama persistent system. Chapter 5 describes the experimental setup used to eval­

uate the impact of these optimizations and presents the results of those experiments. The

thesis concludes with a summary of our findings and a discussion of possible future work.

6

2 OPTIMIZING ORTHOGONAL PERSISTENCE

Orthogonal persistence seeks to provide uniform and safe access to objects regardless of

their transience or persistence. In achieving this goal, orthogonal persistence pays several

performance penalties that are fundamental to its domain. This chapter describes these

overheads and defines the notion of their redundancy. The read and write barrier overheads

are described in detail and the goal of eliminating redundant barriers is motivated and

explained. Swizzle barriers and their dynamic overhead are explored and the need for

additional analysis to eliminate swizzle barriers is described.

2.1 Read barriers

In an orthogonally persistent system, a reference could point to a transient object, a

resident persistent object or a non-resident persistent object. This means that every deref­

erence has to make sure that the target object is resident. This is termed the read barrier. A

read barrier checks to see if the object is resident and, if not, triggers an object fault. After

the object has been made resident in memory the read access can proceed. Orthogonal

persistence hides the actual location of objects under a layer of abstraction. This means

that all objects (even transient objects) end up paying the cost of read barriers. If the per­

formance of persistent programs is to approach that of their non-persistent counterparts,

the costs of read barriers must be reduced significantly, enabling persistent programs to

perfonn competitively when operating on objects that are entirely resident in memory.

7

2.2 Write barriers

Any modifications made to persistent data by a program become permanent only when

some sort of checkpoint operation is invoked by the program. If the program has modified

only a small subset of resident objects, writing all the objects back to stable storage would

be very inefficient. The optimal procedure will save only those objects that have been

modified. This means that every update to an object must mark that object as updated. This

is termed the write barrier. Similar to the case of read barriers, the cost of write barriers is

paid by all objects in an orthogonally persistent system.

2.3 Swizzle barriers

Persistent systems allow objects along with their inter-object references to persist from

one program invocation to the next. A program running on such a system may refer to both

resident and non-resident persistent objects. It may also refer to transient objects which

may become persistent in the future. To more easily provide equal treatment to all objects,

the persistent object references in a persistent object can be swizzled. If a program can

potentially see a reference that has not yet been swizzled, a swizzle barrier would have to

be inserted to protect that access.

2.3.1 Swizzle policies

There are several different swizzle policies that can be adopted by a persistent system.

The two most widely used ones are eager swizzling and lazy swizzling.

Eager swizzling

When an object fault occurs, eager swizzling will swizzle all the object references in

the faulted object. This is usually performed while the object is being copied into the

program's virtual memory and involves identifying all the references in the object and

swizzling them. The overhead of swizzling all the references can be profitable only if

objects typically contain a limited number of references. The advantage of this scheme is

8

that no swizzle barrier need be invoked to check if a reference is swizzled or not, before

using that reference to access the object it targets.

Lazy swizzling

Lazy swizzling converts references only as they are accessed; i.e. the swizzle opera­

tion is postponed to the last possible moment. This scheme avoids the overhead of eager

swizzling, especially for objects that contain a large number of references. For example,

consider an array of object references. Eager swizzling would swizzle every element in the

array. This would not be very efficient in terms of space and time if the array is sparsely

accessed. Lazy swizzling avoids the up front overhead of eager swizzling by converting

reference elements only as they are accessed. Since array elements are not guaranteed

to be swizzled. every access to an array element must be protected by a swizzle barrier.

Subsequent accesses will continue to incur the cost of the swizzle barrier.

2.3.2 Detecting and handling object faults

If a program executing in a persistent system traverses a reference to a non~resident

object then it must be made available to the program in memory. This is termed an object

fault. For an object fault to occur, the system needs some mechanism to distinguish be­

tween references to resident and non-resident objects. These mechanisms may be divided

into two categories, depending on the strategy they adopt [Hosking and Moss 1990]. For

the purposes of this discussion we view the persistent heap as a directed graph: the objects

are the nodes and the references between the objects are the edges.

Edge marking schemes take the approach of tagging the references between the objects.

If tagged as swizzled, then a reference is a direct pointer to the corresponding object in

memory; if non-swizzled then the reference consists of a persistent identifier (Pill). Edge

marking can be implemented easily by tagging pointers. When a marked link is traversed,

an object fault occurs and the object is retrieved from stable storage. The marked edge is

then unmarked. This process is illustrated in Figure 2.1(b). An apparent disadvantage of

edge marking is that PIDs can be fetched from the pointer fields of objects, passed around,

(a) Links LO non-resident objects
are marked

(b) After an objecl fault

9

"" - link to non-resident object

---- link to resident object

Figure 2.1; Edge Marking

and stored, without accessing the target object. When the target object finally is accessed

the origin of the reference may no longer be known.

Node marking schemes require that all object references in resident objects be con­

verted to pointers. In ObjectStore [Lamb et al. 1991] and Texas [Singbal et al. 1992] this

is achieved by reserving (although not necessarily allocating) virtual pages for the objects

referred to by the pointers, and protecting those pages to have the operating system trap all

access to those pages. Another approach, is to have small proxy objects (we call them/ault

blocks) stand in for non-resident objects, as illustrated in Figure 2.2(b). A fault block con­

tains the PID of the target object, and is distinguishable from an ordinary object. Whenever

a reference is followed, if it refers to a fault block, then the target object is made resident.

The fault block is changed to point to the now-resident object (see Figure 2.2(c». We call

the updated fault block an indirect block. If a reference to be followed refers to an indirect

block then the target object can be located at the cost of an indirection. The indirection

10

)------------<: /

(a) Non-resident objects arc marked

(e) An object fault occurs

(b) Faull bloch stand in for non·resident objects

(d) The lraversed link is updated

o residenlobject

....
".. " non-resident objecl

D Faull-block

Figure 2.2: Node Marking

may be bypassed by updating the traversed link to point directly to the object instead of the

fault block (see Figure 2.2(d)).

2.4 Barrier redundancy

A barrier is redundant if we can guarantee that an earlier barrier of the same kind has

already been applied to the same object, and that the earlier barrier's side-effect (e.g., to

fault or dirty the object, or swizzle the reference) has not been undone (i.e.• the barrier

is idempotent), This has implications for the interaction of barrier optimizations with the

persistence run-time system, which must not undo the effect of a barrier while optimized

code downstream of the barrier can still execute. Solving this problem requires a contract

between the optimizer and the run-time system for each kind of barrier. The contract

will depend on the specifics of the implementation so we defer discussion of this issue

11

to Chapter 4, which presents our implementation for PJama. Cutts et al. [1998] consider

the issue from the perspective of the run-time system.

2.5 Barrier optimizations

Our goal is to avoid applying barriers to accesses where program analysis shows that

the barrier is redundant. To describe the problem of redundant barrier elimination, we

define barrier expressions as shown in Table 2.1.

Table 2.1: Barrier expressions

IDescriptionIName

read(p) Read barrier Apply read barrier la, and rerum,

object referred to by p

write(p) Write barrier Apply write barrier to, and return,

object referred to by p

.nvizzle(p, i) Swizzle barrier Apply swizzle barrier to the component

of array p with subscript i

swizzleRange(PI i, j) Range swizzle Apply swizzle barrier to components

barrier of array p with subscripts in the range [i, j}

I Notation

2.5.1 Read and write barrier optimization

Given two read barrier expressions read(p) and read(q), if we can guarantee that p and

q refer to the same object and that read(p) dominates read(q) then read(q) is redundant

and can be replaced simply by q. A similar replacement can also be applied to redundant

write barriers. The crucial test here is that two access paths refer to the same object. This

amounts to detection of common access expressions, and the optimization can be framed

much like classical techniques for common subexpression elimination. In the simplest case,

two lexically identical access paths in the same scope must refer to the same object, so long

12

as no component of the path has been modified between the first occurrence of the expres­

sion and the second. Unfortunately, the possibility of aliases means that an intervening

assignment might change some component of the path through a lexically distinct access

path. Showing that intervening assignments do not modify a given access path requires

alias analysis. We use the type-based alias analysis framework of Diwan et al. [1998] to

solve the problem of aliases and apply the partial redundancy elimination (PRE) technique

of Morel and Renvoise [1979] to eliminate redundant read and write barriers.

2.5.2 Range swizzle optimization

Container objects such as arrays, are typically swizzled lazily, requiring the insertion

of swizzle barriers. Since arrays are typically accessed in loops, these swizzle barriers

end up in the bodies of loops. Often an array element like a[i] is accessed repeatedly in

the body of such a loop. Any such repeated reference must be protected by a swizzle

barrier as shown in Figure 2.3. Such repeated swizzle barriers are redundant and can be

recognized and removed by program analysis. But all swizzle barriers in the body of a

loop cannot be entirely removed, just by applying the common access path definition of

redundancy (as defined in Section 2.4). For example, in Figure 2.3, analysis may determine

that the second swizzle barrier is redundant because it is applied to the same reference a[i]

in both cases and can be removed. I The first swizzle barrier cannot be removed, since it

is not redundant and remains a serious overhead to the execution of the loop. To remove

that swizzle barrier, it has to be made redundant by performing a range swizzle barrier

operation outside the loop. To do this, we would like to determine the range of the array

that is being accessed, so that we can swizzle that range of references before entering the

loop. To determine the access range, we have to find loops that are accessing arrays of

objects and detennine the bounds of the loop. If the lower bound of a loop traversing array

a is found to be l, and the upper bound is found to be u, then we can insert a range swizzle

swizzleRange(a,l, u) outside the loop as shown in Figure 2.4. This enables the elimination

lIt is difficult to lreal swizzle barriers as expressions since they do not relurn any value. So, our current

implementalion of PRE leaves it lo DIVA to eliminate such redundanlswizzle barriers.

13

i {- 1

while (i SII) do

swizzle(a, i)
e of-- a[i]'x

swizzle(a, i)
f <- a[iJ.y
it-i+l

endwhile

Figure 2.3: A loop with swizzle barriers

i of-- I
swizzleRange(o,l,n)
while (i ::;; n) do

e f--- a[iJ.x

f <- a[iJ.y
if---i+l

endwhile

Figure 2.4: After range swizzle optimization

of swizzle barriers on the c9mponents of array a in the body of the loop. We develop a

Demand-driven Induction Variable Analysis (DIVA) technique which can perfonn these

optimizations. This technique is described in the next chapter.

14

3 ANALYSIS AND OPTIMIZATION

3.1 Background

This section describes some terminology and background information which is nec­

essary to understand our analysis and optimization framework. Induction variables and

sequence expressions are defined and explained. The Control Flow Graph (CFG) and the

Static Single Assignment representation of the CFG are explained with illustrative exam­

ples. We follow the terminology used in Gerlek et at. [1995].

3.1.1 Induction variables

Induction variables are program variables whose successive values fonn a definite pat­

tern over some part of a program, usually a loop [Muchnick 1997]. They belong to a

broader group of variables known as sequence variables where the pattern could be lin­

ear, polynomial, geometric, wrap-around, periodic or monotonic. Detecting such sequence

variables is the first step towards implementing array swizzle optimizations. Once a se­

quence variable is found, the range of values it can assume is detennined, thereby enabling

swizzle checks to be hoisted out of loops.

3.1.2 Terminology

Basic sequence variables

Given a statement s within the body of a loop 1assigning some arbitrary ex.pression e

[0 a scalar, integer variable v as in Figure 3.1, if expression e contains an occurrence of v,

then v is a basic sequence variable in t, and e is the associated sequence expression.

15

I:
while (conditioll) do

s: v~e

endwhile

Figure 3.1: Basic sequence variable

hf--O
I:
while (condition) do

h-<-lI+l

endwhile

Figure 3.2: Basic loop counter

Derived sequence variables

Given a statement s within the body of a loop l assigning some arbitrary expression e to

a scalar, integer variable v as in Figure 3.1, if expression e does not contain an occurrence of

v but does contain an occurrence of some sequence variable w, then v is a derived sequence

variable in t.

Basic loop counter

Associated with each loop I is a basic loop counter, h, whose value is zero on the first

iteration of the loop and is incremented by one at the end of each subsequent iteration,

as shown in Figure 3.2. The goal is to assign closed fonn expressions in tenns of h to

sequences.

16

3.1.3 Sequence variables

Linear induction variables

Usually a loop's iterations are counted by an integer-valued variable that proceeds up­

ward (or downward) by a constant amount with each iteration. Such sequence variables are

termed linear induction variables. Often, additional variables, most notably subscript val­

ues follow a pattern similar to the loop-control variable's, although perhaps with different

starting values, increments, and directions.

Polynomial induction variables

Usually induction variables that occur in typical programs are linear functions of a loop

index, fanned by the addition of loop-invariant values. However, when the tenn added

to the induction variable is a linear induction variable, a polynomial induction variable is

fonned. A sequence variable whose expression contains an addition(or subtraction) of a

polynomial induction variable. yields a polynomial of a correspondingly higher degree.

Geometric induction variables

In addition to linear and polynomial sequence variables. programs may also contain

geometric sequences. These arise when the sequence variabJe is multiplied by some loop­

invariant value. This multiplicative factor defines the base of the geometric tenn in the

sequence expression.

Wrap-around variables

Wrap-around variables occur when a variable is assigned a value from outside the loop

on the first iteration. and then takes on the pattern of another sequence variable (typically a

linear induction variable) for the remainder of the iterations.

17

Periodic sequences

A sequence variable which keeps changing its value between the same two values forms

aperiodic sequence. Such variables are also referred to as flip-flop variables.

Monotonic sequences

Monotonic sequences arise when a variable is conditionally incremented by a known

constant value. Depending on the constant, fOUf classes can be distinguished: monotoni­

cally increasing. monotonically decreasing, monotonically strictly increasing, and mono­

tonically strictly decreasing.

Sequence variable lattice

The range of sequence expressions can be expressed as a lattice, ordered by set contain­

ment, as in Figure 3.3. In this lattice, T represents "no expression", and..l represents "all

expressions". The class containing wrap-around variables is represented below all other

classes except -1-, since in the limit, a wrap-around variable can be cascaded through an

infinite set of values, and therefore represent any sequence of n values in a loop. When

certain sequences degenerate to simpler fonns, the classification of the sequence variable

can be strengthened. This will cause the classification to rise in the lattice.

3.1.4 Control flow graphs

A basic block is a set of instructions in the program where the flow of control enters

at the first instruction and exits only at the last instruction. A control flow graph (CFG) is

a directed graph where the nodes are the basic blocks representing the program with the

edges representing jumps from one block to another. The CFG also has an entry node and

an exit node, with an edge from the entry node to any block at which the program can be

entered and an edge from any block at which the program can be exited to the exit node.

To take into account the possibility of the program not being run, there is an edge from the

18

T

I
invariant

linear

SlriClly increasing strictly decreasing polynomial periodic

increasing decreasing geometric

wrap-around

I
...L

Figure 3.3: Sequence variable lattice.

entry node to the exit node. We say a node x dominates node y, if all paths from the entry

node to y contain x.

3.1.5 Loops and loop inversion

A loop is a strongly connected component of the CFG. The loop header is the block

within the loop that dominates all other blocks in the loop. When hoisting loop invariant

code out of loops, care must be taken to hoist it to a position where it will be executed only

if the loop is executed. Several loop transformations provide safe places to hoist such code.

The first inserts a new block called the pre~header.which has an edge going out only to the

header and all the edges which formerly entered the header from outside the loop instead

enter the pre-header. Similarly, a post-body block can be inserted, which has an edge going

out only to the header and all the edges which formerly entered the header from inside

lhe loop instead enter the post-body block. The second transformation, loop inversion,

19

£
~

it-O

while (i <n) do

swiule(a,i)
e 0(- a[i].x

it- i+l
endwhile

(al A loop (b) Its CFG representation

Figure 3.4: Loop representation in the CFG

amounts to converting each while loop into a do-while loop. For example,looking at

the loop in Figure 3.5(a), which is the inverted fonn of the loop in Figure 3.4(b), the loop

invariant code can be hoisted out into the Pre-Header protected by the if statement. As

previously explained in Section 2.5.2, in this loop, the swizzle barrier can be hoisted out

as a swizzleRange as shown in Figure 3.5(b).

3.1.6 SSA form

Static single assignment (SSA) is a program representation which provides a compact

fonn of variable definition and use information. In this form, each use of a program vari­

able has exactly one corresponding reaching definition. Where distinct definitions of a

variable merge at confluence points in the CFG, operators called $-functions are intro­

duced to merge each of the reaching definitions at that point. The $~function in tum serves

as a definition point. Unique definitions of a variable are represented by subscripting. A

20

,
Ex"

,

Ellil

, T
if(i -en)

Ca) Inverted loop Cb) After hoisting

Figure 3.5: Loop inversion and Hoisting

loop and its corresponding SSA form are shown in Figure 3.6. We use the SSA fonn of

program representation in our induction variable analysis.

3.1.7 Demand-driven SSA graph

Our induction variable analysis framework is based on the demand-driven SSA rep­

resentation of the CFG. Instead of the traditional definition-use chains [Aho et al. 1986],

demand-driven SSA fonn uses factored use-definition (POD) chains [Stoltz et aI. 1994;

Wolfe 1996]. In this fannat, uses and <\I-functions have pointers to the corresponding defi­

nition of the variable. For the purpose of recognizing induction variables, merge operators

that occur at loop headers need to be distinguished from those that occur as a result of

forward branching. Within loop headers, merges of multiple definitions of a variable are

iorO
irO

loop:
if (i ~ n) then

break

i r i+ 1
cndloop

(a) A loop

loop:
i j r $(iO,;2)
if (i. ~ 110) then

break

i2 r il + 1
cndloop

(b) Its SSA representation

Figure 3.6: Loop representation in the SSA fonn

handled by ,u-functions instead of $-functions. The semantics of the ,u are essentially thee

same as the $. with two differences:

• The arity of a p-function is always two since pre-header and post-body blocks ar,::e
added to each loop as described in Section 3.1.5.

• One of the reaching definitions at the p will always be from within the body of thee
loop (the intemal ssalink) and the other will always be from outside the loop (thee
external ssalink).

The SSA graph is an abstraction representing the operations within the SSA fonn of thee

program. The CFG and SSA graphs for the loop in Figure 3.6(b) are shown in Figure 3.~.

The use-definition chain fonn. as opposed to the traditional definition-use chain form, fina.:is

the reaching definition at a given use by following the links from the use's node backwarG.:!,

against the data flow. On a recursive traversal of the SSA graph, each use demands Eooe

value of the earlier definition. We use this property in our demand-driven induction variabitle

analysis.

3.2 PRE over access path expressions

Our analysis and optimization framework revolves around partial redundancy eliminaa­

tion over pointer expressions that access persistent objects [Hosking et at. 1998]. We actoppt

22

0

I
define io , - -,"" , ,, ,

j
, ,, ,

- ,-- , ,, ,
, 4;' = J.1(i•• i,) ,

, ,, , ,, , ,,, -- ,, ,, use ;, use lIe ,,
\ I

,, ,, ,, ~ ,,
/'

,, ,,
if ,, ,, ,, , F T ,

, ,, ,-,- ,
, ,

I
,

use i , ,
\ I

,,,
+ ,,
t ,

, ,
,

define i,
~-

Post-Body I

Figure 3.7: Demand-driven SSA graph

standard terminology and notations used in the specification of the Java programming lan­

guage to specify the analysis and optimization problem.

3.2.1 Terminology and notation

The following definitions paraphrase the Java specification [Gosling et al. 1996]. An

object in Java is either a class instance or an array. Reference values in Java are pointers to

23

these objects, as well as the null reference. Both objects and arrays are created by expres­

sions that allocate and initialize storage for them. The operators on references to objects

are field access, method invocation, casts, type comparison (instanceof), equality op­

erators and the conditional operator. There may be many references to the same object.

Objects have mutable state, stored in the variable fields of class instances or the variable

elements of arrays. Two variables may refer to the same object: the state of the object can

be modified through the reference stored in one variable and then the altered state observed

through the other. Access expressions refer to the variables that comprise an object's state.

A field access expression refers to a field of some class instance, while an array access

expression refers to a component of an array. Table 3.1 summarizes the two kinds of ac­

cess expressions in Java. We adopt the term access path [Lams and Hilfinger 1988; Diwan

et al. 1998] to mean a non-empty sequence of accesses, as specified by some access expres­

sion in the source program. For example, the Java access expression a.b[i].c is an access

path. Also, without loss of generality, our notation will assume that distinct fields within

an object have different names.

Table 3.1: Access expressions

IVariable accessed

p.f Field access Field f of class instance referred to by p

p[i] Array access Component wilh subscript i of array referred to by p

INotation IName

A variable is a storage location and has an associated type, sometimes called its compile­

time type. Given an access path p, then the compile-time type of p, written Type(p), is

simply the compile-time type of the variable it accesses. A variable always contains a

value that is assignment compatible with its type. A value of compile-time class type S is

assignment compatible with class type T if Sand T are the same class or S is a subclass

of T. A similar rule holds for array variables: a value of compile-time array type sO is

assignment compatible with array type TO if type S is assignable to type T. Interface types

also yield rules on assignability: an interface type S is assignable to an interface type T

24

only if T is the same interface as S or a superinterface of S; a class type S is assignable to

an interface type T if S implements T. Finally, array types, interface types and class types

are all assignable to class type Obj ect.

For our purposes we say that a type S is a subtype of a type T if S is assignable to T. 1

We write Subtypes(T) to denote all subtypes of type T. Thus, an access path p can legally

access objects of type Subtypes(Type(p)). Alias analysis refines the type of variables to

which an access path may refer. If two distinct access paths refer to variables of the same

type then they may be aliases for the same variable.

3.2.2 Barrier optimizations

In an orthogonally persistent implementation of Java access expressions may refer to

both persistent and transient objects. Thus, every field or array access must be protected by

an appropriate barrier applied to the class instance or array being accessed. For example,

in the absence of optimizations, the access path a.b[i].c requires read barriers on the class

instance referred to by a, the array referred to by b and the object referred to by the ith

component of b. Referring to the ith component of b must be protected by a swizzle barrier.

If the expression appears as the target of an assignment, then the object referred to by a.b[i]

also requires a write barrier.

Our goal is to avoid applying barriers to accesses where program analysis shows that

the barrier is redundant. To do so, we must make them explicit in the access paths and

then apply some definition of redundancy. Making barriers explicit means obtaining for

the source code access expression an intennediate representation (IR) in which the barriers

are exposed. Optimizations then operate on the IR to remove redundant barriers. Thus, we

add barrier expressions (as defined previously in Table 2.1) to the specification of access

expressions given in Table 3.1. For each source code access expression Table 3.2 gives

IThe term "subtype" is not used at all in the official Java language specification [Gosling el al. 1996],

presumably to avoid confusing lhe type hierarchy induced by the subtype relation with class and interface

hierarchies.

25

the fann of the corresponding explicit-barrier IR. Here we assume that arrays are always

swizzled lazily.

Table 3.2: Intermediate representation for access expressions

Source Intennediate representation

Read access Write access

p.f read(p).f wrire(read(p)). f

p[i] (I = read(p);slVizzie(t,i);t[i]) IVrile(read(p)) [iJ

3.3 Type-based alias analysis

Type-based alias analysis (TBAA) [Diwan et a1. 1998] assumes a type-safe program­

ming language such as Java, since it uses type declarations to disambiguate references. The

compile-time type of an access path provides a simple way to do this: two access paths p

and q may be aliases only if the relation TypeDecl(p,q) holds, defined as:

TypeDecl(p,q) =Subtypes(Type(p)) nSubtypes(Type(q)) '! ~

A more precise alias analysis will distinguish accesses to fields that are the same type

yet distinct. This more precise relation, FieldTypeDecl(Pl q), is defined by induction on the

structure of p and q in Table 3.3. Again, two access paths p and q may be aliases only if

the relation FieldTypeDecl(p,q) holds. It distinguishes accesses such as t.f and t.g that

TypeDecl misses. The cases in Table 3.3 determine that:

1. Identical access paths are always aliases

2. Two field accesses may be aliases if they access the same field of potentially the same
object

3. Array accesses cannot alias field accesses

4. Two array accesses are aliases if they may access the same array (the subscript is
ignored)

5. For all other pairs of access expressions they are aliases if they have common sub­
types

26

1 P P true

2 p.f q.g (J ~ g) /\ FieldTypeDecl(p, q)

3 p.f q[i] false

4 p[i] q[j] FieldTypeDecL(p,q)

5 p q TypeDecl(p,q)

Table 3.3: FieldTypeDecl(JlPl, JlP,)

~ FieldTypeDecl(Y!P] , Jl.Pz)

[Diwan et al. 1998] further refines type-based alias analysis by enumerating all the

assignments in a program to detennine more accurately the types of objects an access

path may reference: two variables may alias an object of a given type only if there are

assignments of that type to both variables. This refines the TypeDecl relation, which merges

the declared type of a variable with all of its subtypes, to only merge a type T with a

subtype S if there actually exists an assignment of S to T in the program. Unfortunately,

this requires having the complete program available for analysis at the time of optimization.

In general, Java's use of dynamic loading, not to mention the possibility of native methods

hiding assignments from the analysis, precludes a closed world analysis. Still, it may be

possible to approximate closed world analysis in a persistent system that stores all classes

pertaining to persistent data. Our plans for exploring this have been described in Cutts and

Hosking [1997].

3.4 Partial redundancy elimination

Our approach to barrier optimization is based on application of partial redundancy

elimination (PRE) [Morel and Renvoise 1979] to access expressions. To our knowledge

this is the first time PRE has been applied to access paths. PRE is a powerful global op­

timization technique that subsumes the more standard common subexpression elimination

(CSE). PRE eliminates computations that are only partially redundant; that is, redundant

only on some, but not all, paths to some later re-computation. By inserting evaluations on

27

those paths where the computation does not occur, the later reevaluation can be eliminated

and replaced instead with a use of the precompmed value. This is illustrated in Figure 3.8.

In Figure 3.8a, both a and b are available along both paths to the merge point, where ex­

pression a +b is evaluated. However, this evaluation is partially redundant since a +b is

available on one path to the merge but not both. By hoisting the second evaluation of a +b

into the path where it was not originally available, as in Figure 3.Sb, a +b need only be

evaluated once along any path through the program, rather than twice as before.

b b
a+b

y
b b

t=o+b t=a+b

y
a a a a

a+b

Cal Before PRE (b1After PRE

Figure 3.8: PRE for arithmetic expressions

a a a a

a.b[i}.c

y
a.b[iJ,e

Cal Before PRE

i
r = a.b[i].c t = a.b[i}.c

y
(b) After PRE

Figure 3.9: PRE for access expressions

Traversing an access path requires successively loading the pointer at each memory

location along the path and traversing it to the next location in the sequence. Before ap­

plying PRE to access path expressions, one must first disambiguate memory references

28

sufficiently to be able safely to assume that no memory location along the access path can

be aliased (and so modified) by some other distinct access path in the program. Consider

the example in Figure 3.9. The expression a.b[iJ.c will be redundant at some subsequent

reevaluation so long as no store occurs to anyone of a, a.b, t, a.b[i] or a.b[i].c Occurs on

the code path between the first evaluation of the expression and the second. In other words,

if there are potential aliases to anyone of a or i. a.b, a.b[i] or a.b[i].c through which those

locations may be modified between the first and second evaluation of the expression, then

that second evaluation cannot be treated as redundant. By exposing read and write barriers

in the intennediate representation for access expressions partial redundancy elimination

will optimize them in the same way as other expressions (Figure 3.10).

Swizzle barriers cannot be treated as expressions in our current implementation since

they do not return any value. Thus they do not fit easily into this framework and PRE

cannot currently eliminate them in the same manner as read and write barriers. But this

is of minor consequence since only a small percentage of swizzle barriers are inherently

redundant in typical programs. To eliminate a significant percentage of swizzle barriers we

need to make them redundant by range swizzle optimizations using DIVA.

read(a)

y
a a a a

1 = read(a) 1= read(a)

y
read{a)

(al Before PRE (bl After PRE

Figure 3.10: PRE for barrier ~xpressions

29

3.4.1 Java constraints on optimization

Java's thread and exception models impose several constraints on optimization. Ex­

ceptions in Java are precise: when an exception is thrown all effects of statements prior

to the throw-point must appear to have taken place, while the effects of statements after

the throw-point must not. This imposes a significant constraint on code motion optimiza­

tions such as PRE and DNA, since code with side-effects cannot be moved relative to code

that may throw an exception. The thread model prevents movement of access expressions

across (possible) synchronization points. Without inter-procedural control-flow analysis

this must include all method invocation sites, since the callee, or a method invoked inside

the callee, may be synchronized. Fortunately, read, write and swizzle barriers for orthogo­

nal persistence do not have side-effects that are relevant to source-level program semantics,

so their motion is unconstrained.

3.5 Demand-driven induction variable analysis (DIVA)

We describe our induction variable analysis and optimization framework in this sec­

tion. The technique presented here is based on Factored Use-Def (FUD) chains [Stoltz

et al. 1994; Wotfe 1996], a demand-driven representation of the popular Static Single As­

signment (SSA) fonn. In this fonn, strongly connected components of the associated SSA

graph correspond to sequences in the program [Gerlek et al. 1995].

3.5.1 Cycles in SSA graphs

Observe the SSA representation of i in Figure 3.6(b) and in Figure 3.7. Beginning at

the J.l defining i" the external ssalink defines the value of il on the first iteration of the loop.

On subsequent iterations the value of i, is defined by the internal ssalink to the definition

of iz at the statement iz {- i, + 1. This statement in tum obtains the value of i, from the

J.l above. Thus these edges form a cycle which represents the flow of i around the loop.

The variable i is now identified as a sequence variable since it is defined as a function of

itself on a previous iteration. Also, we can define the sequence expression for i as a linear

30

function of the basic loop counter, h. The variable i2 is equal to h + 1, which gives us the

sequence expression.

3.5.2 Detecting sequences

Determining symbolic expressions for sequence variables is a two step process:

1. The sequence variables are found by partitioning a graph representation of the pro­

gram in SSA form into strongly connected components.

2. The nodes in each component (sequence) are assigned symbolic expressions describ~

iog the sequence fonn, such as the closed forms in tenns of the loop counter h.

Each strongly connected component (SeC) corresponds to a loop-invariant value (viewed

as a trivial sequence), a proper sequence fann (one of the types described in Section 3.1.3)

or an unknown sequence form.

The sequence type and expression for a given component are dependent on the sequence

types and expressions of those variables they use. Thus any given component will first

demand the classification of any components it requires for its own classification. This

demand-driven process is accomplished by using Tarjan's algorithm for detecting SCCs

in directed graphs [farjan 1972]. This algorithm has the property that SCCs are visited

only after visiting all descendant components in the graph; thus, a directed acyclic graph

of components is fonned and processed in postorder during a depth-first traversal. The

working of the algorithm is described next.

3.5.3 Tarjan's algorithm

This section describes the process of detecting strongly connected components in the

SSA graph. Each node, t, in the graph contains:

Type: the type of the operation

Lowlink: used within the algorithm

Status: one of (notyet, onstack, done)

31

do
FilldSCC(loop)

with
procedure Fi"dSCC(l) begin

Number -(- 0
SIQckTop t- 0

for each t E I.operations do
fStatlls t- notyet

for each I E L.operalions do
if (t,Slaws = notyet) then

visitNode(t,l)

Figure 3.11: sec classification

HasLeft, HasRight, HasSSA: true if the node has those fields.

The algorithm uses procedure FindSCC. called for each loop in the program, to visit each

node in the loop. The procedure visitNode first visits all of a node's SSA graph succes­

sors and then processes that node. Depending on whether the node is a trivial compo­

nent or the root of a sec, one of two classification procedures are called. The procedure

visitDescendent allows the treatment of a value from outside the current loop as invari­

ant and also terminates the recursive depth-first traversal. These procedures are shown in

Figures 3.11- 3.13.

3.6 Range swizzle optimizations with DIVA

Our goal is to reduce the number of swizzle barriers executed. As explained in Sec­

tion 2.5.2, we need to find the bounds of an induction variable that is being used to traverse

a given loop in the program. For this purpose, we have to classify sequences after their

identification. The Classification proceeds as follows.

32

do
visitNode(loop, node)

with
procedure visiINode(l,t) begin

t.Statlls t- onstack
Number t- Nllmber+ 1

low t- Number
this t- Number
pushStack(t)

if (t.HasLeft) lhen
low t- min(low, visitDescenctent(t.Left, I)

if (t.HasRight) then
low t- min(low, visitDescendent(t.Right, I)

if (t.HasSSA) then
low t- min(low, visitDescendent(t.SSA, i»

I.Low/ink t- low

if (this:l low) then
return

if (SrockTop = t 1\ I.Type f. J1) then
ClassifyTrivial(t,l)

popStackO
tStatus t- done

else
Component t- 0

do
StackTop t- popStackO
StackTop.Sratl/s t- done
Component t- Component U StackTop

while (StackTop i- t)
CIa,ssifySequence(Component, 1)

Figure 3.12: sec classification(cont.).

3.6.1 Classifying sequences

Once an sec and its associated sequence variable have been identified, the sequence

can be classified into one of linear, polynomial, geometric, wrap-around, periodic, mono­

tonic or unknown. The conditions for determining the classification are shown in Table 3.4.

If none of those conditions apply then the sequence is considered to be unknown and as­

signed class.1. Also, the criteria for the linear, polynomial, and geometric classes are

33

do
visitDescendent (loop, node)

with
procedure visitDescendent(l,t) begin

if (colltains(l, t.Loop» then
return (Number)

if (I,Status = notyet) then
visitNode(t,l)
return (t.LowLink)

else if (I.Status = onstack) then
return (t.Lowlink)

return (Number)

Figure 3.13: sec classification (cont.).

I sequence class [LJI:] arilk I
linear 1 0 >0
polynomial 1 0 >0
geometric 1 0 >0
wrap-around 1 0 0
constant periodic >1 0 0
nonconstant periodic >1 0 >0
monotonic 1 >0 >0

Table 3.4: Classification of sees based on frequency of operations

identical. They are distinguished by examining their operands. For example, linear se­

quences can be identified if the operations in the component consist of uses, definitions

and additions or subtractions of loop-invariant values or other linear variables. The sec
defining a linear sequence will be a simple cycle, since the induction variable may only

appear once on the right-hand side of the expression.

3.6.2 Well-behaved loops

For our optimizations we consider the class of well-behaved loops [Muchnick 1997].

With reference to the loop in Figure 3.14, a well-behaved loop is one in which eXPI assigns

a value to an integer-valued variable i, exp2 compares i to a loop constant, exp3 increments

or decrements i by a loop constant, and stmt contains no assignments to i. Other loops

34

for (exPI;exP2;exPJ) do
stmt

Figure 3.14: A well-behaved loop

like while and do-while loops which follow the same semantics as the for loop in

Figure 3.14 are also considered to be well-behaved.

3.6.3 Hoisting swizzle barriers

To hoist out swizzle barriers from loops, all the strongly connected components in

the program are detennined. Trivial components which are loop-invariant are excluded.

Components which represent well-behaved loops are recognized and the induction variable

i is identified. As explained previously in Section 3.5.1, the external ssalink of the /1­

function in the loop header provides the expression ini! which was assigned to i outside

the loop. By recognizing the condition which terminates the loop, the expression term

which is the last value assigned to i can be found. If the loop is traversing an array, a range

swizzle instruction with the range [init, tenn] can be inserted into the pre-header as shown

in Figure 3.5(b). Any swizzle barrier using i to swizzle a component of the array within

the body of the loop is thus made redundant and can be removed from the program.

35

4 IMPLEMENTATION

4.1 The Plama persistent system

Plama [Atkinson et 31. 1996] is a prototype implementation of orthogonal persistence

for Java being developed jointly by Sun Microsystems Laboratories and Glasgow Univer­

sity. The Plama Vutual Machine (VM) is based on the Sun Java Development Kit (JDK)

VM and confonns to the Java VM specification; it executes classes compiled to the stan­

dard bytecode instruction set and class file fennat. Persistence functionality is provided by

an extended API, extensions to the VM for read and write barriers, and associated run-time

support.

PJamaimplements persistence by extending the standard Java VM with an object cache,

which is a cache of persistent objects in virtual memory. The interpreter can access per­

sistent objects (which include class instances, methods and classes) in the object cache

through handles in the residem object table (ROT). The ROT is hashed on PID to speed up

searches. The ROT handles are similar to lava's handles and these objects have the same

format as objects in lava's garbage collected heap. Also persistent meta-data like classes

have exactly the same format in virtual memory as their lava counterparts. The object

cache implements object-faulting, update-tracking and object replacement.

4.1.1 Architecture ofPlama

The Plama architecture consists of three main modules: the object cache manager, the

lava VM and the buffer manager. Figure 4.1 shows a simplified view of the Plama system

architecture. To illustrate the various possible combinations of inter-object references, the

following objects are depicted in Figure 4.1:

36

MANAGER

OBJECT CACHE

Copy and Swil1Je

PCD

L----'lrt=~c~~J'
Melhod table J

_!=j::, for -
,- Class Bview

pain! of

applic:llion's

r-------, ,---,,,,,,,

RDT

bl'shandle........... a

1------1 '-'....-~
r+--1-G]

Object Faull

I
Buffer

Mannger

,

Figure 4.1: PJama's Object Cache Architecture

1. A transient instance of a transient class (the object c, instance of C) referring to
object bl.

2. A persistent instance of a persistent class (the object bi, instance of B) referring to
object c.

3. A transient instance of a persistent class (the object b2, instance of B).

4. A persistent instance referring to another persistent instance (the object a pointing to
bl).

37

From the Java application's point of view all these objects appear to refer to one another

in a natural manner. The underlying mechanisms for accessing persistent objects is totally

hidden from the programmer. In essence, the operation of Plama consists of copying all

the objects needed by the running application into a virtual memory area distinct from the

buffer pool used by the stable store. This virtual memory area is called the object cache.

The object cache implements an object-fault mechanism to load-on-demand any objects

required by the application. This process is illustrated in Figure 4.1. The object cache

also manages a memory-resident copy of the persistent class directory (peD) of the store.

When PJama is initialized with a valid store name, the first thing it does is to load the

store's PCD into memory, and reroute to the PCD all searches for a class by the JVM.

When an object fault occurs, the object cache manager asks the buffer manager for a

copy of the missing object. If the page containing the object is not found in the buffer

pool, a page-fault is raised. After the page fault is serviced, the buffer manager provides

the object cache manager with a pointer to the object, which is then used to copy it into

the object cache. During this process of copying, any object references in the object just

faulted in are converted from a persistent identifier (or Pill) format into a virtual memory

format(a pointer to a handle). This is called pointer swizzling.

4.1.2 Swizzling in Plama

Plama currently adopts an eager pointer swizzling strategy for objects. The current

implementation of this strategy is similar to the node marking scheme described in Sec­

tion 2.3.2. In Plama eager swizzling means that upon object fault-in, persistent identifier

fields in that object are overwritten with pointers to handles that will eventually contain a

virtual memory pointer to the actual location of the referenced object. Thus handles exist

in one of several possible states including:

1. Indirect: The handle is an indirect block containing a virtual memory pointer to the
resident target object.

2. Fault: The handle is a fault block, containing the target object's PID.

38

Since object references in the object cache can be in one of many states, every object access

(i.e., dereference through a handle) must be protected by a read barrier. The read barrier

makes sure that the target object is resident (i.e.,the handle is in the indirect state). If not,

then an object fault is triggered to obtain the object identified by the Pill stored in the

handle, and the handle is converted from fault to indirect. One of the goals of this work is

to eliminate redundant read barriers where the check will always succeed (i.e., where the

handle is guaranteed to be indirect).

4.1.3 Array swizzling

When an object is faulted in and swizzled, fault blocks are allocated in the ROT for

all persistent object references in that object. In PJama, the only exception to this eager

swizzling approach is for arrays of references, whose contents are left in PID form to avoid

the overhead of allocating a fault block for every element in the array. In this lazy swizzling

approach, array references are swizzled upon the first use of that reference. As described

in Section 2.3.1, lazy swizzling requires dynamic swizzle barriers. The only place where

such swizzle barriers are needed in Plama is in the aaload instruction, which reads an

object reference from an array and pushes the reference onto the Java stack. This instruc­

tion embodies a swizzle barrier in the current version of PJama. Our new approach is to

expose this swizzle barrier by inserting a new internal swizzle bytecode before every oc­

curence of the aaload bytecode. This allows DIVA to identify and hoist such swizzle

bytecodes outside loops, thereby decreasing the iterative overhead of swizzle checks. The

hoisted range swizzle is designed to swizzle a specified range of the array as determined

by analysis.

4.2 Implementation of persistence optimizations

Persistence optimizations have been implemented using bytecode-to-bytecode class

transformation that applies type-based alias analysis and access path PRE to Java classes.

39

This transformation removes redundant read and write barriers. Range swizzle optimiza­

tions are also performed by applying the DIVA technique. The optimized classes are tar­

geted for execution on a modified version of the Plama [Atkinson et aI. 1996] virtual ma­

chine.

4.2.1 Bytecode-to-bytecode class transformation

The Java virtual machine (VM) specification [Lindholm and Yellin 1996] is intended

as the interface between Java compilers and Java execution environments. Its standard

class fonnat and instruction set permit multiple compilers to inter-operate with multiple

VM implementations, enabling the cross-platform delivery of applications that is Java's

hallmark. Conforming class files generated by any compiler will run in any Java VM

implementation, no matter if that implementation interprets bytecodes, performs dynamic

"just-in-time" (JIT) translation to native code, or precompiles Java class files to native

object files. Targeting compiled Java classes for analysis and optimization has several

advantages. First, program improvements accrue even in the absence of source code, and

independently of the compiler and VM implementation. Second, Java class files retain

enough high-level type information to enable advanced optimizations. Finally, analyzing

and optimizing bytecode can be performed off-line, permitting JIT compilers to focus on

fast code generation rather than expensive analysis, while also exposing opportunities for

fast low-level JIT optimizations.

This bytecode-to-bytecode class transformation that performs PRE for access expres­

sions in Java is implemented in BLOAT (for Bytecode-Level Optimization and Analysis

Tool)[Nystrom et at. 1998]. It takes compiled Java classes adhering to the Java VM speci­

fication and generates transformed classes as output. For each method, BLOAT first builds

a control-flow graph, with an expression tree for each basic block, then infers the types of

local variables and the operand stack at each point in the code [Palsberg and Schwartzbach

1994], constructs an intermediate representation based on static single-assignment (SSA)

form [Cytron et al. 1991; Stoltz et aJ. 1994; Wolfe 1996; Briggs et al. 1997], performs

SSA-based value numbering [Briggs et aJ. 1997] with TBAA, followed by SSA-based PRE

40

[Chow et al. 1997], and finishes with generation of new Java bytecodes for the method. In

this thesis we extend BLOAT to recognize and eliminate redundant read and write barriers.

Also, the DIVA technique has been added as a separate pass over the control-flow graph,

just before the final code generation phase, to hoist swizzle checks out of loops.

Table 4.1: Bytecodes requiring barriers

T _ h, S, l, l,t d, c, a

Opcode Barrier

arraylength read on array operand

athrow read on object operand

getfieLd

instanceo!

Taload read on array/object operand,

swizzle on array operand

Taslore read and write on array/object operand

plltfield read and write on object operand

invokevirtllal read on object operand

invokespecial

invokeinterface
.

4.2.2 Read and write barrier optimization for Plama

In the current release of PIama, the read and write barriers are hidden inside the byte­

codes that implement access expressions and method invocations; these are listed in TaR

ble 4.1. To optimize the persistence barriers they must first be exposed. Thus, we have

deleted the hidden barrier code from the implementations of the original bytecodes and

extended the PIama VM with two new internal read and write barrier bytecodes. As a

class is loaded into the extended PIama VM its methods must now be edited to insert the

appropriate barrier bytecode immediately before each occurrence of the bytecodes listed

41

in Table 4.1. BLOAT supports this operation with a preprocessing (nollRanalyzing, 000­

optimizing) pass over the class to insert the barriers. The class can then go on to execute

in the extended VM. Subsequent optimization by BLOAT can then occur at any convenient

time. BLOAT also supports a "way-ahead-of-time" option to preprocess and optimize class

files for later loading by the new PIama VM; this option is commonly used to prepare the

core Java classes for loading into a virgin Plama persistent store.

The new read and write barrier bytecodes are specified in Table 4.2. 1 Rather than

operating on the reference at the top of the stack, the new byteeodes take a stack offset so

as to ease insertion of the barrier for the target of method invocation byteeodes, which is

always located on the stack at some known offset below the other arguments to the call.

Thus, the initial preprocessing to insert barriers needs no expensive analysis.

Table 4.2: New read and write barrier bytecodes

Operation read barrier write barrier
Format

~
II write I

index II index I
Forms read = 233 (Oxe9) write _ 234 (Oxea)

Stack No change No change
Description The index is an unsigned byte between The index is an unsigned byte between

oand 255, inclusive. The operand stack oand 255, inclusive. The operand stack
word at offset index from the top of the word at offset index from the top of the
stack must be of type reference. stack must be of type reference.
If that reference is not null then If that reference is not null then the
the object it references is checked for object it references is marked dirty in
residency, and faulted in if it is not. the object cache.

As in Hosking [1997], we also exploit Java's object-oriented execution paradigm to

avoid barriers on accesses to the object on which an instance method was invoked. Since

IThe current PJama prototype distinguishes pointcr storcs from non-pointer stores in ils implementation

of the write barrier, for reasons having to do with details of ils implementation of heap stabili7.ation. To

support this functionality we must insert and optimize two different write barrier bytccodes, onc for pointers

and one for non-pointers. BLOAT does in fact support this, but we consider them to be equivalent for this

work so as to demonsLrate the full potemial for optimization of write barriers.

42

the target-accessed via the this keyword inside the instance method-is made resi­

dent at the time of the call by the read barrier associated with the "invoke" bytecodes of

Table 4.1, there is no need for barriers on accesses via this. The JDK compiler stores

this in the first local variable of instance methods, allowing BLOAT to recognize such ac­

cesses. BLOAT also recognizes references to objects that are instantiated using the "new"

bytecodes, so as to eliminate barriers on accesses to newly-allocated objects.

4.2.3 Range swizzle optimization for PJama

In the current release of Plama the aaload instruction has a swizzle barrier built into

it. In line with our optimization strategy, we elide the swizzle barrier from the aaload

instruction and extend the Plama VM with two more internal swizzle bytecodes. The

aswizzle bytecode swizzles a single reference element while the aswizzleRange bytecode

swizzles a specified range of reference elements in an array. The details of the bytecodes

can be found in Table 4.3. The same preprocessing step used to insert read and write

barrier opcodes is used to insert an aswizzle bytecode before each aaload instruction. The

aswizzle uses a copy of the operands of the aaload. After DIVA deduces loop bounds,

an aswizzleRange can be inserted outside the loop and redundant aswizzles inside the loop

can be safely eliminated.

4.2.4 Cache management

As mentioned earlier, barrier optimizations require a contract with the persistence run­

time system, which must not undo the effect of a barrier while optimized code can execute

that assumes the barrier is still in effect. The contract with the PJama run-time system

is simple: Plama must maintain the effect of all barriers for all objects directly referenced

from a Java thread's stack frames (both operand stacks and local variables). In other words,

resident objects referenced directly from a thread stack must be pbmed in the object cache

whenever the thread is active. Thus, the Plama object cache manager must either avoid

evicting pinned objects when it attempts to reclaim cache space, or arrange for them to be

made resident before the pinning thread resumes execution. Dirty bits set on objects in the

43

Table 4.3: New swizzle barrier bytecodes

Operation swizzle reference from array swizzle range of references from array

Format I aswi"l. I I onviuLeRange I
Forms aswizzle - 236 (Oxec) aswizzleRange - 237 (Oxed)
Stack .." arrayref. index =>, arrayref, start, end => ...
Description The arrayref must be of type The arrayreJ must be of type

reference and must refer '0 an reference and must refer to an
array whose components are of type array whose components are of type
reference. The index must be of reference. The start and end must
type into If the arrayref is not null, be of type into If the arrayref is
then the element at index is swizzled, not null, then the elements within the
if not already. arrayref and index are intersection of (stan,end] and [O,ar-
popped from the operand stack. raylenglh] are swizzled, if not already.

arrayrej, start and end are popped from
the operand stack.

cache that are directly referenced from a thread's stack must be maintained, even across

stabilizations. Similarly, reference elements in arrays that have been swizzled must remain

swizzled. Clearly, this contract has significant ramifications for the run-time system; Cutts

et al. [1998] explore the issues in more detail.

It is possible to refine the compile-time/run-time contract if the compiler can provide

more detailed information to the run-time system as to the barriers in effect for ranges of

optimized code. Such infonnation is similar to the static tables sometimes provided to the

run-time system for exception handling and garbage collection [Diwan et al. 1992; Agesen

et ai, 1998].

44

5 EXPERIMENTS

5.1 Read and write barrier optimization

To evaluate the impact of our read and write barrier optimizations we applied them to

the traversal portions of a Java implementation of the 007 benchmarks [Carey et aI. 1993],

comparing the number of read and write barriers required for execution of each benchmark

for unoptimized code versus optimized code. The classes for the 007 benchmarks, as well

as the Java core classes used by 007, were first edited by BLOAT to add the new read

and write barrier bytecodes. Optimized classes were obtained from these using BLOAT's

ahead-ofwtime optimization option. Also, in order to separate out the impact of exposed

barrier PRE versus access expression PRE alone, we optimized the original barrier-free

classes, then edited them to add persistence barriers. We also wanted to separate out the

effect of our this optimizations (see Section 4.2.2). Thus, we obtain results for four distinct

configurations of the 007 classes which are described in detail in Section 5.1.3.

5.1.1 Benchmarks

The 007 benchmarks [Carey et al. 1993] are a comprehensive test of object-oriented

database perfonnance. They measure the speed of many different kinds of pointer traver­

sals, including traversals over cached data, traversals over disk-resident data, sparse traver­

sals, and dense traversals. The benchmarks also measure the efficiency of many different

kinds of updates, including updates to indexed and unindexed object fields, repeated up­

dates, sparse updates, updates of cached data, and the creation and deletion of objects.

These operations are penonned on a synthetic design database, consisting of a keyed set

45

of composite parts. Associated with each composite part is a documentation object con­

sisting of a small amount of text. Each composite part consists of a graph of atomic parts

with one of the atomic parts designated as the root of the graph. Each atomic part has a

set of attributes, and is connected via a hi-directional association to several other atomic

parts. The connections are implemented by interposing a separate connection object be­

tween each pair of connected atomic parts. Composite parts are arranged in an assembly

hierarchy; each assembly is either made up of composite parts (a base assembly) or other

assemblies (a complex assembly). Each assembly hierarchy is called a module. OUf results

are all obtained with the small 007 database, configured as in Table 5.1.

Table 5.1: Small 007 database configuration

Modules 1

Assembly levels 7

Subassemblies per complex assembly 3

Composite parts per base assembly 3

Composite parts per module 500

Atomic parts per composite part 20

Connections per atomic part 3

Total composite parts 500

Total atomic parts 10000

We used the following traversal operations of the 007 benchmarks:

1 Raw traversal speed: traverse the assembly hierarchy; for each base assembly en­
countered visit each of its unshared composite parts; for each composite part encoun­
tered visit its entire graph of atomic parts using depth-first search; return a count of
the number of atomic parts visited

2 Traversal with updates: repeat traversal 1 but update atomic parts during the traversal
(as follows) by swapping two attributes; return the number of updates performed

(a) Update one atomic part per composite part encountered

(b) Update every atomic part encountered

(c) Update each atomic part in a composite part four times

46

3 Traversal with indexed field updates: repeat traversal 2, except that the update is on
an indexed attribute

6 Sparse traversal speed: traverse the assembly hierarchy; for each base assembly en­
countered visit each of its unshared composite parts; for each composite part encoun­
tered visit just the root atomic part; return the number of atomic parts visited

5.1.2 Metrics

For each combination of benchmark and optimization level we measure the number

of read and write barriers executed for the benchmark using an instrumented version of

the VM that reports bytecode execution frequencies. We measured only warm executions

of the benchmark operations, so as to eliminate the overhead of byteeodes executed for

initialization of classes as they are dynamically loaded by the VM.

5.1.3 Results

The results of read barrier optimizations are given in Table 5.2 and those ofwrite barrier

optimizations are given in Table 5.3. The four different configurations we measured are:

• none: unoptimized with barriers

• access: access path optimizations without barrier optimizations

• access+barrier: access path optimizations with barrier optimizations

• access+barrier+this: this, access path optimizations with barrier optimizations

The difference between access and access+barrier+this reveals the advantage to be

gained by exposing the barriers to optimization.

The results reveal that on average 83% of read barriers, and 25% of write barriers,

are removed by PRE over both access expressions and barrier expressions. Considering

the write barrier results individually, one can immediately see the impact of optimization

by comparing traversals 2b and 2c, which differ only in the number of times each part is

updated. The four updates per part in 2c are performed in a tight loop, so the optimizer is

able to hoist the write barrier out of the loop, resulting in the same number of write barriers

executed as traversal2b.

47

Applying PRE just to the access expressions before insertion of the barriers is much less

effective, indicating the advantages to be gained from exposing them [0 the optimizer. In

other words, simply adding PRE over access expressions to the original PJama implemen­

tation (in which the barriers are buried inside the access bytecodes) canDot significantly

reduce barrier overheads.

Table 5.2: Results of read barrier optimizations

Read barriers executed

PRE level

Traversal none access access+barrier access+barrier+this % removed

1 10535707 7899406 3456590 2126883 80

2a 10588195 7951894 3500330 2168436 80

2b 10666927 8030626 3456590 2126883 80

2c 11191807 8555506 3456590 2170623 81

3. 10586008 7949707 3500330 2168436 80

3b 10623187 7986886 3456590 2126883 80

3c 11016847 8205586 3631550 2170623 80

6 3458575 1215934 47057 27363 99

5.2 Range swizzle optimization

5.2.1 Benchmarks

To evaluate the impact afrange swizzle optimizations using DIVA, a set ofbenchmarks

which use arrays of objects extensively had to be chosen. With that objective the following

applications were chosen:

1. Unpack: The standard Linpack suite of applications.

2. Cholesky: Set of routines perfonrung Cholesky Decomposition.

3. Neural: Back propagation on a multi-layered neural net.

4. Inversion: Application perfonning a series of matrix inversions.

48

Table 5.3: Results of write barrier optimizations

Write barriers executed

PRE level

Traversal none access access+barrier access+barrier+this % removed

1 495363 495363 404599 404599 18

2. 499737 499737 406786 406786 19

2b 582843 582843 448339 448339 23

2c 845283 845283 448339 448339 47

3. 497550 497550 406786 406786 18

3b 539103 539103 448339 448339 17

3c 670323 670323 448339 448339 33

6 14223 14223 10939 10939 23

5.2.2 Results

The results afrange swizzle optimizations are given in Table 5.4. The number of aswiz~

zIe bytecodes executed in classes that have had them inserted, are under the column heading

decorated. The count of aswizzle bytecodes executed in classes that have been optimized

after being decorated, are under the column heading optimized. The results reveal that

DIVA optimizations remove on average 66% of aswizzles in the decorated code. Looking

at Table 5.4, we observe that the number of new aswizzleRanges introduced is on average

just 0.9% of aswizzles in the decorated code. This demonstrates the effectiveness of range

swizzle optimizations to reduce the array swizzle overhead with negligible cost.

5.3 Conclusions

The results shown above demonstrate the effectiveness of the optimization techniques

developed in this work. For the 007 traversal benchmarks these optimizations remove

a majority (83%) of-read barriers and a significant fraction (25%) of write barriers. For

49

Table 5.4: Results of range swizzle optimizations

aswizzles executed aswizzleRanges executed

Benchmark decorated optimized % removed decorated optimized % added

Linpack 75365 20217 73 0 304 0.4

Cholesky 921855 256994 72 0 14029 1.5

Neural 6491933 3397983 48 0 36832 0.6

Inversion 2309400 649710 71 0 26020 1.1

the range swizzle benchmarks a major portion (66%) of swizzle barriers are eliminated at

negligible cost.

Thus, the major conclusions that can be drawn from this work are:

• Combining type-based alias analysis with partial redundancy elimination over access
expressions, is a powerful technique for reducing the fundamental barrier overheads
of orthogonal persistence.

• Demand-driven induction variable analysis is very effective in reducing the array
swizzle overheads of orthogonal persistence.

Our results conclusively demonstrate that the overhead of orthogonal persistence can be

reduced significantly by program analysis and optimization. We believe these techniques

will prove crucial to the achievement of respectable perfonnance by persistent systems in

general and persistent Java systems in particular.

5.4 Future work

We anticipate several extensions of this work in the domain of orthogonal persistence.

These opportunities can be broadly categorized as:

• Optimizations enabled by persistence: Analysis, compilation and execution in a per­
sistent setting can open up new avenues for generic program improvement.

• Optimizations enabling for persistence: Further reduction of persistence-specific
overheads, especially reduction of I/O by clustering and prefetching.

50

5.4.1 Persistence-enabled optimizations

When it comes to traditional language optimizations there is usually a tradeoff be­

tween the speed of optimization versus their effectiveness. For a language like Java with

its dynamic, late-binding, object-oriented nature, several aggressive optimizations can be

envisaged as in Self-91 [Chambers 1992]. But due to the fast turnaround time required by

"just-in-time" (JIT) compilation, many of these analyses have to be toned down [HOlzle and

Ungar 1996]. Yet a persistent environment can provide an appropriate setting for exploiting

such aggressive analysis by taking them off-line [Cutts and Hosking 1997]. Also, analysis

and optimization phases are greatly simplified when all code, data, profile infonnation. etc.,

are retained within a persistent store. There are several other interesting opportunities like

«whole~program" optimizations [Diwan et al. 1996; Diwan 1997] in a persistent setting

and specialization of code with respect to stored data.

5.4.2 Persistence-enabling optimizations

Optimizing the VO performance of persistent systems is a challenge that is yet to be

addressed adequately. We believe that a combination of clustering and pre/etching, driven

by infonnation provided by dynamic profiling, can lead to significant VO performance

gains. There is also a strong connection between these techniques and read, write and

swizzle barrier optimizations presented in this work.

To summarize, future work will be driven by the unique setting provided by persistence

for optimizations, both persistence-enabled and persistence~enabling. Our goal is to unify

these approaches into a common framework of program analysis and execution profiling.

BlliLIOGRAPHY

51

BIBLIOGRAPHY

AGESEN, 0., DETLEFS, D., AND Moss, J. E. B. 1998. Garbage collection and local
variable type-precision and liveness in Java virtual machines. See PLDI [1998]. To
appear.

AHO, A. v., SETHI, R., AND ULLMAN, J. D. 1986. Compilers: Principles, Techniques,
and Tools. Addison-Wesley.

ATKINSON, M. P., DAYNES, L., JORDAN, M. 1., AND PRINTEZIS, T. 1996. An Orthog­
onally persistent Java. ACM SIGMOD Record 25, 4 (Dec.), 68-75.

ATKINSON, M. P. AND MORRISON, R. 1995. Orthogonally persistent object systems.
Int. 1. Very Large Data Bases 4, 3, 319-401.

BRIGGS, P., COOPER, K. D., HARVEY, T. 1., AND SIMPSON, L. T. 1997. Practical
improvements to the construction and destruction of Static Single Assignment Form.
To appear; available at http://www.cs.rice.eduJharv/ssa.ps.

BRIGGS, P., COOPER, K. D., AND SIMPSON, L. T. 1997. Value numbering. Software:
Practice and Experience 27, 6 (June), 701-724.

CAREY, M. 1., DEWITT, D. J., AND NAUGHTON, 1. F. 1993. The 007 benchmark.
ACM SIGMOD Record 22,2 (June), 12-21.

CHAMBERS, C. 1992. The design and implementation of the SELF compiler, an opti­
mizing compiler for object-oriented programming languages. Ph.D. thesis, Stanford
University.

CHOW, F., CHAN, S., KENNEDY, R., Lru, S.-M., LO, R., AND TU, P. 1997. A new
algorithm for partial redundancy elimination based on SSA fonn. ACM SIGPLAN
Notices 32,5 (June), 273-286.

COPELAND, G. AND MAIER, D. 1984. Making Smalltaik a database system. In Proceed­
ings of the ACM International Conference on Management of Data (Boston, Mas­
sachusetts, June). ACM SIGMOD Record 14, 2, 316-325.

CUTTS, Q. AND HOSKING, A. L. 1997. Analysing, profiling and optimising orthogonal
persistence for Java. In Proceedings of the Second International Workshop on Persis­
tence and Java (Half Moon Bay, California, Aug.); M. P. Atkinson and M. 1. Jordan,
Eds.

5:

CUTTS, Q., LENNON, S., AND HOSKlNG, A. L. 1998. Reconciling buffer managemem
with persistence optimizations. Submitted to the Eighth International Workshop Oil

Persistent Object Systems.

CYTRON, R., FERRANTE, J., ROSEN, B. K., WEGMAN, M. N., AND ZADECK, F. K.
1991. Efficiently computing static single assignment form and the program depen­
dence graph. Transactions on Programming Languages and Systems 13, 4 (Oct.).
451-490.

DEARLE, A., SHAW, G. M., AND ZOONIK, S. B., Eds. 1990. Proceedings of the
Fourth Intemational Workshop on Persistent Object Systems (Martha's Vineyard..
Massachusetts, Sept.). Implementing Persistent Object Bases: Principles and Prac­
tice. Morgan Kaufmann, 1991.

DIWAN. A., McKiNLEY, K. S., AND Moss, J. E. B. 1998. Type-based alias analysis.
See PLDI [1998]. To appear.

DIWAN, A., Moss, J. E. B., AND HUDSON, R. L. 1992. Compiler support for garbage­
collection in a statically typed language. In Proceedings of the ACM Conference OIl
Programming Language Design and Implementation (San Fancisco, California, June).
ACM SIGPLAN Notices 27, 7 (July), 273-282.

DIWAN, A., Moss, J. E. B., AND MCKINLEY, K. S. 1996. Simple and effective analysis
of statically-typed object-oriented programs. In Proceedings of the ACM Conference­
on Object-Oriented Programming Systems, Languages, and Applications (San Jose~

California, Oct.). ACM SIGPLAN Notices 31, 10 (Oct.), 292-305.

DIWAN, A. S. 1997. Understanding and improving the performance of modern program­
ming languages. Ph.D. thesis, University of Massachusetts at Amherst.

GARTHWAITE, A. AND NETTLES, S. 1996. Transactions for Java. See PH [1996].

GERLEK, M. P., STOLTZ, E., AND WOLFE, M. 1995. Beyond induction variables:
detecting and classifying sequences using a demand-driven SSA form. Transaction.::r
on Programming Languages and Systems 17, I (Jan.), 85-122.

GOSLING, J., JOY, B., AND STEELE, G. 1996. The Java Language Specification..
Addison-Wesley.

HOLZLE, U. AND UNGAR, D. 1996. Reconciling responsiveness with performance in
pure object-oriented languages. Transactions on Programming Languages and Sys­
tems 18, 4 (July), 355-400.

HOSKING, A. L. 1995. Lightweight support for fine-grained persistence on stock hard­
ware. Ph.D. thesis, University of Massachusetts at Amherst. Available as Computer
Science Technical Report 95-02.

53

HOSKING, A. L. 1997. Residency check elimination for object-oriented persistent lan­
guages. In Proceedings of the Seventh International Workshop on Persistent Object
Systems (Cape May, New Jersey, May 1996), R. Connor and S. Nettles, Eds. Persistent
Object Systems: Principles and Practice. Morgan Kaufmann, 174-183.

HOSKING, A. L. AND Moss, J. E. B. 1990. Towards compile-time optimisations for
persistence. See DearIe et a1. [1990], 17-127.

HOSKING, A. L. AND MOSS, J. E. B. 1991. Compiler support for persistent pro~

gramming. Tech. Rep. 91-25, Department of Computer Science, University of Mas­
sachusetts at Amherst. Mar.

HOSKING, A. L. AND Moss, J. E. B. 1993. Protection traps and alternatives for memory
management of an object-oriented language. In Proceedings of the ACM Symposium
on Operating Systems Principles (Asheville, North Carolina, Dec.). 27, 5 (Dec.),
106-119.

HOSKING, A. L., NYSTROM, N., CUTIS, Q., AND BRAHNMATH, K. J. 1998. Op­

timizing the read and write barrier for orthogonal persistence. Submitted to Eighth
International Workshop on Persistent Object Systems: Design, Implementation and
Use, Tiburon, California.

KEMPER, A. AND KOSSMAN, D. 1995. Adaptable pointer swizzling strategies in object
bases: Design, realization, and quantitative analysis. Tnt. J. Very Large Data Bases 4, 3
(Aug.),519-566.

LAMB, c., LANDIS, G., ORENSTEIN, J., AND WEINREB, D. 1991. The objectstore
database system. Communications ofthe ACM 34, 10 (Oct.), 50-63.

LARDS, J. R. AND HILFlNGER, P. N. 1988. Detecting conflicts between structure ac­
cesses. In Proceedings of the ACM Conference on Programming Language Design
and Implementation (Atlanta, Georgia, June). 21-34.

LINDHOLM, T. AND YELLIN, F. 1996. The Java Virtual Machine Specification. Addison­
Wesley.

MOREL, E. AND RENVOISE, C. 1979. Global optimization by suppression of partial
redundancies. Communications ofthe ACM 22,2 (Feb.), 96-103.

Moss, J. E. B. 1992. Working with persistent objects: To swizzle or not to swizzle.
TEEE Transactions on Software Engineering 18, 8 (Aug.), 657-673.

Moss, J. E. B. AND HOSKING, A. L. 1995. Expressing object residency optimizations
using pointer type annotations. In Proceedings of the Sixth International Workshop
on Persistent Object Systems (Tarascon, France, Sept. 1994), M. Atkinson, D. Maier,
and V. Benzaken, Eds. Workshops in Computing. Springer-Verlag, 3-15.

54

Moss, J. E. B. AND HOSKING, A. L. 1996. Approaches to adding persistence to java.
See PJI [1996], 1-6.

MUCHNICK, S. S. 1997. Advanced Compiler Design and Implementation. Morgan Kaufw

mann.

NYSTROM, N., HOSKING, A. L., CUTTS, Q., AND DIWAN, A. 1998. Partial Redun­
dancy Elimination for Access Path Expressions. Submitted to OOPSLA'98.

PALSBERG, J. AND SCHWARTZBACH, M. I. 1994. Object-Oriented Type Systems. Wiley.

PI1 1996. Proceedings of the First International Workshop on Persistence and Java. Tech.
Rep. 96-58, Sun Microsystems Laboratories. Nov.

PLDI 1998. Proceedings afthe ACM Conference on Programming Language Design and
Implementation (Montreal, Canada, June). ACM SIGPLAN Notices 33, 5 (June).

RICHARDSON, J. E. 1990. Compiled item faulting: A new technique for managing I/O
in a persistent language. See DearIe et al. [1990], 3-6.

SINGHAL, v., KAKKAD, S. v., AND WILSON, P. R. 1992. Texas, an efficient, portable
persistent store. In Proceedings of the Fifth International Workshop on Persistent
Object Systems (San Miniato (Pisa), Italy, Sept.), A. Albano and R. Morrison, Eds.
Workshops in Computing. Springer-Verlag, 11-33.

STOLTZ, E., GERLEK, M. P., AND WOLFE, M. 1994. Extended SSA with factored use­
def chains to support optimization and parallelism. In Proceedings ofthe 27th Annual
Hawaii International Conference on System Sciences. 43-52.

TARJAN, R. E. 1972. Depth-first search and linear graph algorithms. SIAM Journal of
Computing 1,2 (June), 146-160.

WHITE, S. J. AND DEWITT, D. J. 1994. Quickstore: A high performance mapped object
store. In Proceedings of the ACM International Conference on Management of Data
(Minneapolis, Minuesota, May). ACM SIGMOD Record 23, 2 (June), 395-406.

WILEDEN, 1. C., KAPLAN, A., MYRESTRAND, G. A., AND RIDGWAY, J. V. 1996. Our
SPIN on persistent Java: The JavaSPIN approach. See PJI [1996].

WILSON, P. R. AND KAKKAD, S. V. 1992. Pointer swizzling at page fault time: Ef­
ficiently and compatibly supporting huge address spaces on standard hardware. In
Proceedings ofthe 1992 International Workshop on Object Orientation in Operating
Systems (Paris, France, Sept.). 364-377.

WOLFE, M. 1996. High Perfonnance Compilers for Parallel Computing. Addison­
Wesley.

	Optimizing Orthogonal Persistence for Java (M.S. Thesis)
	Report Number:
	

	tmp.1307986960.pdf.8J_5H

