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The Hermite Cubic Collocation Approximations
to the Eigenvalues and the Eigenfunctions of
the Laplace Operator

Wayne R, DyksenT

Abstract. Piecewise Hermile cubics have been widely used in a variety of ways for solving partial
differential equations. For a number of these techniques, knowledge about the Hermite cubic collocation
approximations Lo the spectrum of the Laplace operator is often very useful, for error analysis and, a for-
tipri, possible itcration parameters. To this end, we give here explicit closed-form expressions for the
Hermite cubic approximations to both the eigenvalues and the eigenfunctions of the Laplace operator for
both the Dirichlet and the Neumann problems. Moreover, for the Dirichlet case, we show that optimal
approximations are obtained using the Gauss points for collocation points. For both cases, we give
numerical examples that verify our theoretical results,

Key words. eigenvalues and eigenfunctions, clliptic boundary value problems, Hermite cubic col-
location, gencralized eigenvalue problem, Laplace operator.

AMBS(MOS) subject classifications. 65F15, 65160, 65M27, 65N22, 65N25, 65N30, 65N35.

I. Introduction. Piecewisc Hermite cubics have proven to be very useful for a variety of numeri-
cal applications. Dyksen, et al, have demonstrated that Hermite cubics are particularly effective for

approximating solutions to parlial differential equations [11].

As is typical, the discrete problem arising from Hermite cubic collocation results in a large, sparse
linear system whose unknowns represent the coefficients of the Hermite cubic basis functions. Dyksen
and Rice have shown that, with the proper ordering and proper scaling, the Hermite collocation equations

are numerically stable and can be accurately solved using conventional direct methods [9, 10].
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However, even though Hermile cubics produce relatively accurate solutions to partial differential
cquations, the size of the problems that are solvable using direct methods is rather limited. Starting in
1984, a variety of itcrative techniques for the Hermite collocation equations arising from large classes of
separable elliptic problems have been introduced by a number of people including those by Dyksen [12,

13, 14], Cooper and Prenter [4], Bialecki, et al [2], Sun [16, 17], and Russell and Sun [15].

As one would expect for these methods, knowledge of the spectrum of the Hermite cubic approxi-
mation to the spectrum of the Laplace operator is very useful for error analysis and, a fortiori, for itera-
tion parameters. In fact, if one knows the compleie set of eigenvalues, iteration parameters can often be
chosen that make the iterative technique exact in a finite number of ilerations; that is, the iterative method
becomes a direct method in (heory. To that end, we give here explicit closed-form expressions for the
Hermite cubic approximations to both the eigenvalues and the eigenfunctions of the Laplace operator for

both the Dirichlet and the Neumann problems.

We briefly review Hermile cubic collocation and we introduce our notaton in Section 2. In See-
tion 3, we derive the formulas for the eigenvalues and eigenfunctions for the Dirichlet problem. Moreo-
ever, we show (hat an optimal approximaticn is obtained using the Gauss points for collocation points.
We give three numerical examples that verify our theoretical work. The complete Neumann problem is

considered tn a similar manner in Section 4. We conclude with Secticn 5.

2. Hermite Cubic Collocation. For a fixed positive integer ¥, we divide up the unit interval into
N equal subintervals, each of length i = 1/N. To each of the ¥ + 1 grid poinis x, =kl there are associ-

aled two Hermile cubic polynomials defined by

0 X £xk_|,).';;+| <X

X=X~ |

3 2
Xppl—X Apg1—X
—2{ —_ 1 +3[ z 1 Xp SX 2X4

B 3 ’ X=Xy :
(2.1a) P (x)={ -2 +3 X1 SXx €Sx4

X=X T




(2.1b)

=

Wi (x)

The grid points x;. are olten called the “knots™ of the piccewise polynomial since they are the points

where it is *‘tied together'’,

The Hermite cubic basis functions are particularly effeclive for interpolating Dirichlet or Neumann

boundary conditions since they are the dual basis with respect 1o function and derivalive evaluation at the

grid points x;. To see this, note that

Oy (1) =Ppe1)=0, Dplx)=1, Ppl_)=Prlx)=Pilx1)=0,

Wi (e} =W ) =W 0aa) =0, Wil )=Welxe)=0, ¥rlx)=1.

Hence, an arbitrary cubic polynomial p

0
X=Xy
AL =X

|

X S X1 Xkl BX

] (x—x;) x_ <x<x

X =%

2
(x—x) X SxSx,.
A+ =Xy

defined on [0,1] may be wrilten as

N
p )= 3 p G ) () +p (g YW (x).
=D

Graphs of @y and ¥y are given below in Figure 2.1 for the case ¥ =2. For a complete treatment of Her-

miie cubics, see [5].

0

Figure 2.1 The Hermite cubic polynomials @, (x) and ¥,{x) for the case N =2,

"\—/ I
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3. The Dirichlet Problem. Consider the classical Dirichlet eigenvalue problem

u"xy=hux), xe 1)
G-} 1 (0) =1 (1)=0.

We divide the unit interval into ¥ equal subintervals of length 2 =1/N. We approximate an eigenfunc-

tion & of (3.1) by

N
Ul)=3citi(x)

i=1
for some conslanls ¢;, where the ¢; arc the 2¥ Hermite cubics
(3.2) (012 = {0 @) 10 Pov—1 E a1, Py )-

Note that since we have discarded @y and Dy, it lollows that ¢; (0)=¢; (1)=0 and hence U/ (0)=U(1)=0.
Also, note thal the &, and 'V, are ordered in a natural way from left to right, corresponding o their sup-

porl.

Now, in order to determine the 2¥ unknowns ¢;, we choose 2N distinct points {t;} 2 in (0,1), and
collocate the equations in (3.1) at these points. In particular, for a fixed parameter (0 < 8 < /2, we place in

cach subinterval (xg, x4} two collocation points,

‘fz(.rk +.rk+1)— eh R
lf'.‘.(.rk +xp 1 )+ 0A,

Ta
(3.3}

Tog4z
Substituling &/ into (3.1) and collocating at the T;, we obtain the generalized eigenvalue problem

3.4 Ac=ABc,

where

. 1=1,.,2N
Aip=0;(%), By=9¢;(1), j=1,.,2N.

The generalized cigenvalues and eigenvectors of (3.4) give the Hermite cubic collocation approximations
lo the eigenvalues and cigenvectors of (3.1). Since the support of each Hermite cubic function ¢; spans

at most two subintervals, it follows that A and B are band matrices with bandwidth two.




5

Next, we give below in the following theorem explicit closed-form expressions for the generalized
eigenvalues of (3.4). We note here that the results of Theorem 3.1 along with a proof were first given in
[13]. We give a new proof here for two reasons. First, the original proof in [13] was incomplete and
conlained some errors. Sccond, the derivation of the eigenvectors given below in Theorem 3.3 (and not
given in [13]) requires in detail both the notation and the machinery developed in the proof of

Theorem 3.1.

THEOREM 3.1. The 2N generalized eigenvalues of the discreie Dirichlet problem Ac=ABc in

(3.4) are given by

(3.52) ho= m

(3.5b) A =m

(3.5¢) ap=b L0 —dac 'é’;““" L l=1,.N-1
where

(3.6a) a =n4[(1694—1691+3)d—se?+2],
{3.6b) b= ;;2[(-12892+48)d + 43] )

(3.6c) c=192d,

and where

(3.6d) d= lanz[ ;—:]

Pragf. Let P be the Hermite cubic collocation approximation of the eigenfunction of (3.1)
corresponding to the approximate eigenvalue A. Since &1 =1/N, P consists of N pieces, each of which
has support in (x,x4). For simplicity, we assume that each polynomial piece is centered at the mid-

point of its corresponding interval which gives
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(x-%) 5 & -5
5 + 0 5 '

Pre)=0y + B lx =% )+, o Sx £xy, k=0..,.N-1,

where x; ="/2(x; +x¢,1). To simplify even further, we write this as

2 3
(3.7) )=t Bry +u - +8 L By <X oo yoy,

First, we rclate the oy 's to the ;s and the B, 's 1o the 8, "s by using the eigenvalue problem. Since

P satisfies P”=AP al the collocation points, we have py'(£0h y="Ap; (20/1), or equivalently,

02K on3 ]

(3.8) Ye t 8, 0h =l[ oy £ P00+, £ 4, 7

Adding and subiracting the equations in (3.8}, we obtain, respectively,

02,2
Ye =A| € +W > |
2 ]

If A=0, then it follows from (3.9) that ¥, =8; =0, so that (3.7) reduces o p;(y)=0 +B;y. Now,

3.9)

2
8; =7~[ Br + 8 Gér

since each piece p; is lincar and since P is continuous, we must have P(x)=0+fx. Moreover, since
P{y=P(1)=0, it follows that P =0, which is not an eigenfunction of (3.1). Thus, A=0 is not an eigen-

value of (3.4).

Now, for the case A # 0, (3.9) gives

so that (3.7) simplifies to

| L e y? 1o y?
(3.10 pk(l.)')—[I— 3 +2]n+y[l— o Tg| &

from which it follows that




. 1 8%°% 2
@G.11) Pk(l;)’)=)"Yk+[I—Tl'+y?]5x

Next, we relate the ¥ 's to the 8;’s by using the continuity of P and P’. Since P is continuous, we

have py (A H1t/2)=py, 1 (A; = /2). From (3.10), it follows that

rYe +5 8, =rYe— 3841

where
R 0% . h*
Y 2 B |’
oo 1ot ot
) 21 A 6 24|
We obtain
(3.12) F{=Ye +Yer) =5 (O +8p1).

Furthermore, since P’ is continuous, we have pg(A; +h/2)=pgy (A —h/2). From (3.11), it follows that

Ye +18, ==Y+ 8,

where

h| A 3] 8
We obtain
(3.13) Ve +Yeas =00 + Op41).

Now, using (3.12) and (3.13), we show Lhat (he ¥,.’s and 8;’s both salisfy the same difference equa-

tion. We consider (3.12) and (he equation obtained from it by replacing £ by k —1. We obiain

(Y + Y1) =5 (O +0p1)

(3.14) F(~Yie1 +Ye) =5 G +5;),

which, if substracled, yield
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(3.15) F (Vi1 = 2% Y1 )= 5 (g1 + Bpp1).

Similarly, from (3.13) we obtain

Ye +Yeat = (=g +8py)

(3.16) Y1 +%e =1 (=81 + 8¢ ),

which, il added, yield

(3.17) Y1 + 2%k + Vg1 =1 (=0p—1 + By p1)-

Substituting (3.17) into (3.15) gives

(3.18) 7 (Yo — 2 +Y41) =5 (Y1 + 2% +¥2n)-

Il we add the equations in (3.14) and subtract the equalions in (3,16), we obtain, respectively,

F{(=Ye-1+Y 1) =5 By + 28 +8g,1)
Yoot + Ve =2 (B =28 +8),

which gives

(3.19 7t (Bg1 — 28 +8p41) =5 (Bg_y +28; +08;4)-

Now, since the v;’s and 8, s satisly the difference equations in (3.19) and (3.18), respectively, we
may in the usual way sct
Y =A Lt + &0

(320) o
8 =B+ DLH

for arbitrary constanis 1?1;.. 31, f.'l, and f);_ that depend on A.

To find appropriate values for £, we again impose the boundary conditions P(0)=P(1)=0. Sincc
FP{H=0, we may extend ” on 0<x £1 1o ~1 <x £0 as an odd function by P(x}=—P(-x) for -1 €x 0.
Since both P and £’ are continuous on 0<x <1, it follows that P and P’ are conlinucus on —1<x €1,
Similarly, we can extend P to 1£x £2 by P(x)=-P(2-x) for 1€x <2. In particular, wc now have the

pieces
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Poy)=-pol~y) and py(y}=—py_1—).

Now, since P(0)=0, it follows from (3.10) and (3.20) that
pohi—h/2)=r R+ G -s By + Dy)=0,
which, provided (rﬁl-—sﬁl) # 0, gives

(r&'l - sﬁﬂ o

3.2D)

(rﬁl—sﬁ'ﬂ
Similarly, since P(1}=0, we have
(3.22) P +h /2y =—pp(h; - /2)=—r[ﬁ;_‘g” + 6;_(_’:”] +s[§l§N +1.“),_§—N] =0.
Solving for { and applying (3.21), we cbtain

N __UG=sDY L

(rﬁl—sﬁl)

from which it follows thal
ini

(3.23) E=¢ ¥

for any integer {; we take ! =0,...,N.

To simplify subsequent derivations, we madify the arbitrary contants in (3.20) by taking

ind _imi
Y =:‘i;\_e 2w g“ T C‘;_e 2N C-k
kH0)= &+
=A1_8 N + C;_L’ N
- - 1 _ _ |
=(A;.+cl)cos[ %} ¥ f(A;_—C;Jsin[ e ;)m] |

which we wriie as

e gl i
(3.242) " =Alsin[%] +Clms[ (k+;\':)m]_




10

A similar modification with &, gives

(k+'2)iw (k+'2)im

+D;cos
> N

(3.24b) Oz =Blsin[

Substituting (3.24a) and (3.24b) into (3.18) and (3.19), respectively, and simplifying, we obtain

PRREE
(3.25)
n‘[-f-lsinz[ %] Bkl =s[4c052[ ;—;1 8;;|.

Since r, s, and 1 depend on A, and since we cannot have ¥, =8, =0, il [ollows from (3.25) that the eigen-

r [—4sin2

values of (3.4) satisfy
(3.26) m;h,Z[ f_ﬂ] + Scosz[f_‘ﬂ] 0.

We can now obtain the formulas given in (3.5) by considering (3.26) for various values of /. If

I =0, then (3.26) reduces 1o

|1 e R?
27 LN (L L
(3.27) s 2[1 6 24] 0
50 that
6
3.28 = —_—
(3.28) % hA @ )

is a potential eigenvalue of (3.4). Note that (3.28) may also be wrilten as
6(+00 ) =A(t0h (O 2 —h Y4),

which shows that the approximate eigenfunction associated with A=2g is, up to a multiplicative constant,
given by p.(Rg;y)=y(y2—h%4). Since pg(Ag;y) satisfics the boundary conditions py(Ag; —h/2)=0 and
Pr-1{Ag; Th/2)=0, it follows that Ag is indeed an eigenvalue of (3.4), which gives the desired result in

(3.5a). Note that for A=24g, P is a piecewise approximalion to the eigenfunction sin(2N¥mx) of (3.1).
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If I =N, then (3.26) implies rt =0 so that either

1 ey p?

3.29 =— = —=0
(3.29) "% T2 "8
or

211 %% n?
3.30 ==L _ L
(3.30) > [l 6 8] 0

From (3.29) it follows that
2

3.31 Ay=——oro—
3-30) N e - )

is a potential eigenvalue of (3.4). The approximate cigenfunction corresponding to Ay is, up to a mulli-
plicative constant, given by px(Ay:y)=(y>—h%*4). Since p.(Ay:y) satisfies the boundary conditions
PolAy;—1t/2)=0 and py_(Ay;+1/2)=0, it follows that Ay is indeed an eigenvalue of (3.4), which gives
the desired result in (3.5b). Noic that for A=Ay, P is a piecewise approximation to the eigenfunclion
sin(Nmx) of (3.1).

From (3.30} it follows that

- 6
(3.32) T e

is a potential eigenvalue of (3.4) with corresponding approximate eigenfunction p;(Ay; y )=y (3 —3h%4).
However, since py(Ay;:Hh/2) £ 0, Ay is not an eigenvaluc of (3.4).

Finally, for I =1....,N—1, we have from (3.26) that
(3.33) Aretant| L8| 4a% =0
’ 2N T

which is a quadratic equation in A. If simplified, (3.33) may be written as
(3.34) arl+bh+c =0,

where a, I, ¢ and d are given in (3.6). Thus, for each of I =1,,.,N—1, (3.34) represents two eigenvalues

of (3.4), which gives the desired resulls in (3.5c).
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ExAMPLE 3,1. The Generalized Eigenvalues of the Discrete Dirichlet Problem A c=ARBc¢.

In order to verify the results of Theorem 3.1, we compute the generalized eigenvalues of Ac=A8¢
in (3.4) using the LAPACK routine SGEGV [1]. We then compare these computed results with those
obtained by using the formulas of Theorem 3.1 given in (3.5).

Recall that in the continuous case, the eigenvalues are of the form —kn? k=1,2,.... Thus, if

divided by —n?, we expect the gencralized eigenvalues of (3.4) 1o approximate k.2 k=1,2..... Now, for

the case N =4 and B=2715- , we obtain the results given below in Table 3.1. We see from Table 3.1 that
the formulas of Theorem 3.1 agree up to round-off with the computed resulis from LAPACK.
Table 3.1

Eigenvalues of the discrete Dirichlet prob-
Iem Ae=ABc divided by —n? for the case
N =4 and 0=1A23).

A Theorem 3.1 LAPACK

t 1.00017e+00 | 1.00017e+00
Ay 4.00902e+00 | 4.00902¢+00
A 9.0601 2e+00 | 9.06012e+00
Ay 1.94537e+01 1.94537e+01
Ay 2.77562e+01 | 2.77562e+01
As 4.04565e+01 | 4.04565¢+01
AT 5.28336e+01 | 5.28337e+01
Ao 5.83610e+01 | 5.83610e+01

By varying the free parameter 0 <@ <2 in Theorem 3.1, we can vary the location of the 2N collo-
calion points 7y, thereby affecting the accuracy of the approximations o the cigenvalues of (3.1). As

expected, we see in the following corollary that optimal approximations are obrained using the Gauss

points [6, 7, B].
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COROLLARY 3.2, If0<8< 2, then Al is at least an O (h®) approximation to the eigenvalue of

smallest magnitude of (3.1), -n. IfB= 2715 , then M =+ 0 ().

Progf. From Theorem 3.1 we have

b +¥p2_d4qc

a5 Af=
(3.35) i 7 .

where a, b and ¢ and given in (3.6) and where d =rtan?(h n/2). Expanding the right side of (3.35) in a

Taylor series with respect to &t using Mathematica [18], we obtain

1
2880

(3.36) A =—nl— 3!3,‘ (1262 1)k = —— (7208° - 2000+ [3)nSh "+ O ()

so that Af =—n%+ 0 (h 2.

. ) =d | ) 1
Setting 126%—1 =0, we obtain 8=-—— which are the Gauss points in (0,1). Substituting 6=
4 3 P ©.1) 80= 7

into (3.36), we obtain the desired result,

roh¢

_ 6
2160 +0Hh"),

which is approximately
(3.37) A = —m?—0.4450+ 0 (h5),
so Lthat

At=—n+0 5.

EXAMPLE 3.2. Convergence of A} to -2,
To numerically verify the resulis of Corollary 3.2, we compute A" in double precision using (3.35)

with 8= I for N =4,8, 16,..., 128. Note that ~n2=-9.86960440109. We obtain the following results:
23
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Table 3.2
Convergence of Af.

N =1/ Ad [AF+m2l

4 -9.8712579554 | 1.6536E-03

8 -0.8697117358 | 1.0733E-04
16 -9.8696111718 | 6.7707E-06
32 -9.8696048252 | 4.2414E-07
64 -9.8696044276 | 2.6524E-08
128 -9.8696044027 | 1.6580E-09

A logarithmic least squares fit of these data shows that |Af+xr?| = 0.42413%, which agrees with the

theoretical result in (3.37).

As a companion to Theorem 3.1, we give below explicit, closed-form expressions for the general-

ized eigenveclors of (3.4).

THEOREM 3.3. The k™ piece of the Hermite cubic approximate eigenfunction of the Dirichlet

problem (3.1) assaciated with the approximate eigenvalues hg, Ay, M of Theorem 3.1 is given by

(3.38a)

(3.33b)

(3.38¢)

Px(hgix) =Dy (x —fk)[ =% )2—1:2/4] :

p;,(lm.r):.dl”[(x —.?k)z—th] -1, and

1 e o-nY | | grpix
o —
Pl ,x)_Al’i[ ¥ > + 2 sin

1 e x-®m)
+ D}.?(I —Ik)[ Z__Ii - 3 3

(k)1
COs N »

forl=1,..N-],

where X, =20 +xp.,), Dy, A Ayt Dl,t are arbitrary nonzero constants, and where

it

_2 ew )
AF 6 8




Proof.

Recall from (3.10) and (3.24) that we have

022 2 1 %% y?
3.39 A —— —-
(3.39) p{Aiy)= [ > +2]Yk+)’[l e e &,
where
R NCEED 5 k+h)n
Y, =A z_sm[ (—}\;)—— + Clcos[ %
(3.40) o 1
| tk+myim (k+)in
8. =B;gin| ———— —.
& ;_5111[ N + Dycos N
2, 2
Consider first the special case / =0 (A=35). From (3.28), we have i- % 24 If we substi-
tute { =0 into (3.40), then (3.39) reduces (o
2 2 a2 2
N | X AT e 1.1 .2 A*
m(lo.y)—[ 7 " 24" 3 ] Gt 6y[y 7| Pw

Enforcing the boundary condition P (0)=0, we obiain

’.1'2 2
{3.41) po(lo;—h/Z):E(l—m )Ca =0,
which implies that € =0, so that

(3.42) Pir(Aa; y)——y[y 2 M Dy

4

Note that py_j(Ag:+1/2)=0 so that P(1)=0. The desired result in (3.38a) follows from (3.42) by incor-

porating the factor 1/6 into the arbitrary conslant D, and by replacing y by (x ~X3).

272 2
Second, consider the special case [ =N (A=Ay). From (3.31) we have %= 02.‘1 H%. Substi-
N

tuting I = into (3.40), we obtain sin{(k+'/2)n}=(-1)* and cos{(k+'/2)m)=0, so that (3.39) reduces to

2
(3.43) POuiy)== {y ——1 1A + [)’?—% 9"](—1)‘81,,
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Enforcing the boundary condition P (0)=0 gives

polhy;—h/2)= [1 492] (—1)*By, =

which implics B; =0 so that

(3.44) Pe(hniy)= {)’ ——] (-1 Ay,

Note that py_(Ay;+71/2)=0 so that P(1)=0. The desired result in (3.38b) lollows from (3.44) by incor-

porating the factor 1/2 into (he arbitrary cons[anlAlﬂ, and by replacing y by (x —x;).

Finally, we consider the remaining cases {=1,. ,N-1. First we show that B;=C3=0 for all

cemresponding cigenvalues A.

For £ =0, it follows from (3.39) and (3.40) that

it in i in
(3.45) Ppolh;—h/2)= r[Apm[ oN +C;co8 2N] —s[Blsm[ ZNJ +D;_cos[ 2N]
where
_1 et st
A 2 8

PR I I T
2(2 6 24

Morcover, substituting / =N -1 inlo (3.40), we oblain

(N-'R)Iw e in .| (NR)iE ! in
5 N =(-IYcos N and sin N =——I1Ysin N
50 that
(3.46) py_ (v +h/2)=(-1)X r| -A;sin in +Cycos i +5|—Bjsin in +Djco8 in
- 2N 2N N 2N

From the boundary conditions po(Ah;—-h/2)=0 and py_(A; +h/2)=0, we have from (3.45) and (3.46),

respectively,
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.| im in | I {
.{ A;Lsm[ —] +C;_cos[ —]J —sl B;Lsm[w] +chos[

| dm it L !
rl—Alsm[W +C;_cos[ ZNH +s[—B;_.~.m[ _2N] +D;,cos[ >

Adding and simplifying, we obtain

A

-
]-

£

]

2

in
3.47 C,=x8 —_—1.
( h] rC; =s 1[:1!1[ ZNJ

Now, from (3.39) it follows that

en I %% y?
PL(?\'-)')—)"YJ."'[ Iy - 6 + ) ak!

from which we obtain

(3.48) po(hi—h/2)= %{—[A 3sin ;—; + C;Lcos[ %] ] +r[B;_sin[ % +D;cos %] ] }

and

(349 p (M +h/2)=% [—A lsin[ in +C;cos| —| [+ —-B;_sin[ I_:n:] +D;_cos[ !_n] l}
2 2N 2N 2N 2NV

where

A L
B A 6 8|

Now, since P’ is continuous, we must have p’) (A, +1/2)=pg(X;—k/2). Equating (3.48) and (3.49) and

simplifying, we obtain

0.

in
. —-Cy+tB —
3 50) 2t ;Llan[ ZN]

Combining (3.47) and (3.50), we oblain

2N

0,

—sB;tan [ %] +rtB;lan
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. In
, since lan| —| # 0,
or. n[ ZN]

(3.51) By(rt —s)=0.

Now, in order to show that 8, =0, supposc that B # 0. From the above, we have rt =5 so that

the difference equations in (3.18) and (3.19) reduce, respectively, to

Ye-1— 2% + Vet =Veo1 ¥ 2% Vet

and
Bp) — 28 8 =8, | +26; +84y),
However, this yields y; =&, =0, which results in p, =0, or P =0, Thus, we must have B; =0. Further-

more, (3.50) shows that C; =0 as well. Thus, we must have By =C; =0 for all remaining cigenvalues A,

Now, with By =Cy =0, the expression for p; in (3.39) reduces o

N N
(3.52) Pk(l-))—[l_ 5t

N A 6 6 N

1 2p 2 2 N
Alsin[M] " [L_GLJJ_] D}_ms[ et

where A, and D2; are arbitrary constants.

We next chose A; and B; so that P satisfies the boundary conditions £(0)=P(1}=0. To this end,

we sel
(3.53) pn(l;—h/Z):rA;_sin[-;—;] H.\'chos[ %] -0,
from which it follows that we must have
5 In
3.54 Ay=— —| D
(3.54) »=—_cof 2N] »

From (3.26), we have

which gives




; In In
3.55 Zeot| == | =~ttan| —| .
(3.55) rcot[ 2N] H:m[ 2N]
Substituting (3.55) into (3.54), we have

21 @ n? In
3.56 =—— | = ——— —.
(3:56) A }:[l 6 +3]‘“"[2N]
Now, since

. In In
— 5 ! 2 — r — — [y
PN l(;‘-'»'l‘I/ ) —(—l) [rA;_sm[ 2N] SD;_COS[ ]

it [ollows from (3.56) (cquivalently (3.53)) that py_ (A, +A/2)=0 as well. Thus, we have P(0)=P(1)=0.

The desired results in (3.38c) follow from (3.52) and (3.56) by replacing A by Af and y by (x —X;.).

EXAMPLE 3.3. The Hermite Cubic Eigenfunctions P(Af.x) and P(AF;x).

Graphs of the Hermite cubic eigenfunctions P (A{:x) and £{A7:x) for the casc N =4 arc given in

Figure 3.1.
P P(AFx)
1 ]
G 0
-1 -1
0 1 0 1

Figure 3.1 The Hermite cubic eigenfunctions P (A{:x) and P(Af;x) approximating sin(mx)
and sin{2mx ), respectively, for the case N =4,

The discrete cigenfunctions P(A"x) and P (Af;x) are approximations to the conlinuous eigenfunclions
sin{(mr ) and sin(2mx), respectively. Note hat each eigenfunction consists of four picces, and (hat the

arbitrary constants I, , and Dli' are chosen so the functions have maximum absolute value one.
1
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4. The Necuvmann Problem. Consider the classical Necumann eigenvalue problem

w"(x)=hu(x), xe()

“4.1) 1’ (0)=1"(1)=0.

We again divide the unit interval into N equal subintervals of length i =1/¥ and approximate an cigen-

function of (4.1) by

Ww
U(x)=3eiti(x)

i=1
for some constants ¢;. For the Neumann ease, we choose the ¢; to be the 2N Hermile cubics
(4.2) {6 )2 = (@001, ¥ 1y Prt, Pyors Oy |-

Since we have discarded Wy and Wy, it follows that ¢;(0)=¢,;(1)=0 and hence U'{0)=U"(1)=0.

As before, we substitute U/ into (4.1) and collocale at the poinis /1,2 in (0,1) defined in (3.3).

We obtain the generalized eigenvalue problem
(4.3) Ac=ABe,

where

. I=1,...2N
Ayp=¢i(u) By=4(u) ;1 N

The generalized eigenvalues and eigenvectors of (4.3) give the Hermile cubic collocalion approximations

to the eigenvalues and eigenvectors of (4.1).

As in (3.4), the matrices A and B will be banded with bandwidth two. Moreover, since only the
differences between the Hermite cubics in (3.2) and (4.2) are the first and last basis functions ¢ and ¢oy,
it follows that the only differences between the matrices in (3.4) and (4.3) are (he first and (he last

columns.
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THEOREM 4.1. The 2N generalized cigenvalues of the discrete Neumann problem Ac=ABc in

(4.3) are given by

(4.42) Ao=0
(4.4b) Ay = —
h (B —3)'4)
(4.4c) ap=2E dae oy N
2a
where
(4.52) a =h“[(1604— 166%+3)d —39%2] ,
(4.5b) b =;;2[(~12392+43)d +43] ,
(4.5¢) ¢=1924d,
and where
(4.5d) d =tan?| 2&
' = ik

Proof. Proceeding as in the proof of Theorem 3.1, we have from (3.7) and (3.9) that

] k=0!"'IN_11

(STE

] ! J
(46) oY=t Bey 0 +8 %, 5 Sy

and

2

212
ak=x{5k+ake" ]

92;2
Tk=l[ak+7t : ].

4.7

6

If =0, then it follows from (4.7) that v =& =0 so that (4.6) reduces o pp(y)=0 +Piy. Now,
since each piece p, is lincar and since P is continuous, we must have P(x)=c+px. Moreover, since

P(1)=B=0, it follows that
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(4.8) pr(giy)=0,

where o is an arbitrary constant. Thus, Ag=0 is an eigenvalue of (4.3), which gives the desired result in
(4.42). Note that P =« is, up to a multiplicative constant, a piecewise approximation to the eigenfunc-

ton cos(0mx) = 1 of (4.1).
If A # 0, then we may continue as in the proof of Theorem 3.1 to show that v, and &; satisfy

T =AML+ G,

(4.9) . o
& =B+ D0

To find appropriate values for {, we imposc the boundary conditions P'(0)=P’(1)=0. We again
extend P, only this time as an even function by P(x)}=P(—x) , —-1£x £0, and P(x)=P(2-x),

1 £x £ 2, (o obtain the pieces
4.10) p-iAiyy=pol-y) and pyQiy)=py-i-y).

Recall [rom (3.10) that

R N L 1 %% y?
(4.11) Pk(ln))—[l_T"‘z]Tk'*')’[l_ s e By
so that

. 1 82 y?
(@.12) pk(k:y)=m+[x—7'+)7] &

Enforcing the boundary condition P(0)=0, (4.12) and (4.9) give
(4.13) Poh—h/2)= ’Zi[—(ﬁl—ré,)—(&l-rbg] =0

where

Now, if Ay—tB; # 0, then (4.13) yields
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&j_—fb;_ -

(4.14)
A}_—Iél

Similarly, cnlorcing the boundary condition P(1)=0, it follows from (4.10), (4.12), and (4.9) that
(4.15) Pr—1 (A +h/72) ‘:-‘—p;;r(l;—fl/Z):—‘g‘ [4&1—:31)?—(&1-:5,)-';”] =0

Solving (4.15) for { and using the result in (4.14), we oblain

o = Gty _ = 2wl
Al—fﬁj_
from which it follows that
imi
(4.16) E=e ¥

for any integer I; we take [ =0,.._.N.

Now, since (4.16) is the same as (3.23), the subsequent analysis in the proof of Theorem 3.1 may
be applied here as well. However, note that the eigenvalues may be different as a result of the different

boundary condlitions.

From (3.28) we have that

_ 6
@.17 ho= R LA

is a potential eigenvaluc of (4.3) with corresponding eigenfunction, given up to a multiplicalive constant,

by pi(Ao;y )=y (»2—h%4). However, since po(hgi—h/2)=py_ Rai +1/2)=h%2 # 0, it follows that &g

is not an eigenvalue of the discrelec Neumann problem (4.3).
Similarly, from (3.31) we have that

2

(4.18) M= UG %s)

is a potential eigenvalue with eigenfunction py (Ay;y)=0>—14). Here, po(hy;—h/2)=-5h%4 # 0 and

Pr—t Ay +H/2)=3h%4 £ 0 so that (4.18) is also not an eigenvalue of (4.3).
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Now, from (3.32) we have (hat

6

4.19 Ay O
(4.19) N e —3/4)

is a potential eigenvalue of (4.3) with p,(Ay;y)=y2-3k%4). Since po(Ay:—h/2)=0 and
Pn-1 (A +1/2}=0, it follows that Ay is an eigenvalue of (4.3) thercby giving (he desired result in (4.4c).
Note thal py(Ay;y) is, up to a multiplicative constant, a piecewisc approximation to the eigenfunction
cos{((V+1)mx ) of (4.1).

The remaining analysis in the proof of Theorem 3.1 applics directly here without modification,
which gives the remaining desired eigenvalues in (4.4c). |

EXAMPLE 4.1. The Generalized Eigenvalues of the Discrete Neumann Problem Ae=ARe.

In order to verify the results of Theorem 4.1, we compute the generalized eigenvalues of Ac=ABc¢
in (4.3} using the LAPACK rouline SGEGV [1], We then compare these computed results with those

obtained by using the formulas of Theorem 4.1 given in (4.4).

Recall that in the continuous case, the eigenvalues arc of the form —k’x,? k=0, 1,.... Thus, if

divided by —n?, we expect the generalized eigenvalucs of (4.3) to approximate k,2 k =0, 1,.... Now, for

the case N =4 and 0=;}3— , we oblain the results given below in Table 4.1. We see from Table 4.1 that

the formulas of Theorem 4.1 agree up to round-off with the computed results from LAPACK.
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Tablc 4.1

Eigenvalues of the discrete Neumann problem
Ac=ABc divided by —x? for the case N =4

and 0= 1/2¥3).

A Theorem 4.1 LAPACK

Ao 0.00000E+00 | -3.18064E-07
Af 1.00017EA+GOD 1.00017E+00
A 4.00902E+00 | 4.00901E+00
AT 9.06012E+00 9.06012E+00
Ag 1.45902E+01 1.45902E+01
Ay 2.77562E+01 2.77562E+01
Ay 4.04565E+01 4.04565E+01
Al 5.28336E+01 5.28336E+01

THEOREM 4.2. The k™ piece of the Hermite cubic approximate eigenfunction of the Neumann

problem (4.1) associuted with the approximate eigenvalues Ay, Ay, A of Theorem 4.1 is given by

(4200)  pr(hoix)=C,
(4.20b) pk(lN;.r)=le(I—J_:k)[(x —Ek)2—3!;2/4] (-1}, and

I em?  (x-x) (kH0R)n
(4.20¢) pk(l;-*:x)=c?_f[ﬁ -t ]cus[T’

I 6% (& —fk)’] . [(sz)m]
—_—— sin ,

+ B?_!i(x —.rk)[ A s T G N

forl=1..N-1,

where X, ='12(x, +x.40), C a Ba, Bl’t are arbitrary nonzero constants, and where

B

At

_2 | et pl i
Mohlaf 6 8 2N

Proof. Consider first the case of the cigenfunction corresponding to A=Ag=0. The desired result

in {4.20a) follows dircctly from (4.8) by replacing o by C A
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Now, for the case A # 0, we again have from (3.10) and (3.24) that

252 2 25,2 2
(4.21) pk(}"i)')=[%_ 9211 +%—] Tty [L—ﬁr"—] B

where

. k)l k+'R)n
Te =A;_sm[ (__A_:)_Tt] + C;_cos[ %]

#22 (k+)1 (k+')
_ . c+ M ‘2T
& —Blsm[ — + Djcos N } ;
. I 8% n? I
For the special case | =N (A=23Ay), we have from (4.19) that e +?. Substiluting I =N
N

into (4.22), we obtain sin{(k+/2)m)=(~1)* and cos((k+/=)r)=0, so that (4.21) reduces to

2 e p? , 1 342
. Oiy)=| - L] ¥ =y} y2—=—1 (~1}*B;..
(4.23) Pxniy) [2 3 g | AL ey T G B,
Note that
(4.24) PO =y (1} Ay +'R(y - R¥8)(=1) By .

Enforcing the boundary condition P’(0)=0 gives
- I ¥
Po(lN'-—h/Z):—E(—l) A, =0
which implies that Ay, =0. Thus, (4.23) reduces to

A | 2 3!!2 I
(4.25) PL—(MJ’FE)’ Yo | G B,

A simple calculation shows that py_; (Ay;+h/2)=0 so that P’(1)=0 as well. The desired result in
(4.20b) follows from (4.25) by incorporating the factor 1/6 into the arbitrary constant B;  and by replac-
ing y by (x —x;)-

Finally, we consider the remaining cases { =1,... N—[. Analogous to the Dirichlet problem, we first

show that A3 =D, =0 for all corresponding eigenvalucs A.
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From (4.21) we have

. 1 8t 2
(4.26) Pk(li}')=)"‘fk+[x_ 6' +12-] O

For & =0, it follows from (4.26) and (4.22) that

in
2N

. b in in| 12 in
427 polh=h/2)= l A ;sin C;._cos[ ZN] +!Blsm[ N +rD;_cos[ ZNH

where

af1 _eww
h| A 6 8

Moreover, substituting k =N—1 into (4.22), we oblain

PPN i .| (N—"R)ixn NPT in
={-1) cos[ ZN] and sm[—N J —{-1) sm[ 2N]'

2l

Now, [rom the boundary conditions P’(0}=P’(1)=0, we have po(A;—h/2)=0 and

1
cos[ (N=\12)n
N

so that

(4.28) pg,_l(x;-;zxz):(—l)" —A;sin| == +C;cos

;N] -rBlsin[ ;—;] +tD;cos

im
2N

Pr-1 (s +h/2)=0, so that (4.27) and (4.28) pive

in in . i=w In
—A 38in N —Cheos N +rB;,sm[ ] +rD;_cos[ i 0
in in | Iw I
— inl — — = g —_ — =0
A;Lsm[ ’.ZN] +C1cus[ 2N] rBlsm[ ZN} +rchos[ N ,

respectively, which when added yield
I
4.29) tDy—A ;,lan[ W] =0

Also, [rom (4.21) and (4.22), we have
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.| dm in .| im in
4.30 A —h/2)= = of —| = JLELT SN L
(4.30) Polh—/2) rA;,sln[ N +rC;_cos.[ ZN] sBz_sm[ ZN} .'.D;_cos[ QN]
and
| i=w | in
431 1/ 2)=— — —| = - —
(4.31) P_i{A+h/2) rA;_sm[ ZNJ +rC;cos N vB;_sm[ ZN] +sD;,cos[ 2N]'
respectively, where
P L_8% W
A 2 8
co a1 e w2
21 A 6 24|°

Now, since p_|(A:+1/2)=po(A;—h/2), we equate {4.30) to (4.31) and simplify to obtain

4,32 At
{ )] rA;tan N

—SD;_=0.

=rtD; so that (4.32) reduces (o

In
F 429, h: Ajtan| —
Tom { Y, we have rd ;) an[ N

(rt —5)D; =0

Now, in order to show that D; =0, suppose that Dy # 0. From the above, we have rf =5 so that

the difference equations in (3.18) and (3.19) reduce, respectively, to

Vet = 2%k + Y1 =Yeo1 2% + Vet
and

Bt — 28 +8p4y =0 +28; + 8y 4y,
However, this yiclds ¥, =8, =0, which results in py, =0, or P =0. Thus, we must have D4=0. Further-
more, since r ¥ 0 and lan[ ;—;] # 0, (4.32) shows that A, =0 as well. Thus, we must have A; =D; =0

for all remaining eigenvalues A.

Now, with A, =D, =0, (he expression for p; in (4.21) reduces lo

1 et y?
(4.33) pk(l.y)—[?b— )

1 252 2 1
clcos[%] +y [%_%JA Blsin[ (k+;;)m]
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where C;, and B are arbitrary consiants, Note that

. (k+'h)iw 1 8%? ¥y 2
- 7!.' = e ] —_—— —
peuy) yClcos[ N ] +[ 2 5 + >

Blsin[w} |
N

We next choose C; and B, so that P satisfies the boundary conditions P’(0)=P’(1)=0. To this

end, we set

IR !
polh,—h/2)= [rBlsln[ 2N] C;_cos[ 2;” =0,

from which it follows that we must have

Ix
4.34 Cy=18,1 —.
(4.34) A J.ﬂﬂ[ 2NJ

Also, since

Py Pt/ Dy=(=1) "'lc oq[ ;N] :B;._sm[ é:]

it follows from {4.34) that py_; (A;-+h/2}=0 as well. Thus, P'(0)=P’(1}=0.

The desired results in (4.20c) follow from (4.33) and (4.34) by replacing A by Af, and by replacing
y by (x —%).

ExAMPLE 4.2, The Hermite Cubic Eigenlunctions P(Af;x) and P (M%) for the Discrete Neu-
mann Problem.

Graphs of the Hermite cubic cigenlunctions P(&{;x} and P(A};x) for the case N =4 are given in

Figure 4.1.




The discrete cigenfunctions P(Afx) and P(Af;x) are approximalions to the continuous cigenfunctions
cos(ix } and cos(2mx), respectively. Note that each eigenfunction consists of four pieces, and that the

arbitrary constants B, . and Bl; are chosen so the functions have maximum absolute value one.
1

tions to both the eigenvalues and the cigenfunctions of the Laplace operator for both the Dirichlet and the
Neumann problems. Morcover, for the Dirichlet case, we have shown that optimal approximations are
obtained using the Gauss points for collocation points. For both cases, we have given numerical exam-
ples that verify our theoretical results. Our results apply directly to a number of iterative techniques used

1o solve the linear system arising from Hermite cubic approximations to large classes of scparable, elliplic

P}

-1
0 1

Figure 4.1 The Hermite cubic cigenfunctions P (Af7x) and P(AF;x) approximating cos(Tr)

and cos(2mx ), respectively, for the case & =4,

5. Conclusions. We have given explicit closed-form expressions for the Hermite cubic approxima-

partial differential equalions.
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