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ABSTRACT
We introduce the contour spectrllm, a user interface
component that improves qualitative user interaction
and provides real-time exad quantification in the vi­
sualization of isoconlours. The contour spectrum is a
signature consisting of a variety of scalar data and con­
lour attributes, computed over the range of scalar values
wE!R. We explore the use of surface area, volume, and
gradient integral of the contour that are shown to be
univariate B-spline functions of the scalar value w for
multi-dimensional unstructured triangulal' grids. These
quantitative propcrties arc calculated in real-time and
presented to the user as a collection of signature graphs
(plots of functions of w) to assist in selecting relevant
isovalues Wo for informative visualization. For time­
varying data, these quantitativc properties can also be
computed over time, and displaycd using a 2D inter­
face, giving the user an overview of the time-varying
function, and allowing interaction in both isovalue and
timestep. The effectiveness of the current system and
potential extensions are discussed.

Keywords: Visualization, Scalar Data, User Inter­
faces, Real-time Quantitative Query

1 Introduction
Exploratory visualization is an iterative process, with
many visualization parameters to control. Without ef­
fective user-interface tools, the visualization user must
rely on a-priori knowledge about the data of interest in
choosing effective parameters. Informative and cffcctive
visualizations often mask the amount of time and effort
which was required to create such a successful visualiza­
tion. Recent approaches in user interfaces for control­
ling visualization parameters have aspired to provide the
user with the tools to more rapidly choose parameters
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which result in an effective visualization.

Isocontouring is an example of particular interest with
a relativcly simple pal'amcter, the isovalue. Because an
isocontour effectively shows only a subset of the data,
modification of the isovalue and interactive display of
one or more isocontonrs is often necessary to infer global
structure of the scalar field from the display of con­
tours. With the increasing size of typical datasets com­
peting against the improved algorithms for computing
contours [1, 4, 9, 11, 14], enhanced user interfaces for
assisting in isovalue selection can dramatically decrease
the cycle from data acquisition to effective visualization.

We present a user interface for isocontouring which
presents the user with a collection ofdata characteristics
to aid in the selection of signifLcant isovalues. Char­
acteristics such as surface area, volume, and gradient
integral are shown to be univariate B-spline functions
of the scalar value w E !R and are computed in real
time. Presented with overlapping signature graphs, the
user simply clicks in thc scalar vallie dimension to se­
lect an isocontour level. Upon selecting an isovalue Wo,
the interface displays the exact values of the character­
istic measures (limited, of course, by the accuracy of
thc given sampled data), giving immediate quantifica­
tion. For time-varying data, the user may interact in
ID with the scalar vallie dimension, or in 2D with both
scalar value (w) and time (l) dimensions. In the 2D
interface, a single bivariate characteristic function of w
and l is displayed as a colormap, allowing the user to
select significant Wn and to parameters. Through the
display of data characteristics over the entire range of
w, the user gains a sense of the global characteristies of
the scalar field, and uses domain-specific knowledge to
select isocontours of interest. We also suggest methods
in which the computed metric properties can be used to
automatically generate a set of significant isovalues wo.



2 Related Work 3.1 Isoline Length and Isosurface Area

3.1.1 2D Contour Length

Thus, we can concentrate on the computation of the
generic term Li(W) associated with the triangle ti, as il-

I., ;F

I", .~

L(w) = L: L,(w)

The two-dimcnsional scalar field case is particularly sim­
ple and is treated in detail to introduce the general
methodology which becomes increasingly useful for field
dimensions three or higher.

Consider a 2D scalar field composed of triangles t,. and
vertices Vi such as thc terrain in Figure 1. We build (and
display) the spline function L(w) whose value L(wo) is
the length of the isocontour of height woo L(w) can
be computed as the sum of all the contributions Li(W)
given by each cell Ci to the length of the contours:

In this section we introduce the methodology used for
efficient exact quantitative queries over the scalar field.
In particular we determine a simple B-spline-based al­
gorithm which allows the exact length (area) computa­
tion of an isocontour. The spline approach makes the
computed data suitable for direct display in the contour
spectrum.

Given a 2D (3D) scalar field we determine the exact
length (area) value of any isocontour of height (scalar
value) w. For unstructured triangular meshes these sig­
nature univariate functions are B-splines. Spline func­
tions are easily displayed in the contour spectrum with"
out inlroducing additional approximations (with re­
spect to the given sampled data), and at the same time
is used to perform interactive qnantitative queries. The
method generalizes to meshes of higher dimensions, pro­
viding a means for analyzing (with the spectrum) and
interactively perform quantitative qucries on datasets
of any dimension, independently from thc ability to dis­
play them.

Figure I: (left) A 2D scalar field displayed as a ter­
rain. (right) The portion of an isocontour contained in
a single triangle.

Effective visualization interfaces and knowledge-based
systems are increasingly important for rapidly creating
useful visualizations from a constantly growing supply of
data, which is also growing in size and complexity. A re­
lated example in scalar field visualization is that. ofselec­
tion of a transfer function, or colarmap. He et al. intro­
duce manual techniques for selecting transfer functions
based on selective user refinement from an initial palette
of functions, as well as automated techniques based on
desired characteristics ofthe resulting images [8]. Char­
acteristics explored include image entropy, image vari­
ance, and edge content. Bergman ct al. developed rule­
based criteria for selecting colormaps, based the spatial
frequency of the image and a user specified representa­
Lion t;u;k to determine the type of colormap which would
most effectively present the data [3].

In visualization of isocontours, a simple and common
approach 1s to select a set of isovalues Wo which are
evenly spaced throughout the range w of the function.
It is clear that such a technique is prone to miss fea­
tures which may be considered important. The ability
to select Wo and view isocontours in real-time allows the
user to browse the scalar field for interesting features,
howevcr in the absence of addiLional guidance, the uscr
may only use their prior knowledge of what they expect
to see in the data, and query for isocontours in a trial­
and-error loop. In the following sections, we introduce a
user interface which presents the user with quantitative
information defined over the entire range of isovalues.
The interface serves the dual purpose of aiding the in­
teractive selection of isovalues and providing real-time
feedback of quantitative information about the selected
Isocontour.

3 The Contour Spectrum
The contour spectrum consists of computed metrics over
the scalar Held. On the basis of such metrics we define a
set of functions which provide a useful tool to enhance
the interactive query of the dataset. One primary ad­
vantage of the the contour spectrum interface is that it
allows one to display in a 2D image a "global" view of
the examined scalar field, indcpcndent of its dimension.
For example, in the display of a 3D isosurface, one con­
tour componen t maybe be hidden inside another. If we
associate the isocontour display with the contour tree
(details follow) it becomes immediately clear that the
current isosurface is composed of two components and
hence we might need a clipping plane to look inside the
current isosurface.

Below we report on several examples of contour mea­
sures of gencral utility. Additional measures may be
easily defined to cnhance the approach both in general
and for application dependent contour features.



3.3 Gradient Integral

3.2 Inside Area/Volume Computation

Figure 2: Area computation for the continuous range of
isocontours contained in a single tetrahedron.

L(F(v,))

.V2

then connected with the point

L(F(v,))

The point P is
(J"(II.)~J"(II') ,0)

L(w)

Again for each cell we obtain a spline function, as illus­
trated in Figure 2. The sum of the splines associated
Lo each cell is a single spline that gives the contour area
for any isovalue.

Once the length/area function of the isocontours is given
the Area/Volume of the region "below" ("above") the
isoconlour can be determined by exact integration of I.he
length/area polynomial B-spline function. This gives as
a result a new B.spline function in which degree and
continuity are increased by one. In this way we can
easily plot the area/volume spectrum. The case for the
2D contour is illustrated in Figure 3.

While length and area are important metrics to report,
in many cases they are not sufficient to guide the user
in choosing appropriate isovalues. In many situations
the user is interested in finding and displaying promi­
nent surfaces in the data. Toward this end we have
designed a metric which is based on the slope or gra­
dlenl of the function. The difficulty with the gradient
measure is to define it properly, since along a particu­
lar contour the gradient of the scalar field is not (usu-

• First the area L(V2) of the section of height F(V2)
is computed.

• A straight line from the point (.:F(II,)tJ"(II~),0)
passes through the point (F(V2)' L(V2» ~nd con­
. h· P f h' J"(U~)+.:F(II,)tmues up to t e pomt 0 a sClssa'2

As already pointed out, the above spline function can
be computed for simplices of any dimension. For the 3D
case of a tetrahedron (VI, V2, V3, Vil) with scalar function
values (F(vd ::; F(V2) ::; F(V3) ::; F(v4.)) we have a
degree two, C 1 polynamial B-spline (see Figure 2). In
this case the determination of the control polygon is as
follows:

3.1.2 3D Contonr Area

lustrated in Figure 1. Triangle ti has vertices VI, V2 and
V3 with height values F(VI) ::; F(V2) ::; F(V3)' Given
the equation f(x,y,w) = 0 of the plane containing ti,
the value Li(WO) is the length of the intersection be­
tween ti (projection of t; onto the mesh space) and the
2D line of equation f(x, y, wo) = 0 (see figure 1). As we
change the value of Wo we obtain the measure of all the
slices parallel to the line f(x,y,O) = O. Tn general it is
know from spline theory that given a d-simplex in !Rd

the function that gives the measure of all the parallel
slices of such simplex (that is the measure of the in­
tersection with aset of parallel hyperplanes) is a degree
d-l, Cd- 2 continuous, polynomial B-spline function [5].
Scalar fields of arbitrary topology meshes can of course
be handled by first generating simplicial approximation
of them. Note that in constructing a simplicial approxi­
mation fOf structured and convex cell topology meshes,
no new data values are needed for the scalar field.

In the 2D case the B-spline is simply a piecewise linear
Co function. Hence we need only compute the length
of the segment for w = F(V2) and connect it with the
other two extremes for which the length is O.

Note that the B-spline formulation of the length is also
nseful to automatically handle the eventual degenerate
cases. For example a portion of the terrain at height
w can be a flat parallel to the x,y plane (a lake). In
this case there occurs a definition problem, in deter­
mining the length of an isocontour which is partially
a I-dimensional curve and partially a 2D surface. The
natural solution is to remove the flat region to regularize
the dimension of the contour. The consequence is that
the function that computes the contour length is only
C- l at the height w. Using the B-spline approach no
special care must be taken for this case since the knot
vectors of the flat triangles are F(vl) = F(V2) = F(V3)
resulting in "valid" splines which shrink to a point (as
they should be).
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Figure 3: 2D area computation by integration of the
length function L(w). The shaded region corresponds
to the area le.~s than or below the isovalue. The area
abaVf the isovalue is computed symmetrically.

ally) constant. To compute a consistent (single valued)
gradient function we resort to the spline decomposition
of the contour length/area function. For each trian­
gle/tetrahedron of the mesh we have a spline function
which gives the length of any contouT within that trian­
gle/tetrahedron. Moreover, by piecewise linear approx­
imation, within each triangle/tetrahedron the gradient
of the scalar field is constant. ITcncc to determine the
contribution La the gradient function of the contours
within a single triangle we just need to multiply the
length function by the absolute value of the (constant)
gradient. Again the sum of the splines defined in each
triangle/tetrahedron gives a single global spline function
which defines the gradient integral of any isocontour in
the scalar field. Figure 4 shows an MRT scan of a human
heart. The maximum of the gradient (marked function
plot on bottom figure) corresponds to the isocontour
(isocontour on top figure) bounding the relevant por­
tion of the data. Note how the maximllffiofthe contour
surface (red function plot) is attained for a lower height
value of the field. It captures the noisy part of the data
that has a large contour length due to the numerous
components.

3.4 Real Time Quantitative Queries

The 2D plot of each of the above metrics provides a
qualitative understanding of their trend. Once an iso­
contour is selected the user is usually interested in the

Figure 4: Top: MRl cross section of a human torso dis­
playing the hearl. Bottom: the corresponding contour
spectrum with isovalue selected at the maximum of the
gradient integral.

exact value of each of such metrics. This can be accom­
plished using the same B-spline representation. Since
the B.spline defined above are exact representations of
the relative metrics for the given piecewise scalar field
we only need to search in the knot vector for the in­
terval in which the selected isovalue lies and evaluate
the related portion of spline. This takes, in the worst
case, O(logn) (the evaluation can be considered 0(1))
time where n is the number of different scalar values
at the mesh vertices. Note that for the MID data we
have n = 256. In the general case, if n is too large we
can apply any error bounded reduction scheme to keep
n within an acceptable value. In such cases we will not
get exact but error bounded results.

3.5 Contour Tree

While the display of contour metrics is both helpful
and informative, there is clearly a lack of global struc­
tural information in the metrics described. For example,
there is no indication of features such as local maxima
and minima of the field. For this purpose we introduce
the use of the contour tree as a tool for assisting the
user in interaction with complex scalar fields. A con-



tour tree captures the global changes in contour topol­
ogy of the scalar field defined on the input the mesh.
It has been used before in image processing and GIS
research [6, 7, 10, 12, 13]. Another name in use is the
topographic change tree, and it is related to the Reeb
graph used in Morse Theory [13]. Note the difference
from the topology graph [2], which remains embedded
in the mesh space and hence for 3D meshes is not dis­
played as a 2D graph.

Figure 5: A 2D scalar field (top) with the associated
contour spectrum with superimposed contour tree (bot­
tom).

Figure 5 shows a 2D scalar field along with its associated
contour tree. For each edge in the contour tree there is
a connected component of an isocontour in the scalar
field. If, while varying the isovalue, two contour com­
ponents merge together we have in the contour tree two
edges that join. Similarly, if an isocontour splits in two
or more components we will have in the contour tree an
edge that splits in two or more edges. Moreover the com­
parison between the contour tree and the spectrum may
aid in the selection of interesting contours. Typically an
isovalue that has a contour tree with many edges but a
relatively small overall contour length/area corresponds
to a noisy region. Symmetrically a single component of
large length/area correspond to a well defined featured
of the scalar field. Computation of the contour tree is

discussed in greater delail in [14].

4 User Interface

The user interface for presenting the contour spectrum
takes on two forms. For static data, a window presents
a selected subset of the plots of the computed signature
functions. The horizontal axis represents the isovalue
dimension. The vertical axis represents the range of
each function, all of which are normalized for overlap­
ping display. Sec Figure 6 for an example. The user may
select a subrange of the isovalues for display in order to
enhance the local detail in the computed metrics. Verti­
cal bars represent the current isovalues, which lhe user
may change with a familiar click-and-drag operation.

With time-varying data, it is desirable that the user
have the ability to quickly browse all parameters of the
visualization. In this case we use the vertical dimen­
sion of the interface as an index into the timestep of the
data. Of course, while we use time here as an example,
other parameters may be varied similarly, such as input
parameters to a numerical simulation. Using this inter­
face, each point in the 2D display maps to a number
of functions. We selectively display one function at a
time by pseudocoloring of the function values over the
20 grid, as shown in Figure 7.

5 Rule-based Contouring

An interesting and promising pursuit is to develop tech­
niques which strategically choose a set of key isovalues
which convey the data most clearly.

An important caveat to rule-based contouring is that
users familiar with a particular isovalue selection mech­
anism, such as the selection of n evenly spaced isoval­
ues, may easily misinterpret the display of a number of
contours which are irregularly scattered throughout the
range of the function.

The contour spectrum allows the development of an
adaptive ability to capture the "interesting" features of
a dataset. Figure 8 shows the scalar field obtained as
CT scan of an engine. The main component of the en­
gine can be easily determined by selecting the maximum
of the gradient integral. Of course this remains simply
an aid in the interactive querying stage of the dataset,
as the concept of "interesting" feature of a scalar field
remains highly dependent on the type of dataset we are
dealing with.



Figure G: Contour Spectrum Interface showing univariate Quantitative Signature functions.

6 Conclusions

In addition to increasing user interaction, quantitative
interfaces for visualization arc a first step to developing
the ability to automatically select visualization param­
eters for effective visualizations. While certain general
isovalue selection techniques are discussed here, we pro­
pose that application specific rules for isovalue selection
based on metric properties be developed. In particular
we are exploring the use of 2D Yector field displays of
vector signature functions as well as automatic gener­
ation of significant parameter values of the underlying
dataset.

The measure of visualization effectiveness is the amount
of insighl gained by the user. For automated visual­
ization and parameter selection to become viable and
eITeclive, il will be necessary for visualization users to
understand the implications of the parameter selection
techniques which have been applied.
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