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ABSTRACT

We introduce the confour specirum, a user interface
component thal improves qualitalive user interaclion
and provides real-time exact quantification in the vi-
sualization of isocontours. The contour specirum is a
signature consisling of a variely of scalar data and con-
tour attributes, computed over the range of scalar values
w € f. We explore the use of surface area, volume, and
gradient integral of the contour that are shown to be
univariate B-spline functions of the scalar value w for
multi-dimensional unstructured triangular grids. These
quantitative properties are calculated in real-time and
presented to the user as a collection of signature graphs
(plots of functions of w) to assist in selecting relevant
1sovalues wy for informative visualization. For time-
varying data, these quantitative propertics can also be
computed over time, and displayed using a 2D inter-
face, giving the user an overview of the time-varying
function, and allowing intleraclion in both isovalue and
timestep. The effectiveness of the current system and
potenlial extensions are discussed.

Keywords: Visualization, Scalar Data, User Inter-
faces, Real-time Quantitative Query

1 Introduction

Exploratory visualization is an iterative process, with
many visualizalion parameters to control. Without el-
fective user-interface tools, the visualization user must
rely on a-priori knowledge about the data of interest in
choosing effective parameters. Informative and effective
visualizations often mask the amount of time and efiort
which was required to create such a successiul visualiza-
tion. Recent approaches in user interfaces for control-
ling visualization parameters have aspired to provide the
user with thc tools to more rapidly choose parameters
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which resull in an effective visualization.

Isocontouring is an example of particular interest with
a relatively simple parameter, the isovalue. Because an
isacontour effectively shows only a subset of the data,
modification of the isovalue and interactive display of
one or more isocontours is often necessary to infer global
structure of the scalar field from Lhe display of con-
tours. With the increasing size of typical datasets com-
peting against the improved algorithms for compuling
contours [l, 4, 9, 11, 14], enhanced user interfaces for
assisting in isovalue seleclion can dramatically decrease
the cycle [rom data acquisition to effective visnalization.

We present a user interface for isocontouring which
presents the user with a collection of data characteristics
lo aid in the selection of significant isovalues. Char-
acteristics such as surface area, volume, and gradient
integral are shown to be univariate B-spline functions
of the scalar value w € R and are computed in real
time. Presented with overlapping signature graphs, the
user simply clicks in the scalar value dimension to se-
lect an isocontour level. Upon selecting an isovalue wy,
the interface displays the exact values of the character-
istic measures (limited, of course, by the accuracy of
the given sampled data), giving immmediate quantifica-
tion. For time-varying data, the user may interact in
1D with the scalar value dimension, or in 2D with bath
scalar value (w) and time ({) dimensions. In the 2D
interface, a single bivariate characteristic function of w
and { is displayed as a colormap, allowing the user to
select significant wg and tp parameters. Through the
display of data characteristics over the entire range of
w, the user gains a sense of the global characteristics of
the scalar field, and uses domain-specific knowledge to
selecl isocontours of interest. We also suggest methods
in which the computed metric properties can be used Lo
aulematically generale a set of significant isovalues wy.




2 Related Work

Effective visualization interfaces and knowledge-based
systems are increasingly important for rapidly creating
uselul visualizations from a constantly growing supply of
data, which is also growing in size and complexity. A re-
lated example in scalar field visualization is that of selec-
tion of a transfer function, or colormap. He et al. inlro-
duce manual lechniques for selecting transfer functions
based on selective user refinement from an initial palette
of functions, as well as automated techniques based on
desired characteristics of the resulting images [8]. Char-
acleristics explored include image entropy, image vari-
ance, and edge content. Bergman et al. developed rule-
based crileria [or selecting colormaps, based the spatial
[requency of the image and a user specified representa-
tion task to determine the type of colormap which would
mnost effectively present the data [3).

In visualization of isocontours, a simple and common
approach is to select a set of isovalues wp which are
evenly spaced throughout the range w of the functlion.
It is clear that such a technique is prone o miss fea-
tures which may be considered itnporiant. The ability
to select wy and view isoconiours in real-time allows the
user lo browse the scalar field for interesting fealures,
however in the absence of addilional guidance, the user
may only use their prior knowledge of what they expect
to see in the data, and query for isocontours in a trial-
and-error loop. In the following sections, we introduce a
user interface which presents the user with quantitative
information defined over the entire range of isovalues.
The interface serves the dual purpose of aiding the in-
teractive selection of isovalues and providing real-time
feedback of quantitative information about the selected
isocontour.

3 The Contour Spectrum

The conlour spectrum consists of computed metrics over
the scalar field. On the basis of such metrics we define a
set of functions which provide a useful tool to enhance
the interactive query of the dataset. One primary ad-
vantage of the the conlour spectrum interface is that it
allows one to display in a 2D image a “global” view of
the examined scalar field, independent of its dimension.
For example, in the display of a 3D isosurlace, one con-
tour component maybe be hidden inside another. If we
associate the isocontour display with the contour tree
(details follow) it becomes immediately clear that the
current isosurface is composed of two components and
hence we might need a clipping plane Lo look inside the
current isosurface.

Below we reporl on several examples of contour mea-
sures of general utility. Additional measures may be
easily defined to enhance the approach both in general
and for application dependent contour features.

3.1 Isoline Length and Isosurface Area

In this section we introduce the methodology used for
cfficient exact quantitative queries over the scalar field.
In particular we determine a simple B-spline-based al-
gorithm which allows the exact length (area) computa-
tion of an isocontour. The splinc approach makes the
computed data suitable for direct display in the contour
spectrum.

Given a 2D (3D) scalar field we determine the exaci
length (area) value of any isocontour of height (scalar
value) w. For unstructured triangular meshes these sig-
nature univariate functions are B-splines. Spline func-
tions are easily displayed in the contour spectrum with-
out iniroducing additional approximations (with re-
specl Lo Lthe given sampled data), and at the same time
15 used Lo perform interactive quantitative queries. The
method generalizes to meshes of higher dimensions, pro-
viding a means for analyzing (with the spectrum) and
interactively perform quantitative queries on datasets
of any dimension, independently from the ability to dis-
play them.

3.1.1 2D Contour Length

The two-dimensional scalar field case is particularly sim-
ple and is treated in delail to introduce the general
methodology which becomes increasingly useful for field
dimensions three or higher.

Counsider a 2I} scalar ficld composed of triangles ¢; and
vertices v; such as the terrain in Figure 1. We build (and
display) the spline function L(w) whose value L(wp)} is
the length of the isocontour of height w. L{w) can
be computed as the sum of all the contributions L;{w)
given by each cell ¢; to the length of the contours:

L{w)

L{F(wa))

Figure 1: (left) A 2D scalar field displayed as a ter-
rain. (right) The portion of an isocontour contained in
a single triangle.

Thus, we can concentrate on the computation of the
generic term Li{w) associated with the triangle £;, as il-




lustrated in Figure 1. Triangle ¢; has vertices v;, vz and
v3 with height values F(v;} < F(v2) < F(vs). Given
the equation f(z,y,w) = 0 of the plane containing ¢;,
the value L;{wp) is the length of the intersection be-
tween &} {projection of £; onto ithe mesh space) and the
2D line of equation f(z,y, ws) = 0 (see figure 1). As we
change the value of wy we obtain the measure of all the
slices parallel to the line f(z,y,0) = 0. In general it is
know from spline theory that given a d-simplex in R¢
the function that gives the measure of all the parallel
slices of such simplex {that is the measure of the in-
tersection with a set of parallel hyperplanes) is a degree
d—1, C?~? continuous, pelynomial B-spline function [5].
Scalar fields of arbitrary topology meshes can of course
be handled by first generating simplicial approximation
of them. Note that in constructing a simplicial approxi-
mation for structured and convex cell topology meshes,
no new data values are needed for the scalar field.

In the 2D case the B-spline i1s simply a piecewise linear
C? function. Hence we need only compute the length
of the segment [or w = F(v;) and connect it with the
other two extremes for which the length is 0.

Note that the B-spline formulation of the length is also
useful to automatically handle the eventual degenerate
cases. For example a porlion of the terrain at height
w can be a flat parallel to the 5,y plane (a lake). In
this case there occurs a definition problem, in deter-
mining the length of an isocontour which is partially
a l-dimensional curve and partially a 2D surface. The
natural solution is to remove the flat region to regularize
the dimension of the contour. The consequence is that
the function that computes the contour length is only
C~! at the height w. Using the B-spline approach no
special care must be taken for this case since the knot
vectors of the flat triangles are F(v)) = F(v2) = F(v3)
resulting in “valid” splines which shrink to a point (as
they should be).

3.1.2 3D Contour Area

As already pointed out, the above spline function can
be computed for simplices of any dimension. For the 3D
case of a letrahedron (v, s, ¥a, v4} with scalar function
values (F(v1) < F(vz) < F(va) € F(v4))} we have a
degree two, C! polynamial B-spline {sec Figure 2). In
this case the determination of the control polygon is as
follows:

e First the area L{v2) of the section of height F{v3)
is compuled.

e A straight line from the point (szﬂl,[])
passes through the point (F(vz2), L(vz)) and con-
tinues up to the poinl P of abscissa ﬂﬂ;ﬂ"—’l

The point P is then connected with the point

?{U:‘!+f!ul}
(==5==-,0)

.'.P

A L{w)

Figure 2: Area computation for the continuous range of
isaconlours conlained in a single tetrahedron.

Again for each cell we obtain a spline function, as illus-
trated in Figure 2. The sum of the splines associated
to each cell is a single spline that gives the contour area
for any isovalue,

3.2 Tnside Area/Volume Computation

Once the length/area funclion of the isocontours is given
the Area/Volume of the region “below” (“above”) the
isoconlour can be determined by exact integration of the
length/area polynomial B-spline function. This gives as
a tesult a new B-spline [unction in which degree and
continuity are increased by one. In this way we can
easily plot the area/volume spectrum. The case for the
2D contour is illustrated in Figure 3.

3.3 Gradient Integral

While length and area are important metrics to report,
in many cases they are not suflicient to guide the user
in choosing appropriate isovalues. In many silualions
the user is intercsted in finding and displaying promi-
nent surfaces in the data. Toward this end we have
designed a metric which is based on the slope or gra-
dient of the function. The difficulty with the gradient
measure is to define it properly, since along a particu-
lar conlour the gradient of the scalar ficld is not (usu-
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Figure 3: 2D area computalion by integration of the
length function L{w)}. The shaded region corresponds
to the area less than or below the isovalue. The area
ebove the isovalue is compuied symmetrically.

ally) constanl. To compute a consistent (single valued)
gradient [unction we resort to the spline decomposition
of the contour length/area Tunction. For each trian-
gle/tetrahedron of the mesh we have a spline function
which gives the length of any contour within that trian-
gle/tetrahedron. Moreover, by piecewise linear approx-
imation, within each triangle/tetrahedron the gradient
of the scalar field is constant. ITence to determine the
contribution to the gradient function of the contours
within a single triangle we just nced to mmitiply the
length function by the absolute value of the (constant)
gradient. Again the sum of the splines defined in cach
triangle/tetrahedron gives & single global spline function
which defines the gradient integral of any isocontour in
the scalar field. Figure 4 shows an MRI scan of a human
heart. The maximum of the gradient (marked function
plot on bottom figure) corresponds to the isocontour
(isocontour on top figure) bounding the relevant por-
tion of the data. Note how the maximum of the contour
surface (red function plot) is attained for a lower lieight
value of the field. It caplures the noisy part of the data
that has a large contour length due to the numerous
components.

3.4 Real Time Quantitative Queries

The 2D plot of each of the above metrics provides a
qualitative understanding of their trend. Once an iso-
contour is selected the user is usually interested in the

Figure 4: Top: MRI cross section of a human torso dis-
playing the hearl. Bottom: the corresponding contour
spectrurn with isovalue selected at the maximum of the
gradient integral.

exacl value of each of such metries. This can be accom-
plished using the same B-spline representation. Since
the B-spline defined above are exact representations of
the relative metrics [or the given piecewise scalar field
we only need Lo search in the knot vector for the in-
terval in which the selected isovalue lies and evaluate
the related portion of spline. This takes, in the worst
case, O(logn) (the evaluation can be considered O(1}))
time where n is the number of different scalar values
at the mesh vertices. Nole thal for the MRI data we
have n = 256. In the general case, if n is too large we
can apply any error bounded reduction scheme to keep
n within an acceptable value. In such cases we will not
get exact but error bounded results.

3.5 Contour Tree

While the display of contour metrics is both helpful
and informalive, there is clearly a lack of global struc-
tural information in the metrics described. For example,
there is no indication of features such as local maxima
and minima of the field. For this purpose we introduce
the use of the confour iree as a tool for assisting the
user in interaction with complex scalar fields. A con-




tour tree captures the global changes in contour topol-
ogy of the scalar field defined on the input the mesh.
It has been used before in image processing and GIS
research [6, 7, 10, 12, 13]. Another name in use is the
tepograpkic change iree, and it is related to the Reeb
graph used in Morse Theory [13]. Note the difference
from the topology graph [2], which remains embedded
in the mesh space and hence for 31 meshes is not dis-
played as a 2D graph.

Figure 5: A 2D scalar field (top) with the associated
contour spectrum with superimposed contour tree (bot-
tom).

Figure 5 shows a 2D scalar field along with its associated
contour tree. For each edge in the contour tree there is
a connected component of an isocontour in the scalar
field. If, while varying the isovalue, two contour com-
ponents merge together we have in the contour tree two
edges that join. Similarly, if an isocontour splits in two
or more components we will have in the contour tree an
edge that splits in two or more edges. Moreover the com-
parison between the contour tree and the spectrum may
aid in the sclection of interesting contours. Typically an
isovalue that has a contour tree with many edges but a
relatively small overall contour length/area corresponds
to a noisy region. Symmetrically a single component of
large lengthfarea correspond to a well defined featured
of the scalar field. Computation of the contour tree is

discussed in greater delail in [14].

4 User Interface

The user interface for presenting the contour spectrum
takes on two forms. For static data, a window presents
a selected subset of the plots of the computed signature
functions. The horizontal axis represents the isovalue
dimension. The vertical axis represents the range of
each function, all of which are normalized for overlap-
ping display. Sce Tigure 6 for an example. The user may
select a subrange of the isovalues for display in order to
enhance the local detail in the computed metrics. Verti-
cal bars represent the current isovalues, which the user
may change with a familiar click-and-drag operation.

With time-varying data, it is desirable that the user
have the ability to quickly browse all parameters of the
visualization. In this case we use the vertical dimen-
sion of the interface as an index into the timestep of the
data. OF course, while we use {ime here as an example,
ollier parameters may be varied similarly, such as input
parameters to a numerical simulation. Using this inter-
face, each point in the 2D display maps to a number
of functions. We selectively display one funclion at a
lime by pseudocolering of the [unction values over the
2D grid, as shown in Figure 7.

5 Rule-based Contouring

An interesting and promising pursuit is to develop tech-
niques which strategically choose a set of key isovalues
which convey the data most clearly.

An important caveal Lo rule-based contouring is that
users familiar with a particular isovalue selection mech-
anism, such as the selection of n evenly spaced isoval-
ucs, may casily misinterpret the display of a number of
contours which are irregularly scatlered throughout the
range of the function.

The contour spectrum allows the development of an
adaptive ability to capture the “interesting” features of
a dataset. Figure 8 shows the scalar field obtained as
CT scan of an engine. The main component of the en-
gine can be easily determined by selecling the maximum
of the gradient integral. Of course this remains simply
an aid in the interactive querying stage of the dataset,
as the concept of “interesting” feature of a scalar field
remains highly dependent on the type of dataset we are
dealing with.
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Figure 6: Contour Spectrum Interface showing univariate Quantitative Signature functions.

6 Conclusions

In addition lo increasing uscr interaction, quantitative
inlerfaces {or visualization are a first step to developing
the ability to automatically select visualization param-
eters for cffective visualizations. While certain general
isovalue sclection techniques are discussed here, we pro-
pose that application specific rules for isovalue selection
based on meiric properties be developed. In particular
we are exploring the use of 2D vector ficld displays of
veclor signature functions as well as automatic gener-
ation of significant parameter values of the underlying
dalasel.

The measure of visualization effectiveness is the amount
of insight gained by the user. For automated visual-
ization and parameter selection to become viable and
effective, it will be necessary for visualization users to
understand the implications of the parameter selection
techniques which have been applied.
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