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Abstract. Designing 3D User Interfaces (UI) requires adequate evaluation tools to ensure good 

usability and user experience. While many evaluation tools are already available and widely 

used, existing approaches generally cannot provide continuous and objective measures of usa-

bility qualities during interaction without interrupting the user. In this paper, we propose to use 

brain (with ElectroEncephaloGraphy) and physiological (ElectroCardioGraphy, Galvanic Skin 

Response) signals to continuously assess the mental effort made by the user to perform 3D 

object manipulation tasks. We first show how this mental effort (a.k.a., mental workload) can 

be estimated from such signals, and then measure it on 8 participants during an actual 3D object 

manipulation task with an input device known as the CubTile. Our results suggest that monitor-

ing workload enables us to continuously assess the 3DUI and/or interaction technique ease-of-

use. Overall, this suggests that this new measure could become a useful addition to the reper-

toire of available evaluation tools, enabling a finer grain assessment of the ergonomic qualities 

of a given 3D user interface. 

Keywords: 3D User Interfaces · Evaluation · passive Brain-Computer Interfac-

es · physiological signals · electroencephalography · mental workload 

 

1 Introduction 

3D User Interfaces (UI) and systems are increasingly used in a number of applica-

tions including industrial design, education, art or entertainment [3,11]. As such, 

3DUI and interaction techniques can be used by many different users with many vary-

ing skills and profiles. Therefore, designing them requires adequate evaluation tools 

to ensure good usability and user experience for most targeted users [2,11]. To do so, 

a number of evaluation methods has been developed including behavioral studies, 
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testbeds, questionnaires and inquiries, among others [8,3,11]. This resulted in the 

design of more relevant, efficient and easy-to-use 3DUI. 

 

 

Fig. 1. Schematic view of a user performing 3D manipulations tasks with the CubTile input 

device. His/her mental effort are monitored based on brain signals (ElectroEncephaloGraphy). 

 

Nevertheless, there is still a lot of room for improvements in the currently used 

evaluation methods. In particular, traditional evaluation methods could either be am-

biguous, lack real-time recordings, or disrupt the interaction [8]. For instance, alt-

hough behavioral studies are able to account in real-time for users’ interactions, they 

can be hard to interpret since measures may not be specific, e.g., a high reaction time 

can be caused either by a low concentration level or a high mental workload [10]. 

Questionnaires and other inquiry-based methods such as “think aloud” and focus 

group all suffer from the same limitation: resulting measures are prone to be contami-

nated by ambiguities [19], social pressure [23] or participants’ memory limitations 

[13]. 

For instance, a useful UI evaluation measure is the user’s mental workload, i.e., the 

pressure on the user’s working memory, which is typically measured using the 

NASA-TLX post-hoc questionnaire [10]. Even though it can be used to assess users’ 

preferences regarding UI [12], NASA-TLX being a post-experiment measure, this is 

only a subjective and global measure that cannot inform on where and when the user 

experienced higher or lower workload. There is therefore a need for more objective 

(or more precisely “exocentric”, as defined in [8]) and continuous measures of the 

usability qualities of 3DUI that do not interrupt the user during interaction. 

In order to obtain such measures of the user’s inner-state during interaction, a re-

cent promising research direction is to measure such states based on brain signals – 



 

 

e.g., from ElectroEncephaloGraphy (EEG) – and physiological signals – e.g., from 

heart rate measurements or skin’s moisture – acquired from the user during interac-

tion [8]. Indeed, there are increasing evidence that the mental states that can be rele-

vant for 3DUI evaluation, like mental workload [17], can be estimated from brain and 

physiological signals [8,20]. Interestingly enough, some recent works have started to 

use brain signal based measures of workload to compare 2D visual information dis-

plays [22,1]. However, to the best of our knowledge, estimating mental workload 

from both brain and physiological signals has never been explored to evaluate 3DUI, 

although it could provide relevant evaluation metrics to complement the already used 

ones. Indeed, previous works were focused on evaluating workload levels based on 

brain signals during 2D visualizations, thus with more passive users [22,1]. 3D inter-

action tasks are more complex for the user since 1) the user is actively interacting 

with the application, and not as passively observing it, and as such should decide what 

to do and how to do so, and 2) perceiving and interacting with a 3D environment is 

more cognitively demanding than perceiving and interacting with a 2D one, since it 

required the user to perform 3D mental rotation tasks to successfully manipulate 3D 

objects or to orientate him/herself in the 3D environment. Therefore, as compared to 

existing works which only explored passive 2D visualizations, monitoring mental 

workload seems more relevant during 3D manipulation tasks, since the user is more 

likely to experience pressure on his/her cognitive resources. Therefore, evaluating the 

resulting changes in workload levels seems even more necessary to ensure the design 

of usable 3DUI. Moreover, the active role of the user during 3D interaction tasks (as 

compared to more passive visualizations) and the higher cognitive demand as well as 

the richer visual feedback resulting from the use of a 3D environment means that 

EEG and physiological signals will be substantially different and more variable as 

compared to those measured during 2D visualization tasks. Finding out whether they 

can still be used to estimate workload levels in this context is therefore a challenging 

and relevant question to explore. 

Therefore, in this paper, we propose to assess the mental effort (i.e., the mental 

workload) made by the user during 3D object manipulation tasks, based on brain 

(EEG) and other physiological signals. We notably propose a method to estimate 

workload levels from both EEG, ElectroCardioGram (ECG) and Galvanic Skin Re-

sponse (GSR) signals, and we study mental workload levels during a 3D docking task 

in a pilot study (see Figure 1). Our results show that this approach can provide useful 

information about how users learn to use the 3DUI and how easy-to-use it is. 

2 Methods 

To continuously monitor workload levels during 3D interaction, we first propose 

an approach to estimate such workload levels from EEG, ECG and GSR signals, de-

scribed hereafter. We then present how to use the resulting workload estimator to 

evaluate 3D object manipulation tasks and the corresponding study we conducted. 



 

 

   

Fig. 2. Left: The CubTile interaction device. Center: The bridge building application. Right: 

The bridge building application controlled with the CubTile and used to analyze workload 

levels during 3D docking tasks. 

Measuring and Estimating Workload Levels 

Estimating workload levels from EEG, ECG and GSR signals first requires a 

ground truth data set with such signals labeled with the corresponding user’s mental 

workload, in order to calibrate and validate our workload estimator. Based on this 

ground truth signal data set, we propose signal processing and machine learning tools 

to identify the user’s workload level. They are described hereafter. 

Inducing mental workload to calibrate the estimator.  

To obtain a ground truth signal data set to calibrate and validate our workload es-

timator, we induced 2 different workload levels in our participants. To do so, we had 

them perform cognitive tasks, the cognitive difficulty of which being manipulated 

using a protocol known as the N-back task, a well-known task to induce workload 

(see, e.g., [17]). With such a task, users saw a sequence of letters on screen, the letters 

being displayed one by one, every 2 seconds. For each letter the user had to indicate 

whether the displayed letter was the same one as the letter displayed N letters before 

or was different, using a left or right mouse click respectively. Each user alternated 

between “easy” blocks with the 0-back task (the user had to identify whether the cur-

rent letter was the letter ‘X’) and “difficult” blocks with the 2-back task (the user had 

to identify whether the current letter was the same letter as the one displayed 2 letters 

before). Each block contained 60 letters presentations and each participant completed 

6 blocks, 3 blocks for each workload level (0-back vs 2-back). Therefore, 360 calibra-

tion trials (i.e., one trial being one letter presentation) were collected for each user, 

with 180 trials for each workload level (“low” versus “high”). 

Measuring brain and physiological signals.  

During all experiments, EEG signals were acquired using 30 electrodes located all 

over the scalp (positions C6, CP4, CPz, CP3, P5, P3, P1, Pz, P2, P4, P6, PO7, PO8, 

Oz, F3, Fz, F4, FT8, FC6, FC4, FCz, FC3, FC5, FT7, C5, C3, C1, Cz, C2, C4), using 

a 32-channels g.USBAmp (g.tec, Austria). ECG and GSR were measured using a 



 

 

BITalino acquisition card [28]. 3 ECG sensors were placed on the user’s torso, and 2 

GSR sensors on the user’s index and middle fingers from the active hand. All EEG 

and physiological sensors were acquired using the OpenViBE platform [25]. 

Signal processing tools to detect mental effort.  

In order to estimate mental workload from brain and physiological sensors, we 

used a machine learning approach: the measured signals were first represented as a set 

of descriptive features. These features were then given as input to a machine learning 

classifier whose objective was to learn whether these features represented a low work-

load level (induced by the 0-back task) or a high workload level (induced by the 2-

back task). Once calibrated, this classifier can be used to estimate workload levels on 

new data, which we will use to estimate mental effort during 3D object manipulation 

tasks. From the signals collected during the N-back tasks described above, we ex-

tracted features from each 2-seconds long time window of EEG and physiological 

signals immediately following a letter presentation, as in [17]. We used each of these 

2-seconds long time windows as an example to calibrate our classifier. Note that a 

classifier was calibrated separately for each participant, based on the examples of 

brain and physiological signals collected from that participant. Indeed, EEG signals 

are known to be very variable between participants, hence the need for user-specific 

classifiers to ensure maximal EEG classification performances [5,17].  

We used the EEGLab software [4] to process EEG signals. We filtered the signals 

in the Delta (1 − 3 Hz), Theta (4 − 6 Hz), Alpha (7 − 13 Hz), Beta (14 − 25 Hz) 

and Gamma (26 − 40 Hz) bands, as in [17]. For each band, we optimized a set of 6 

Common Spatial Patterns (CSP) spatial filters (i.e., linear combinations of the original 

EEG channels that lead to maximally different features between the two workload 

levels) [24,15]. For each frequency band and spatial filter, we then used as feature the 

average band power of the filtered EEG signals. This resulted in 30 EEG features (5 

bands × 6 spatial filters per band). Note that high frequency EEG is likely to be con-

taminated by muscle activity (ElectroMyoGraphy - EMG) from the user’s face or 

neck [6,9]. As such, we explored EEG-based workload estimation based on low fre-

quencies only (Theta, Delta, Alpha) and both low and high frequencies (Theta, Delta, 

Alpha, Beta, Gamma). 

This signal processing approach is the one we used to discriminate workload levels 

from EEG signals between 0-back and 2-back tasks, i.e., within the same context on 

which the workload estimator was calibrated. However, it is known that EEG signals 

change between different contexts, due, e.g., to the different user’s attention and in-

volvement that the context triggers or to different sensory stimulations (e.g., different 

visual inputs) that change brain responses and thus EEG signals. This means that a 

workload estimator calibrated in a given context will have poorer performances (i.e., 

will estimate an erroneous workload level more often) when applied to a different 

context [17]. In our experiment, the final application context, i.e., 3D objects manipu-

lation, is very different from the calibration context, i.e., the N-back tasks. Indeed, 

during the N-back tasks the user is moving very little as he/she is only performing 

mouse clicks, and exposed to very little visual stimulations as the N-back task only 

involves the display of white letters on a black background. On the contrary, manipu-



 

 

lating 3D objects means that the user will be moving more and would be exposed to 

very rich visual stimulations. As such, a workload estimator simply calibrated on the 

N-back tasks and applied to the 3D object manipulation tasks is very likely to give 

very poor results or even to fail. Therefore, we modified the above mentioned signal 

processing approach to make it robust to EEG signal changes between the two con-

texts. In particular, rather than using basic CSP spatial filters, we used regularized 

CSP spatial filters [14] that are robust to changes between calibration and use con-

texts. To do so, based on [27], we estimated the EEG signal covariance matrix from 

the calibration context (N-back tasks) and from the use context1 (3D object manipula-

tion tasks), and computed the Principal Components (PC) of the difference between 

these two matrices. These PC represent the directions along which EEG signals 

change between calibration and use. These directions are then used to regularize the 

CSP spatial filters as in [27], to ensure that the obtained spatial filters are invariant to 

these EEG signals changes. 

From ECG signals we extracted the Heart Rate (HR) and 2 features from the Heart 

Rate Variability (HRV), namely the low frequency HRV (< 0.1 Hz) and the Root 

Mean Square of Successive Differences, as in [16], using the Biosig Matlab toolbox 

[29]. From GSR signals we also extracted 3 features: the mean GSR amplitude, skin 

conductance responses (SCR, here band power between 0.5 Hz and 2 Hz) and the 

skin conductance level (SCL, 0.1 − 0.5 Hz) [7]. 

We then used a shrinkage Linear Discriminant Analysis (sLDA) classifier [15] to 

learn which feature values correspond to a high or low workload level. 

Note that since both ECG and GSR analyses rely on low frequencies, we had to ex-

tend the time windows from 2s to 10s when we studied those physiological signals 

(for instance, for HRV at 0.1Hz, 10s are needed to observe a single cycle). As such 

the number of trials per condition (0-back vs 2-back) in these particular scenarios 

were reduced from 180 down to 36. 

Estimating mental effort during 3D manipulation 

Once we have a classifier that can estimate workload levels from brain and physio-

logical signals, we can use it to study mental effort during 3D objects manipulation 

tasks. With this objective in mind, we designed an experiment in which participants, 

equipped with the sensors described previously (EEG, ECG and GSR), had to manip-

ulate 3D objects using an interaction device known as the CubTile [26]. In particular, 

participants had to perform 3D docking tasks in order to build a bridge in 3D by as-

sembling together its different parts (see Figure 2). The following sections describe 

the participant population used for this experiment, the CubTile input device and the 

protocol of the bridge building application. 

                                                           
1Note that this is only possible here because we perform an offline evaluation, after the 3D 

manipulation tasks have been performed and the corresponding EEG signals collected. It 

would not be possible to use the exact same algorithm for a real-time estimation of workload 

during 3D objects manipulation tasks as the covariance matrix of EEG signals during these 

tasks is not yet fully known. 



 

 

Population and apparatus.  

8 participants (2 females, age from 16 to 29) took part in this study. They were all 

first-time users of the bridge building application and the CubTile (except for one 

participant who has used the CubTile before for another application). These partici-

pants completed 3D manipulation tasks using the CubTile. The CubTile is a multi-

touch cubic interface consisting in a medium-sized cube where 5 out of 6 sides are 

multitouch. It can sense several fingers, offers interaction redundancy and lets a user 

handle 3D manipulation thanks to single handed and bimanual input [26]. In particu-

lar, with the CubTile, translations can be performed by moving symmetrically two 

fingers each on opposite sides of the cube. Scaling can be performed by connecting or 

disconnecting two fingers. Finally, rotations can be performed either by rotating 

symmetrically several fingers each set on opposite sides of the cube or by translating 

asymmetrically two fingers each on opposite sides of the cube. 

Protocol.  

The experiment took place in a dedicated experimental room, in a quiet environ-

ment. When the participant entered the room, he/she was told about the experiment 

and then equipped with the different sensors. Then he/she participated into 6 blocks of 

the N-back task (except S6 who only completed 3 blocks due to technical issues), on a 

standard computer screen, in order to obtain calibration data to setup the workload 

classifier. This took approximately 15 minutes. The participant also participated in 

two other calibration sessions (about 15 minutes each), to calibrate two other mental 

states that were not used nor analyzed for this study. Once the calibration sessions 

were completed, the participant was asked to sit in front of the CubTile which was 

itself in front of a 65 inches Panasonic TX-P65VT20E screen. 

The participant then had to construct the 3D bridge by assembling the bridge parts 

(e.g., the 4 supporting pillars and the road) one by one. In particular, the participant 

had to perform docking tasks, by translating, rotating and scaling the bridge parts, in 

order to put them at the correct location. The correct location was indicated to the user 

with proper 3D feedback, integrated to the 3D scene, in the form of text and color 

indicating how close he/she was from the correct position, scale and orientation. All 

the translations, rotations and scaling were controlled by the CubTile. The participant 

had to perform a set of 7 docking tasks: 

 

1. Positioning the 1st pillar, by controlling rotation, translation and scaling – re-

peated 3 times for different angles, sizes and positions 

2. Positioning the 2nd pillar, by controlling 2 translations, 1 rotation and scaling, 

while the pillar was being continuously and automatically translated along the 

vertical axis – repeated 4 times for different angles, sizes and positions 

3. Positioning the lower half of the 3rd pillar by controlling a crane carrying the 

pillar part, along 1 rotation and 1 translation (up/down) – repeated 3 times for 

different angles and heights 

4. Positioning the upper half of the 3rd pillar by controlling a crane along 1 rota-

tion and 1 translation, seen from a different angle than the previous task – re-

peated 3 times for different angles and heights 



 

 

5. Positioning the 4th pillar by controlling 2 translations and 1 rotation. Without 

warning the users, the gestures for rotation and translation were inverted, 

e.g., moving symmetrically two fingers on opposite sides of the cube triggered a 

rotation instead of the usual translation. Controls were only inverted for this 

task. 

6. Positioning the road joining the first two pillars to the river bank with 2 transla-

tions and 1 rotation - repeated 3 times for different angles and starting position. 

7. Positioning the road joining the four pillars with 1 translation, 3 rotations and 

scaling. 

 

These different tasks enable us to observe how users get to learn how to use the 

CubTile for 3D objects manipulation tasks. Task number 5, with inverted control 

commands, enables us to observe mental workload while using voluntarily difficult 

and counter-intuitive interaction techniques. During the whole duration of the experi-

ment, the participant brain and physiological signals were recorded. 

3 Results 

For each user, we first setup a workload level classifier based on the signals col-

lected during the calibration session (N-back tasks). The next section describes the 

performances achieved for each participant and each signal type. Then, using the best 

workload classifier, we could estimate the workload level over time during the 3D 

docking tasks. This work was done offline, after the experiment. 

Accuracy of mental effort detection 

First, based on the data collected during the calibration session (N-back tasks), we 

could estimate how well low workload could be discriminated from high workload 

based on EEG, ECG and GSR. To do so, we used 2-fold cross-validation (CV) on the 

calibration data collected. In other words, we split the collected data into two parts of 

equal size, used one part to calibrate the classifier (CSP filters and sLDA) as de-

scribed in section 2, and tested the resulting classifier on the data from the other part. 

We then did the opposite (training on the second part and testing on the first part), and 

averaged the obtained classification accuracies (percentage of signal time windows 

whose workload level was correctly identified). This CV was performed by using 

each signal type (i.e., EEG, ECG and GSR) either separately or in combination. Table 

1 displays the obtained classification accuracies. 

 

 

 

 



 

 

Table 1. Cross-validation classification accuracies (%) to discriminate workload levels from 

EEG, ECG and GSR on the calibration session data. A “*” indicates mean classification accu-

racies that are significantly better than chance (p < 0.01 according to [18]) 

Participant S1 S2 S3 S4 S5 S6 S7 S8 Mean 

EEG (Delta, The-

ta, Alpha) 

74.0 76.2 76.5 80.2 84.9 81.9 81.7 75.4 78.9* 

EEG+EMG (Del-

ta,  Theta, Alpha, 

Beta, Gamma) 

85.0 93.1 81.7 87.6 94.8 97.3 84.8 84.3 88.6* 

ECG 37.3 50.7 45.3 58.7 42.6 55.3 54.9 61.2 50.7 

GSR 77.3 52.1 60.0 70.6 74.7 68.4 58.6 54.6 64.5 

EEG+EMG+ECG

+GSR 

44.0 53.3 44.0 61.5 54.8 52.6 54.6 61.2 53.3 

 

Classification results highlight that workload levels can be estimated in brain and 

physiological signals, even though the large inter-participant performance variability 

suggests that workload levels can be estimated more clearly for some users than for 

some others. 

As can be first observed, it appears that EEG can discriminate workload levels with 

an accuracy higher than chance level, for all participants. In other words, the classifi-

cation accuracies obtained are statistically significantly higher than 50% for a 2-class 

problem, i.e., more accurate than flipping a coin to estimate the workload level. In-

deed, according to [18], for 160 trials per class, the chance level for p < 0.01 and a 2-

class problem is an accuracy of 56.9%. Note that 180 trials per class were available 

with EEG in our experiment, meaning that the chance level is actually even slightly 

lower. 

Regarding the GSR, it led to a better-than-chance classification accuracy only for 

some participants, but not for all. Indeed, we had 36 trials per class with GSR (due to 

the use of longer time windows as mentioned previously), which means a chance 

level of about 65% for p < 0.01 according to [18]. ECG signals could not lead to 

better-than-chance performances for any participant. 

Overall, EEG seems to be the signal type the best able to discriminate workload 

levels reliably. Moreover, when EEG features include high frequency bands – i.e. 

when Delta, Theta and Alpha bands are combined with Beta and Gamma bands – and 

thus when EEG measures potentially contain EMG activity as well, the performances 

are the highest, close to 90% on average. 

The poor performances of the system when all physiological signals are combined 

(EEG + EMG + ECG + GSR) may be explained by too important disparities in the 

features for the classifier to handle them correctly. On a side note, we also tested ECG 

and GSR on 2s time windows with adapted features – HR for the former, mean value 

and SCR for the latter. Despite the increased number of trials in training and testing 

phases, the results were very similar to those already described in Table 1. Altogether, 

the relatively poor performances obtained with ECG and GSR are likely due to the 

short time windows (2s or 10s long) used. Much better performances should be ex-



 

 

pected with larger windows, e.g., with 30s-long or even 2min-long time windows 

[16], at the cost of a coarser temporal resolution. 

Since we already obtained a classification accuracy close to 90% through the sole 

use of EEG recordings (which possibly include EMG activity as well), we did not 

push further our investigations about a multimodal (multiple signals) approach to 

mental effort estimation. Such method would necessitate longer time windows, strong 

synchronization between signals and extra classification steps, with little benefit to 

expect considering that a classifier based on GSR hardly reaches 65% of accuracy in 

our protocol. 

We then calibrated the workload classifier on EEG signals from both low and high 

frequency bands (i.e., combining EEG and possibly EMG), and used it to analyze 

workload variations during the 3D manipulation tasks. 

Mental effort during 3D object manipulation 

While the participants were performing 3D docking tasks to build the 3D bridge, 

their brain signals were recorded. By using the workload level classifier obtained 

offline, such classifier being able to estimate whether the current 2-seconds long time 

window of signals corresponds to a low or high workload for the user, we could nota-

bly continuously estimate the workload levels during the tasks. This gave us unique 

insights into how much mental effort the participants were devoting to each task, and 

how this mental effort evolved over time. 

Due to the large between-user variability in terms of workload level estimation ac-

curacy, and since these estimations are not 100% accurate, we studied average work-

load levels to obtain a robust and reliable picture of the mental workload level associ-

ated with each task. To do so, we first normalized between -1 and +1 the output that 

was produced by the classifier for each participant during the virtual bridge construc-

tion. As such, a workload index close to +1 during the 3D object manipulation repre-

sents the highest mental workload a participant had to endure while performing the 

3D docking tasks. It should come close to the 2-back condition of the calibration 

phase. In a similar manner, a workload index close to -1 denotes the lowest workload 

(similar to that of the 0-back condition). 

Because there was no time constraint regarding task completion – users made as 

many attempts as needed to complete each one of them – we could not compare di-

rectly workload indexes over time. Some participants took more than 13 minutes to 

complete all the tasks while others finished in less than 5 minutes (mean: 7.7 min, 

SD: 2.9 min). This is why we averaged the workload index per task. Note that due to 

technical issues, for some participants the beginning and end of a couple of tasks were 

not accurately recorded or missing. If it was the case, the workload indexes for this 

task and participant were not included in the analysis to ensure unbiased results. Alto-

gether, out of the 56 tasks (8 participants × 7 tasks per participant), 13 tasks were not 

included in the analysis to ensure clean results. More precisely, 1 task was missing for 

participant S3, 2 tasks were missing for participants S2 and S5, 3 tasks for participant 

S8, and 5 tasks for participant S4. No tasks were missing for the remaining partici-



 

 

pants. We followed a rather conservative approach (i.e., we discarded a task in case of 

doubt), to ensure only clean and meaningful results are presented. 

Figure 3 displays the workload levels averaged over all participants and over the 

duration of each docking task. This thus provides us with the average mental work-

load induced by each 3D object manipulation task. 

 

 

Fig. 3. Average workload levels (averaged over participants and task duration) measured for 

the different 3D docking tasks. 

To ensure that the observed workload levels were really due to some information 

and structure in the data that are detected by the workload classifier, and not just due 

to chance or to some artefacts that are unrelated to workload levels, we performed a 

permutation analysis. In particular, we performed the exact same analysis described 

previously except that we used random classifiers instead of the real workload classi-

fiers trained on the N-back task data. This aimed at estimating the type of workload 

level indexes we could obtain by chance on our data. To do so, for each participant, 

we shuffled the labels of the N-back task data, (i.e., the EEG signals were not labelled 

with the correct workload level anymore), and optimized the spatial filters and classi-

fier described in Section 2 based on this shuffled training data. In order words, we 

built random classifiers that would not be able to detect workload levels. Then using 

these random classifiers for each participant, we computed the mean normalized 

workload level indexes for each 3D manipulation task, as described previously. We 

repeated this process (workload labels shuffling, then random classifier training, and 

testing of the classifier on the 3D manipulation task data) 1000 times, to obtain the 

distribution of the mean workload level indexes for each task that can be obtained by 

chance (see Figure 4). More precisely, we estimated the multivariate normal distribu-



 

 

tion of the vectors of mean workload level per class (i.e., a vector with 7 elements, the 

ith element being the averaged workload level over participants for task i) obtained 

for each of the 1000 permutations. This multivariate distribution thus represents the 

mean workload levels per task that can obtain by chance. We finally compared the 

actual mean workload levels per task that we obtained using the real workload classi-

fiers (i.e., those optimized on the unshuffled training data, whose output is displayed 

on Figure 3) to this chance multivariate distribution obtained with the random classi-

fiers. This helped us estimate whether the obtained mean workload levels per task 

were due to chance or not. Results showed that the observed real workload levels are 

statistically significantly different from that obtained by the chance distribution with 

p < 0.001, i.e., they are not due to chance. This suggests that our workload classifier 

does find a workload level information during the 3D docking tasks that cannot be 

found by chance. 

 

 

 

Fig. 4. Average workload levels obtained with a permutation test (see text for details), i.e., with 

random classifiers, for the different 3D docking tasks. The real workload levels we observed 

(i.e., those displayed in Figure 3) significantly differ from those random workload levels, i.e., 

they are not due to chance. 

 

In order to sense whether or not the workload index fluctuated along tasks comple-

tion, we conducted a second analysis. Using the same normalized index, we compared 

the workload level between the first quarter and the last quarter of every task – aver-

age across tasks for each participant (Figure 5). A Wilcoxon Signed-rank test showed 

that there was no significant difference. 



 

 

 

Fig. 5. Average per subject of the workload index during the first quarter of every task (left) 

compared to the last quarter (right). 

4 Discussion 

First, the fact that the observed workload levels during 3D manipulation tasks are 

not due to chance on the one hand and that our workload classifiers are calibrated on 

the N-back task, which is a widely used and validated workload induction protocol 

[21] on the other hand, strongly suggests that our approach may be used to observe 

how workload levels vary during 3D manipulation tasks. Indeed, our workload classi-

fiers identified a specific EEG+EMG signature of workload levels thanks to the use of 

the N-back task, which then enabled us to estimate a non-random sequence of work-

load levels for each task. Naturally, if the variations of another mental state (or arte-

fact) are highly correlated to that of the workload levels, and have a similar 

EEG+EMG signature as workload so that these variations are picked-up by our classi-

fiers, then the observed variations of workload may be due to variations of another 

mental state. Therefore, the influence of a confounding mental state or artefacts can-

not be completely ruled out without exploring how all possible mental states vary, 

which is of course impossible. However, the fact that our classifiers are specific to 

workload variations (since they are calibrated with the N-back task which specifically 

makes workload levels vary) and that the observed variations are not due to chance 

makes the influence of a such confounding factor rather unlikely. Based on this inter-

pretation, we can now analyze how the workload level changes during the different 

3D manipulation tasks and why. 

The observed workload levels suggest that despite the novelty and the complexity 

of the interaction – handling at the same time rotation, translation and scaling of ele-



 

 

ments in a 3D environment right from the beginning – the participants did not make 

an important mental effort to complete the first task. That could be due to the practi-

cality of the CubTile, which may ease 3D interaction thanks to its additional degrees 

of freedom compared to a traditional input device such as a mouse. 

When a constraint appeared concurrently with the second task – pillars were “fall-

ing” continuously from the sky and had to be positioned quickly before they touched 

the ground – the workload index increased substantially. This is consistent with the 

sudden pressure that was exerted on users. As one could expect, the mental workload 

lowered and settled in tasks 3 and 4, during which there was no more time pressure – 

but still more complex manipulations compared to task 1. 

We purposely inverted the commands during the fifth task to disorientate partici-

pants. As a matter of fact, this is the moment when the workload index was the high-

est on average among all participants. Then, after this sudden surge of mental stress, 

once again the measured workload has been reduced in the two subsequent tasks. 

Interestingly enough, for task 6, in which the control commands were inverted back to 

normal, the workload indeed decreased as compared to that of task 5, but was still 

higher than for the other tasks. This probably reflects the fact that users had somehow 

integrated the counterintuitive manipulation technique and had to change again the 

gestures they used to manipulate the 3D object, thus being forced to forget what they 

had just learned in task 5 which resulted in a high workload. Since the new control 

scheme was the one they had already used during the previous tasks though, the work-

load was not as high as in task 5. 

Overall, the mental workload that was measured with EEG and EMG along the 

course of the interaction matches the design of the tasks. Workload increased when a 

sensitive element of the interaction was deprived – e.g. time or commands – which 

can be explained by the need to overcome what participants have learned previously 

and re-learn how to handle the new environment. Afterward, when going back to the 

previous scheme, the workload goes back to a low level, as could be expected. 

The absence of differences in the workload index between the beginning and the 

end of the tasks could be due to their durations. We expect to observe a learning effect 

when the CubTile – or any other input device – is operated during a prolonged period 

of time in steady conditions; i.e., the workload index would be lower in the end. 

Overall, these results suggested that continuous mental workload monitoring was 

possible and could provide us with interesting insights about how cognitively easy-to-

use a given 3D interaction technique can be. As compared to previous works, our 

results show that it is possible to monitor mental workload based on brain and physio-

logical signals, even when the user is actively interacting (and not passively observing 

as in previous works), moving, and performing more complex and more cognitively 

demanding 3D manipulation tasks, in a visually rich 3D environment. 

The approach we proposed here enabled us to perform continuous mental workload 

monitoring, but only with an offline analysis. Indeed, our algorithm required compu-

ting the covariance matrix of EEG signals recorded during the context of use (i.e., 

here during 3D object manipulation tasks), which would not have been possible if 

mental workload was to be estimated in real-time during these manipulation tasks. 

The covariance matrix was estimated on all the EEG data collected during the manip-



 

 

ulation tasks, and thus could only be estimated once the tasks were completed. In the 

future, it would be interesting to design a continuous workload estimator that can also 

be used in real-time. To do so, our algorithm could be adapted in two ways: 1) the 

covariance matrix of the EEG signals recorded during 3D manipulation tasks could be 

estimated on the first task - or couple of tasks - only, to enable workload estimation in 

real-time on the subsequent tasks; 2) the differences between the calibration context 

and the use context are likely to be the same across different participants [27]. As 

such, the EEG signals directions that vary between contexts can be estimated on the 

data from some users, and used to estimate robustly the workload on the data from 

other users, hence without the need to estimate these variations for a new user, as 

done in [27] for the classification of EEG signals related to imagined hand move-

ments. We will explore these options in the future, which would potentially open the 

door for robust continuous mental effort estimation during 3D interaction, in real-

time. 

5 Conclusion 

In this paper, we have explored a new way to evaluate 3DUI in a more continuous, 

objective/exocentric and non-interrupting way. In particular we proposed to continu-

ously monitor the mental effort exerted by users of a given 3DUI based on the meas-

ure of their brain signals (EEG). We first proposed a method to estimate such level of 

mental effort from EEG, EMG, ECG and GSR signals. We then used the resulting 

mental effort estimator to study mental workload during a pilot study involving 3D 

object manipulation tasks with a CubTile. Monitoring workload enabled us to contin-

uously observe when and where the 3DUI and/or interaction technique was easy or 

difficult to use. In the future, it could potentially be used to also study how users learn 

to use the 3DUI, possibly in real-time. Overall, this suggested such approach can be a 

relevant tool to complement existing 3DUI evaluation tools. 

Future works will consist in using the proposed workload estimator to assess other 

3D interaction tasks such as navigation or application control. We will also explore 

other mental states that could be measured from brain and physiological signals, such 

as error recognition (to measure how intuitive a 3DUI can be) or emotions (to meas-

ure how pleasant and enjoyable a 3DUI can be). It would also be important and inter-

esting to estimate whether and how wearing different sensors affects the way the user 

interacts with the 3DUI. Overall, we aim at designing a comprehensive evaluation 

framework based on brain and physiological signals that could be a new evaluation 

tool in the repertoire of UI designers. 
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